European XFEL Python data tools

Documentation
Release 0.7.0

European XFEL

Dec 20, 2019

CONTENTS

1 Installation 3
2 Quickstart 5
3 Documentation contents 7
3.1 Readingdatafiles e 7
32 AGIPD,LPD & DSSCdata e e e 15
3.3 Streaming data over ZeroMQ L Lo e e e e e e e 17
34 Checkingdatafiles 19
3.5 AGIPD,LPD & DSSC Geometry o v v i vttt e e e e e e e e 19
3.6 Command line tools L e 32
3.7 Datafilesformat L e e 33
3.8 Performance notes e e e e e 34
3.9 Reading data with karabo_data i e e 35
3.10 AccessingLPD data e 46
3.11 Assembling detector data intoimagesl oo 49
3.12 Examining detector SEOMEetIy it i e i e e e e e e e e e e e e e e 54
3.13 Detector geometry for AGIPD e e e 56
3.14 DSSCdetector ZEOMELTY . . . v v v v v v v v e 61
3.15 Working with non-detectordata L e 65
3.16 Comparing fast XGM data from two simultaneous recordings 70
3.17 Overall comparison of suppression ratio (witherror) 79
3.18 Parallel processing with a virtual dataset e e 81
3.19 Averaging detector datawith Dask e 84
320 Release NOtes o i i e e e 87
4 Indices and tables 91
Python Module Index 93
Index 95

European XFEL Python data tools Documentation, Release 0.7.0

karabo_data is a Python library for accessing and working with data produced at European XFEL.

CONTENTS 1

https://www.xfel.eu/

European XFEL Python data tools Documentation, Release 0.7.0

2 CONTENTS

CHAPTER
ONE

INSTALLATION

karabo_data is available on our Anaconda installation on the Maxwell cluster:

’module load exfel exfel anaconda3

You can also install it from PyPI to use in other environments with Python 3.5 or later:

’pip install karabo_data

If you get a permissions error, add the ——user flag to that command.

https://pypi.org/project/karabo-data/

European XFEL Python data tools Documentation, Release 0.7.0

4 Chapter 1. Installation

CHAPTER
TWO

QUICKSTART

Open a run or a file - see Opening files for more:

from karabo_data import open_run, RunDirectory, Hb5File

Find a run on the Maxwell cluster
run = open_run (proposal=700000, run=1)

Open a run with a directory path
run = RunDirectory("/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0001")

Open an individual file
file = HS5File ("RAW-RO017-DA01-S00000.h5")

After this step, you’ll use the same methods to get data whether you opened a run or a file.

Load data into memory - see Gefting data by source & key for more:

Get a labelled array
arr = run.get_array ("SA3_XTD10_PES/ADC/1l:network", "digitizers.channel_4_A.raw.samples

. u)

Get a pandas dataframe of 1D fields

df = run.get_dataframe (fields=|[
("%x_XGM/*", "%.i[xy]Pos"),
("x_XGM/*", "x.photonFlux")

1)

Iterate through data for each pulse train - see Getting data by train for more:

for train_id, data in run.select ("+/DET/*", "image.data").trains/():
mod0 = data["FXE_DET_LPDIM-1/DET/0CHO:xtdf"] ["image.data"]

These are not the only ways to get data: Reading data files describes various other options. karabo_data also has
classes to work with detector geometry, described in AGIPD, LPD & DSSC Geometry.

European XFEL Python data tools Documentation, Release 0.7.0

6 Chapter 2. Quickstart

CHAPTER
THREE

DOCUMENTATION CONTENTS

3.1 Reading data files

3.1.1 Opening files

You will normally access data from a run, which is stored as a directory containing HDFS5 files. You can open a run
using RunDirectory () with the path of the directory, or using open_run () with the proposal number and run
number to look up the standard data paths on the Maxwell cluster.

karabo_data.RunDirectory (path, include="*")
Open data files from a ‘run’ at European XFEL.

run = RunDirectory ("/gpfs/exfel/exp/XMPL/201750/p700000/raw/xr0001™)

A ‘run’ is a directory containing a number of HDFS5 files with data from the same time period.
Returns a DataCollection object.
Parameters
* path (st r)— Path to the run directory containing HDFS5 files.
* include (str)— Wildcard string to filter data files.

karabo_data.open_run (proposal, run, data="raw’, include="*")
Access EuXFEL data on the Maxwell cluster by proposal and run number.

run = open_run (proposal=700000, run=1)

Returns a DataCollection object.
Parameters

* proposal (str, int)-— A proposal number, such as 2012, ‘2012’, ‘p002012°, or a path
such as ‘/gpfs/exfel/exp/SPB/201701/p002012°.

e run(str, int)-— A runnumber such as 243, ‘243’ or ‘r0243’.

* data (str) — ‘raw’ or ‘proc’ (processed) to access data from one of those folders. The
default is ‘raw’.

* include (str)— Wildcard string to filter data files.
New in version 0.5.

You can also open a single file. The methods described below all work for either a run or a single file.

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

European XFEL Python data tools Documentation, Release 0.7.0

karabo_data.H5File (path)
Open a single HDFS file generated at European XFEL.

file = H5File ("RAW-RO017-DA01-S00000.h5")

Returns a DataCollection object.

Parameters path (st r)— Path to the HDFS5 file

3.1.2 Data structure

A run (or file) contains data from various sources, each of which has keys. For instance, SA1_XTD2_XGM/XGM/
DOOCS is one source, for an ‘XGM’ device which monitors the beam, and its keys include beamPosition.ixPos
and beamPosition.iyPos.

European XFEL produces ten pulse trains per second, each of which can contain up to 2700 X-ray pulses. Each pulse
train has a unique train ID, which is used to refer to all data associated with that 0.1 second window.

class karabo_data.DataCollection

train_ids
A list of the train IDs included in this data. The data recorded may not be the same for each train.

control_ sources
A set of the control source names in this data, in the format "SA3_XTD10_VAC/TSENS/S30100K".
Control data is always recorded exactly once per train.

instrument_sources
A set of the instrument source names in this data, in the format "FXE_DET_LPD1M-1/DET/15CHO:
xtdf". Instrument data may be recorded zero to many times per train.

all_sources
A set of names for both instrument and control sources. This is the union of the two sets above.

keys_for_ source (source)
Get a set of key names for the given source

If you have used select () to filter keys, only selected keys are returned.

Only one file is used to find the keys. Within a run, all files should have the same keys for a given source,
but if you use union () to combine two runs where the source was configured differently, the result can
be unpredictable.

get_data_counts (source, key)
Get a count of data points in each train for the given data field.

Returns a pandas series with an index of train IDs.
Parameters
* source (str)— Source name, e.g. “SPB_DET_AGIPDI1M-1/DET/7CHO:xtdf”
* key (str)— Key of parameter within that device, e.g. “image.data”.

info ()
Show information about the selected data.

8 Chapter 3. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

European XFEL Python data tools Documentation, Release 0.7.0

3.1.3 Getting data by source & key

Where data will fit into memory, it’s usually quickest and most convenient to load it like this.

class karabo_data.DataCollection

get_array (source, key, extra_dims=None, roi=by_index]...])
Return a labelled array for a particular data field.

arr = run.get_array ("SA3_XTD10_PES/ADC/l:network", "digitizers.channel_ 4 _A.
—raw.samples")

This should work for any data. The first axis of the returned data will be labelled with the train IDs.
Parameters

e source (str) - Device name with optional output channel, e.g.
“SA1_XTD2_XGM/DOOCS/MAIN” or “SPB_DET_AGIPD1M-1/DET/7CHO:xtdf”

* key (str) — Key of parameter within that device, e.g. “beamPosition.iyPos.value” or
“header.linkId”.

* extra_dims (1ist of str)- Name extra dimensions in the array. The first dimen-
sion is automatically called ‘train’. The default for extra dimensions is dim_0, dim_1,

* roi (by_index) — The region of interest. This expression selects data in all dimen-
sions apart from the first (trains) dimension. If the data holds a 1D array for each entry,
roi=by_index[:8] would get the first 8 values from every train. If the data is 2D or more at
each entry, selection looks like roi=by_index|[:8, 5:10] .

See also:

xarray documentation How to use the arrays returned by get_array ()

Working with non-detector data Examples using xarray & pandas with EuXFEL data
get_dask_array (source, key)

Get a Dask array for the specified data field.

Dask is a system for lazy parallel computation. This method doesn’t actually load the data, but gives you
an array-like object which you can operate on. Dask loads the data and calculates results when you ask it
to, e.g. by calling a . compute () method. See the Dask documentation for more details.

If your computation depends on reading lots of data, consider creating a dask.distributed.Client before
calling this. If you don’t do this, Dask uses threads by default, which is not efficient for reading HDF5

files.
Parameters
* source (str)— Source name, e.g. “SPB_DET_AGIPD1M-1/DET/7CHO:xtdf”
* key (str)— Key of parameter within that device, e.g. “image.data”.
See also:

Dask Array documentation How to use the objects returned by get_dask_array ()

Averaging detector data with Dask An example using Dask with EuXFEL data

3.1. Reading data files 9

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://xarray.pydata.org/en/stable/indexing.html
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.dask.org/en/latest/array.html

European XFEL Python data tools Documentation, Release 0.7.0

get_series (source, key)

Return a pandas Series for a particular data field.

s = run.get_series ("SAl_XTD2_XGM/XGM/DOOCS", "beamPosition.ixPos")

This only works for 1-dimensional data.
Parameters

* source (str) — Device name with optional output channel, e.g.
“SA1_XTD2_XGM/DOOCS/MAIN” or “SPB_DET_AGIPDIM-1/DET/7CHO:xtdf”

* key (str) — Key of parameter within that device, e.g. “beamPosition.iyPos.value” or
“header.linkld”. The data must be 1D in the file.

get_dataframe (fields=None, *, timestamps=False)

Return a pandas dataframe for given data fields.

df = run.get_dataframe (fields=][
("x_XGM/*", "x.i[xy]Pos"),
("%x_XGM/*", "+.photonFlux")
1)

This links together multiple 1-dimensional datasets as columns in a table.
Parameters

e fields (dict or list, optional) - Select data sources and keys to include in
the dataframe. Selections are defined by lists or dicts as in select ().

* timestamps (bool) — If false (the default), exclude the timestamps associated with
each control data field.

See also:

pandas documentation How to use the objects returned by get_series () and get_dataframe ()

Working with non-detector data Examples using xarray & pandas with EuXFEL data

get_virtual_dataset (source, key, filename=None)

Create an HDFS5 virtual dataset for a given source & key

A dataset looks like a multidimensional array, but the data is loaded on-demand when you access it. So
it’s suitable as an interface to data which is too big to load entirely into memory.

This returns an hSpy.Dataset object. This exists in a real file as a ‘virtual dataset’, a collection of links
pointing to the data in real datasets. If filename is passed, the file is written at that path, overwriting if it
already exists. Otherwise, it uses a new temp file.

To access the dataset from other worker processes, give them the name of the created file along with the
path to the dataset inside it (accessible as ds.name). They will need at least HDF5 1.10 to access the
virtual dataset, and they must be on a system with access to the original data files, as the virtual dataset
points to those.

New in version 0.5.
See also:

Parallel processing with a virtual dataset

10

Chapter 3. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://pandas.pydata.org/pandas-docs/stable/

European XFEL Python data tools Documentation, Release 0.7.0

3.1.4 Getting data by train

Some kinds of data, e.g. from AGIPD, are too big to load a whole run into memory at once. In these cases, it’s
convenient to load one train at a time.

When accessing data like this, it’s worth selecting which sources you’re interested in, either using select (), or the
devices= parameter. This avoids reading all the other data.

class karabo_data.DataCollection

trains (devices=None, train_range=None, *, require_all=False)
Iterate over all trains in the data and gather all sources.

run = Run('/path/to/my/run/r0123")
for train_id, data in run.select ("«/DET/*", "image.data").trains():
mod0 = data["FXE_DET_LPDIM-1/DET/0CHO:xtdf"] ["image.data"]

Parameters

* devices (dict or list, optional)— Filter data by sources and keys. Refer to
select () for how to use this.

* train_range (by_id or by_index object, optional) - lterate over only
selected trains, by train ID or by index. Refer to select_trains () for how to use
this.

* require_all (bool) — False (default) returns any data available for the requested
trains. True skips trains which don’t have all the selected data; this only makes sense
if you make a selection with devices or select ().

Yields
e tid (int) — The train ID of the returned train
* data (dict) — The data for this train, keyed by device name
train_ from_id (train_id, devices=None)
Get train data for specified train ID.
Parameters
e train_id (int) - The train ID

* devices (dict or list, optional)- Filter data by sources and keys. Refer to
select () for how to use this.

Returns

e tid (int) — The train ID of the returned train

* data (dict) — The data for this train, keyed by device name
Raises KeyError — if train_id is not found in the run.

train_ from_index (train_index, devices=None)
Get train data of the nth train in this data.

Parameters
e train_index (int)— Index of the train in the file.

* devices (dict or 1list, optional) - Filter data by sources and keys. Refer to
select () for how to use this.

3.1.

Reading data files 11

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list

European XFEL Python data tools Documentation, Release 0.7.0

Returns
e tid (int) — The train ID of the returned train
* data (dict) — The data for this train, keyed by device name

3.1.5 Selecting & combining data

These methods all return a new DataCollection object with the selected data, so you use them like this:

sel = run.select ("*/XGM/*")
sel includes only XGM sources
run still includes all the data

class karabo_data.DataCollection

select (seln_or_source_glob, key_glob="*")
Select a subset of sources and keys from this data.

There are three possible ways to select data:

1. With two glob patterns (see below) for source and key names:

Select data in the image group for any detector sources
sel = run.select ('+«/DET/*, 'image.x')

2. With alist of (source, key) glob patterns:

Select image.data and image.mask for any detector sources
sel = run.select ([('+«/DET/*, 'image.data'), ('*/DET/x, 'image.mask')])

Data is included if it matches any of the pattern pairs.

3. With a dict of source names mapped to sets of key names (or empty sets to get all keys):

Select image.data from one detector source, and all data from one XGM
sel = run.select ({'SPB_DET_AGIPDIM-1/DET/0CHO:xtdf': {'image.data'},
'SA1_XTD2_XGM/XGM/DOOCS': set ()})

Unlike the others, this option doesn’t allow glob patterns. It’s a more precise but less convenient
option for code that knows exactly what sources and keys it needs.

Returns a new DataCollection object for the selected data.

Note: ‘Glob’ patterns may be familiar from selecting files in a Unix shell. » matches anything, so
x /DET/ selects sources with “/DET/” anywhere in the name. There are several kinds of wildcard:

* «: anything

e ?: any single character

* [xyz]: one character, “x”, “y” or “z”
e [0-9]: one digit character

e [!xyz]: one character, not x, y or z

[T

Anything else in the pattern must match exactly. It’s case-sensitive, so “x” does not match “X”.

12 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

deselect (seln_or_source_glob, key_glob="*")
Select everything except the specified sources and keys.

This takes the same arguments as select (), but the sources and keys you specify are dropped from the
selection.

Returns a new DataCollection object for the remaining data.

select_trains (train_range)
Select a subset of trains from this data.

Choose a slice of trains by train ID:

from karabo_data import by_id
sel = run.select_trains(by_1d[142844490:1428444957)

Or select a list of trains:

sel = run.select_trains(by_1d[[142844490, 142844493, 1428444941171)

Or select trains by index within this collection:

from karabo_data import by_index
sel run.select_trains (by_index[:5])

Returns anew DataCollection object for the selected trains.
Raises ValueError - If given train IDs do not overlap with the trains in this data.

union (*others)
Join the data in this collection with one or more others.

This can be used to join multiple sources for the same trains, or to extend the same sources with data for
further trains. The order of the datasets doesn’t matter.

Returns a new DataCollection object.

3.1.6 Writing selected data

class karabo_data.DataCollection

write (filename)
Werite the selected data to a new HDFS5 file

You can choose a subset of the data using methods like select () and select_trains (), then use
this write it to a new, smaller file.

The target filename will be overwritten if it already exists.

write_virtual (filename)
Write an HDFS file with virtual datasets for the selected data.

This doesn’t copy the data, but each virtual dataset provides a view of data spanning multiple sequence
files, which can be accessed as if it had been copied into one big file.

This is not the same as building virtual datasets to combine multi-module detector data. See AGIPD, LPD
& DSSC data for that.

Creating and reading virtual datasets requires HDFS version 1.10.

The target filename will be overwritten if it already exists.

3.1. Reading data files 13

https://docs.python.org/3/library/exceptions.html#ValueError
https://in.xfel.eu/readthedocs/docs/data-analysis-user-documentation/en/latest/datafiles.html#combining-detector-data-from-multiple-modules

European XFEL Python data tools Documentation, Release 0.7.0

3.1.7 Missing data

What happens if some data was not recorded for a given train?

Control data is duplicated for each train until it changes. If the device cannot send changes, the last values will be
recorded for each subsequent train until it sends changes again. There is no general way to distinguish this scenario
from values which genuinely aren’t changing.

Parts of instrument data may be missing from the file. These will also be missing from the data returned by
karabo_data:

* The train-oriented methods t rains (), train_from_id(),and train_from index () give you dic-
tionaries keyed by source and key name. Sources and keys are only included if they have data for that train.

e get_array (), and get_series () skip over trains which are missing data. The indexes on the returned
DataArray or Series objects link the returned data to train IDs. Further operations with xarray or pandas may
drop misaligned data or introduce fill values.

e get_dataframe () includes rows for which any column has data. Where some but not all columns have
data, the missing values are filled with NaN by pandas’ missing data handling.

Missing data does not necessarily mean that something has gone wrong: some devices send data at less than 10 Hz
(the train rate), so they always have gaps between updates.

3.1.8 Data problems

If you encounter problems accessing data with karabo_data, there may be problems with the data files themselves.
Use the karabo-data-validate command to check for this (see Checking data files).

Here are some problems we’ve seen, and possible solutions or workarounds:

¢ Indexes point to data beyond the end of datasets: this has previously been caused by bugs in the detector
calibration pipeline. If you see this in calibrated data (in the proc/ folder), ask for the relevant runs to be
re-calibrated.

 Train IDs are not strictly increasing: issues with the timing system when the data is recorded can create an
occasional train ID which is completely out of sequence. Usually it seems to be possible to ignore this and use
the remaining data, but if you have any issues, please let us know.

— In one case, a train ID had the maximum possible value (2% - 1), causing info () to fail. You can select
everything except this train using select_trains():

from karabo_data import by_id
sel = run.select_trains(by_1id[:2x%x64-17])

If you’re having problems with karabo_data, you can also try searching previously reported issues to see if anyone has
encountered similar symptoms.

14 Chapter 3. Documentation contents

http://pandas.pydata.org/pandas-docs/stable/user_guide/missing_data.html
https://github.com/European-XFEL/karabo_data/issues?q=is%3Aissue

European XFEL Python data tools Documentation, Release 0.7.0

3.1.9 Cached run data maps

When you open a run in karabo_data, it needs to know what data is in each file. Each file has metadata describing
its contents, but reading this from every file is slow, especially on GPFS. karabo_data therefore tries to cache this
information the first time a run is opened, and reuse it when opening that run again.

This should happen automatically, without the user needing to know about it. You only need these details if you think
caching may be causing problems.

* Caching is triggered when you use RunDirectory () or open_run().
* There are two possible locations for the cached data map:
— In the run directory: (run dir) /karabo_data_map. json.

— In the proposal scratch directory: (proposal dir) /scratch/.karabo_data_maps/
raw_r0032.json. This will normally be the one used on Maxwell, as users can’t write to the
run directory.

* The format is a JSON array, with an object for each file in the run.
— This holds the list of train IDs in the file, and the lists of control and instrument sources.

— It also stores the file size and last modified time of each data file, to check if the file has changed since the
cache was created. If either of these attributes doesn’t match, karabo_data ignores the cached information
and reads the metadata from the HDFS5 file.

e If any file in the run wasn’t listed in the data map, or its entry was outdated, a new data map is written auto-
matically. It tries the same two locations described above, but it will continue without error if it can’t write to
either.

JSON was chosen as it can be easily inspected manually, and it’s reasonably efficient to load the entire file.

