

Welcome to Kabaret’s documentation

Kabaret is a Free and Open Source VFX/Animation Studio Framework.

It is made for TDs and Scripters involved in Production Tracking, Asset Management, Workflow and Pipelines used by Production Managers and CG Artists.

Main Features

	Fast and Easy Project modeling.

	No decision made for you, your pipe = your rules !

	Based on 20+ years of experience in the field.

	Generative end-user GUI: zero code needed.

	Modular and Extendable pure-python architecture.

	Plugin system for zero/low code modularity.

	Python 2.7+ and 3.6+ compatible.

	Embeddable in PyQt4, PySide, PyQt5, PySide2 and Blender applications.

	Tested under Windows and Linux.

	There’s an example project so you can start experimenting in less than 5 minutes !

Status

Kabaret has been used in productions for over 7 years for Commercials, Teasers, TV Shows and Feature Movies.

Among the 20+ releases made since its source opening, only one single (and minor) breaking change was introduced.

Introduction

	Why and How
	Why another Pipeline software ?

	How is Kabaret different ?

	What Kabaret is not ?

Tutorials

	Quick Start
	Demo & Showcase

	Create My Studio

	My First Project

	Usage

	Guru
	Injection / Inversion of Control

Documentations

	Installation
	Local

	Shared

	Dev

	Dependencies

	Flow Reference Guide
	Exceptions

	Object

	Relations

	Values

	Actions

	Maps

	Injection

	App Reference Guide
	Session

	Resources

	Featured Extensions
	Script View

	InGrid Objects and View

	Subprocess Manager Actor

	Gantt Objects and View

	Users Actor

	Naming

	Plugins
	What’s a Plugin ?

	Plugin Creation

	Plugin Activation

	Plugin Manual Activation

	Plugin Desactivation

	Plugin Order

More

	FAQ & Fun Facts

	Credits
	Authors

	Mentors

	Contributors

Indices

	Index

	Module Index

Why and How

Why another Pipeline software ?

There are many existing solutions, both commercial/closed and free/open, to handle the task of “CG Project Management”.
Notable and recent examples include CGWire [https://www.cg-wire.com/], Kurtis [http://texels.com/], shotgun [https://www.shotgunsoftware.com/]…

Almost all of them fall in two categories: Meta-Data management or Dataflow Modeling.

The Meta-Data Management tools are often Production Team oriented and subtitled as “Better than google docs™”.
They manage a more or less flexible “entity” system and their dependencies: assets info, shot list, statuses, frame ranges, etc.

As vital as this is to complete a CG project successfully, it does not give any help in the practical matter: the technical side of an artistic cooperative work.

The Dataflow Modeling tools are often Talent Team oriented and captioned as “Automate everything !©”.
There is a strong culture of dataflow in the CG world because many of our Digital Content Creation tool use them under the hood, with great success.
Automating non-artistic tasks involve things like dependencies, parameters and process execution. It sounds pretty much like a dataflow.

As efficient as they are to manage 3D data or image manipulations, dataflows do come with restrictions. A major one being that the graph needs to be “acyclic”.
This becomes a real issue when you try to represent the highly iterative day-to-day tasks of an artistic cooperative work.

After years of using and implementing different flavors and mixes of both of those, it is now obvious that the solution is elsewhere.

Hence the need for another approach.

How is Kabaret different ?

Interestingly, the CG world is not flooded by BPM [https://en.wikipedia.org/wiki/Business_process_management] and Workflow [https://en.wikipedia.org/wiki/Workflow] concepts, despite the fact that the BPM definition [https://bpm.com/what-is-bpm] pretty much describes what we are looking for:

“Business Process Management (BPM) is a discipline involving any combination of modeling, automation, execution, control, measurement and optimization of business activity flows, in support of enterprise goals, spanning systems, employees, customers and partners within and beyond the enterprise boundaries.”

The reason might probably be that the “Artistic” world is not keen on being treated as an “Industrial Business” or an “Orchestrated and repeatable pattern of business activity”.
It is nevertheless what project management aims to bring to the table.

Workflow does a pretty good job as modeling the “highly iterative day-to-day tasks of an artistic cooperative work” and is a better fit than Dataflow.
On the other side it does not deal down to data processing and does not replace the Dataflow.

Representing both in a single graph is the idea that led to Kabaret.

But there’s more !

We also wanted to provide:

	A framework, not a Solution

Every need is different and every project should not deal with decisions made for another project or studio.
Any choice you did not make yourself is not the better one.
Kabaret gives you an abstract set of tools that you can use as you want.
The balance of Workflow / Dataflow you need is up to you.

	Rapid Prototyping, Fast Development, Live Update, Schema-less

This is the only path to happy end-users.
Having 100 Artists working on the project for six months should not mean that the workflow
can’t evolve, and it should not require downtime or migrations to do so.