3.2 AGIPD, LPD & DSSC data

These data from AGIPD, LPD and DSSC is spread out in separate files. karabo_data includes convenient interfaces
to access this data, pulling together the separate modules into a single array.

class karabo_data.components.AGIPD1M (data: karabo_data.reader.DataCollection, detec-

tor_name=None, modules=None, *, min_modules=1)
An interface to AGIPD-1M data.

Parameters
* data (DataCollection)— A data collection, e.g. from RunDirectory.

* modules (set of ints, optional)-Detector module numbers to use. By default,
all available modules are used.

e detector_name (str, optional) - Name of a detector, e.g.
‘SPB_DET_AGIPDIM-1’. This is only needed if the dataset includes more than one
AGIPD detector.

* min_modules (int) — Include trains where at least n modules have data. Default is 1.
The methods of this class are identical to those of LPD 1M, below.

class karabo_data.components.DSSCI1M (data: karabo_data.reader.DataCollection, detec-

tor_name=None, modules=None, *, min_modules=1)
An interface to DSSC-1M data.

Parameters

3.2. AGIPD, LPD & DSSC data 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

European XFEL Python data tools Documentation, Release 0.7.0

* data (DataCollection)— A data collection, e.g. from RunDirectory.

* modules (set of ints, optional)-Detector module numbers to use. By default,
all available modules are used.

* detector_name (str, optional)-Name of adetector, e.g. ‘SCS_DET_DSSCI1M-
1’. This is only needed if the dataset includes more than one DSSC detector.

* min_modules (int)— Include trains where at least n modules have data. Default is 1.
The methods of this class are identical to those of .PD 1M, below.

class karabo_data.components.LPD1M (data: karabo_data.reader.DataCollection, detec-

tor_name=None, modules=None, *, min_modules=1)
An interface to LPD-1M data.

Parameters
* data (DataCollection)— A data collection, e.g. from RunDirectory.

* modules (set of ints, optional)-Detector module numbers to use. By default,
all available modules are used.

* detector_name (str, optional)- Name of a detector, e.g. ‘FXE_DET_LPDIM-
1I’. This is only needed if the dataset includes more than one LPD detector.

* min_modules (int) — Include trains where at least n modules have data. Default is 1.

get_array (key, pulses=by_index[:])
Get a labelled array of detector data

Parameters
* key (str)—The data to get, e.g. ‘image.data’ for pixel values.

* pulses (by_id or by_index) - Select the pulses to include from each train. by_id
selects by pulse ID, by_index by index within the data being read. The default includes all
pulses. Only used for per-train data.

trains (pulses=by_index[:])
Iterate over trains for detector data.

Parameters pulses (by_index or by_id) — Select which pulses to include for each
train. The default is to include all pulses.

Yields train_data (dict) — A dictionary mapping key names (e.g. image.data) to labelled
arrays.

write_virtual_cxi (filename)
Write a virtual CXI file to access the detector data.

The virtual datasets in the file provide a view of the detector data as if it was a single huge array, but
without copying the data. Creating and using virtual datasets requires HDF5 1.10.

Parameters filename (st r) - The file to be written. Will be overwritten if it already exists.
See also:
Accessing LPD data: An example using the class above.

If you get data for a train from the main DataCollection interface, there is also another way to combine detector
modules from AGIPD or LPD:

karabo_data.stack_detector_ data (train, data, axis=-3, modules=16, fillvalue=nan,

real_array=True)
Stack data from detector modules in a train.

16 Chapter 3. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

European XFEL Python data tools Documentation, Release 0.7.0

Parameters
* train (dict) - Train data.

* data (str) — The path to the device parameter of the data you want to stack, e.g. ‘im-
age.data’.

* axis (int)— Array axis on which you wish to stack (default is -3).
* modules (int)— Number of modules composing a detector (default is 16).

e fillvalue (number) — Value to use in place of data for missing modules. The default is
nan (not a number) for floating-point data, and O for integers.

* real_array (bool) — If True (default), copy the data together into a real numpy array.
If False, avoid copying the data and return a limited array-like wrapper around the existing
arrays. This is sufficient for assembling images using detector geometry, and allows better
performance.

Returns combined — Stacked data for requested data path.

Return type numpy.array

3.3 Streaming data over ZeroMQ

Karabo Bridge provides access to live data during the experiment over a ZeroMQ socket. The karabo_data Python
package can stream data from files using the same protocol. You can use this to test code which expects to receive
data from Karabo Bridge, or use the same code for analysing live data and stored data.

To stream the data from a file or run unmodified, use the command:

karabo-bridge-serve-files /gpfs/exfel/exp/SPB/201830/p900022/raw/r0034 4545

The number (4545) must be an unused TCP port above 1024. It will bind to this and stream the data to any connected
clients.

We provide Karabo bridge clients as Python and C++ libraries.
If you want to do some processing on the data before streaming it, you can use this Python interface to send it out:

class karabo_data.export.zZMQStreamer (port, maxlen=10, protocol_version="2.2",

dummy_timestamps=False)
ZeroMQ inteface sending data over a TCP socket.

Server:
serve = ZMQStreamer (1234)
serve.start ()

for tid, data in run.trains{():
result = important_processing(data)
serve.feed (result)

Client:

from karabo_bridge import Client

client = Client ('tcp://server.hostname:1234")
data = client.next ()

Parameters

» port (int)— Local TCP port to bind socket to

3.3. Streaming data over ZeroMQ 17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

European XFEL Python data tools Documentation, Release 0.7.0

* maxlen (int, optional)—How many trains to cache before sending (default: 10)

* protocol_version(('1.0' | '2.1'"))— Which version of the bridge protocol to
use. Defaults to the latest version implemented.

* dummy_timestamps (bool)— Some tools (such as OnDA) expect the timestamp infor-
mation to be in the messages. We can’t give accurate timestamps where these are not in the
file, so this option generates fake timestamps from the time the data is fed in.

start ()
Start a zmq.REP socket.

feed (data, metadata=None)
Push data to the sending queue.

This blocks if the queue already has maxlen items waiting to be sent.
Parameters

* data (dict) — Contains train data. The dictionary has to follow the karabo_bridge pro-
tocol structure:

- keys are source names

— values are dict, where the keys are the parameter names and values must be python
built-in types or numpy.ndarray.

* metadata (dict, optional)— Contains train metadata. The dictionary has to fol-
low the karabo_bridge protocol structure:

— keys are (str) source names
— values (dict) should contain the following items:
* “timestamp’ Unix time with subsecond resolution
* ’timestamp.sec’ Unix time with second resolution
+ ’timestamp.frac’ fractional part with attosecond resolution

’timestamp.tid’ is European XFEL train unique ID

'source': 'sourceName' # str

'timestamp': 1234.567890 # float
'timestamp.sec': '1234' # str
'timestamp.frac': '567890000000000000" # st
'timestamp.tid': 1234567890 # int

I}

If the metadata dict is not provided it will be extracted from ‘data’ or an empty dict if
‘metadata’ key is missing from a data source.

18 Chapter 3. Documentation contents

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

European XFEL Python data tools Documentation, Release 0.7.0

3.4 Checking data files

karabo_data includes a tool to check the integrity of data files. You can pass it a run:

’ karabo-data-validate /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0803

Or a single data file:

karabo-data-validate /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0803/RAW-R0803-AGIPD0O0-
—~S00000.h5

The checks are informed by problems we have encountered with data files in the past. Currently, it checks that:
¢ All .h5 files in a run can be opened, and the run contains at least one usable file.
* The list of train IDs in a file has no zeros except for padding at the end.
 Each train ID in a file is greater than the one before it.
* The indexes have the same number of entries as train IDs.
* The indexes do not point to data beyond the end of a dataset.

» The indexes point to the start of the dataset, and then to successive chunks for successive trains, without gaps or
overlaps between them.

If any checks fail, the output will contain details, and the exit code will be non-zero. An exit code of 0 means that the
checks all passed. This is the standard convention for command line tools to indicate success or failure.

3.5 AGIPD, LPD & DSSC Geometry

The AGIPD and LPD detectors are made up of several sensor modules, from which separate streams of data are
recorded. Inspecting or processing data from these detectors therefore depends on knowing how the modules are
arranged. The module karabo_data.geomet ry2 handles this information.

All the coordinates used in this module are from the detector centre. This should be roughly where the beam passes
through the detector. They follow the standard European XFEL axis orientations, with x increasing to the left (looking
along the beam), and y increasing upwards.

Note: This module includes methods to assemble data into a single array. This is sufficient for a quick examination of
detector images, but the detector pixels may not line up with the grid imposed by a single array. For accurate analysis,
it’s best to use a tool that can process geometry internally with sub-pixel precision.

3.5.1 AGIPD-1M

AGIPD-1M consists of 16 modules of 512x128 pixels each. Each module is further subdivided into 8 tiles. The layout
of tiles within a module is fixed by the manufacturing process, but this geometry code works with a position for each
tile.

class karabo_data.geometry2.AGIPD_1MGeometry (modules, filename='No file')
Detector layout for AGIPD-1M

The coordinates used in this class are 3D (X, y, z), and represent metres.

You won’t normally instantiate this class directly: use one of the constructor class methods to create or load a
geometry.

3.4. Checking data files 19

European XFEL Python data tools Documentation, Release 0.7.0

T8 T1
s plie|
T1 T8
Q1MI (ch O)
Q4M1 {ch 12)
Frst pleg|—= ﬂ_
Q1M2 (ch 1)
Q4m2 (ch 13)
g
—
Q1M3 (ch 2)
Q4M3 {ch 14)
01M4 (ch 3)
04M4 (ch 15)
—_— BEAM -
Q2M1 (ch 4)
Q32M1 (ch 8)
Q2M2 (ch 5)
Q3M2 (ch 9)
—_— ™
Q2M3 (ch 6)
Q3M3 (ch 10)
—- ™
Q2M4 (ch 7)
Q3M4 (ch 11)
T8 T1
T1 T8 y

Z (beam direction)

Fig. 1: The approximate layout of AGIPD-1M, in a front view (looking along the beam).

20 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

classmethod from quad_positions (quad_pos, asic_gap=2, panel_gap=29, unit=0.0002)
Generate an AGIPD-1M geometry from quadrant positions.

This produces an idealised geometry, assuming all modules are perfectly flat, aligned and equally spaced
within their quadrant.

The quadrant positions are given in pixel units, referring to the first pixel of the first module in each
quadrant, corresponding to data channels 0, 4, 8 and 12.

The origin of the coordinates is in the centre of the detector. Coordinates increase upwards and to the left
(looking along the beam).

To give positions in units other than pixels, pass the unit parameter as the length of the unit in metres. E.g.
unit=1e-3 means the coordinates are in millimetres.

classmethod from crystfel_geom (filename)
Read a CrystFEL format (.geom) geometry file.

Returns a new geometry object.

write_crystfel_geom (filename, * data_path="/entry_l/instrument_1/detector_Il/data’,
mask_path=None, dims=(frame', 'modno’, 'ss', 'fs'), adu_per_ev=None,
clen=None, photon_energy=None)
Write this geometry to a CrystFEL format (.geom) geometry file.

Parameters
e filename (st r)— Filename of the geometry file to write.

* data_path (str) — Path to the group that contains the data array in the hdf5 file.
Default: ' /entry_1/instrument_1/detector_1/data’.

* mask_path (st r) — Path to the group that contains the mask array in the hdf5 file.

e dims (tuple)— Dimensions of the data. Extra dimensions, except for the defaults,
should be added by their index, e.g. (‘frame’, ‘modno’, 0, ‘ss’, ‘fs’) for raw data.
Default: ('frame', 'modno', 'ss', 'fs'). Note: the dimensions must
contain frame, ss, fs.

* adu_per_ev (float)— ADU (analog digital units) per electron volt for the con-
sidered detector.

* clen (float) - Distance between sample and detector in meters
* photon_energy (f1oat)— Beam wave length in eV

get_pixel_positions (centre=True)
Get the physical coordinates of each pixel in the detector

The output is an array with shape like the data, with an extra dimension of length 3 to hold (x, y, z)
coordinates. Coordinates are in metres.

If centre=True, the coordinates are calculated for the centre of each pixel. If not, the coordinates are for
the first corner of the pixel (the one nearest the [0, O] corner of the tile in data space).

to_distortion_array (allow_negative_xy=False)
Return distortion matrix for AGIPD detector, suitable for pyFAI.

Parameters allow_negative_xy (bool) — If False (default), shift the origin so no x or
y coordinates are negative. If True, the origin is the detector centre.

Returns
out — Array of float 32 with shape (8192, 128, 4, 3). The dimensions mean:

* 8192 = 16 modules * 512 pixels (slow scan axis)

3.5. AGIPD, LPD & DSSC Geometry 21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

European XFEL Python data tools Documentation, Release 0.7.0

* 128 pixels (fast scan axis)

* 4 corners of each pixel

* 3 numbers for z, y, x
Return type ndarray

plot_data_fast (data, *, axis_units='px’, frontview=True, ax=None, figsize=None, colorbar=True,
**kwargs)
Plot data from the detector using this geometry.

This approximates the geometry to align all pixels to a 2D grid.
Returns a matplotlib axes object.
Parameters

* data (ndarray) — Should have exactly 3 dimensions, for the modules, then the
slow scan and fast scan pixel dimensions.

* axis_units (str)— Show the detector scale in pixels (‘px’) or metres (‘m’).

e frontview (bool) — If True (the default), x increases to the left, as if you were
looking along the beam. False gives a ‘looking into the beam’ view.

* ax (~matplotlib.axes.Axes object, optional) — Axes that will be used to draw the im-
age. If None is given (default) a new axes object will be created.

o figsize (tuple)- Size of the figure (width, height) in inches to be drawn (default:
(10, 10))

e colorbar (bool, dict)-Draw colobar with default values (if boolean is given).
Colorbar appearance can be controlled by passing a dictionary of properties.

* kwargs — Additional keyword arguments passed to ~matplotlib.imshow

position_modules_fast (data, out=None)
Assemble data from this detector according to where the pixels are.

This approximates the geometry to align all pixels to a 2D grid.
Parameters

e data (ndarray) — The last three dimensions should match the modules, then the
slow scan and fast scan pixel dimensions.

* out (ndarray, optional)— An output array to assemble the image into. By
default, a new array is allocated. Use output_array for _position_fast ()
to create a suitable array. If an array is passed in, it must match the dtype of the data
and the shape of the array that would have been allocated. Parts of the array not
covered by detector tiles are not overwritten. In general, you can reuse an output
array if you are assembling similar pulses or pulse trains with the same geometry.

Returns

* out (ndarray) — Array with one dimension fewer than the input. The last two dimen-
sions represent pixel y and x in the detector space.

* centre (ndarray) — (y, x) pixel location of the detector centre in this geometry.

output_array_for position_fast (extra_shape=(), dtype=<class 'numpy.float32">)
Make an empty output array to use with position_modules_fast

22 Chapter 3. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

European XFEL Python data tools Documentation, Release 0.7.0

You can speed up assembling images by reusing the same output array: call this once, and then pass the
array as the out = parameter to position_modules_fast (). By default, it allocates a new array on
each call, which can be slow.

Parameters

* extra_shape (tuple, optional)-Bydefault,a2D outputarray is generated,
to assemble a single detector image. If you are assembling multiple pulses at once,
pass extra_shape= (nframes,) to geta 3D output array.

e dtype (optional (Default: np.float32))-—

position_modules_interpolate (data)
Assemble data from this detector according to where the pixels are.

This performs interpolation, which is very slow. Use position_modules_fast () to get a pixel-
aligned approximation of the geometry.

Parameters data (ndarray) — The three dimensions should be channelno, pixel_ss,
pixel_fs (Iengths 16, 512, 128). ss/fs are slow-scan and fast-scan.

Returns

* out (ndarray) — Array with the one dimension fewer than the input. The last two
dimensions represent pixel y and x in the detector space.

* centre (ndarray) — (y, x) pixel location of the detector centre in this geometry.

inspect (axis_units='px', frontview=True)
Plot the 2D layout of this detector geometry.

Returns a matplotlib Axes object.
Parameters
* axis_units (str)— Show the detector scale in pixels (‘px’) or metres (‘m’).

* frontview (bool) — If True (the default), X increases to the left, as if you were
looking along the beam. False gives a ‘looking into the beam’ view.

compare (other, scale=1.0)
Show a comparison of this geometry with another in a 2D plot.

This shows the current geometry like inspect (), with the addition of arrows showing how each panel
is shifted in the other geometry.

Parameters

* other (AGIPD_1MGeometry) — A second geometry object to compare with this
one.

* scale (float)— Scale the arrows showing the difference in positions. This is useful
to show small differences clearly.

data_coords_to_positions (module_no, slow_scan, fast_scan)
Convert data array coordinates to physical positions

Data array coordinates are how you might refer to a pixel in an array of detector data: module number,
and indices in the slow-scan and fast-scan directions. But coordinates in the two pixel dimensions aren’t
necessarily integers, e.g. if they refer to the centre of a peak.

module_no, fast_scan and slow_scan should all be numpy arrays of the same shape. module_no should
hold integers, starting from 0, so 0: QIM1, 1: Q1M2, etc.

3.5.

AGIPD, LPD & DSSC Geometry 23

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float

European XFEL Python data tools Documentation, Release 0.7.0

slow_scan and fast_scan describe positions within that module. They may hold floats for sub-pixel posi-
tions. In both, 0.5 is the centre of the first pixel.

Returns an array of similar shape with an extra dimension of length 3, for (X, y, z) coordinates in metres.
See also:

Detector geometry for AGIPD demonstrates using this method.

3.5.2 LPD-1M

LPD-1M consists of 16 supermodules of 256x256 pixels each. Each supermodule is further subdivided into 16 sensor
tiles, which this geometry code can position independently.

Reference corners
for quadrant position *

}

Qim4 QlM1L
Each module:
Q4aM4 Q4M1 (ch 3) (ch 0) T16 n
(ch 15} (ch 12) A
Q1M3 Qim2 : ¥
Q4M3 Q4M2 (ch 2) (ch 1) T9 T8
{ch 14) {ch 13)
l BEAM i
Q2M4 Q2M1
Q3M4 Q3M1 (ch 7) (ch 5)
{ch 11) (ch 8)
Q2M3 Q2M2
Q3M3 Q3m2 (ch 6) (ch 5)
(ch 10) (ch 9)
Y Z (beam direction)
X

Fig. 2: The approximate layout of LPD-1M, in a front view (looking along the beam).

class karabo_data.geometry2.LPD_1MGeometry (modules, filename='No file')
Detector layout for LPD-1M

The coordinates used in this class are 3D (x, y, z), and represent metres.

24 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

You won’t normally instantiate this class directly: use one of the constructor class methods to create or load a
geometry.

classmethod from quad_positions (quad_pos, * unit=0.001, asic_gap=None,
panel_gap=None)
Generate an LPD-1M geometry from quadrant positions.

This produces an idealised geometry, assuming all modules are perfectly flat, aligned and equally spaced
within their quadrant.

The quadrant positions refer to the corner of each quadrant where module 4, tile 16 is positioned. This is
the corner of the last pixel as the data is stored. In the initial detector layout, the corner positions are for
the top left corner of the quadrant, looking along the beam.

The origin of the coordinates is in the centre of the detector. Coordinates increase upwards and to the left
(looking along the beam).

Parameters

* quad_pos (list of 2-tuples)—(X,y) coordinates of the last corner (the one
by module 4) of each quadrant.

* unit (float, optional)— The conversion factor to put the coordinates into
metres. The default 1e-3 means the numbers are in millimetres.

* asic_gap (float, optional) - The gap between adjacent tiles/ASICs. The
default is 4 pixels.

* panel_gap (float, optional) - The gap between adjacent modules/panels.
The default is 4 pixels.

classmethod from h5_file_ and_quad_positions (path, positions, unit=0.001)
Load an LPD-1M geometry from an XFEL HDF5 format geometry file

The quadrant positions are not stored in the file, and must be provided separately. By default, both the
quadrant positions and the positions in the file are measured in millimetres; the unit parameter controls
this.

The origin of the coordinates is in the centre of the detector. Coordinates increase upwards and to the left
(looking along the beam).

This version of the code only handles x and y translation, as this is all that is recorded in the initial LPD
geometry file.

Parameters
* path (str)— Path of an EuXFEL format (HDFS5) geometry file for LPD.

e positions (list of 2-tuples)-—(X,y) coordinates of the last corner (the one
by module 4) of each quadrant.

* unit (float, optional)— The conversion factor to put the coordinates into
metres. The default 1e-3 means the numbers are in millimetres.

classmethod from crystfel_ geom (filename)
Read a CrystFEL format (.geom) geometry file.

Returns a new geometry object.

write_crystfel_geom (filename, * data_path="/entry_l/instrument_1/detector_l/data’,
mask_path=None, dims=(frame', 'modno’, 'ss', 'fs'), adu_per_ev=None,
clen=None, photon_energy=None)
Write this geometry to a CrystFEL format (.geom) geometry file.

Parameters

3.5.

AGIPD, LPD & DSSC Geometry 25

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

European XFEL Python data tools Documentation, Release 0.7.0

e filename (str)— Filename of the geometry file to write.

e data_path (st r) — Path to the group that contains the data array in the hdf5 file.
Default: ' /entry_1/instrument_1/detector_1l/data’.

* mask_path (st r) — Path to the group that contains the mask array in the hdf> file.

* dims (tuple) — Dimensions of the data. Extra dimensions, except for the defaults,
should be added by their index, e.g. (‘frame’, ‘modno’, 0, ‘ss’, ‘fs’) for raw data.
Default: ('frame', 'modno', 'ss', 'fs'). Note: the dimensions must
contain frame, ss, fs.

* adu_per_ev (float)— ADU (analog digital units) per electron volt for the con-
sidered detector.

e clen (float)— Distance between sample and detector in meters
* photon_energy (float)— Beam wave length in eV

get_pixel_positions (centre=True)
Get the physical coordinates of each pixel in the detector

The output is an array with shape like the data, with an extra dimension of length 3 to hold (x, y, z)
coordinates. Coordinates are in metres.

If centre=True, the coordinates are calculated for the centre of each pixel. If not, the coordinates are for
the first corner of the pixel (the one nearest the [0, O] corner of the tile in data space).

to_distortion_array (allow_negative_xy=False)
Return distortion matrix for LPD detector, suitable for pyFAL

Parameters allow_negative_xy (bool) — If False (default), shift the origin so no x or
y coordinates are negative. If True, the origin is the detector centre.

Returns
out — Array of float 32 with shape (4096, 256, 4, 3). The dimensions mean:
* 4096 = 16 modules * 256 pixels (slow scan axis)
* 256 pixels (fast scan axis)
* 4 corners of each pixel
* 3 numbers for z, y, x
Return type ndarray

plot_data_fast (data, *, axis_units='px’, frontview=True, ax=None, figsize=None, colorbar=True,

**kwargs)
Plot data from the detector using this geometry.

This approximates the geometry to align all pixels to a 2D grid.
Returns a matplotlib axes object.
Parameters

* data (ndarray) — Should have exactly 3 dimensions, for the modules, then the
slow scan and fast scan pixel dimensions.

* axis_units (str)— Show the detector scale in pixels (‘px’) or metres (‘m’).

e frontview (bool) — If True (the default), x increases to the left, as if you were
looking along the beam. False gives a ‘looking into the beam’ view.

26 Chapter 3. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

European XFEL Python data tools Documentation, Release 0.7.0

* ax (~matplotlib.axes.Axes object, optional) — Axes that will be used to draw the im-
age. If None is given (default) a new axes object will be created.

» figsize (tuple)- Size of the figure (width, height) in inches to be drawn (default:
(10, 10y)

e colorbar (bool, dict)-Draw colobar with default values (if boolean is given).
Colorbar appearance can be controlled by passing a dictionary of properties.

* kwargs — Additional keyword arguments passed to ~matplotlib.imshow

position_modules_fast (data, out=None)
Assemble data from this detector according to where the pixels are.

This approximates the geometry to align all pixels to a 2D grid.
Parameters

e data (ndarray) — The last three dimensions should match the modules, then the
slow scan and fast scan pixel dimensions.

e out (ndarray, optional)— An output array to assemble the image into. By
default, a new array is allocated. Use output_array for _position_fast ()
to create a suitable array. If an array is passed in, it must match the dtype of the data
and the shape of the array that would have been allocated. Parts of the array not
covered by detector tiles are not overwritten. In general, you can reuse an output
array if you are assembling similar pulses or pulse trains with the same geometry.

Returns

* out (ndarray) — Array with one dimension fewer than the input. The last two dimen-
sions represent pixel y and x in the detector space.

* centre (ndarray) — (y, x) pixel location of the detector centre in this geometry.

output_array_for position_fast (extra_shape=(), dtype=<class ‘numpy.float32">)
Make an empty output array to use with position_modules_fast

You can speed up assembling images by reusing the same output array: call this once, and then pass the
array as the out= parameter to position_modules_fast (). By default, it allocates a new array on
each call, which can be slow.

Parameters

* extra_shape (tuple, optional)-Bydefault,a2D outputarray is generated,
to assemble a single detector image. If you are assembling multiple pulses at once,
pass extra_shape= (nframes,) to geta 3D output array.

e dtype (optional (Default: np.float32))-—

inspect (axis_units='px', frontview=True)
Plot the 2D layout of this detector geometry.

Returns a matplotlib Axes object.
Parameters
* axis_units (str)— Show the detector scale in pixels (‘px’) or metres (‘m’).

* frontview (bool) — If True (the default), x increases to the left, as if you were
looking along the beam. False gives a ‘looking into the beam’ view.

data_coords_to_positions (module_no, slow_scan, fast_scan)
Convert data array coordinates to physical positions

3.5.

AGIPD, LPD & DSSC Geometry 27

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

European XFEL Python data tools Documentation, Release 0.7.0

Data array coordinates are how you might refer to a pixel in an array of detector data: module number,
and indices in the slow-scan and fast-scan directions. But coordinates in the two pixel dimensions aren’t
necessarily integers, e.g. if they refer to the centre of a peak.

module_no, fast_scan and slow_scan should all be numpy arrays of the same shape. module_no should
hold integers, starting from 0, so 0: Q1M1, 1: QIM2, etc.

slow_scan and fast_scan describe positions within that module. They may hold floats for sub-pixel posi-
tions. In both, 0.5 is the centre of the first pixel.

Returns an array of similar shape with an extra dimension of length 3, for (X, y, z) coordinates in metres.
See also:

Detector geometry for AGIPD demonstrates using this method.

3.5.3 DSSC-1M

DSSC-1M consists of 16 modules of 128x512 pixels each. Each module is further subdivided into 2 sensor tiles,
which this geometry code can position independently.

The pixels in each DSSC module are tesselating hexagons. This geometry code does not yet handle this: it treats the
pixels as rectangles to simplify processing. This is adequate for previewing detector images, but some pixels will be
approximately half a pixel width from their true position.

class karabo_data.geometry2.DSSC_1MGeometry (modules, filename="No file')
Detector layout for DSSC-1M

The coordinates used in this class are 3D (X, y, z), and represent metres.

You won’t normally instantiate this class directly: use one of the constructor class methods to create or load a
geometry.

classmethod from h5_file_ and_quad_positions (path, positions, unit=0.001)
Load a DSSC geometry from an XFEL HDF5 format geometry file

The quadrant positions are not stored in the file, and must be provided separately. The position given
should refer to the bottom right (looking along the beam) corner of the quadrant.

By default, both the quadrant positions and the positions in the file are measured in millimetres; the unit
parameter controls this.

The origin of the coordinates is in the centre of the detector. Coordinates increase upwards and to the left
(looking along the beam).

This version of the code only handles x and y translation, as this is all that is recorded in the initial LPD
geometry file.

Parameters
* path (str)— Path of an EuXFEL format (HDF5) geometry file for DSSC.

e positions (list of 2-tuples)-(X,y)coordinates of the last corner (the one
by module 4) of each quadrant.

* unit (float, optional)— The conversion factor to put the coordinates into
metres. The default 1e-3 means the numbers are in millimetres.

get_pixel positions (centre=True)
Get the physical coordinates of each pixel in the detector

The output is an array with shape like the data, with an extra dimension of length 3 to hold (X, y, z)
coordinates. Coordinates are in metres.

28 Chapter 3. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

European XFEL Python data tools Documentation, Release 0.7.0

H
T2 T imn T2
Q4M1 (ch 12) Q1M4|(ch 3)
Q4mM2|ich 13) Q1M3|(ch 2)
Q4m3| (ch 14) Q1M2 (ch 1)
Q4aM4 (ch 15) Q1M1 (ch O)
BEAM
Q3M1|(ch 8) Q2M4|(ch 7)
—
Q3M2 (th 9) Q2M3 (ch 6)
Q3M3|(ch 10) Q2M2 (ch 5)
Q3M4 (ch 11) Q2M1 (ch 4)
T2 T 1 T2

y Z (beam direction)

Fig. 3: The approximate layout of DSSC-1M, in a front view (looking along the beam).

3.5. AGIPD, LPD & DSSC Geometry 29

European XFEL Python data tools Documentation, Release 0.7.0

128 rows
- This orientation is for Q1 & Q2.
- Modules in Q3 & Q4 are rotated 180°.

. 512
columns

y Z (beam direction)

[]
Reference point for module

Fig. 4: Detail of hexagonal pixels in the corner of one DSSC module.

If centre=True, the coordinates are calculated for the centre of each pixel. If not, the coordinates are for
the first corner of the pixel (the one nearest the [0, O] corner of the tile in data space).

to_distortion_array (allow_negative_xy=False)
Return distortion matrix for DSSC detector, suitable for pyFAI

Parameters allow_negative_xy (bool) — If False (default), shift the origin so no x or
y coordinates are negative. If True, the origin is the detector centre.

Returns
out — Array of float 32 with shape (2048, 512, 6, 3). The dimensions mean:
* 2048 = 16 modules * 128 pixels (slow scan axis)
* 512 pixels (fast scan axis)
* 6 corners of each pixel
* 3 numbers for z, y, x
Return type ndarray

plot_data_fast (data, *, axis_units='px’, frontview=True, ax=None, figsize=None, colorbar=False,
**kwargs)
Plot data from the detector using this geometry.

This approximates the geometry to align all pixels to a 2D grid.
Returns a matplotlib axes object.

Parameters

30 Chapter 3. Documentation contents

https://docs.python.org/3/library/functions.html#bool

European XFEL Python data tools Documentation, Release 0.7.0

* data (ndarray) — Should have exactly 3 dimensions, for the modules, then the
slow scan and fast scan pixel dimensions.

* axis_units (str)— Show the detector scale in pixels (‘px’) or metres (‘m’).

e frontview (bool) — If True (the default), x increases to the left, as if you were
looking along the beam. False gives a ‘looking into the beam’ view.

* ax (~matplotlib.axes.Axes object, optional) — Axes that will be used to draw the im-
age. If None is given (default) a new axes object will be created.

e figsize (tuple)-Size of the figure (width, height) in inches to be drawn (default:
(10, 10y)

e colorbar (bool, dict)—Draw colobar with default values (if boolean is given).
Colorbar appearance can be controlled by passing a dictionary of properties.

* kwargs — Additional keyword arguments passed to ~matplotlib.imshow

position_modules_fast (data, out=None)
Assemble data from this detector according to where the pixels are.

This approximates the geometry to align all pixels to a 2D grid.
Parameters

e data (ndarray) — The last three dimensions should match the modules, then the
slow scan and fast scan pixel dimensions.

* out (ndarray, optional)— An output array to assemble the image into. By
default, a new array is allocated. Use output_array for position_fast ()
to create a suitable array. If an array is passed in, it must match the dtype of the data
and the shape of the array that would have been allocated. Parts of the array not
covered by detector tiles are not overwritten. In general, you can reuse an output
array if you are assembling similar pulses or pulse trains with the same geometry.

Returns

* out (ndarray) — Array with one dimension fewer than the input. The last two dimen-
sions represent pixel y and x in the detector space.

* centre (ndarray) — (y, x) pixel location of the detector centre in this geometry.

output_array_for position_fast (extra_shape=(), dtype=<class numpy.float32">)
Make an empty output array to use with position_modules_fast

You can speed up assembling images by reusing the same output array: call this once, and then pass the
array as the out = parameter to position_modules_fast (). By default, it allocates a new array on
each call, which can be slow.

Parameters

* extra_shape (tuple, optional)-Bydefault,a2D outputarray is generated,
to assemble a single detector image. If you are assembling multiple pulses at once,
pass extra_shape= (nframes,) to geta 3D output array.

e dtype (optional (Default: np.float32))-

inspect (axis_units='px', frontview=True)
Plot the 2D layout of this detector geometry.

Returns a matplotlib Axes object.

Parameters

3.5.

AGIPD, LPD & DSSC Geometry 31

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple

European XFEL Python data tools Documentation, Release 0.7.0

* axis_units (str)— Show the detector scale in pixels (‘px’) or metres (‘m’).

e frontview (bool) — If True (the default), x increases to the left, as if you were
looking along the beam. False gives a ‘looking into the beam’ view.

3.6 Command line tools

3.6.1 1sxfel

Examine the contents of an EuXFEL proposal directory, run directory, or HDFS5 file:

Proposal directory
lsxfel /gpfs/exfel/exp/XMPL/201750/p700000

Run directory
lsxfel /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002

Single file
lsxfel /gpfs/exfel/exp/XMPL/201750/p700000/proc/r0002/CORR-R0034-AGIPD00-S00000.h5

3.6.2 karabo-data-validate

Check the structure of an EuXFEL run or HDFS5 file:

karabo-data-validate /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002

If it finds problems with the data, the program will produce a list of them and exit with status 1.

3.6.3 karabo-bridge-serve-files

Stream data from files in the Karabo bridge format. See Streaming data over ZeroMQ for more information.

3.6.4 karabo-data—-make—-virtual-cxi

Make a virtual CXI file to access AGIPD/LPD detector data from a specified run:

karabo-data-make-virtual-cxi /gpfs/exfel/exp/XMPL/201750/p700000/proc/r0003 -o xmpl-3.
—cxi

-0 <path>, ——output <path>
The filename to write. Defaults to creating a file in the proposal’s scratch directory.

——min-modules <number>
Include trains where at least N modules have data (default 9).

32 Chapter 3. Documentation contents

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://in.xfel.eu/readthedocs/docs/data-analysis-user-documentation/en/latest/online.html#data-stream-to-user-tools

European XFEL Python data tools Documentation, Release 0.7.0

3.7 Data files format

The main unit of data this tool works with is a run. A run is data collected in a specific period, and each research
proposal given beantime at European XFEL may collect hundreds of runs.

A run is stored as a directory containing HDF5 data files from different sources. These fall into two important cate-
gories:

1. Detector data, from the main X-ray detectors in the various experiments.

* Each detector module writes separate files, e.g. RAW-R0348-AGIPD00-S00000.h5. The number in
the third part of the filename identifies the module (0 in this example).

* The detectors in use as of April 2018 are LPD and AGIPD in the file names. Each has 16 modules
numbered 0-15.

2. All the other data, such as motor positions, beam measurements, etc., are recorded through a data aggregator,
and stored in a file with the letters DA in the name, e.g. RAW-R0450-DA01-S00000.h5.

The last part of the file name (e.g. S00000) is a sequence number. The data within a run may be broken into a number
of sequences. So RAW-R0450-DA01-S00000.h5 and RAW-R0450-DA01-S00001.h5 will contain data from
the same set of devices, with sequence 1 continuing just after the end of sequence 0. Though all data within a run may
be broken into sequences, different data sets do not necessarily break at the same point, so the various ‘sequence 0’
data files in a run do not have corresponding data.

3.7.1 HDFS5 file structure

METADATA

The METADATA group in an HDF? file contains three datasets, each of which is a 1D array of strings:
* METADATA/dataSourceId lists data groups in the file. The values are either:
— CONTROL/ followed by a Karabo device name, e.g. CONTROL/SA1_XTD2_XGM/DOOCS/MAIN.

— INSTRUMENT/ followed by a Karabo device name, a colon, the name of the output channel, a slash, and
the name of a data group (?), e.g. INSTRUMENT/SA1_XTD2_XGM/DOOCS/MAIN:output/data

* METADATA/devicelId lists the part of each dataSourceld after the first slash.

e METADATA/root lists the parts before the first slash, so concat (root, "/", deviceld) ==
dataSourceId.

These three data sets always have the same number of values. They may be padded with empty strings, so empty
entries are ignored.

INDEX

INDEX/trainIdis a 1D array of uint64, listing the pulse trains which the file holds data for. This is crucial, since
all other data has to be matched up according to train IDs.

For each entry in METADATA /deviceId, the INDEX group contains two datasets, both uint64 data with the same
length as the train IDs:

e INDEX/{ deviceId }/count: for each train ID, how many data samples did this device record. This may
be 0 if no data was recorded for this train.

* INDEX/{ deviceId }/first: for each train ID, the index at which the corresponding data starts in the
arrays for this device.

3.7. Data files format 33

European XFEL Python data tools Documentation, Release 0.7.0

Thus, to find the data for a given train ID, we could do:

train_index = trainlIds.index (train_id)
first = device_firsts[train_index]
count = device_counts[train_index]
train_data = data[first : first+count]

Control data is always (?) recorded once per train, so count is 1 and first counts up from 0O to the number of trains.
Instrument data is more variable.

Some older files use a different index format with first/last/status instead of first/count. In this case, a status of 0 means
that no data was recorded for that train.

CONTROL and RUN

For each CONTROL entry in METADATA/dataSourcelId, there is a group with that name in the file. This
may have further arbitrarily nested subgroups representing different properties of that device, e.g. /CONTROL/
SA1l_XTD2_XGM/DOOCS/MAIN/current/bottom/output.

The leaves of this tree are pairs of datasets called t imestamp and value. Each dataset has one entry per train, and
the t ime stamp record when the value was updated, which is typically less than once per train. The value dataset
may have extra dimensions, but in most cases it is 1D.

(Does timestamp update if value is re-read but doesn’t change?)

RUN holds a complete duplicate of the CONTROL hierarchy, but each pair of t imestamp and value contain only
one entry, taken at the start of the run. There is still a dimension for this, so 2D value datasets in CONTROL have
corresponding 2D datasets in RUN, but the first dimension has length 1.

(Is RUN exactly duplicated in subsequent sequence files?)

INSTRUMENT

For each INSTRUMENT entry in METADATA/dataSourceId, there is a group with that name in the file. Each
such group holds a 1D trainId dataset, and a number of other datasets (possibly nested in subgroups). All these
datasets have the same length in the first dimension: this represents the successive readings taken. The slices defined
by the corresponding datasets in INDEX work on this dimension.

The t rainId dataset for each instrument group thus appears to be redundant with the information in INDEX.

3.8 Performance notes

These are some notes on how to load and process data efficiently.

34 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

3.8.1 Load data into memory

Where the data you need can fit into memory, it’s more efficient to load it in one go using get_array (),
get_series () or get_dataframe (), and then work with it using xarray, numpy or pandas. Working with
non-detector data has some examples of this. The methods to get data by trains—trains (), train_from id ()
and train_ from index ()—only load the data for one train at once, which saves memory for big data but is
slower to process.

Machines in the Maxwell cluster have hundreds of gigabytes of RAM, so it’s practical to load many kinds of data
completely into memory. However, data for a full run from megahertz detectors such as AGIPD, LPD or DSSC can
easily be too much.

The command free -h will show the amount of memory on any Linux machine.

3.8.2 Select sources before getting trains

If youdoneed touse trains (), train from id() or train_from index () to get data for one train at a
time, first pick the sources and keys you need with select (). Otherwise, you will load the data for every source in
the run, which could be very slow.

run = RunDirectory ("/gpfs/exfel/exp/XMPL/201750/p700000/raw/xr0004™)
SLOW: Don't do this!

for tid, train_data in run.trains():

Better option: select image data from all detector modules first.
for tid, train_data in run.select ('*/DET/+', 'image.data').trains():

The devices= parameter for all three train methods does the same thing as using select () like this.

3.8.3 Reduce before assembling

Assembling detector images (see AGIPD, LPD & DSSC Geometry) is relatively slow. If your analysis involves a
reduction step like summing or averaging over a number of images, try to do this on the data from separate modules
before assembling them into images.