	The end of GUI development

It can cost more than the implementation of the actual pipeline features.
We need automatic default GUI, with configurable behavior.
Of course you can extend or even replace the default,
but you’ll get a pretty good GUI out of the box.

	Problem isolation, Reusability of solutions

Two projects are not the same, but they surely share a lot:
Naming conventions, version control, long-running tasks dispatching, etc.
Once something is dealt with, it is available for every other project.
Once a solution is in use, updating it updates all projects.

	Modular and Extendable

There will always be more.
Let’s deal with that later by adding blocks :D

Doesn’t it whet your appetite ? :D

What Kabaret is not ?

Kabaret is not a Pipeline software, nor an exhaustive Pipeline solution.
It is a Framework and it delivers only generic features that may or may not be used by someone to build his very own solution.

That being said, there are a number of generic features that are not available in Kabaret.
The reason is that we want to keep it to the bare minimum so that code quality prevails over feature quantity.
It does not mean that we won’t provide those, on the contrary. We focused on delivering an extensible architecture so that whatever would be the scope of a missing feature, one can implement it without modifying Kabaret’s code, and package the result to share it with the community.

Here are some examples of what we will provide as ‘extensions’ packages:

	A Script view, with python syntax highlighting and code completion.

	A collection of Flow Objects to handle planning information along with a Gantt view to visualize and edit them.

	Other collections of Flow Objects like BPM Workflow, Shotgun sync, mail automation, etc.

	An Actor to manage subprocess spawned by the flow.

	An Actor to manage users, teams and their preferences.

	Some Actors as alternative key-value stores.

You can look for extensions on the Python Package Index [https://pypi.org/search/?q=kabaret] or discuss with the community on the Kabaret Studio [https://discord.gg/NmJDHsN] discord channel.

We encourage you to share your extensions there too :)

Quick Start

	Demo & Showcase
	Goal

	Prerequisites

	Preparation

	Let’s play !

	Conclusion

	Create My Studio
	Goal

	Prerequisites

	Preparation

	Let’s do it !

	Optional fun

	Conclusion

	My First Project
	Goal

	Prerequisites

	Preparation

	Let’s play !

	Conclusion

Usage

Soon !..

Guru

	Injection / Inversion of Control
	Why ?

	Why is it a problem ?

	How ?

	More example

Demo & Showcase

Goal

This tutorial will let you run and play with a Kabaret standalone application.

Prerequisites

For this tutorial we assume you have installed kabaret in either options described here.

Kabaret uses various functionalities of redis [https://redis.io] and we will use a local redis-server to continue.
You can download one from this page [https://redis.io/download]
(windows users can download here [https://github.com/MicrosoftArchive/redis/releases]) and start a server with the default configuration.
We will assume it is available at localhost on port 6379.

Preparation

Kabaret is not an application but a framework and it is up to the user to build his very own tools. The convention is
to package this code into a “studio” python package, as it will contain everything your studio will need.
Before learning how to do this in next tutorials, we will have a look at what kabaret looks like for the end user.

In order to do so, we will run the ‘dev_studio’ that our developers use to test and showcase their functionalities.
This python package installs itself when you install kabaret so you should already be able to import both packages:

	1
2

	import kabaret
import dev_studio

Now run python with the following command line options:

python -m dev_studio.gui --cluster KABARET_DEMO --session KabaretDemo

Note

If you need to connect to a remote redis store, you can use –db, –host and –password.
You can also use -h at the end of the command line to list all available options.

 Create My Studio

Create My Studio

Goal

The Kabaret framework covers many aspects of a TD needs. The most basic one might be to present a GUI to the Artists with some tools to execute.

We are going to build such a GUI with kabaret.

Prerequisites

For this tutorial we assume you have installed kabaret in either options described here, and have a local redis-server as described in the previous tutorial prerequisites.

Preparation

Choose a folder where you want to put your code. This location will be referred to as <BASEDIR>.

We will need to import python code from there, so you should have it in your PYTHONPATH (or use any other trick you flavor…).

Let’s do it !

We are going to create a python package containing all the code using kabaret.
There is a convention to name such package as <xxx>_studio since they tend to contain all the proprietary code you need to run a studio. So let’s name ours ‘my_studio’.

Create the <BASEDIR>/my_studio folder and add a __init__.py file inside it.

Now we are going to create a module that builds and shows our GUI. Let’s have it as my_studio.gui.

Create the <BASEDIR>/my_studio/gui.py file, and open it in your favorite text editor.

Kabaret applications are managed as ‘sessions’. All sessions in the local network communicate with each other so that you can build a truly collaborative application for your users. But you may need to handle more than one studio in a single network so in order to restrict those communications, sessions are organized in clusters.