This also applies more generally: if a step in your processing makes the data smaller, you want to do that step as near
the start as possible.

3.9 Reading data with karabo_data
This command creates the sample data files used in the rest of this example. These files contain no real data, but they
have the same structure as European XFEL’s HDF5 data files.

'python3 -m karabo_data.tests.make_examples

Written examples.

3.9. Reading data with karabo_data 35

European XFEL Python data tools Documentation, Release 0.7.0

3.9.1 Single files

'h51s fxe_control_example.hb

CONTROL Group
INDEX Group
INSTRUMENT Group
METADATA Group
RUN Group

from karabo_data import HO5File
f = HS5File('fxe_control_example.h5")

f.control_sources

frozenset ({'FXE_XAD_GEC/CAM/CAMERA',
'SA1_XTD2_XGM/DOOCS/MAIN',
'SPB_XTD9_XGM/DOOCS/MAIN'})

f.instrument_sources

frozenset ({'FXE_XAD_GEC/CAM/CAMERA:dagOutput',
'SA1_XTD2_XGM/DOOCS/MAIN:output',
'SPB_XTD9_XGM/DOOCS/MAIN:output'})

Get data by train

for tid, data in f.trains():
print ("Processing train", tid)
print ("beam iyPos:", data['SAl_XTD2_XGM/DOOCS/MAIN'] ['beamPosition.iyPos.value'])

break

Processing train 10000
beam iyPos: 0.0

tid, data = f.train_from_id(10005)

data['FXE_XAD_GEC/CAM/CAMERA:dagOutput'] ['data.image.dims"']

array ([1024, 255], dtype=uinto64)

These are just a few of the ways to access data. The attributes and methods described below for run directories also

work with individual files. We expect that it will normally make sense to access a run directory as a single object,
rather than working with the files separately.

3.9.2 Run directories

An experimental run is recorded as a collection of files in a directory.

Another dummy example:

!1s fxe_example_run/

RAW-R0450-DA01-500000.h5 RAW-R0450-LPD04-S00000.h5 RAW-R0450-LPD10-S00000.h5
RAW-R0450-DA01-S00001.h5 RAW-R0450-LPD05-S00000.h5 RAW-R0450-LPD11-S00000.h5

(continues on next page)

36 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

RAW-R0450-LPD00-S00000.h5 RAW-R0450-LPD06-S00000.
RAW-R0450-LPD01-S00000.h5 RAW-R0450-LPD07-S00000.
RAW-R0450-LPD02-S00000.h5 RAW-R0450-LPD08-S00000.
RAW-R0450-LPD03-S00000.h5 RAW-R0450-LPD09-S00000.

from karabo_data import RunDirectory
run = RunDirectory('fxe_example_run/"')

run.files[:3]

[FileAccess (<HDF5 file
FileAccess (<HDF5 file
FileAccess (<HDF5 file

What devices were recording in this run?

"RAW-R0450-LPD04-5S00000.h5"
"RAW-R0450-LPD11-5S00000.h5"
"RAW-R0450-LPD15-500000.h5"

h5
h5
h5
h5

The objects for the individual files

(continued from previous page)

RAW-R0450-LPD12-S00000.
RAW-R0450-LPD13-S00000.
RAW-R0450-LPD14-5S00000.
RAW-R0450-LPD15-S00000.

(see above)

(mode r)>),
(mode r)>),
(mode r)>)]

h5
h5
h5
h5

Control devices are slow data, recording once per train. Instrument devices includes detector data, but also some other
data sources such as cameras. They can have more than one reading per train.

run.control_sources

frozenset ({'FXE_XAD_GEC/CAM/CAMERA',
'FXE_XAD_GEC/CAM/CAMERA_NODATA',

'SA1_XTD2_XGM/DOOCS/MAIN',
'SPB_XTD9_XGM/DOOCS/MAIN'}

run.instrument_sources

)

frozenset ({'FXE_DET LPD1M-1/DET/0CHO:xtdf"',

'FXE_DET_LPDIM-1/DET/10CHO:
'FXE_DET_LPDIM-1/DET/11CHO:
'FXE_DET_LPDIM-1/DET/12CHO:
'FXE_DET_LPDIM-1/DET/13CHO:
'FXE_DET_LPDIM-1/DET/14CHO:
'FXE_DET_LPDIM-1/DET/15CHO:

'FXE_DET_LPD1M-1/DET/1CHO:
'FXE_DET_LPDIM-1/DET/2CHO:
'FXE_DET_LPD1M-1/DET/3CHO:
'FXE_DET_LPD1M-1/DET/4CHO:
'FXE_DET_LPDIM-1/DET/5CHO:
'FXE_DET_LPD1M-1/DET/6CHO:
'FXE_DET_LPD1M-1/DET/7CHO:
'FXE_DET_LPDIM-1/DET/8CHO:
'FXE_DET_LPD1M-1/DET/9CHO:

xtdf’
xtdf'
xtdf’
xtdf’
xtdf'
xtdf’
xtdf',
xtdf',
xtdf',
xtdf',
xtdf',
xtdf',
xtdf',
xtdf',
xtdf',

’

’

14

’

’

14

'FXE_XAD_GEC/CAM/CAMERA :dagOutput ',

'FXE_XAD_GEC/CAM/CAMERA_NODATA:dagOutput',

'SA1_XTD2_XGM/DOOCS/MAIN:output',
'SPB_XTD9_XGM/DOOCS/MAIN:output'})

Which trains are in this run?

print (run.train_ids[:10])

[10000,

10001, 10002, 10003, 10004, 1

See the available keys for a given source:

0005,

10006,

10007, 10008, 10009]

3.9. Reading data with karabo_data

37

[14]:

[16]:

European XFEL Python data tools Documentation, Release 0.7.0

run.keys_for_source ('SPB_XTD9_XGM/DOOCS/MAIN:output")

{'data.intensityAUXTD',
'data.intensitySigma.x_data',
'data.intensitySigma.y_data',
'data.intensityTD',
'data.trainId',

'data.xTD',
'data.yTD'}

This collects data from across files, including detector data:

for tid, data in run.trains () :

print ("Processing train", tid)

print ("Detctor data module 0 shape:", data['FXE_DET_LPDIM-1/DET/O0CHO:xtdf'] [
—'image.data'] .shape)

break # Stop after the first train to keep the demo short

Processing train 10000
Detctor data module 0 shape: (128, 1, 256, 256)

Train IDs are meant to be globally unique (although there were some glitches with this in the past). A train index is
only within this run.

tid, data run.train_from id(10005)
tid, data = run.train_from_index (5)

Series data to pandas

Data which holds a single number per train (or per pulse) can be extracted to as series (individual columns) and
dataframes (tables) for pandas, a widely-used tool for data manipulation.

karabo_data chains sequence files, which contain successive data from the same source. In this example,
trains 10000-10399 are in one sequence file (. ..DA01-S00000.h5), and 10400-10479 are in another (. ..
DAO01-S00001.h5). They are concatenated into one series:

ixPos = run.get_series ('SAl_XTD2_XGM/DOOCS/MAIN', 'beamPosition.ixPos.value')
ixPos.tail (10)

trainId

10470 0.0
10471 0.0
10472 0.0
10473 0.0
10474 0.0
10475 0.0
10476 0.0
10477 0.0
10478 0.0
10479 0.0

Name: SAl_XTD2_XGM/DOOCS/MAIN/beamPosition.ixPos, dtype: float32
To extract a dataframe, you can select interesting data fields with glob syntax, as often used for selecting files on Unix
platforms.

e [abc]: one character, a/b/c

* ?: any one character

38 Chapter 3. Documentation contents

http://pandas.pydata.org/pandas-docs/stable/

European XFEL Python data tools Documentation, Release 0.7.0

* «: any sequence of characters

run.get_dataframe (fields=[("+_XGM/*", "x.i[xy]Pos")])

SA1l_XTD2_XGM/DOOCS/MAIN/beamPosition.ixPos \

trainId

10000 0.0
10001 0.0
10002 0.0
10003 0.0
10004 0.0
10005 0.0
10006 0.0
10007 0.0
10008 0.0
10009 0.0
10010 0.0
10011 0.0
10012 0.0
10013 0.0
10014 0.0
10015 0.0
10016 0.0
10017 0.0
10018 0.0
10019 0.0
10020 0.0
10021 0.0
10022 0.0
10023 0.0
10024 0.0
10025 0.0
10026 0.0
10027 0.0
10028 0.0
10029 0.0
10450 0.0
10451 0.0
10452 0.0
10453 0.0
10454 0.0
10455 0.0
10456 0.0
10457 0.0
10458 0.0
10459 0.0
10460 0.0
10461 0.0
10462 0.0
10463 0.0
10464 0.0
10465 0.0
10466 0.0
10467 0.0
10468 0.0
10469 0.0
10470 0.0

(continues on next page)

3.9. Reading data with karabo_data 39

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

(continues on next page)

10471 0.0
10472 0.0
10473 0.0
10474 0.0
10475 0.0
10476 0.0
10477 0.0
10478 0.0
10479 0.0
SA1_XTD2_XGM/DOOCS/MAIN/beamPosition.iyPos
trainId
10000 0.0
10001 0.0
10002 0.0
10003 0.0
10004 0.0
10005 0.0
10006 0.0
10007 0.0
10008 0.0
10009 0.0
10010 0.0
10011 0.0
10012 0.0
10013 0.0
10014 0.0
10015 0.0
10016 0.0
10017 0.0
10018 0.0
10019 0.0
10020 0.0
10021 0.0
10022 0.0
10023 0.0
10024 0.0
10025 0.0
10026 0.0
10027 0.0
10028 0.0
10029 0.0
10450 0.0
10451 0.0
10452 0.0
10453 0.0
10454 0.0
10455 0.0
10456 0.0
10457 0.0
10458 0.0
10459 0.0
10460 0.0
10461 0.0
10462 0.0
10463 0.0
40

Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

10464 0.0
10465 0.0
10466 0.0
10467 0.0
10468 0.0
10469 0.0
10470 0.0
10471 0.0
10472 0.0
10473 0.0
10474 0.0
10475 0.0
10476 0.0
10477 0.0
10478 0.0
10479 0.0
SPB_XTD9_XGM/DOOCS/MAIN/beamPosition.ixPos \

trainId

10000 0.0
10001 0.0
10002 0.0
10003 0.0
10004 0.0
10005 0.0
10006 0.0
10007 0.0
10008 0.0
10009 0.0
10010 0.0
10011 0.0
10012 0.0
10013 0.0
10014 0.0
10015 0.0
10016 0.0
10017 0.0
10018 0.0
10019 0.0
10020 0.0
10021 0.0
10022 0.0
10023 0.0
10024 0.0
10025 0.0
10026 0.0
10027 0.0
10028 0.0
10029 0.0
10450 0.0
10451 0.0
10452 0.0
10453 0.0
10454 0.0
10455 0.0
10456 0.0

(continues on next page)

3.9. Reading data with karabo_data 41

European XFEL Python data tools Documentation, Release 0.7.0

10457 0.0
10458 0.0
10459 0.0
10460 0.0
10461 0.0
10462 0.0
10463 0.0
10464 0.0
10465 0.0
10466 0.0
10467 0.0
10468 0.0
10469 0.0
10470 0.0
10471 0.0
10472 0.0
10473 0.0
10474 0.0
10475 0.0
10476 0.0
10477 0.0
10478 0.0
10479 0.0

SPB_XTD9_XGM/DOOCS/MAIN/beamPosition.iyPos
trainId

(continued from previous page)

10000 0.0
10001 0.0
10002 0.0
10003 0.0
10004 0.0
10005 0.0
10006 0.0
10007 0.0
10008 0.0
10009 0.0
10010 0.0
10011 0.0
10012 0.0
10013 0.0
10014 0.0
10015 0.0
10016 0.0
10017 0.0
10018 0.0
10019 0.0
10020 0.0
10021 0.0
10022 0.0
10023 0.0
10024 0.0
10025 0.0
10026 0.0
10027 0.0
10028 0.0
10029 0.0
(continues on next page)
42 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

10450 0.0
10451 0.0
10452 0.0
10453 0.0
10454 0.0
10455 0.0
10456 0.0
10457 0.0
10458 0.0
10459 0.0
10460 0.0
10461 0.0
10462 0.0
10463 0.0
10464 0.0
10465 0.0
10466 0.0
10467 0.0
10468 0.0
10469 0.0
10470 0.0
10471 0.0
10472 0.0
10473 0.0
10474 0.0
10475 0.0
10476 0.0
10477 0.0
10478 0.0
10479 0.0

[480 rows x 4 columns]

Labelled arrays

Data with extra dimensions can be handled as xarray labelled arrays. These are a wrapper around Numpy arrays with
indexes which can be used to align them and select data.

xtd2_intensity = run.get_array('SAl_XTD2_XGM/DOOCS/MAIN:output', 'data.intensityTD',
—extra_dims=['pulseID'])
xtd2_intensity

<xarray.DataArray (trainId: 480, pulseID: 1000)>

array((ro., 0., 0., ..., 0., 0., 0.1,
(6., 0., 0., ..., 0., 0., 0.1,
(6., 0., 6., ..., 0., 0., 0.1,
(6., 0., 0., ..., 0., 0., 0.1,
(6., 0., 6., ..., 0., 0., 0.1,
(6., 0., 0., ..., 0., 0., 0.]1], dtype=float32)

Coordinates:

* trainId (trainId) uinté4 10000 10001 10002 10003 ... 10477 10478 10479

Dimensions without coordinates: pulselID

Here’s a brief example of using xarray to align the data and select by train ID. See the examples in the xarray docs for
more on what it can do.

3.9. Reading data with karabo_data 43

https://xarray.pydata.org/en/stable/
https://xarray.pydata.org/en/stable/examples.html

[22]:

European XFEL Python data tools Documentation, Release 0.7.0

In this example data, all the data sources have the same range of train IDs, so aligning them doesn’t change anything.
In real data, devices may miss some trains that other devices did record.

import xarray as xr
xtd9_intensity = run.get_array ('SPB_XTD9_XGM/DOOCS/MAIN:output', 'data.intensityTD',
—extra_dims=['pulseID'])

Align two arrays, keep only trains which they both have data for:
xtd2_intensity, xtd9_intensity = xr.align(xtd2_intensity, xtd9_intensity, join='inner

‘—)')

Select data for a single train by train ID:
xtd2_intensity.sel (trainId=10004)

Select data from a range of train IDs.
This includes the end value, unlike normal Python indexing
xtd2_intensity.loc[10004:10006]

<xarray.DataArray (trainId: 3, pulseID: 1000)>

array([([0., 0., 0., ..., 0., 0., 0.7,

o., 0., 0., ..., 0., 0., 0.1,

(0., 6., 0., ..., 0., 0., 0.]]1, dtype=float32)
Coordinates:

* trainId (trainId) uinte64 10004 10005 10006
Dimensions without coordinates: pulseID

You can also specify a region of interest from an array to load only part of the data:

from karabo_data import by_index

Select the first 5 trains in this run:
sel = run.select_trains (by_index[:5])

Get the whole of this array:
arr = sel.get_array ('FXE_XAD_GEC/CAM/CAMERA:dagOutput', 'data.image.pixels')
print ("Whole array shape:", arr.shape)

Get a region of interest

arr2 = sel.get_array ('FXE_XAD_GEC/CAM/CAMERA:dagOutput', 'data.image.pixels', roi=by__
—index[100:200, :5127)

print ("ROI array shape:", arr2.shape)

Whole array shape: (5, 255, 1024)
ROI array shape: (5, 100, 512)

3.9.3 General information

karabo_data provides a few ways to get general information about what’s in data files. First, from Python code:

run.info ()

of trains: 480

Duration: 0:00:47.900000
First train ID: 10000

Last train ID: 10479

16 detector modules (FXE_DET_LPDIM-1)
e.g. module FXE_DET_LPDIM-1 0 : 256 x 256 pixels
(continues on next page)

44 Chapter 3. Documentation contents

[26] :

European XFEL Python data tools Documentation, Release 0.7.0

128 frames per train, 61440 total frames

4 instrument sources (excluding detectors):
- FXE_XAD_GEC/CAM/CAMERA:dagOutput
-~ FXE_XAD_GEC/CAM/CAMERA_NODATA:dagOutput
- SA1_XTD2_XGM/DOOCS/MAIN:output
- SPB_XTD9_XGM/DOOCS/MAIN:output

4 control sources:
- FXE_XAD_GEC/CAM/CAMERA
- FXE_XAD_GEC/CAM/CAMERA_NODATA
- SA1_XTD2_XGM/DOOCS/MAIN
- SPB_XTD9_XGM/DOOCS/MAIN

run.detector_info ('FXE_DET_LPD1IM-1/DET/OCHO:xtdf"')

{'dims': (256, 256), 'frames_per_train': 128, 'total frames': 61440}

The 1sxfel command provides similar information at the command line:

!1sxfel fxe_example_run/RAW-R0450-LPD00-S00000.h5

RAW-R0450-LPD00-S00000.h5 : Raw detector data from LPD module 00
480 trains

256 x 256 pixels
128 frames per train, 61440 total

I1sxfel fxe_example_run/RAW-R0450-DA01-S00000.h5

RAW-R0450-DA01-S00000.h5 : Aggregated data
400 trains

4 instrument sources
- FXE_XAD_GEC/CAM/CAMERA:dagOutput
- FXE_XAD_GEC/CAM/CAMERA_NODATA:dagOutput
- SAl_XTD2_XGM/DOOCS/MAIN:output
- SPB_XTD9_XGM/DOOCS/MAIN:output

4 control sources
- FXE_XAD_GEC/CAM/CAMERA
- FXE_XAD_GEC/CAM/CAMERA_NODATA
- SAl_XTD2_XGM/DOOCS/MAIN
- SPB_XTD9_XGM/DOOCS/MAIN

lsxfel fxe_example_run

fxe_example_run : Run directory
of trains: 480
Duration: 0:00:47.900000

First train ID: 10000
Last train ID: 10479

16 detector modules (FXE_DET_LPDIM-1)

(continued from previous page)

(continues on next page)

3.9. Reading data with karabo_data

45

European XFEL Python data tools Documentation, Release 0.7.0

e.g. module FXE_DET_LPDIM-1 O
128 frames per train,

4 instrument sources

- FXE_XAD_GEC/CAM/CAMERA:dagOutput
- FXE_XAD_GEC/CAM/CAMERA_NODATA:dagOutput
- SA1_XTD2_XGM/DOOCS/MAIN:output
- SPB_XTD9_XGM/DOOCS/MAIN:output

4 control sources:
- FXE_XAD_GEC/CAM/CAMERA
- FXE_XAD_GEC/CAM/CAMERA_NODATA
- SA1_XTD2_XGM/DOOCS/MAIN
- SPB_XTD9_XGM/DOOCS/MAIN

3.10 Accessing LPD data

256 x 256 pixels
61440 total frames

(excluding detectors):

(continued from previous page)

The Large Pixel Detector (LPD) is made of 16 modules which record data separately. karabo_data includes
convenient interfaces to access this data together.

This example stands by itself, but if you need more generic access to the data, please see Reading data with

karabo_data.

First, let’s load a run containing LPD data:

from karabo_data import RunDirectory,

by_index

run = RunDirectory('fxe_example_run/"')

Using only the first three trains to keep this example light:
run = run.select_trains (by_index[:3])

run.instrument_sources

frozenset ({'FXE_DET_LPD1M-1/DET/0CHO:xtdf"',

'FXE_DET_LPDIM-1/DET/10CHO:
'FXE_DET_LPDIM-1/DET/11CHO:
'FXE_DET_LPDIM-1/DET/12CHO:
'FXE_DET_LPDIM-1/DET/13CHO:
'FXE_DET_LPDIM-1/DET/14CHO:
'FXE_DET_LPDIM-1/DET/15CHO:

'FXE_DET_LPDIM-1/DET/1CHO:
'FXE_DET_LPD1M-1/DET/2CHO
'"FXE_DET_LPD1M-1/DET/3CHO
'FXE_DET_LPDIM-1/DET/4CHO:
'FXE_DET_LPD1M-1/DET/5CHO:
'FXE_DET_LPD1M-1/DET/6CHO:
'FXE_DET_LPD1M-1/DET/7CHO
'FXE_DET_LPD1M-1/DET/8CHO:
'FXE_DET_LPD1M-1/DET/9CHO:

'FXE_XAD_GEC/CAM/CAMERA :dagOutput ',
'FXE_XAD_GEC/CAM/CAMERA_NODATA:dagOutput',

'SA1_XTD2_XGM/DOOCS/MAIN: 0O

'SPB_XTD9_XGM/DOOCS/MAIN:output'})

xtdf',
xtdf',
xtdf',
xtdf',
xtdf',
xtdf',
xtdf’',

:xtdf',
:xtdf',

xtdf',
xtdf',
xtdf',

:xtdf',

xtdf',
xtdf',

utput',

Normal access methods give us each module separately:

46

Chapter 3.

Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

data_module0 = run.get_array ('FXE_DET_LPDIM-1/DET/0CHO:xtdf"',
data_module0. shape

'image.data')

(384, 1, 256, 256)

The class karabo_data.components.LPD1M can piece these together:

from karabo_data.components import LPD1M
lpd = LPD1M(run)
1pd

<LPD1M: Data interface for detector 'FXE_DET_LPDIM-1' with 16 modules>

image_data = lpd.get_array('image.data')
print ("Data shape:", image_data.shape)
print ("Dimensions:", image_data.dims)

Data shape:
Dimensions:

(16, 3, 128, 256, 256)
('module', 'train', 'pulse', 'slow_scan', 'fast_scan')
Note: This class pulls the data together, but it doesn’t know how the modules are physically arranged, so it can’t

produce a detector image. Other examples show how to use detector geometry to produce images.

You can also select only certain modules of the detector. For example, modules 2 (QIM3), 7 (Q2M4), 8 (Q3M1) and
13 (Q4M2) are the four modules around the center of the detector:

lpd = LPD1IM(run, modules=[2, 7, 8, 13])
image_data = lpd.get_array('image.data')
print ("Data shape:", image_data.shape)
print ("Dimensions:", image_data.dims)

print ()
print ("Data for one pulse:")

print (image_data.sel (train=10000, pulse=0))
Data shape: (4, 3, 128, 256, 256)
Dimensions: ('module', 'train', 'pulse', 'slow_scan', 'fast_scan')

Data for one pulse:

<xarray.DataArray (module: 4, slow_scan: 256, fast_scan: 256)>
array([([[0, O, ..., O, 01,
(o, 0, ..., 0, 01,
[OI OI .7 OI O]I
[OI OI r OV O]}V
[[OI OI 14 OI O]I
[0, 0, » 0, 01,
[OI OI .’ OI O]I
[OI OI r OV O]}V
[[OI OI 4 OI O]I
[0, 0, , 0, 01,
[OI OI .7 Or O]I
(0, 0, » 0, 011,
[[OI OI r OI O]I
(continues on next page)
3.10. Accessing LPD data 47

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

[0, O, ., 0, 01,
(o, o, ..., 0, 01,
(0, 0, ..., 0, 0]1], dtype=uintlé6)
Coordinates:
pulse uint64 0
train uint64 10000

* module (module) inte4 2 7 8 13
Dimensions without coordinates: slow_scan, fast_scan

The returned array is an xarray object with labelled axes. See Indexing and selecting data in the xarray docs for more
on what you can do with it.

This interface also supports iterating train-by-train through detector data, giving labelled arrays again:

for tid, train_data in lpd.trains(pulses=by_index[:16]) :
print ("Train", tid)
print ("Keys in data:", sorted(train_data.keys()))
print ("Image data shape:", train_data['image.data'].shape)
print ()

Train 10000

Keys in data: ['detector.data', 'detector.trainId', 'header.dataId', 'header.linkId',
— 'header.magicNumberBegin', 'header.majorTrainFormatVersion', 'header.
—minorTrainFormatVersion', 'header.pulseCount', 'header.reserved', 'header.trainId',
—'image.cellId', 'image.data', 'image.length', 'image.pulseId',6 'image.status',
—'image.trainId', 'trailer.checksum', 'trailer.magicNumberEnd', 'trailer.status',
—'trailer.trainId']

Image data shape: (4, 1, 16, 256, 256)

Train 10001

Keys in data: ['detector.data', 'detector.trainId', 'header.dataId', 'header.linkId',
— 'header.magicNumberBegin', 'header.majorTrainFormatVersion', 'header.
—minorTrainFormatVersion', 'header.pulseCount', 'header.reserved', 'header.trainId',
—'image.cellId', 'image.data', 'image.length', 'image.pulseId',6 'image.status',
—'image.trainId', 'trailer.checksum', 'trailer.magicNumberEnd', 'trailer.status',
—'trailer.trainId']

Image data shape: (4, 1, 16, 256, 256)

Train 10002

Keys in data: ['detector.data', 'detector.trainId', 'header.dataId', 'header.linkId',
—'header.magicNumberBegin', 'header.majorTrainFormatVersion', 'header.
—minorTrainFormatVersion', 'header.pulseCount', 'header.reserved', 'header.trainId',
—'image.cellId', 'image.data', 'image.length', 'image.pulseId',6 'image.status',
—'image.trainId', 'trailer.checksum', 'trailer.magicNumberEnd', 'trailer.status',
—'trailer.trainId']

Image data shape: (4, 1, 16, 256, 256)

48 Chapter 3. Documentation contents

http://xarray.pydata.org/en/stable/indexing.html

European XFEL Python data tools Documentation, Release 0.7.0

3.11 Assembling detector data into images

The X-ray detectors at XFEL are made up of a number of small pieces. To get an image from the data, or analyse it
spatially, we need to know where each piece is located.

This example reassembles some commissioning data from LPD, a detector which has 4 quadrants, 16 modules, and
256 tiles. Elements (especially the quadrants) can be repositioned; talk to the detector group to ensure that you have
the right geometry information for your data.

$matplotlib inline

import numpy as np

import matplotlib.pyplot as plt
import h5py

from karabo_data import RunDirectory, stack_detector_data
from karabo_data.geometry2 import LPD_1MGeometry

run = RunDirectory('/gpfs/exfel/exp/FXE/201830/p900020/proc/x0221/")
run.info ()

of trains: 513

Duration: 0:00:51.200000
First train ID: 54861753

Last train ID: 54862265

14 detector modules (FXE_DET_LPDIM-1)
e.g. module FXE_DET_LPDIM-1 0 : 256 x 256 pixels
128 frames per train, 39040 total frames

0 instrument sources (excluding detectors):

0 control sources:

Find a train with some data in
empty = np.asarray([])
for tid, train_data in run.trains():
module_imgs = sum(d.get ('image.data', empty) .shape[0] for d in train_data.
—values ())
if module_imgs:
print (tid, module_imgs)
break

54861797 1792

tid, train_data = run.train_from_id(54861797)
print (tid)
for dev in sorted(train_data.keys()):
print (dev, end='\t"')
try:
print (train_datal[dev] ['image.data'] .shape)
except KeyError:
print ("No image.data")

54861797
FXE_DET_LPD1M-1/DET/0CHO:xtdf (128, 256, 256)
FXE_DET_LPDIM-1/DET/10CHO:xtdf (128, 256, 256)

(continues on next page)

3.11. Assembling detector data into images 49

European XFEL Python data tools Documentation, Release 0.7.0

FXE_DET_LPD1IM-1/DET/11CHO:xtdf
FXE_DET_LPDIM-1/DET/12CHO:xtdf
FXE_DET_LPDIM-1/DET/13CHO:xtdf
FXE_DET_LPD1M-1/DET/14CHO:xtdf
FXE_DET_LPD1M-1/DET/15CHO:xtdf

FXE_DET_LPDIM-1/DET/1CHO:
FXE_DET_LPD1M-1/DET/2CHO:
FXE_DET_LPD1M-1/DET/3CHO:
FXE_DET_LPD1M-1/DET/4CHO:
FXE_DET_LPD1M-1/DET/6CHO:
FXE_DET_LPD1M-1/DET/8CHO:
FXE_DET_LPD1M-1/DET/9CHO:

xtdf
xtdf
xtdf
xtdf
xtdf
xtdf
xtdf

(128, 256,
(128, 256,
(128, 256,
(128, 256,
(128, 256,
(128, 256,
(128, 256,

28, 256, 256
28, 256, 256
28, 256, 256
28, 256, 256
28, 256, 256

Extract the detector images into a single Numpy array:

modules_data = stack_detector_data(train

modules_data.shape

(128, 16, 256, 256)

_data,

(continued from previous page)

'image.data')

To show the images, we sometimes need to ‘clip’ extreme high and low values, otherwise the colour map makes

everything else the same colour.

def clip(array, min=-10000,

X = array.copy ()

finite = np.isfinite (x)
Suppress warnings comparing numbers to nan
with np.errstate(invalid="'ignore') :
x[finite & (x < min)]
x[finite & (x > max)]

return x

plt.figure(figsize=(10,

a = modules_datal[5][2]

5))

max=10000) :

np.nan
np.nan

plt.subplot (1, 2, 1).hist(alnp.isfinite(a)])

a = clip(a, min=-400, max=400)
plt.subplot (1, 2, 2).hist(alnp.isfinite(a)]);

50

Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

30000 1

50000 4
25000 1

40000
20000 A

30000 A
15000 A

20000 A
10000 A
10000 - 5000 4
0- T T T 0-

=1000 =500 o 500 1000 1500 =400 =300 =200 =100 0

Let’s look at the iamge from a single module. You can see where it’s divided up into tiles:

: plt.figure(figsize=(8, 8))

clipped_mod = clip(modules_data[10][2], -400, 500)
plt.imshow (clipped_mod, origin='lower')

: <matplotlib.image.AxesImage at 0x2b611fe49390>

3.11. Assembling detector data into images 51

[10]:

European XFEL Python data tools Documentation, Release 0.7.0

250

200

150

100

Here’s a single tile:
splitted = LPD_1MGeometry.split_tiles (clipped_mod)

plt.figure(figsize=(8, 8))
plt.imshow (splitted([11])

<matplotlib.image.AxesImage at 0x2b611£feb5080>

o
10

20

20 40 20 80 100

Load the geometry from a file, along with the quadrant positions used here.

In the future, geometry information will be stored in the calibration catalogue.

From March 18; converted to XFEL standard coordinate directions
quadpos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] # mm

(continues on next page)

52 Chapter 3. Documentation contents

[12]:

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

geom = LPD_1MGeometry.from h5_file_and_quad_positions('lpd mar_ 18 axesfixed.h5',
—quadpos)

Reassemble and show a detector image using the geometry:

geom.plot_data_fast (clip (modules_data[l2], max=5000))

<matplotlib.axes._subplots.AxesSubplot at 0x2b611ff3de48>

400

200

n
U o
=1

=200

—400

—&00

400 200 o =200 =400
pixels

N

Reassemble detector data into a numpy array for further analysis. The areas without data have the special value ““nan’
to mark them as missing.

res, centre = geom.position_modules_fast (modules_data)
print (res.shape)
plt.figure(figsize=(8, 8))
(continues on next page)

3.11. Assembling detector data into images 53

[12]:

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

plt.imshow(clip(res([12, 250:750, 450:850], min=-400, max=5000), origin="'lower')
(128, 1203, 1105)

<matplotlib.image.AxesImage at 0x2b60ec9f4160>

500

400

300 1

200 1

=]
[=1
P
f=
[=1

150 250 300

L
[
=

400

3.12 Examining detector geometry

The Applying geometry notebook shows how to use detector geometry to assemble data into an image. We can also
examine geometry information without any data, to check for problems.

%matplotlib inline

from itertools import product
import numpy as np

import matplotlib.pyplot as plt
import h5py

from karabo_data import RunDirectory
from karabo_data.geometry2 import LPD_1MGeometry

This is some geometry for LPD. You can see that Q2M2 is ‘missing’ - in fact all its tiles are showing up in Q2M4.

Each module has tiles 1-16 running anticlockwise from the top left (looking into the beam). To make it visually clearer,

54 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

only three corner tiles of each module are numbered.

Here we are loading the geometry from a file, but in the future it will be possible to get the information from the
calibration database directly.

From March 18; converted to XFEL standard coordinate directions

quadpos = [(11.4, 299), (-11.5, 8), (254.5, -16), (278.5, 275)] # mm

geom = LPD_1MGeometry.from_ _h5_file_and_gquad_positions('lpd mar_18_axesfixed.h5', |,
—quadpos)

: geom.inspect ()

<matplotlib.axes._subplots.AxesSubplot at 0x2ba73fa9%2a58>

LPD-1M detector geometry (lpd_mar_18_axesfixed h5)

® First pixel
600 T16 Q1M4 T16 Pk First row
Ti6 0amMa Tl QaM1
400 A
L B ..x P .. B ..
™ - - - Tl& Q1M3 Tl Q1M2
6 am3 Tie Qam2
200 -
9 T8 9 T8
w T i BT miian »
= o = T8 = T8 T16 ozmM4a Tl6 02M1
o T s M T rrrrnaamiaaen »
& TG Q3M4 Ti6 Q3M1
—200
L T8 .. ™o T8
™ 8 ™ . 6 Qzm3
16 ;M3 Tis Qmz
—400
il B«
—600 - = L S B ...
00 400 200 0 200 —400 —600
pizels

3.12. Examining detector geometry 55

European XFEL Python data tools Documentation, Release 0.7.0

3.13 Detector geometry for AGIPD

The AGIPD detector, which is already in use at the SPB experiment, consists of 16 modules of 512x128 pixels each.

Each module is further divided into 8 ASICs.

To view or analyse detector data, we need to apply geometry to find the positions of pixels.

smatplotlib inline
import matplotlib.pyplot as plt
import numpy as np

from karabo_data import RunDirectory, stack_detector_data

from karabo_data.geometry2 import AGIPD_1MGeometry

Fetch AGIPD detector data for one pulse to test with:

run = RunDirectory ('/gpfs/exfel/exp/SPB/201831/p900039/proc/r0273/")

tid, train_data = run.select ('x/DET/+', 'image.data').train_from_index (60)

stacked = stack_detector_data(train_data, 'image.data')
stacked_pulse = stacked[10]
stacked_pulse.shape

(16, 512, 128)

Generate a simple geometry given the (X, y) coordinates of the first pixel in the first module of each quadrant, in pixel

units relative to the centre, where the beam passes through the detector.

There are also methods to load and save CrystFEL format geometry files.

geom = AGIPD_1MGeometry.from_gquad_positions (quad_pos=|
(=525, 625),
(=550, -10),
(520, -160),
(542.5, 475),
1)

geom.inspect ()

<matplotlib.axes._subplots.AxesSubplot at 0x2bldae4100£f0>

56

Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

AGIPD-1M detector geometry (Mo file)

% First pixel
..... i ,
&00 1 : First row E
! T8 1M1 T
im Q4M1 T8 Q :
% .
| a 1M2 m:
400 ! Q4aM2 TB Q :
X x
: 11 Q1M3 mn:
E B S M3 T8 :
004 i = :
X o
1t 1M4 '
imn Q4amM4 T8 Q :
“ :
n o % ¥
E 5
i 18 M1 m:
P T Q3M1 T8 @]
x .
-200 H i
] T8 M2 T :
‘M Q3Mz2 T8 I :
X x
: 1 M3 '
—400 1 in Q3Mm3 T8 = i
* .
: ™ m
‘m Q3M4a T8 Q2ma :
—600 i
x
400 200 0 —200 —a00 —600
pixels

The pixels are not necessarily all aligned, so precisely assembling data in a 2D array requires interpolation, which is
slow:

$stime
data, centre_yx = geom.position_modules_interpolate (stacked_pulse)
print (data.shape)

(1258, 1094)
CPU times: user 10.9 s, sys: 1.08 s, total: 11.9 s
Wall time: 6 s

But we know that the modules are closely aligned with the axes, so we can ‘snap’ the geometry to the grid and copy
data more efficiently:

$%time
data, centre_yx = geom.position_modules_fast (stacked_pulse)
(continues on next page)

3.13. Detector geometry for AGIPD 57

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

print (data.shape)

(1256, 1092)
CPU times: user 23.9 ms, sys: 9.73 ms, total: 33.6 ms
Wall time: 29.6 ms

3.13.1 Plot the detector image

Data can be directly plotted using the plot_data_fast method.

[9]: geom.plot_data_fast (stacked_pulse, vmin=0, vmax=1000)

[9]: <matplotlib.axes._subplots.AxesSubplot at 0x2ble67£828d0>

1000

200

400 goa

200

co00

pixels

400

—200

—400

200

—a00

400 200 0 =200 =400
pixels

You can control the plot using keyword arguments for axis and colorbar. For example, to plot two images in the same
figure:

58 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

fig, (ax0, axl) = plt.subplots(ncols=2, figsize=(12, 7.5))
ax_cbar = fig.add_axes([0.15, 0.08, 0.7, 0.02]) # Create extra axes for the colorbar

Plot a single pulse in the left axes
geom.plot_data_fast (stacked_pulse, vmin=0, vmax=1000, ax=ax0, colorbar={
'cax': ax_cbar,
'shrink': 0.6,
'pad': 0.1,
'orientation': 'horizontal'
})
ax0.set_title('llth pulse')

Label the colorbar associated with the first image
colorbar = ax0.images[0].colorbar
colorbar.set_label ('Photon Count')

Plot the average over all pulses on the right.

Disable the colorbar because it's the same scale as the left image.
geom.plot_data_fast (stacked.mean (axis=0), vmin=0, vmax=1000, ax=axl, colorbar=False)
axl.set_title('Average of pulses in one train')

Text (0.5, 1.0, 'Average of pulses in one train')

11th pulse Average of pulses in one train

B00 B00

400

400

200 200

pixels
pixels

=200 =200

=400

=400

—600 —600

0 —200 —400
pixels

Photon Count

3.13. Detector geometry for AGIPD 59

[11]:

[12]:

European XFEL Python data tools Documentation, Release 0.7.0

3.13.2 Converting array positions to physical positions

We can also convert array coordinates within the detector data into real (x, y, z) positions in metres.

Generate some array coordinates,

one in each module

module_no =
For AGIPD,

np.arange (0,

16)

slow-scan is the x dimension,

increasing from the edges towards the,,

—centre
slow_scan =
fast_scan =

np.linspace (10,

positions =
print ("positions.shape =",

np.full (fill_value=40.1,

num=16)
shape=

500,

geom.data_coords_to_positions (module_no,

positions.shape)

16)

(point,

slow_scan,

Fixed y position in each module

fast_scan)
x/y/z)

Convert metres to pixel units to compare with plots above

px = positions[:, 0] / geom.pixel_size

py = positions[:, 1] / geom.pixel_size

fig, (ax0, axl) = plt.subplots(l, 2, figsize=(12, 6))
ax0.scatter (px, py)

ax0.set_xlabel ('pixels'")

ax0.set_ylabel ('pixels'")

ax0.hlines (0, -50, 50) # Draw a cross at the origin
ax0.vlines (0, -50, 50) #

ax0.set_x1im (600, -600) # Invert x-axis to match plots above

Display the image alongside it for comparison

geom.plot_data_fast (stacked_pulse, vmin=0, vmax=1000, ax=axl,
colorbar={"'shrink': 0.5, 'pad': 0.03})
fig.subplots_adjust (bottom=0.3, wspace=0.3)
positions.shape = (16, 3)
600 4 * 600
®
400 . 400
¢ 1000
.
200 1 L] 200 800
¢ 600
[Tl [] [Tl
§ o + g 0
= [] -3 400
[
=200 A [] =200 200
¢ 0
®
=400 1 . -400
[
-600 1 . -600
00 400 200 0 -200 -400 600
pixels
60 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

3.14 DSSC detector geometry

As of version 0.5, karabo_data has geometry code for the DSSC detector. This doesn’t currently account for the
hexagonal pixels of DSSC, but it’s good enough for a preview of detector images.

smatplotlib inline
from karabo_data.geometry2 import DSSC_1MGeometry

Made up numbers!

quad_pos = [
(=130, 5),
(=130, =125),
(5, -125),
(5, 5),

]

path = 'dssc_geo_junel9.h5'

g = DSSC_1MGeometry.from_h5_file_and_guad_positions (path, quad_pos)

: g.inspect ()

<matplotlib.axes._subplots.AxesSubplot at 0x2acl0£8709b0>

3.14. DSSC detector geometry 61

European XFEL Python data tools Documentation, Release 0.7.0

D5SC detector geometry (dssc_geo_junel9.h5)

» First pixe
N L L First row
T2
QimM1 Q1M4 T2
400 £ A
T2 Q4M2 QM3 -
x bl
T2 04aM3
200 QLM2 T2
4 e v
T2 M4
o4 Q1M1 L
e
"]
z 09
- b
=1
T2 03M1
Q2Ma T2
e
e -
—200 n Q3M2
Q2M3 T2
e
w0
L Q3M3
—400 . Mz T2
W
T2 Q3Ma
02M1 T2
e
—600 1
E00 400 200] =200 =400 —600
pixels

: import numpy as np

import matplotlib.pyplot as plt

(16, 128, 512)

: g.expected_data_shape

We’ll use some empty data to demonstate assembling an image.