Another purpose of the session is to provide an API to kabaret features and kabaret extensions features. This API is composed by collections of commands. A session contains a configurable list of Actors, and each actor defines a single collection of commands.

There are a couple of session types available in the framework. One is a Standalone GUI Session, and we are going to use it.

In the gui.py file, import the kabaret.app.ui.gui module and subclass the KabaretStandaloneGUISession it contains:

	1
2
3
4
5
6

	from kabaret.app.ui import gui

class MyStudioGUISession(gui.KabaretStandaloneGUISession):

 pass

Now let’s have our gui module act as a main by adding the classic __name__ test and create our session. Add those lines at the end of gui.py:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	if __name__ == '__main__':
 session = MyStudioGUISession(session_name="MyStudio")
 session.cmds.Cluster.connect(
 host='localhost',
 port='6379',
 cluster_name='TUTORIALS',
 db_index='1'
)
 session.start()
 session.close()

Here we create our session, giving it a name which will help identify it in the cluster and in logs. We use the ‘connect’ command of the ‘Cluster’ Actor to configure the communication with other sessions. We start the session and close it after the last window of the GUI get destroyed.

You can now launch you very own application using python’s -m flag:

python -m my_studio.gui

Windows users may want to create a .bat file containing something like:

set PYTHONPATH=%PYTHONPATH%;<BASEDIR>
C:\python27\python.exe -m my_studio.gui
pause

You should see the classic default Kabaret window, with a project explorer view:

[image: Empty Kabaret Standalone]

Your very own GUI \o/

And in the shell you should be able to see:

kabaret - INFO: Registering 'Cluster' Actor from kabaret.app.actors.cluster
kabaret - INFO: Registering 'Flow' Actor from kabaret.app.actors.flow
kabaret - INFO: Connecting to localhost port:'6379', index:'1'
kabaret - INFO: Connected to Cluster 'TUTORIALS'
kabaret - INFO: Configuring Project Registry
kabaret - INFO: Subcribing to flow_touched messages.
kabaret - INFO: [Broadcast Message] u'Cluster joined by Dee:MyStudio-8872@Dee-PC'

This may not seem like much but less than 10 python lines you have built a highly configurable and extensible application that can communicate with everyone in the local network. If you click on the ‘*’ button on the top right corner of the default view, you will see that this application has a classic multi-view interface where you can drag’n’drop views to move and/or stack them.

Optional fun

Before adding actual useful things into this GUI, let’s see how we can customize it, just for fun :)

In gui.py, add those lines just before the __name__ test:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	from kabaret.app.ui.gui.styles import Style

class NoStyle(Style):

 def apply(self, widget):

 pass

NoStyle('NoStyle')

We’ve created and applied a custom style to the gui. This style does nothing in its apply() method so if you launch your GUI you will now have something looking like the default for your current Operating System theme.

Now let’s do something more interesting by subclassing the default style and rebranding it to a bluish identity. Add those lines just before the __name__ test:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	from qtpy import QtGui
from kabaret.app.ui.gui.styles import dark

class MyStyle(dark.DarkStyle):

 def apply(self, widget):
 super(MyStyle, self).apply(widget)

 palette = widget.palette()
 palette.setColor(palette.Window, QtGui.QColor('#556'))
 palette.setColor(palette.Base, QtGui.QColor('#335'))
 palette.setColor(palette.Highlight, QtGui.QColor('#002'))
 palette.setColor(palette.HighlightedText, QtGui.QColor('#88D'))
 widget.setPalette(palette)

MyStyle()

We’ve created a new style based on the default one and we have overridden a few color settings to have a nice (?!) blue ambience.

There’s way more you can do with the framework like using stylesheets, replacing or adding icons, etc. But the default theme and icons have been carefully crafted and selected for a nice CG Artist experience.

Conclusion

The philosophy of Kabaret is to provide high-level features but also to reduce the boilerplate to the strict minimum without closing the door to customization and personalization.

Now that you have the environment set up (1 folder and 2 files !) you can build a collaborative application with a classic multi-view GUI.

In the next chapter we will see how convenient and efficient this can be for your workflow/pipeline users.

 My First Project

My First Project

Goal

The Kabaret framework covers many aspects of a TD needs. The most valuable one is probably to build a pipeline and/or workflow for the artists.

Without getting too much in depth into this topic, we are going to give you a hit of what if feels like to build something with kaberet.flow, the package responsible for making this task a pleasure.

Prerequisites

For this tutorial we assume that you have successfully walked through the previous one and that you can run a Kabaret standalone session.

Preparation

Get comfy, we need to talk before the fun.