: g.plot_data_fast (a,

axis_units='m

: a = np.zeros (g.expected_data_shape)

")

62

Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

010

005

0o

metres

-0.05

—-0.10

-0.15

010 005 0o -0.05 -0.10
metres

Let’s have a close up look at some pixels in QIM1. get_pixel_positions () gives us pixel centres.
to_distortion_array () gives pixel corners in a slightly different format, suitable for PyFAI.

PyFAI requires non-negative x and y coordinates. But we want to plot them along with the centre positions, so we
pass allow_negative_xy=True to get comparable coordinates.

: pixel_pos = g.get_pixel_ positions()

print ("Pixel positions array shape:", pixel_pos.shape,
"= (modules, slow_scan, fast_scan, x/y/z)")

glml_centres = pixel_pos[0]

cx = glml_centres[..., 0]

cy = glml_centres[..., 1]

distortn = g.to_distortion_array(allow_negative_xy=True)
print ("Distortion array shape:", distortn.shape,
"= (modules * slow_scan, fast_scan, corners, z/y/x)")

(continues on next page)

3.14. DSSC detector geometry 63

https://pyfai.readthedocs.io/en/latest/

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

glml_corners = distortn[:128]

Pixel positions array shape: (16, 128, 512, 3) = (modules, slow_scan, fast_scan, x/y/
f—»Z)

Distortion array shape: (2048, 512, 6, 3) = (modules % slow_scan, fast_scan, corners,
—z/y/x)

from matplotlib.patches import Polygon
from matplotlib.collections import PatchCollection

fig, ax = plt.subplots(figsize=(10, 10))

hexes = []
for ss_pxl in range (4):
for fs_pxl in range(5):

Create hexagon

corners = glml_corners[ss_pxl, fs_pxl]

corners = corners([:, 1:][:, ::-1] # Drop z, flip x & y
hexes.append(Polygon (corners))

Draw text label near the pixel centre

ax.text (cx[ss_pxl, fs_pxl], cylss_pxl, fs_pxl],
! [{}, {}]'".format (ss_pxl, fs_pxl),
verticalalignment="'bottom', horizontalalignment='left")

Add the hexagons to the plot
pc = PatchCollection (hexes, facecolor=(0.75, 1.0, 0.75), edgecolor='k'")
ax.add_collection (pc)

Plot the pixel centres
ax.scatter(cx[:5, :6], cy[:5, :6], marker='x")

matplotlib is reluctant to show such a small area, so we need to set the limits_
—manually

ax.set_x1im(-0.007, -0.0085) # To match the convention elsewhere, draw x right-to-
—left

ax.set_ylim(0.0065, 0.0075)

ax.set_ylabel ("metres")

ax.set_xlabel ("metres")

ax.set_aspect (1)

64 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

4 x 4 x 4 x
00074 4
W
00072 1
x
H
£ 0.0070 A
£
W
0.0068 A
x
00066
—0.0070 —0.0072 —0.0074 —0.0076 —0.0078 —0.0080 —0.0082 —0.0084
metres

3.15 Working with non-detector data

The biggest and often most important data at European XFEL comes from X-ray pixel detectors, but there are many
other data sources which may be of interest. This data is often small enough to load it completely into memory, making
it much easier to work with.

: Smatplotlib inline

from karabo_data import RunDirectory
import matplotlib.pyplot as plt
import numpy as np

import re

import xarray as xr

3.15.1 Using pandas
This example works with data from two X-Ray Gas Monitors (XGMs). These measure properties of the X-ray beam
in different parts of the tunnel. This data refers to one XGM in XTD2 and one in XTD9.

We create a pandas dataframe containing the beam x and y position at each XGM, and the photon flux. We select the
columns using ‘glob’ patterns: * is a wildcard matching anything.

pandas makes it very convenient to work with tabular data like this, though we’re limited to datasets that have a single
value per train.

3.15. Working with non-detector data 65

http://pandas.pydata.org/pandas-docs/stable/

European XFEL Python data tools Documentation, Release 0.7.0

run = RunDirectory('/gpfs/exfel/exp/SA1/201830/p900025/raw/r0150/")

df = run.get_dataframe (fields=[("+_XGM/*", "x.i[xy]Pos"), ("*_XGM/x", "*.photonFlux
=")1)
df .head()

SA1_XTD2_XGM/XGM/DOOCS/beamPosition.ixPos \

trainId
142844490 2.035218
142844491 2.035218
142844492 2.035218
142844493 2.035218
142844494 2.035218
SAl_XTD2_XGM/XGM/DOOCS/beamPosition.iyPos \
trainId
142844490 0.161399
142844491 0.161399
142844492 0.161399
142844493 0.161399
142844494 0.161399
SA1_XTD2_XGM/XGM/DOOCS/pulseEnergy.photonFlux \
trainId
142844490 1410.723755
142844491 1410.137451
142844492 1410.137451
142844493 1410.137451
142844494 1410.137451
SPB_XTD9_XGM/XGM/DOOCS/beamPosition.ixPos \
trainId
142844490 -2.277912
142844491 -2.277912
142844492 -2.277912
142844493 -2.277912
142844494 -2.277912
SPB_XTD9_XGM/XGM/DOOCS/beamPosition.iyPos \
trainId
142844490 1.717195
142844491 1.717195
142844492 1.717195
142844493 1.717195
142844494 1.717195
SPB_XTD9_XGM/XGM/DOOCS/pulseEnergy.photonFlux
trainId
142844490 1327.06958
142844491 1327.06958
142844492 1327.06958
142844493 1327.06958
142844494 1327.06958

We can now make plots to compare the parameters at the two XGM positions. As expected, there’s a strong correlation
for each parameter.

66 Chapter 3. Documentation contents

[4]:

[4]:

[5]:

[6]:

European XFEL Python data tools Documentation, Release 0.7.0

df .plot.scatter (x='SA1l_XTD2_XGM/XGM/DOOCS/pulseEnergy.photonFlux', y='SPB_XTD9_XGM/
—XGM/DOOCS/pulseEnergy.photonFlux"')

<matplotlib.axes._subplots.AxesSubplot at 0x2b2de8e244a8>

1370 1380 1390 1400 1410 1420 1430
5A1 XTDZ_XGM/XGM/DOOCS/pulseEnergy photonFlux

k3
o |
el
=
8
=
o 1340 -
=
[+F]
=
Y1330
1%
=
B
¢ 1320 A
Q
(]
o
= 1310 ™
=
gunu- . o®
>I‘:I
&
£)
£ 1700 4
2]
&

ax = df.plot.scatter (x="'SA1l_XTD2_XGM/XGM/DOOCS/beamPosition.ixPos', y='SPB_XTD9_XGM/
—XGM/DOOCS/beamPosition.ixPos"')

—2.175 1
—2.200 1
—2.225 1
—2.250 1
—2.275 1
—2.300 1
—2.325 1

' —7.350 -

1—2.375 A

T T T T T T
200 201 202 203 204 205 206
s8] XTD2_XGMIXGM/DOOCS/beamPosition.ixPos

SPE XTD9 XGM/XGM/DOOCS/beamPosition.ixPos

ay = df.plot.scatter (x='SA1l_XTD2_XGM/XGM/DOOCS/beamPosition.iyPos', y='SPB_XTD9_XGM/
—XGM/DOOCS/beamPosition.iyPos"')

3.15. Working with non-detector data 67

European XFEL Python data tools Documentation, Release 0.7.0

))))
0.14 0.15 0.16 0.17 .18
581 XTD2 KGMIXGMDOOCS/beamPosition.iyPos

SPB XTD9 XGMXGM/DOOCS/beamPosition ivPos

We can also export the dataframe to a CSV file - or any other format pandas supports - for further analysis with other
tools.

: df.to_csv ('xtd2_xtd9_xgm_rl150.csv"')

3.15.2 Using xarray

xarray adds pandas-style axis labelling to multidimensional numpy arrays. We can get xarray arrays for data which has
multiple values per train. For example, the Photo-Electron Spectrometer (PES) is a monitoring device which records
energy spectra for each train. Here’s the data from one of its 16 spectrometers:

run = RunDirectory ('/gpfs/exfel/exp/SA3/201830/p900027/raw/r0067/")

run.get_array ('SA3_XTD10_PES/ADC/1l:network', 'digitizers.channel 4_A.raw.samples')

<xarray.DataArray (trainId: 1475, dim_0O: 40000)>

array([([-6, -10, -7, ..., =10, -8, -9],

[-8, -8, -7, ..., -9, -2, -111,

[-8, -10, -7, ..., -6, -8, -111],

r -7, -9, -8, ..., -9, -2, -51,

[-5, -10, -8, ..., -5, -4, -10],

[-7, -8, -7, ..., -6, -5, =811, dtype=intlé6)
Coordinates:

* trainId (trainId) uinto64 128146446 128146447 128146448 128146449
Dimensions without coordinates: dim_0

The PES consists of 16 spectrometers arranged in a circle around the beamline. We’ll retrieve the data for two of these,
separated by 90°. N and E refer to their positions in the circle, although these are not literally North and East.

The xarray.align() function aligns data using the axes. This is important if you're comparing data from different
sources, because it matches up the train IDs. By specifying join="'inner"', we keep only the trains which have
data in both sets.

68 Chapter 3. Documentation contents

http://pandas.pydata.org/pandas-docs/stable/io.html
https://xarray.pydata.org/en/stable/
http://xarray.pydata.org/en/stable/generated/xarray.align.html

[11]:

[12]:

[14]:

European XFEL Python data tools Documentation, Release 0.7.0

data_n = run.get_array('SA3_XTD10_PES/ADC/1l:network', 'digitizers.channel 4_A.raw.
—samples')

data_e = run.get_array('SA3_XTD10_PES/ADC/1:network', 'digitizers.channel 3_A.raw.
—samples')

data_n, data_e = xr.align(data_n, data_e, join='inner')

nsamples = data_n.shape[1l]

data_n.shape

(1475, 40000)

We’ll get a few other values from slow data to annotate the plot.

Get the first values from four channels measuring voltage

electr = run.get_dataframe ([('SA3_XTD10_PES/MCPS/MPOD', 'channels.U20[0123].
—measurementSenseVoltage')])
electr_voltages = electr.iloc[0].sort_index ()

electr_voltages

SA3_XTD10_PES/MCPS/MPOD/channels.U200.measurementSenseVoltage -0.101792
SA3_XTD10_PES/MCPS/MPOD/channels.U201.measurementSenseVoltage -0.111782
SA3_XTD10_PES/MCPS/MPOD/channels.U202.measurementSenseVoltage -0.106823
SA3_XTD10_PES/MCPS/MPOD/channels.U203.measurementSenseVoltage -0.107910

Name: 128146446, dtype: float32

gas_interlocks = run.get_dataframe ([('SA3_XTD10_PES/DCTRL/x', 'interlock.AActionState
=")1)

Take the first row of the gas interlock data and find which gas was unlocked
row = gas_interlocks.iloc[0]
print (row)
if (row == 0).any():

key = row[row == 0] .index[0]

target_gas = re.search(r' (XENON|KRYPTON|NITROGEN |NEON) ', key).group(l).title()
else:

target_gas = 'No gas'

SA3_XTD10_PES/DCTRL/V30300S_NITROGEN/interlock.AActionState
SA3_XTD10_PES/DCTRL/V30320S_KRYPTON/interlock.AActionState
SA3_XTD10_PES/DCTRL/V30310S_NEON/interlock.AActionState
SA3_XTD10_PES/DCTRL/V30330S_XENON/interlock.AActionState
Name: 128146446, dtype: uint32

= o o

Now we can average the spectra across the trains in this run, and plot them.
x = np.linspace (0, 0.0005xnsamples, nsamples, endpoint=False)

fig, axes = plt.subplots(l, 2, figsize=(10, 4))
for ax, dataset, start_time in zip(axes, [data_n, data_e], [15.76439411, 15.
—762894111]) :
ax.plot (x, dataset.sum(axis=0))
ax.yaxis.major.formatter.set_powerlimits ((0, 0))
ax.set_x1lim(15.75, 15.85)
ax.set_xlabel ('time (μs)')

ax.axvline (start_time, color='red', linestyle='dotted',K label='Start time')

ax.axvline (start_time + 0.0079, color='magenta', linestyle='dotted', label='Neon,
—K 1s'")

ax.axvline (start_time + 0.041, color='black', label='Auger peak')

(continues on next page)

3.15. Working with non-detector data 69

European XFEL Python data tools Documentation, Release 0.7.0

(continued from previous page)

ax.legend()

axes|[0] .set_title('Spectrometer 00 N')
axes[1l] .set_title('Spectrometer 04 E')
fig.suptitle (' {gas}; 900 eV; [A B C D] = [{voltages[0]:.1f} {voltages[1l]:.1f}

7

—~ {voltages[2]:.1f} {voltages[3]:.1f}] V; run 67'
.format (gas=target_gas, voltages=electr_voltages.values), y=1.05);

Neon; 900eV; [ABCD]=[-01-0.1-0.1-0.11V; run &7

185 Spectrometer 00 N 186 Spectrometer 04 E
0.0 1 WL 0.00 e

~05 - W 035

-1.0 1] ~0.50 -

-1.5 1 -0.75 1

70 1 —1.00 1

25 -1.25 -
A Starttime [|+ k AF e Start time

—3.0 A Neon K 1s =150 F M e Neon K 1s
ER = Auger peak H E = Auger peak

-3.5 — - T T T T -1.75 A — - T T T T

15.76 15.78 15.80 15.82 15.84 15.76 15.78 15.80 15.82 15.84
time (us) time (us)

The spectra look different because the beam is horizontally polarised, so the E spectrometer sees a peak that the N
spectrometer doesn’t.

3.16 Comparing fast XGM data from two simultaneous recordings

Here we will look at XGM data that was recorded by the X-ray photon diagnostics group at the same short time
interval, but at different locations of the EuXFEL-SASE. We will compare an XGM in SASE1 (XTD2) to another
one in SASE3 (XTD10). These data were stored in two different runs, belonging to two different proposals even.

Conceptually, this section makes use of the data-object format xarray.DataArray.

: Smatplotlib inline

import matplotlib.pyplot as plt
import numpy as np
import xarray as xr

from karabo_data import RunDirectory

70 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

3.16.1 SASE1

Load the SASE1 run:

sal_data = RunDirectory('/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0008")
sal_data.info ()

of trains: 6296

Duration: 0:10:29.500000
First train ID: 38227866

Last train ID: 38234161

0 detector modules ()

1 instrument sources (excluding detectors):
- SA1_XTD2_XGM/XGM/DOOCS:output

0 control sources:

We are interested in fast, i.e. pulse-resolved data from the instrument source SA1_XTD2_XGM/DOOCS: output.

sal_data.keys_for_source ('SAl_XTD2_XGM/XGM/DOOCS:output")

{'data.intensityTD"'}

We are particularly interested in data for quantity “intensityTD”. The *xarray DataArray* class is suited for work
with axis-labeled data, and the karabo_data method get_array () serves the purpose of shaping a 2D array of that
type from pulse-resolved data (which is originally stored “flat” in terms of pulses: there is one dimension of N(train)
x N(pulse) values in HDFS5, and the same number of train and pulse identifiers for reference).

The unique train identifier values are taken as coordinate values (“labels”).

sal_flux = sal_data.get_array('SAl_XTD2_XGM/XGM/DOOCS:output', 'data.intensityTD'")
print (sal_flux)

<xarray.DataArray (trainId: 6295, dim_0: 1000)>
array ([[2.045129e+03, 7.820441e+01, 1.964445e+03, ..., 1.000000e+00,

1.000000e+00, 1.000000e+00],

[2.091464e+03, 4.242367e+01, 1.915582e+03, ..., 1.000000e+00,
1.000000e+00, 1.000000e+007],

[1.872965e+03, 4.368253e+01, 1.984025e+03, ..., 1.000000e+00,
1.000000e+00, 1.000000e+007],

[1.611342e+03, 5.569377e+01, 1.811418e+03, ..., 1.000000e+00,
1.000000e+00, 1.000000e+007],

[1.536590e+03, 6.418680e+01, 1.643087e+03, ..., 1.000000e+00,
1.000000e+00, 1.000000e+007],

[1.871557e+03, 5.983860e+01, 1.738864e+03, ..., 1.000000e+00,
1.000000e+00, 1.000000e+00]], dtype=float32)

Coordinates:
* trainId (trainId) uint64 38227866 38227867 38227868 ... 38234160 38234161

Dimensions without coordinates: dim_0

Next, we will plot a portion of the data in two dimensions, taking the first 1500 trains for the x-Axis and the first 30
pulses per train for the y-Axis (1500, 30). Because the Matplotlib convention takes the slow axis to be y, we have to
transpose to (30, 1500):

3.16. Comparing fast XGM data from two simultaneous recordings 71

European XFEL Python data tools Documentation, Release 0.7.0

fig = plt.figure(figsize=(10, 6))

ax = fig.add_subplot (1, 1, 1)

image = ax.imshow(sal_flux[:1500, :30].transpose(), origin='lower', cmap='inferno')
ax.set_title('SASE1l XTD2 XGM intensity (fast)')

fig.colorbar (image, orientation='horizontal')

ax.set_xlabel ('train index')

ax.set_ylabel ('pulseIndex')

ax.set_aspect (15)

SASE1 XTD2 XGM intensity (fast)

pulselndex

] 200 400 BO0 a0 1000 1200 1400
train index

o 500 1000 1500 EDhD

The pattern tells us what was done in this experiment: the lasing scheme was set to provide an alternating X-ray pulse
delivery within a train, where every “even” electron bunch caused lasing in SASE1 and every “odd” bunch caused
lasing in SASE3. This scheme was applied for the first 20 pulses. Therefore, we see signal only for data at even pulses
here (0,2,...18), throughout all trains, of which 1500 are depicted. The intensity varies somewhat around 2000 units,
but for odd pulses it is suppressed and neglegibly small.

A relevant measure to judge the efficiency of pulse suppression is the ratio of mean intensity between the odd and
even set. The numpy mean method can work with DataArray objects and average over a specified dimension.