Kabaret’s solution to develop pipelines and workflows is named Flow and is available in the kabaret.flow package. The reasons why kabaret.flow is outstanding are beyond the scope of this tutorial, but you should know that one of them is that it’s really simple to understand and to use.

The idea is to define a schema of your project using objects and relations between them. That’s the whole concept. Nothing more. Anything done with the flow is just some objects related to each other.

kabaret.flow provides a list of different relations and a few specialized object types. You will extend those objects and use the existing relations to create the schema of your project. This is often related to as project “modeling”.

	Here are the kinds of objects at your disposal:

	
	Objects are the base for everything.

	Values are Objects that hold data.

	Maps are Objects containing a dynamic list of Objects.

	Actions are Objects that execute code.

	The most often used relations are:

	
	Parent: the related Object contains this Object

	Child: the related Object is inside this Object

	Param: the related Object is a Value

We are going to use those Objects and Relations to model a really basic project consisting of just a list of shots. let’s create this module in our studio:

<BASEDIR>/my_studio/my_first_flow.py

We will write all this tutorial code in this file. The complete code can be seen here.

Note

In real life situation we would probably define our project in a package instead of a module, and it would be a good choice to have all the projects in one package like: my_studio.flows.my_first_flow

 Injection / Inversion of Control

Injection / Inversion of Control

Why ?

Hi-level Objects often need to relate each others.

When building a self contained flow, this is not an issue.
But while building flow libraries, you face a situation where
you have to deliver Objects for every related high level
concepts so that they can interact thru their relations.

The situation is also bad for the library users who will need
to adopt all the concepts of the library because they can’t
change the relation between them.

As an example, let’s consider you want to build a Task
system:

You use a flow.Map to manage a list of Task Objects.
A Task has start_date and duration, as well as a
assigned_user which is a Connection to a User.
At this point you need to define what is a User and the
interface it needs to interact with your Task. So you had
a Team map containing User items…
You Task system now contains Tasks and Users and in order to
use it in a pipeline flow one needs to adopt your Task system
as well as your User system. This sucks !!!

On this example, an Inversion of Control is to give
the pipeline flow the control over the relation used by the Task
lib flow.

A common way to achieve this is to inject the
dependencies inside the Task flow lib from the pipeline flow
instead of letting the Task flow lib define them.

Why is it a problem ?

A flow Object dependencies are defined by the Child and Map
contained in all its children. (Param are Child, but Parent
and Relative are special and dont apply here).

More precisely, they are defined by the type of Objects
each Relation relate to and the type of item mapped to each Map.

The classic way to change those (in order to change the dependencies) is
by inheritance: you inherit the relation owner and override the relation
by defining a new one with the same name.

The probleme is that you now need to use this new class instead of the one
containing the Relation you altered. So you also need to inherit its
parent’s class. And this goes up to your Project class !

This sucks !!!

But keep your pants on and read on, we have a
solution for this situation: Dependency Injection

Also, it’s worth specifying that dependency injection also makes writing
test code extremely easier as it lets you replace/mock-up part of the
system to isolate the component you want to test.

How ?

So we want to “override” the related type of some Relation, and/or
the mapped type of some Maps.

We want to do it with different types on different flow (be them pipeline
flows or lib flows) because we might use the same lib in different contexts
where our dependencies differ.

As alwawy, we want to do from within the flow itsef so that everything
is well tight together.

Also, as a lib flow developer, we want to specify which types can be
injected (“overidden”) in my lib.

The first step is specifying that a Relation supports injection. This is
done by calling injectable() on it.

In this example, the my_studio.flow.lib.foo lib flow defines a Foo
Object that contains a FooChild Object. Let’s say you want the lib users
to be able to inject their Object intead of using your ‘FooChild’:

my_studio/flow/lib/foo.py`

class Foo(flow.Object):
 my_child = flow.Child(FooChild).injectable()

The second step is to use the foo lib and inject a new type instead of
FooChild.

This is done by defining an _injection_provider() classmethod in any parent
of the Foo Object. You can conveniently inherit kabaret.flow.InjectionProvider
to do so, but it is not mandatory.

In this example, we inject a FooChild subclass that extends it with
the is_awesome Param.

from my_studio.flow.lib.foo import Foo, FooChild

class MySuperFooChild(FooChild):
 is_super = flow.BoolParam(True)

class Project(flow.Object, flow.InjectionProvider):

 foo = flow.Child(Foo)

 def _injection_provider(self, slot_name, default_type):
 if default_type is FooChild:
 return MySuperFooChild

With this set up, your Project flow is using the foo lib with your
very own FooChild.

This rocks \o/ !!!

More example

There are comprehensive examples in dev_studio.flow.unittest_project.showcase.injection.

Create a project with the type dev_studio.flow.unittest_project.UnittestProject
to see the result, and read the code to learn more !