We make use of the numpy indexing and slicing syntax with square brackets and comma to seperate axes
(dimensions). We specify [:, :20:2] to take every element of the slow axis (trains) and every second pulse up to
but excluding # 20. That is, start:end:step = 0:20:2 (start index 0 is default, thus not put, and stop means first index
beyond range). We specify axis=1 to explicitly average over that dimension. The result is a DataArray reduced to
the “trainld” dimension.

sal_mean_on = np.mean(sal_flux[:, :20:2], axis=1)
sal_stddev_on = np.std(sal_flux[:, :20:2], axis=1)
print (sal_mean_on)

<xarray.DataArray (trainId: 6295)>

array([1931.4768, 1977.8414, 1873.7828, ..., 1771.5828, 1697.2053, 1857.7439],
dtype=float32)
Coordinates:
* trainId (trainId) uint64 38227866 38227867 38227868 ... 38234160 38234161

Accordingly for the odd “off” pulses:

72 Chapter 3. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

sal_mean_off = np.mean(sal_flux[:, 1:21:2], axis=1)
sal_stddev_off = np.std(sal_flux[:, 1:21:2], axis=1)
print (sal_mean_off)

<xarray.DataArray (trainId: 6295)>

array ([96.10835 , 84.489044, 59.212048, ..., 90.2944 , 84.33766 , 85.03202 1],
dtype=float32)
Coordinates:
*+ trainId (trainId) uint64 38227866 38227867 38227868 ... 38234160 38234161

Now we can calculate the ratio of averages for every train - data types like numpy ndarray or xarray DataArray may
be just divided “as such”, a shortcut notation for dividing every corresponding element - and plot.

sal_suppression = sal_mean_off / sal_mean_on

fig = plt.figure(figsize=(8, 6))

ax = fig.add_subplot (1, 1, 1)

ax.plot (sal_suppression.coords|['trainId'].values, sal_suppression)
ax.set_xlabel ('train identifier')
ax.ticklabel_ format (style='plain', useOffset=False)

plt.xticks (rotation=60)

ax.set_ylabel ('suppression')

Text (0, 0.5, 'suppression')

012 1

010 1

008 A

006 1

Sppression

004 4

002 A

train identifier

Moreover, the relative error of this ratio can be calculated by multiplicative error propagation as the square root of the
sum of squared relative errors (enumerator and denominator), and from it the absolute error. The Numpy functions
“sqrt” and “square” applied to array-like structures perform these operations element-wise, so the entire calculation
can be conveniently done using the arrays as arguments, and we obtain individual errors for every train in the end.

3.16. Comparing fast XGM data from two simultaneous recordings 73

[10]:

[11]:

[11]:

European XFEL Python data tools Documentation, Release 0.7.0

sal_rel_error = np.sqrt (np.square (sal_stddev_off / sal_mean_off)
—stddev_on / sal_mean_on))
sal_abs_error = sal_rel_error * sal_suppression

We can as well plot the suppression ratio values with individual error bars according
Here, we restrict ourselves to the first 50 trains for clarity:

fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot (1, 1, 1)

+ np.square (sal_

to the respective absolute error.

ax.errorbar (sal_suppression.coords['trainId'].values[:50], sal_suppression[:50],

—yerr=sal_abs_error[:50], fmt='ro')

ax.set_xlabel ('train identifier')
ax.ticklabel_ format (style='plain', useOffset=False)
plt.xticks (rotation=60)

ax.set_ylabel ('suppression')

Text (0, 0.5, 'suppression')

012 1

010 1

008 1

Sppression

006 1

{
i

T T
=] L% £y o
& & & & &
A Ay Ay A, Py
A A A A A
£ # # &

train identifier

Finally, we draw a histogram of suppression ratio values:

fig = plt.figure(figsize=(8, 6))

ax = fig.add_subplot (1, 1, 1)

_ = ax.hist (sal_suppression, bins=50)
ax.set_xlabel ('suppression')
ax.set_ylabel ('frequency')

Text (0, 0.5, 'frequency')

74 Chapter 3

. Documentation contents

European XFEL Python data tools Documentation, Release 0.7.0

400 -

300 -

frequency

200 1

100 -

0.06 0.08 010 01z
sUppression

We see that there is a suppression of signal from odd pulses to approximately 4% of the intensity of even pulses.

3.16.2 SASE3

We repeat everything for the second data set from the different run - SASE3:

sa3_data = RunDirectory('/gpfs/exfel/exp/XMPL/201750/p700000/raw/xr0009")
sa3_data.info ()

of trains: 6236

Duration: 0:10:23.500000
First train ID: 38227850

Last train ID: 38234085

0 detector modules ()

1 instrument sources (excluding detectors):
— SA3_XTD10_XGM/XGM/DOOCS:output

0 control sources:

sa3_flux = sa3_data.get_array ('SA3_XTD10_XGM/XGM/DOOCS:output', 'data.intensityTD")
print (sa3_flux.shape)

(6235, 1000)

3.16. Comparing fast XGM data from two simultaneous recordings 75

[14]:

[15]:

European XFEL Python data tools Documentation, Release 0.7.0

fig = plt.figure(figsize=(8, 6))

ax = fig.add_subplot (1, 1, 1)

image = ax.imshow(sa3_flux[:1500, :30].transpose(), origin='lower', cmap='inferno')
ax.set_title('SASE3 XTD10 XGM intensity (fast)')

fig.colorbar (image, orientation='horizontal')

ax.set_xlabel ('train index')

ax.set_ylabel ('pulselIndex')

ax.set_aspect (15)

SASE3 XTD10 XGM intenSity ifast)
.|--:' ST ¥ “qll |Fm;qw Wﬁllp ﬂ ww |(Ph|LIH'W|I|W||

pulselndex

BO0 ano 1000
train index

o 500 1000 1500 2000 IEhD 3000

The difference here is that the selection scheme (indexing and slicing) shifts by one with respect to SASE1 data: odd
pulses are “on”, even pulses are “off”’. Moreover, while the alternating scheme is upheld to pulse # 19, pulses beyond
that exclusively went to SASE3. There is signal up to pulse # 70, which we could see with a wider plotting range (but
not done due to emphasis on the alternation).

sa3_mean_on = np.mean(sa3_flux[:, 1:21:2], axis=1)
sa3_stddev_on = np.std(sa3_flux[:, 1:21:2], axis=1)
print (sa3_mean_on)

<xarray.DataArray (trainId: 6235)>

array ([963.89746, 1073.1758 , 902.22656, ..., 883.9881 , 960.5875 ,
889.625], dtype=float32)
Coordinates:
* trainId (trainId) uint64 38227850 38227851 38227852 ... 38234084 38234085

sa3_mean_off = np.mean(sa3_flux[:, :20:2], axis=1)
sa3_stddev_off = np.std(sa3_flux[:, :20:2], axis=1)
print (sa3_mean_off)

<xarray.DataArray (trainId: 6235)>

array ([5.435107, 6.615537, 8.361802, ..., 2.378666, 7.135999, 4.612433],
dtype=float32)
Coordinates:
* trainId (trainId) uint64 38227850 38227851 38227852 ... 38234084 38234085

The suppression ratio calculation and its plot:

sa3_suppression = sa3_mean_off / sa3_mean_on
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot (1, 1, 1)
ax.plot (sa3_suppression.coords|['trainId'].values, sa3_suppression)
(continues on next page)

76 Chapter 3. Documentation contents

[18]:

European XFEL Python data tools Documentation, Release 0.7.0

ax.set_xlabel ('train identifier')
ax.ticklabel_format (style='plain', useOffset=False)
plt.xticks (rotation=60)

ax.set_ylabel ('suppression')

Text (0, 0.5, 'suppression')

(continued from previous page)

00200 4

0175

00150 4

L0125 4

00100 4

sUppression

00075 A

00050 4

00025

00000 +

train identifier

The error calculation with (selective) plot

sa3_rel_error = np.sqrt (np.square (sa3_stddev_off / sa3_mean_off) + np.square (sa3_

—stddev_on / sa3_mean_on))

sa3_abs_error = sa3_rel_error * sa3_suppression

fig = plt.figure(figsize=(8, 6))

ax = fig.add_subplot (1, 1, 1)

ax.errorbar (sal_suppression.coords|['trainId'].values[:50],
—yerr=sa3_abs_error[:50], fmt='ro')

ax.set_xlabel ('train identifier')

ax.ticklabel_format (style='plain', useOffset=False)
plt.xticks (rotation=60)

ax.set_ylabel ('suppression')

Text (0, 0.5, 'suppression')

sa3_suppression[:50],

3.16. Comparing fast XGM data from two simultaneous recordings

77

European XFEL Python data tools Documentation, Release 0.7.0

0025 A

0020 1

0015 A

Sppression

0010 A »

' Y L]
0.005 A » » +

0000 A

T T T T
& &
A2 A
5 &
)
train identifier

The histogram:

: fig = plt.figure(figsize=(8, 6))

ax = fig.add_subplot (1, 1, 1)

_ = ax.hist (sa3_suppression, bins=50)
ax.set_xlabel ('suppression')
ax.set_ylabel ('frequency')

: Text (0, 0.5, 'frequency')

#33)930 |

78

Chapter 3. Documentation contents

[22]:

[22]:

European XFEL Python data tools Documentation, Release 0.7.0

500 4

400 1

300 -

frequency

200 1

100 ~

sUppression

o
0.0000 0.0025 0.0050 0.0075 00100 00125 00150

00175 00200

Here, suppression of signal for even “off” pulses is to approximately 0.5% of intensity from odd “on” pulses. The
“suppression factor” is almost 10 times the value of SASE1. However, the relative error of these values is larger as
well, as can be seen in the error-bar plot. For the smaller quantities, it is ~ 100% (!).

3.17 Overall comparison of suppression ratio (with error)

We ultimately want a single overall compression ratio with error for both beamlines, to complement the error-bar
plots. In order to keep the error calculation simple, we do not average the mean values, but create one mean and

standard deviation from a flat array of original values.

Because labeled axes are not required for this purpose, we can afford to move from the xarray.DataArray regime to

Numpy array.

sal_on_all = np.array(sal_flux[:, :20:2]).flatten()
sal_on_all.shape

(62950,)

sal_mean_on_overall = np.mean(sal_on_all)
sal_stddev_on_overall = np.std(sal_on_all)

sal_off_all = np.array(sal_flux[:, 1:21:2]).flatten()
sal_off_all.shape

(62950,)

3.17. Overall comparison of suppression ratio (with error)

79

European XFEL Python data tools Documentation, Release 0.7.0

sal_mean_off_overall = np.mean(sal_off_all)
sal_stddev_off_overall = np.std(sal_off_all)

sal_suppression_overall = sal_mean_off overall / sal_mean_on_overall
sal_rel_error_overall = np.sqrt (np.square (sal_stddev_off_overall / sal_mean_off_
—overall) + \

np.square (sal_stddev_on_overall / sal_mean_on_overall))

sal_abs_error_overall = sal_rel_error_overall » sal_suppression_overall
print ('SA1l suppression ratio =', sal_suppression_overall, '\u0Obl', sal_abs_error_
—overall)

SA1l suppression ratio = 0.04107769 + 0.016009845

sa3_on_all = np.array(sa3_flux[:, 1:21:2]).flatten()
sa3_on_all.shape

(62350,)
sa3_mean_on_overall = np.mean(sa3_on_all)
sa3_stddev_on_overall = np.std(sa3_on_all)

sa3_off_all = np.array(sa3_flux[:, :20:2]).flatten()
sa3_off_all.shape

(62350,)

sa3_mean_off_overall = np.mean(sa3_off_all)
sa3_stddev_off_overall = np.std(sa3_off_all)

sa3_suppression_overall = sa3_mean_off_overall / sa3_mean_on_overall
sa3_rel_error_overall = np.sqrt (np.square (sa3_stddev_off_overall / sa3_mean_off_
—overall) + \

np.square (sa3_stddev_on_overall / sa3_mean_on_overall))

sa3_abs_error_overall = sa3_rel_error_overall * sa3_suppression_overall
print ('SA3 suppression ratio =', sa3_suppression_overall, '\uOObl', sa3_abs_error_
—overall)

SA3 suppression ratio = 0.005213415 + 0.0040653846

3.17.1 References

1. K. Tiedtke et al., Gas-detector for X-ray lasers , J. Appl. Phys. 103, 094511 (2008) - DOI 10.1063/1.2913328

2. A. A. Sorokin et al., J. Synchrotron Rad. 26 (4), DOI 10.1107/S1600577519005174 (2019)
3. Th. Maltezopoulos et al., J. Synchrotron Rad. 26 (4), DOI 10.1107/S1600577519003795 (2019)

80 Chapter 3. Documentation contents

https://dx.doi.org/10.1063/1.2913328
https://dx.doi.org/10.1107/S1600577519005174
https://dx.doi.org/10.1107/S1600577519003795

European XFEL Python data tools Documentation, Release 0.7.0

3.18 Parallel processing with a virtual dataset

This example demonstrates splitting up some data to be processed by several worker processes, and collecting the
results back together.

For this example, we’ll use data from an XGM, and find the average intensity of each pulse across all the trains in
the run. This doesn’t actually need parallel processing: we can easily do it directly in the notebook. But the same
techniques should work with much more data and more complex calculations.

from karabo_data import RunDirectory
import multiprocessing
import numpy as np

The data that we want is separated over these seven sequence files:

'ls /gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-RO0034-DA01-S*.h5

/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-RO034-DA01-S00000.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00001.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0O034-DA01-S00002.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-RO034-DA01-S00003.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0034-DA01-S00004.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-R0O034-DA01-S00005.h5
/gpfs/exfel/exp/XMPL/201750/p700000/raw/r0002/RAW-RO034-DA01-S00006.h5

run = RunDirectory('/gpfs/exfel/exp/XMPL/201750/p700000/raw/xr0002/")

By making a virtual dataset, we can see the shape of it, as if it was one big numpy array:

: vds_filename = 'xgm_vds.h5'

xgm_vds = run.get_virtual_dataset (
'SA1_XTD2_XGM/XGM/DOOCS:output', 'data.intensityTD',
filename=vds_filename

)

xgm_vds

<HDF5 dataset "intensityTD": shape (3391, 1000), type "<f4">

Let’s read this into memory and calculate the means directly, to check our parallel calculations against. We can do
this for this example because the calculation is simple and the data is small; it wouldn’t be practical in real situations
where parallelisation is useful.

These data are recorded in 32-bit floats, but to minimise rounding errors we’ll tell numpy to give the results as 64-bit
floats. Try re-running this example with 32-bit floats to see how much the results change!

simple_mean = xgm_vds[:, :40].mean (axis=0, dtype=np.float64)
simple_mean.round(4)

array ([834.2744, 860.0754, 869.2637, 891.4351, 899.6227, 899.3759,
900.3555, 899.1162, 898.4991, 904.4979, 910.5669, 914.1612,
922.5737, 925.8734, 930.093 , 935.3124, 938.9643, 941.46009,
946.1351, 950.6574, 951.855 , 954.2491, 956.6414, 957.5584,
961.7528, 961.1457, 958.9655, 957.6415, 953.8603, 947.9236,

0. ' 0. ’ 0. ’ 0. p 0. p 0. p
0. , 0. ’ 0. , 0. 1)

Now, we’re going to define chunks of the data for each of 4 worker processes.

3.18. Parallel processing with a virtual dataset 81

European XFEL Python data tools Documentation, Release 0.7.0

: N_proc = 4

cuts = [int (xgm_vds.shape[0] * 1 / N_proc) for i in range (N_proc + 1)]
chunks = list(zip(cuts[:-1], cuts[l:]))
chunks

[(O, 847), (847, 1695), (1695, 2543), (2543, 3391)]

3.18.1 Using multiprocessing

This is the function we’ll ask each worker process to run, adding up the data and returning a 1D numpy array.

We’re using default arguments as a convenient way to copy the filename and the dataset path into the worker process.

: def sum_chunk (chunk, filename=vds_filename, ds_name=xgm_vds.name) :

start, end = chunk
Reopen the file in the worker process:
import h5py, numpy
with hbpy.File(filename, 'r') as f:
ds = f[ds_name]
data = ds[start:end] # Read my chunk

return data.sum(axis=0, dtype=numpy.float64)

Using Python’s multiprocessing module, we start four workers, farm the chunks out to them, and collect the
results back.

: with multiprocessing.Pool (N_proc) as pool:

res = pool.map (sum_chunk, chunks)

res is now a list of 4 arrays, containing the sums from each chunk. To get the mean, we’ll add these up to get a grand
total, and then divide by the number of trains we have data from.

: multiproc_mean = (np.stack(res).sum(axis=0, dtype=np.float64)[:40] / xgm_vds.shape[0])

np.testing.assert_allclose (multiproc_mean, simple_mean)

multiproc_mean.round (4)

array ([834.2744, 860.0754, 869.2637, 891.4351, 899.6227, 899.3759,
900.3555, 899.1162, 898.4991, 904.4979, 910.5669, 914.1612,
922.5737, 925.8734, 930.093 , 935.3124, 938.9643, 941.46009,
946.1351, 950.6574, 951.855 , 954.2491, 956.6414, 957.5584,
961.7528, 961.1457, 958.9655, 957.6415, 953.8603, 947.9236,

0. p 0. , 0. , 0. , 0. , 0. ,
0. , 0. ’ 0. p 0. 1)

3.18.2 Using SLURM

What if we need more power? The example above is limited to one machine, but we can use SLURM to spread the
work over multiple machines on the Maxwell cluster.

This is massive overkill for this example calculation - we’ll only use one CPU core for a fraction of a second on each
machine. But we could do something similar for a much bigger problem.

from getpass import getuser
import h5py
import subprocess

82 Chapter 3. Documentation contents

https://confluence.desy.de/display/IS/Maxwell

[14]:

European XFEL Python data tools Documentation, Release 0.7.0

We’ll write a Python script for each worker to run. Like the sum_chunk function above, this reads a chunk of data
from the virtual dataset and sums it along the train axis. It saves the result into another HDFS5 file for us to collect.

$%writefile parallel_eg_worker.py
#!/gpfs/exfel/sw/software/xfel_anaconda3/1.1/bin/python
import h5py

import numpy as np

import sys

filename = sys.argv[l]

ds_name = sys.argv[2]
chunk_start = int (sys.argv[3])
chunk_end = int(sys.argv[4])
worker_idx = sys.argv[5]

with hb5py.File(filename, 'r') as f:
ds = f[ds_name]
data = ds[chunk_start:chunk_end] # Read my chunk

chunk_totals = data.sum(axis=0, dtype=np.float64)

with hbpy.File(f'parallel eg_result_ .h5', 'w') as f:
f['chunk_totals'] chunk_totals

Writing parallel_eg_worker.py

The Maxwell cluster is divided into various partitions for different groups of users. If you’re running this as an external
user, comment out the ‘Staff’ line below.

partition = 'upex' # External users
partition = 'exfel' # Staff

Now we submit 4 jobs with the sbatch command:

for i, (start, end) in enumerate (chunks) :

cmd = ['sbatch', '-p', partition, 'parallel eg_worker.py', vds_filename, xgm_vds.
—name, str(start), str(end), str(i)]

print (subprocess.check_output (cmd))

b'Submitted batch job 2631813\n'
b'Submitted batch job 2631814\n'
b'Submitted batch job 2631815\n'
b'Submitted batch job 2631816\n'

We can use squeue to monitor the jobs running. Re-run this until all the jobs have disappeared, meaning they’re
finished.

!'squeue -u {getuser() }

JOBID PARTITION NAME USER ST TIME NODES NODELIST (REASON)

Now, so long as all the workers succeeded, we can collect the results.

If any workers failed, you’ll find tracebacks in slurm-=« . out files in the working directory.

res = []

for i in range (N_proc):
with hbpy.File(f'parallel eg_result_ .h5', 'r') as f:
res.append (f['chunk_totals'][:1])

3.18. Parallel processing with a virtual dataset 83

European XFEL Python data tools Documentation, Release 0.7.0

Now res is once again a list of 1D numpy arrays, representing the totals from each chunk. So we can finish the
calculation as in the previous section:

slurm_mean = np.stack(res) .sum(axis=0) [:40] / xgm_vds.shape[0]
np.testing.assert_allclose (slurm_mean, simple_mean)

slurm_mean.round (4)

array ([834.2744, 860.0754, 869.2637, 891.4351, 899.6227, 899.3759,
900.3555, 899.1162, 898.4991, 904.4979, 910.5669, 914.1612,
922.5737, 925.8734, 930.093 , 935.3124, 938.9643, 941.46009,
946.1351, 950.6574, 951.855 , 954.2491, 956.6414, 957.5584,
961.7528, 961.1457, 958.9655, 957.6415, 953.8603, 947.9236,

0. p 0. , 0. , 0. , 0. , 0. P
0. ’ 0. ’ 0. p 0. 1)

3.19 Averaging detector data with Dask

We often want to average large detector data across trains, keeping the pulses within each train separate, so we have
an average image for pulse 0, another for pulse 1, etc.

This data may be too big to load into memory at once, but using Dask we can work with it like a numpy array. Dask
takes care of splitting the job up into smaller pieces and assembling the result.

from karabo_data import open_run

import dask.array as da

from dask.distributed import Client, progress
from dask jobqueue import SLURMCluster

import numpy as np

First, we use Dask-Jobqueue to talk to the Maxwell cluster.