 Installation

Installation

kabaret will run with most python versions (2.7+, 3.3+).

You will need pip to install kabaret.
Recent versions of python have it pre-installed, you can test its availability by importing it:

	1

	import pip

If nothing happens, you’re good to go. But if an ImportError is raised, you will need to install pip.
Download the file get-pip.py [https://bootstrap.pypa.io/get-pip.py] then run
the following:

python get-pip.py

That’s it, pip is now installed.
If you want to know more about pip you can read its
documentation [https://pip.pypa.io/en/stable/installing/]

As any other package, kabaret can be installed in your python’s
site-package and then used after a simple “import kabaret”.

This is convenient if you have administrator privileges on your python
installation, and if you plan on using kabaret as a standard python package.

Chances are that you will need more than that though:

	Installing kabaret at work for personal use may raise access privileges issues.

	Using kabaret embedded in Blender, Maya or any other extended python interpreter raises even more questions.
(Do they even support pip ?)

	Keeping installation up to date on every station is not a fun task.

The Shared installation is often the choice to go unless you’re just testing.

Local

The local installation is the most straightforward and can be used to discover Kabaret.

python -m pip install -U kabaret

If you don’t have a Qt wrapper installed, you can install PySide2 (or any other one available for your python version):

python -m pip install PySide2

You can now follow the first tutorial.

Shared

A shared installation puts kabaret and all its dependencies in a folder of your choice
(most probably one shared across all workstations).

mkdir ./KABARET_INSTALL
pip install --install-option="--prefix=./KABARET_INSTALL" -U kabaret

Depending on your setup, you may want to install a Qt wrapper there too:

pip install --install-option="--prefix=./KABARET_INSTALL" PySide2

In order to use this installation, you will need to either configure your
PYTHONPATH environment variable:

set PYTHONPATH=$PYTHONPATH:/path/to/KABARET_INSTALL

Or manage your sys.path before importing kabaret in python

import sys
sys.path.append(path_to_kabaret_install)

If you use kabaret with several python interpreters (Nuke, Maya, Houdini…), you should
create a separate shared installation for each one to avoid issues regarding compiled bytecode.

Dev

Clone the repo, follow instructions in cmds/README.txt (might be outdated).

Don’t forget to join us on the discord [https://www.kabaretstudio.com/support], that’s where the help is !

Dependencies

Automatic

When installing kabaret with pip, those packages will automatically be installed as
dependecies:

	redis

	qtpy

	six

Manual

You will need a pre-installed Qt Wrapper: PyQt4, PyQt5, PySide or PySide2.
If you don’t know which one you to use, you can go with PySide2:

python -m pip install PySide2

Warning

There is a bug in PySide2=5.15.1 which crashes python when sorting QTreeWidget items. Use PySide2=5.15.0 or PyQt5 instead.

 Flow Reference Guide

Flow Reference Guide

Warning

Documentation in Progress…

 App Reference Guide

App Reference Guide

Note

This documentation in still in progress. Your feedback is welcome :)

 Featured Extensions

Featured Extensions

Kabaret delivers an extensible architecture so that whatever is the scope of a missing feature, one can implement it without modifying Kabaret’s code, and package the result to share it with the community.

Here is a list of extensions we like.
If you want to be listed here, please contact us on the development forum [http://groups.google.com/group/kabaret-dev].

Script View

The kabaret.script_view package [https://pypi.org/project/kabaret.script_view/] is a GUI extension that give the user the ability to edit and execute python scripts as if they were methods of a selected flow object.

A geek tool for the mass, a must have for the Geeks :D

InGrid Objects and View

The kabaret.ingrid package [https://pypi.org/project/kabaret.ingrid/] is a Flow and GUI extension.
It contains Flow objects that let you configure a Grid of Flow object, and a new View to visualise and edit them.

The users will be able to drop Object on InGrid views to discover and load configurations, as well as
use Action in the Flow that opens new InGrid views with a specific configuration.

Subprocess Manager Actor

The kabaret.subprocess_manager package [https://pypi.org/project/kabaret.subprocess_manager/] is an extension with an Actor and GUI to start and watch subprocesses.

Examples are provided in the documentation to configure and start subprocess from a Flow object.

Gantt Objects and View

Note

This is a work in progress and may not be available at the time you read it.

 Plugins

Plugins

What’s a Plugin ?

	A plugin is a kabaret extension which:

	
	Is packaged to an index (like PyPI).

	Is automatically active in all Kabaret sessions.

	Reports what it provides.

	Is listed in the Plugin view.

	Can be deactivated using an environment variable.

But most importantly, a plugin is a kabaret extension that the user
can install and start using by issuing a single command:

pip install my_kabaret_extension

Plugin Creation

To create a plugin you just need to implement some of the supported “hooks”
using the kabaret.app.plugin decorator.

Your hooks implementation must be contained in a module, a static class, or
an instance (anything that can be treated as a namespace in fact).

Here is a simple example using a module namespace, all hooks
defined here will form the “my_stuff” plugin:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	'''
Inside "my_stuff.py", this is the "my_stuff" plugin.
'''

from pyqt import QtCore

from kabaret.app import plugin
from .my_stuff.my_view import MyView

@plugin
def install_views(session):
 if not session.is_gui():
 return

 type_name = session.register_view_type(MyView)
 session.add_view(
 type_name,
 hidden=False,
 area=QtCore.Qt.RightDockWidgetArea
)

And here is an example using classes in order to define too plugins
in the same module:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	'''
Inside "best_plugins.py", there is 2 plugins defined.
'''
from pyqt import QtCore

from kabaret.app import plugin
from .best_view_ever import BestViewEver
from .best_pipe_ever import BestPipelineEver

class BestView:
 """This is the `BestView` plugin"""

 @plugin
 def install_views(session):
 if not session.is_gui():
 return

 type_name = session.register_view_type(MyView)
 session.add_view(
 type_name,
 hidden=False,
 area=QtCore.Qt.RightDockWidgetArea
)

class BestPipe:
 """This is the "BestPipe" plugin"""

 @plugin
 def get_project_types(session):
 return [BestPipelineEver]

Pluggable Hooks

Here is the exhaustive list of plugin hooks.

Note that you must respect the given signature.

	
	install_actors(session)

	This let your plugin install some Actor in the session.

	
	install_views(session)

	This let your plugin install some View in the session.

	
	install_resources(session)

	Kabaret resources don’t have an installation procedure since a simple
import is enough. But doing you resources import in this hook ensures
that it will be done before other hooks get triggered.

	
	install_editors(session)

	The editor factory is static so you can install your editors
with a simple import, but using this hook will ensures you that
the editors are registered before any view is created.

	
	get_project_types(session)

	Here your plugin can return a list of kabaret.flow.Object that
are ment to be used as Project structure. Some other extension
may use this information to present a list of available project
types to the user.

	
	get_flow_objects(session)

	Here your plugin can return a list of kabaret.flow.Object that
provide packaged features. This is purely informative since you
will choose to use them or not in your flow. But this has the
advantage of listing in the Plugin View the Injection points defined
in those objects.

Plugin Activation

Plugins are activated by package distribution entry points in the “kabaret.plugin” group.

To activate the 3 plugins defined in the examples above, your setup.py would typically look like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	# Inside your extension's "setup.py"

from setuptools import setup, find_packages

setup(
 name="my_extension_name",
 ...
 entry_points = {
 "kabaret.plugin":[
 "my_extension_name.my_stuff = my_extension_name.my_stuff",
 "my_extension_name.best_view = my_extension_name.best_plugins:BestView",
 "my_extension_name.best_pipe = my_extension_name.best_plugins:BestPipe",
],
 }

Plugin Manual Activation

If some of your extensions are not packaged and installable via pip, you won’t
get a chance to define entry points.

In this case, creating a custom session class will give you the opportunity
to register you plugins programatically. Just override the register_plugins()
method and use the provided plugin_manager to register your plugin modules/classes:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	# In "run_my_standalone_kabaret.py", a script launching A
standalone kabaret application

from kabaret.app.ui import gui

from my_extension_name import my_stuff
from my_extension_name.best_plugins import BestView, BestPipe

class MyGUISession(gui.KabaretStandaloneGUISession):

 def register_plugins(self, plugin_manager):
 plugin_manager.register(my_stuff)
 plugin_manager.register(BestView)
 plugin_manager.register(BestPipe)

That being said, packaging your code is a good thing for many reasons and you
should consider doing it ;)

Plugin Desactivation

All installed plugins are active by default, but sometime you will want
to block some of them. This is done with the KABARET_BLOCKED_PLUGINS
environment variable.

Using the example above, you can desactivate the “my_stuff” and the “BestView”
plugins like this:

export KABARET_BLOCKED_PLUGINS="my_stuff BestView"
python run_my_standalone_kabaret

Note that this is not intended to be used as a “plugin list management”
but rather for debuging and corner cases. If you want to manage different sets
of plugins, you should use different virtualenvs. They are designed for this
and with the –editable option of the pip install command, you will have
the best control and versatility over your plugins installation.

Plugin Order

You will sometimes need a plugin to act depending on other plugins.

A classic example would be a “default plugin” that would install a View type only if
no other plugin already did.

A simple approach is to test for the view type name being registered, but
this is not enough until you can be sure that this plugin will be called after any other
plugin wanting to install this view type.