: partition = 'exfel' # For EuXFEL staff

#partition = 'upex' # For users

cluster = SLURMCluster (

queue=partition,

Resources per SLURM job (per node, the way SLURM is configured on Maxwell)

processes=16 runs 16 Dask workers in a job, so each worker has 1 core & 16 GB_
—RAM.

processes=16, cores=16, memory='256GB"',

Get a notbook widget showing the cluster state
cluster

VBox (children= (HTML (value="'<h2>SLURMCluster</h2>'), HBox (children= (HTML (value="'\n<div>
—\n <style scoped>\n

Submit 2 SLURM jobs, for 32 Dask workers
cluster.scale (32)

If the cluster is busy, you might need to wait a while for the jobs to start. The cluster widget above will update when
they’re running.

Next, we’ll set Dask up to use those workers:

84 Chapter 3. Documentation contents

https://dask.org/
https://jobqueue.dask.org/en/latest/

European XFEL Python data tools Documentation, Release 0.7.0

client = Client (cluster)
print ("Created dask client:", client)

Created dask client: <Client: scheduler='tcp://131.169.193.102:44986"' processes=32
—cores=32>

Now Dask is ready, let’s open the run we’re going to operate on:

run = open_run (proposal=2212, run=103)
run.info ()

of trains: 3299

Duration: 0:05:29.800000
First train ID: 517617973

Last train ID: 517621271

16 detector modules (SCS_DET_DSSCIM-1)
e.g. module SCS_DET_DSSCIM-1 0 : 128 x 512 pixels
75 frames per train, 247425 total frames

3 instrument sources (excluding detectors):
- SA3_XTD10_XGM/XGM/DOOCS:output
- SCS_BLU_XGM/XGM/DOOCS : output
— SCS_UTC1_ADQ/ADC/1:network

20 control sources:
- P_GATT
- SA3_XTD10_MONO/ENC/GRATING_AX
- SA3_XTD10_MONO/MDL/PHOTON_ENERGY
— SA3_XTD10_MONO/MOTOR/GRATINGS_X
- SA3_XTD10_MONO/MOTOR/GRATING_AX
- SA3_XTD10_MONO/MOTOR/HE_PM_ X
— SA3_XTD10_MONO/MOTOR/LE_PM_X
- SA3_XTD10_VAC/DCTRL/AR_MODE_OK
- SA3_XTD10_VAC/DCTRL/D12_APERT_IN_OK
- SA3_XTD10_VAC/DCTRL/D6_APERT_IN_OK
- SA3_XTD10_VAC/DCTRL/N2_MODE_OK
— SA3_XTD10_VAC/GAUGE/G30470D_IN
- SA3_XTD10_VAC/GAUGE/G30480D_IN
- SA3_XTD10_VAC/GAUGE/G30490D_IN
- SA3_XTD10_VAC/GAUGE/G30510C
— SA3_XTD10_XGM/XGM/DOOCS
- SCS_BLU_XGM/XGM/DOOCS
- SCS_RR_UTC/MDL/BUNCH_DECODER
- SCS_RR_UTC/TSYS/TIMESERVER
- SCS_UTC1_ADQ/ADC/1

We’re working with data from the DSSC detector. In this run, it’s recording 75 frames for each train - this is part of

the info above.

Now, we’ll define how we’re going to average over trains for each module:

def average_module (modno, run, pulses_per_train=75):

source = f'SCS_DET_DSSC1M-1/DET/ CHO :xtdf'
counts = run.get_data_counts (source, 'image.data')
arr = run.get_dask_array(source, 'image.data')

Make a new dimension for trains

(continues on next page)

3.19. Averaging detector data with Dask

European XFEL Python data tools Documentation, Release 0.7.0

arr_trains =
if modno
print ("array shape:",
print ("Reshaped to:",

return arr_trains.mean (axis=0,

arr.reshape (-1,

pulses_per_train,

arr.shape)
arr_trains.shape)

frames,

128,

dummy,

dtype=np.float32)

(continued from previous page)

512)

128, 512

[7]: mod_averages = [
average_module (i, run, pulses_per_train=75)
for i in range(16)
]
mod_averages
array shape: (247425, 1, 128, 512)
Reshaped to: (3299, 75, 128, 512)
[7] [dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
—128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
—128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
—128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
128, 512)>,
dask.array<mean_agg-aggregate, shape=(75, 128, 512), dtype=float32, chunksize=(75,
—128, 512)>]
[8]: # Stack the averages into a single array
all_average = da.stack (mod_averages)
all_average
[8]: dask.array<stack, shape=(1l6, 75, 128, 512), dtype=float32, chunksize=(1, 75, 128,

Dask shows us what shape the result array will be, but so far, no real computation has happened. Now that we’ve

86 Chapter 3. Documentation contents

[117]:

European XFEL Python data tools Documentation, Release 0.7.0

defined what we want, let’s tell Dask to compute it.

This will take a minute or two. If you’re running it, scroll up to the Dask cluster widget and click the status link to see
what it’s doing.

$%time

all_average_arr = all_average.compute () # Get a concrete numpy array for the result

CPU times: user 20.8 s, sys: 2.6 s, total: 23.4 s
Wall time: 1lmin 42s

all_average_arr is a regular numpy array with our results. Here are the values from the corner of module 0,
frame 0:

: print(all_average_arr[0, 0, :5, :5])

[48.822674 50.983025 44.953014 44.08245 45.056988]
[45.8251 49.183388 46.39982 43.371628 47.53501]
[51.03395 46.02243 44.92058 50.966656 42.918762]
[43.190662 49.961502 44.23007 43.252197 47.663536]
[48.844803 51.489845 50.45438 46.305546 47.51258 1]

Please shut down the cluster (or scale it down to 0 workers) if you won’t be using it for a while. This releases the
resources for other people.

client.close()
cluster.close()

3.20 Release Notes

3.20.1 0.7

Data access
* Anew get_dask_array () method to access data as a Dask array (PR #212). Dask is a powerful tool for
working with large amounts of data and doing computation in parallel.

e open_run () and RunDirectory () now take an optional include= glob pattern to select files to open
(PR #221). This can make opening a run faster if you only need to read certain files.

* Trying to open a run directory to which you don’t have read access now correctly raises PermissionError (PR
#210).

e stack_detector_data () has a new parameter real_array. Passing real_array=False avoids
copying the data into a temporary array on the way to assembling images with detector geometry (PR #196).

* When you open a run directory with open_run () or RunDirectory (), karabo_data tries to cache the
metadata describing what data is in each file (PR #206). Once the cache is created, opening the run again should
be much faster, as it only needs to open the files containing the data you want. See Cached run data maps for
the details of how this works.

* Importing karabo_data is faster, as packages like xarray and pandas are now only loaded if you use the
relevant methods (PR #207).

* Isxfel and info () are faster in some cases, as they only look in one file for the detector data shape (PR #219).

* get_array () is slightly faster, as it avoids copying data in memory unnecessarily (PR #209)

3.20. Release Notes 87

https://github.com/European-XFEL/karabo_data/pull/212/
https://docs.dask.org/en/latest/
https://github.com/European-XFEL/karabo_data/pull/221/
https://github.com/European-XFEL/karabo_data/pull/210/
https://github.com/European-XFEL/karabo_data/pull/210/
https://github.com/European-XFEL/karabo_data/pull/196/
https://github.com/European-XFEL/karabo_data/pull/206/
https://github.com/European-XFEL/karabo_data/pull/207/
https://github.com/European-XFEL/karabo_data/pull/219/
https://github.com/European-XFEL/karabo_data/pull/209/

European XFEL Python data tools Documentation, Release 0.7.0

e When you select sources with select () or deselect (), the resulting DataCollection no longer keeps
references to files with no selected data. This should make it easier to then combine data with union () in
some situations (PR #202).

* Data validation now checks that indexes have one entry per train ID.

Detector geometry

* plot_data_fast () is much more flexible, e.g. if you want to add a colorbar or draw the image as part of a
larger figure (PR #205). See its documentation for the new parameters.

3.20.2 0.6

Data access

e The karabo-bridge-serve-files command now takes ——source and ——key options to select data to stream.
They can be used with exact source names or with glob-style patterns, e.g. ——source 'x/DET/x' (PR
#183).

 Skip checking that . h5 files in a run directory are HDFS5 before trying to open them (PR #187). The error is
still handled if they are not.

Detector geometry

* Assembling detector data into images can now reuse an output array - see position_modules_fast ()
and output_array_ for position_fast () (PR #186).

e CrystFEL format geometry files can now be written for 2D input arrays with the modules arranged along
the slow-scan axis, as used by OnDA (PR #191). To do this, pass dims=('frame', 'ss', 'fs') to
write crystfel_geom().

* The geometry code has been reworked to use metres internally (PR #193), along with other refactorings in PR
#184 and PR #192. These changes should not affect the public API.

3.20.3 0.5

Data access

e New method get_data_counts () to find how many data points were recorded in each train for a given
source and key.

* Create a virtual dataset for any single dataset with get_virtual dataset () (PR #162). See Parallel
processing with a virtual dataset for how this can be useful.

¢ Write a file with virtual datasets for all selected data with write virtual () (PR #132).

* Data from the supported multi-module detectors (AGIPD, LPD & DSSC) can be exposed in CXI format using
a virtual dataset - see write virtual_ cxi () (PR#150, PR #166, PR #173).

* New class DSSC for accessing DSSC data (PR #171).
* New function open_run () to access a run by proposal and run number rather than path (PR #147).

* stack _detector_data () now allows input data where some sources don’t have the specified key (PR
#141).

88

Chapter 3. Documentation contents

https://github.com/European-XFEL/karabo_data/pull/202/
https://github.com/European-XFEL/karabo_data/pull/205/
https://github.com/European-XFEL/karabo_data/pull/183/
https://github.com/European-XFEL/karabo_data/pull/183/
https://github.com/European-XFEL/karabo_data/pull/187/
https://github.com/European-XFEL/karabo_data/pull/186/
https://github.com/European-XFEL/karabo_data/pull/191/
https://github.com/European-XFEL/karabo_data/pull/193/
https://github.com/European-XFEL/karabo_data/pull/184/
https://github.com/European-XFEL/karabo_data/pull/184/
https://github.com/European-XFEL/karabo_data/pull/192/
https://github.com/European-XFEL/karabo_data/pull/162/
https://github.com/European-XFEL/karabo_data/pull/132/
https://github.com/European-XFEL/karabo_data/pull/150/
https://github.com/European-XFEL/karabo_data/pull/166/
https://github.com/European-XFEL/karabo_data/pull/173/
https://github.com/European-XFEL/karabo_data/pull/171/
https://github.com/European-XFEL/karabo_data/pull/147/
https://github.com/European-XFEL/karabo_data/pull/141/
https://github.com/European-XFEL/karabo_data/pull/141/

European XFEL Python data tools Documentation, Release 0.7.0

* Files in the new 1. 0 data format can now be opened (PR #182).

Detector geometry

* New class DSSC_Geomet ry for handling DSSC detector geometry (PR #155).

e LPD_1MGeometry can now read and write CrystFEL format geometry files, and produce PyFAI distortion
arrays (PR #168, PR #129).

e write crystfel geom() (for AGIPD and LPD geometry) now accepts various optional parameters for
other details to be written into the geometry file, such as the detector distance (clen) and the photon energy
(PR #168).

* New method get_pixel positions () to getthe physical position of every pixel in a detector, for all of
AGIPD, LPD and DSSC (PR #142).

* New method data_coords_to_positions () toconvert data array coordinates to physical positions, for
AGIPD and LPD (PR #142).

3.20.4 0.4

* Python 3.5 is now the minimum required version.
* Fix compatibility with numpy 1.14 (the version installed in Anaconda on the Maxwell cluster).

* Better error message from stack_detector_data () when passed non-detector data.

3.20.5 0.3

New features:
* New interfaces for working with AGIPD, LPD & DSSC Geometry.
* New interfaces for accessing AGIPD, LPD & DSSC data.
* select_trains () can now select arbitrary specified trains, not just a slice.
e get_array () can take a region of interest (roi) parameter to select a slice of data from each train.
e A newly public keys_ for_source () method to list keys for a given source.
Fixes:
* stack_detector_data () can handle missing detector modules.
» Source sets have been changed to frozen sets. Use select () to choose a subset of sources.
* get_array () now only loads the data for selected trains.

* get_array () works with data recorded more than once per train.

3.20. Release Notes 89

https://github.com/European-XFEL/karabo_data/pull/182/
https://github.com/European-XFEL/karabo_data/pull/155/
https://github.com/European-XFEL/karabo_data/pull/168/
https://github.com/European-XFEL/karabo_data/pull/129/
https://github.com/European-XFEL/karabo_data/pull/168/
https://github.com/European-XFEL/karabo_data/pull/142/
https://github.com/European-XFEL/karabo_data/pull/142/

European XFEL Python data tools Documentation, Release 0.7.0

3.20.6 0.2

New command karabo-data-validate to check the integrity of data files.
New methods to select a subset of data: select (), deselect (), select_trains (), union(),
Selected data can be written back to a new HDFS file with write ().

RunDirectory () and H5F1ile () are now functions which return a DataCollection object, rather than
separate classes. Most code using these should still work, but checking the type with e.g. isinstance ()
may break.

See also:

Data Analysis at European XFEL

90

Chapter 3. Documentation contents

https://in.xfel.eu/readthedocs/docs/data-analysis-user-documentation/en/latest/

CHAPTER
FOUR

INDICES AND TABLES

* genindex

¢ search

91

European XFEL Python data tools Documentation, Release 0.7.0

92

Chapter 4. Indices and tables

PYTHON MODULE INDEX

Kk

karabo_data, 7
karabo_data.components, 15
karabo_data.export, 17
karabo_data.geometry?2, 19

93

European XFEL Python data tools Documentation, Release 0.7.0

94

Python Module Index

Symbols

——-min-modules <number>
karabo-data-make-virtual-cxi
command line option, 32
——output <path>
karabo-data-make-virtual-cxi
command line option, 32
-0 <path>
karabo-data-make-virtual-cxi
command line option, 32

A

AGIPD1M (class in karabo_data.components), 15

AGIPD_1MGeometry (class in
karabo_data.geometry2), 19

all_sources (karabo_data.DataCollection attribute),
8

C

INDEX

from_crystfel geom()
(karabo_data.geometry2.LPD_IMGeometry
class method), 25

from_h5_file_and _quad_positions()
(karabo_data.geometry2.DSSC_IMGeometry
class method), 28

from_h5_file_and_quad_positions ()
(karabo_data.geometry2.LPD_IMGeometry
class method), 25

from_gquad_positions()
(karabo_data.geometry2. AGIPD_IMGeometry
class method), 19

from_qgquad_positions ()
(karabo_data.geometry2.LPD_IMGeometry
class method), 25

G

get_array ()
method), 16

(karabo_data.components.LPDIM

compare () (karabo_data.geometry2. AGIPD_IMGeomen§et—array () (karabo_data.DataCollection method),
9

method), 23
control_sources (karabo_data.DataCollection at-
tribute), 8

D

data_coords_to_positions/()
(karabo_data.geometry2. AGIPD_IMGeometry
method), 23

data_coords_to_positions ()
(karabo_data.geometry2.LPD_IMGeometry
method), 27

DataCollection (class in karabo_data), 8,9, 11-13

deselect () (karabo_data.DataCollection method), 12

DSSC1M (class in karabo_data.components), 15

DSSC_1MGeometry (class in karabo_data.geometry?2),
28

F

feed () (karabo_data.export. ZMQStreamer method), 18
from _crystfel_geom()
(karabo_data.geometry2. AGIPD_IMGeometry
class method), 21

get_dask_array () (karabo_data.DataCollection

method), 9

get_data_counts () (karabo_data.DataCollection
method), 8

get_dataframe () (karabo_data.DataCollection
method), 10

get_pixel_positions()
(karabo_data.geometry2. AGIPD_IMGeometry
method), 21

get_pixel positions()
(karabo_data.geometry2.DSSC_IMGeometry
method), 28

get_pixel_positions()
(karabo_data.geometry2.LPD_IMGeometry

method), 26
get_series () (karabo_data.DataCollection method),
9

get_virtual_dataset ()
(karabo_data.DataCollection method), 10

95

European XFEL Python data tools Documentation, Release 0.7.0

H

H5File () (in module karabo_data), 7

info () (karabo_data.DataCollection method), 8

inspect () (karabo_data.geometry2. AGIPD_IMGeometry
position_modules_interpolate ()

method), 23

inspect () (karabo_data.geometry2.DSSC_IMGeometry

method), 31

position_modules_fast ()

(karabo_data.geometry2.DSSC_IMGeometry
method), 31

position_modules_fast ()

(karabo_data.geometry2.LPD_IMGeometry
method), 27

(karabo_data.geometry2. AGIPD_IMGeometry
method), 23

inspect () (karabo_data.geometry2.LPD_IMGeometry R

method), 27
instrument_sources (karabo_data.DataCollection
attribute), 8

K

karabo_data (module), 7
karabo_data.components (module), 15
karabo_data.export (module), 17
karabo_data.geometry?2 (module), 19
karabo-data-make-virtual-cxi command
line option
——-min-modules <number>, 32
——output <path>, 32
-0 <path>,32
keys_for_source ()
method), 8

(karabo_data.DataCollection

L

LPD1M (class in karabo_data.components), 16
LPD_1MGeometzry (class in karabo_data.geometry?2),
24

O

open_run () (in module karabo_data), 7

output_array_for_position_fast ()
(karabo_data.geometry2. AGIPD_IMGeometry
method), 22

output_array_for_position_fast ()
(karabo_data.geometry2.DSSC_IMGeometry
method), 31

output_array_for_position_fast ()
(karabo_data.geometry2.LPD_IMGeometry
method), 27

P

RunDirectory () (in module karabo_data), 7

S

select () (karabo_data.DataCollection method), 12
select_trains () (karabo_data.DataCollection

method), 13

stack_detector_data () (in module karabo_data),
16

start () (karabo_data.export.ZMQStreamer method),
18

T

to_distortion_array ()
(karabo_data.geometry2. AGIPD_IMGeometry
method), 21

to_distortion_array ()
(karabo_data.geometry2.DSSC_IMGeometry
method), 30

to_distortion_array ()
(karabo_data.geometry2.LPD_IMGeometry

method), 26

train_from_id () (karabo_data.DataCollection
method), 11

train_from_index () (karabo_data.DataCollection
method), 11

train_ids (karabo_data.DataCollection attribute), 8

trains () (karabo_data.components.LPDIM method),
16

trains () (karabo_data.DataCollection method), 11

U

union () (karabo_data.DataCollection method), 13

W

plot_data_fast () (karabo_data.geometry2. AGIPD_IMticométr{karabo_data.DataCollection method), 13

method), 22

write_crystfel_geom()

plot_data_fast () (karabo_data.geometry2.DSSC_IMGeometrykarabo_data.geometry2. AGIPD_IMGeometry

method), 30

method), 21

plot_data_fast () (karabo_data.geometry2.LPD_IMGeoite¢rycrystfel_geom ()

method), 26

position_modules_fast ()
(karabo_data.geometry2. AGIPD_IMGeometry
method), 22

(karabo_data.geometry2.LPD_IMGeometry
method), 25
write_virtual ()
method), 13

(karabo_data.DataCollection

96

Index

European XFEL Python data tools Documentation, Release 0.7.0

write_virtual_cxi ()
(karabo_data.components.LPDIM method), 16

Z

ZMQStreamer (class in karabo_data.export), 17

Index 97

	Installation
	Quickstart
	Documentation contents
	Reading data files
	AGIPD, LPD & DSSC data
	Streaming data over ZeroMQ
	Checking data files
	AGIPD, LPD & DSSC Geometry
	Command line tools
	Data files format
	Performance notes
	Reading data with karabo_data
	Accessing LPD data
	Assembling detector data into images
	Examining detector geometry
	Detector geometry for AGIPD
	DSSC detector geometry
	Working with non-detector data
	Comparing fast XGM data from two simultaneous recordings
	Overall comparison of suppression ratio (with error)
	Parallel processing with a virtual dataset
	Averaging detector data with Dask
	Release Notes

	Indices and tables
	Python Module Index
	Index