To affect the plugin call order and acheive this, you must configure
your plugin with the trylast option. All “trylast” plugins are guaranted
to be called after plugin without it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	from kabaret.app import plugin
from my_custom_stuff import FlowView

@plugin(trylast=True)
def install_views(session):
 if session.has_view_type('Flow'):
 # some other plugin took care
 # of this, let's bail out.
 return

 # The Flow view is mandatory, let's
 # install it and create one:
 session.register_view_type(FlowView)
 session.add_view(type_name)

Similarly, you can use the tryfirst option to ensure a plugin is called
before any plugin without the tryfist option.

 FAQ & Fun Facts

FAQ & Fun Facts

	
	Where does the name ‘Kabaret’ come from?

	Kabaret was initially developed at Supamonks Studio.
Supamonks’ in-house software and tools are named with girls first names like:

	Becassine - she let you bake an animation scene (‘bake a scene’)

	Rebeka - she let you bake in batch (Re-Bake)

	Trinity - she stores tree shaped data on disk.

	Naomie - she deals the naming conventions

	Debby - she’s the interface to the DataBase

	Etc.

We decided not to push those names to the open source version but
we wanted to keep a hint of girl power :)

Also, we like the French Touch it gives.

	
	Where does the Kabaret logo come from?

	The logo draws a strike-through ‘K’ symbol.

It’s based on a phonetic pun in French.

In French “a kabaret” is “un cabaret”. It is phonetically the same as “un K barré” which in
English means “a strike through ‘K’”.

It so happens that a strikeout ‘K’ is the symbol of the Laos money, the
Loa Kip [http://en.wikipedia.org/wiki/Lao_kip].
Laos is a communist society where the concept of possession is unknown
and the word for “mine” is the same as the word for “yours”.
This is a great match with our open source spirit.

We enjoy the idea that branding the Loa Kip could put Laos in focus and help this great country.

Laos is the most heavily bombed country in the world. They need your help and you should
donate to help with the Lao UXO eradication efforts [http://www.uxolao.org/Donating.html].

	
	Where do I get support?

	
	You can join the discord channel here:

	
	Kabaret Studio [https://discord.gg/NmJDHsN]

 Credits

Credits

Authors

First versions of Kabaret were conceived and implemented between 2012 and 2015 at SupamonkS Studio, Paris.

The primary authors are (and/or have been):

	Damien ‘Dee’ Coureau

	Sebastien ‘Zwib’ Ho

	Valerian Prevost

	Ivans Saponenko

	Steeve ‘Firegreen’ Vincent

We accumulate experience as Artists, Technical Directors, Developer and Production Director on
hundreds of commercial spots and commercial series, as well as on VFX and Full CG features movies like
Blueberry [http://www.imdb.com/rg/em_share/title_web/title/tt0276830/],
Splice [http://www.imdb.com/rg/em_share/title_web/title/tt1017460/],
Irreversible [http://www.imdb.com/rg/em_share/title_web/title/tt0290673/],
Despicable Me [http://www.imdb.com/rg/em_share/title_web/title/tt1323594/],
The Lorax [http://www.imdb.com/rg/em_share/title_web/title/tt1482459/]…

We have a deep faith in the open source philosophy and we wish every CG Talent could focus on the beauty of
their work (may it be cost tracking, pixel enhancement, or code magnificence) instead of struggling
with the machine.
Kabaret is our contributions to make this dream get real.

We hope you’ll join us in this adventure.

Mentors

Many ideas in Kabaret come from the outstanding people we had the chance to meet or work with.

Most notably:

	Etienne ‘Chex’ Pecheux, on the dataflow and automation.

	Albert ‘Lobo’ Bonnefous, on the overall CG world.

	Pierrick ‘Ick’ Brault, on pipeline and asset exploitation.

	Thierry ‘Mamouth’ Lauthelier, for ignition.

	Alexis Casas, for understanding and support.

	Nicolas ‘Nikko’ Brack, for endless higher expectations :)

Contributors

We welcome patches, bug reports and support.
If you think your name should appears here, please contact us on the Kabaret Studio [https://discord.gg/NmJDHsN] discord channel.

 Index

Index

 Extending Kabaret

Extending Kabaret

Warning

Documentation in Progress…

 Project Modeling

Project Modeling

Warning

Documentation in Progress…

 GUI

GUI

Warning

Documentation in Progress…

_static/file.png

_static/minus.png

_static/up-pressed.png

_images/choice_value.png
O som 7
® =
O scene

= -
© Flenane () gy TSnimlcene

Lrea

_static/up.png

_static/plus.png

_images/empty_kabaret_standalone.png
fHome

Optons.

Q@O® G (Home

Neme

Status

_images/final_preview.png
Optons [DEV]

MyFirstProject

OQOOA IMyFirstProject

Shots

O settings

O store
® Framerate
© mage Height

© mage vidth

Neme Ranges
shot00D 1366
shot0D1 67->123
shot0n2 1245203

[tmpPROJECTS

2

1080

1920

52 (s
Q00w
O Fst
O Last
D Lengih

O #oim

® status

O scene

@) Fiename /imp/PROJECTS WyFrstProjectienimlscene.ma

O ughting
® status
O scene
O comp

® status
O scene

® status

MyFirstProject/shots/shoto01
ject/shots:shot003
&7
13
57

=)

Lrea

wp

<shoto01>
shot0n2

shoto01/anim
shoto01ichting
shoto01/comp.

_images/create_project_dialog.png
TestType Creste Project

_images/create_project_menu.png
£ Tooge Arcived Projects
& Toogle Project Type.

© cesterromct
D setProjectatus

_images/shots_status_icon.png
Shoto0D 1566
shotp01 67->123
shoto02 124->203

_images/showcase_preview.png
[TestProjectficons/folder_names/icons_gui

Options

Q00w

® Folder Name _icons.ui

Icons

estProjecticons

ffolder_r

“I~OOCDTHE KB OO < A4 L Wie QP E5-OBeBe", s

namesticons_gui

Uuser-ad
Uuserlea
usitemap
utags)
ftext file

uopen-fc
uplus-ble
home-c
u'checkb
upadiock
uchevror
u'checkec
uteam)
uplus-sig
{minus-t
ucircle-st
uuser)
ucopy-dt

usort-ar
uexclame
uitalicize

Values are what configures your Flow,
either by User input or by
Computation.

There are several subclasses. Some
ensure type checking, other add
functionnality like the ChoiceValue.
You add a Value to an Object using the

‘The default is to accept any value.
Here you can enter anything:

® Default Value 23

A "Session” value exists only in memory (not saved
to the value store) and will return to its default for
every session.

® Session Value Defait Vae.

There are several typed Value, each one with a
corresponding Param subdasse and default editor:

® IntVelue o
® Bool Vlue x
® Float Velue 314159265359

© sting Vaue YopieKivay !

+

OQOA (estrrojecteditors

‘The choice displays a choice menu

Optons are:

«sorted (bool)

® Choice Value

class MyChoices (values ChoiceValue) -

CroICES = ("WIP",

[

RO,

RTE",

DoNE™]

defauc editor is "choice™ for ChoiceValue
choice valus = Param("WIP", MyChoices)

You can still use another editor if you prefer

Example:

text_choice valus = Param("WIE", MyChoices).u

® Text ChoiceValue WP

‘The multichoice editor let you select more than one choice:

Optons are:

«sorted (bool)

Example:

® Mutichoice

class MyMulciChoices (values ChoiceValue) -
CHOICES = ["WIP",
STRICT_CHOICES = False

R,

RTE",

DoNE™]

multichoice valus = Param(("WIE"], sditor="m

wp
RW
RTK
DONE

_images/step_01.png

nav.xhtml

 Table of Contents

 		
 Welcome to Kabaret’s documentation

 		
 Why and How

 		
 Why another Pipeline software ?

 		
 How is Kabaret different ?

 		
 What Kabaret is not ?

 		
 Quick Start

 		
 Demo & Showcase

 		
 Goal

 		
 Prerequisites

 		
 Preparation

 		
 Let’s play !

 		
 Conclusion

 		
 Create My Studio

 		
 Goal

 		
 Prerequisites

 		
 Preparation

 		
 Let’s do it !

 		
 Optional fun

 		
 Conclusion

 		
 My First Project

 		
 Goal

 		
 Prerequisites

 		
 Preparation

 		
 Let’s play !

 		
 Conclusion

 		
 Usage

 		
 Guru

 		
 Injection / Inversion of Control

 		
 Why ?

 		
 Why is it a problem ?

 		
 How ?

 		
 More example

 		
 Installation

 		
 Local

 		
 Shared

 		
 Dev

 		
 Dependencies

 		
 Automatic

 		
 Manual

 		
 Extra

 		
 Flow Reference Guide

 		
 Exceptions

 		
 Object

 		
 Relations

 		
 Values

 		
 Actions

 		
 Maps

 		
 Injection

 		
 App Reference Guide

 		
 Session

 		
 Resources

 		
 Featured Extensions

 		
 Script View

 		
 InGrid Objects and View

 		
 Subprocess Manager Actor

 		
 Gantt Objects and View

 		
 Users Actor

 		
 Naming

 		
 Plugins

 		
 What’s a Plugin ?

 		
 Plugin Creation

 		
 Pluggable Hooks

 		
 Plugin Activation

 		
 Plugin Manual Activation

 		
 Plugin Desactivation

 		
 Plugin Order
