

 Navigation

 	
 index

 	jy-transform stable documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/jy-transform/checkouts/stable/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/jy-transform/checkouts/stable/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright 2016.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	jy-transform stable documentation

Index

 Copyright 2016.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		jy-transform stable documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_static/down.png

CONTRIBUTING.html

 Navigation

 		
 index

 		jy-transform stable documentation »

Contributing

When contributing as coder, please take care of the following conventions:

		Enter yourself in the contributors section of package.json.

		We strictly follow Semantic Versioning 2 [http://semver.org] rules.

		The development branch is the leading branch and is protected. Create bugfix and feature
branches (or fork into you own namespace) and create pull
requests to development when finished. Any of these should be prefixed with
bugfix/#... or feature/#... (followed by issue number and a short, “underscored”
proper meaning), e.g.
		bugfix/#8_fix_js_reading_with_require

		feature/#14_multidocument_support

		Remember that name could need to be enclosed in quotes, e.g.
$ git checkout -b 'feature/#19_...'
when using git shell command.

		The master branch is protected and is the stable branch after a release.
It will never be pushed directly (only on release build).

		Indention for any file is 4 SPACEs.

		Keep code coverage high (> 95%).

		Doc everything with JSDocs [http://usejsdoc.org/] and document concepts in
README.md [https://github.com/deadratfink/jy-transform/blob/development/README.md]
or Wiki [https://github.com/deadratfink/jy-transform/wiki].

		Use single parenthesis ('...') in _*.js_ files instead of double parenthesis ("...").

		Avoid the of use parenthesis for keys in JSON objects.

		Use the strict mode ('use strict';) in _*.js_ files.

		File names should be lower-case with hyphens as divider, e.g. options-handler.js.

		Markdown documentation files should be upper-case with .md as extension, placed
in ./docs, e.g. USAGE.md. The README.md is build up by these files concatenated
by npm run docs command. Any new files have to be added to scripts.docs section of
package.json. Don’t forget to regenerate README.md ($ npm run docs) and wiki
($ npm run wiki) before committing.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/comment-close.png

CHANGELOG.html

 Navigation

 		
 index

 		jy-transform stable documentation »

Changelog

v2.0.0

		[#33 [https://github.com/deadratfink/jy-transform/issues/33]] Enhance LogWrapper with TRACE level (API)

		[#32 [https://github.com/deadratfink/jy-transform/issues/32]] Introduce input and output on CLI as ARGS instead of OPTIONS (non-backwards compatible change for CLI usage, no impact on API level!)

		e.g. on CLI type in $ jyt foo.js bar.yaml instead of $ jyt -s foo.js -d bar.yaml

		[#31 [https://github.com/deadratfink/jy-transform/issues/31]] Bugfix: given Object source results in ‘yaml’ for origin (API)

		[Cleanup] Update dependencies

v1.0.2

		[#30 [https://github.com/deadratfink/jy-transform/issues/30]] Fix README and externalize API reference to wiki

		[#29 [https://github.com/deadratfink/jy-transform/issues/29]] Fix Promise warning on write process

v1.0.1

Initial public release. This covers the basic implementation and tests. The following features and fixes and part of this release:

		[#27 [https://github.com/deadratfink/jy-transform/issues/27]] Export variable for JS input

		[#22 [https://github.com/deadratfink/jy-transform/issues/22]] Integrate Coveralls

		[#21 [https://github.com/deadratfink/jy-transform/issues/21]] Check and fix CodeClimate issues

		[#20 [https://github.com/deadratfink/jy-transform/issues/20]] Cleanup test dir

		[#19 [https://github.com/deadratfink/jy-transform/issues/19]] File overwrite switch (-f, -force)

		[#18 [https://github.com/deadratfink/jy-transform/issues/18]] Read and Write from other sources than file path

		[#16 [https://github.com/deadratfink/jy-transform/issues/16]] ERROR: Error: Invalid target option found while creating destination file extension

		[#15 [https://github.com/deadratfink/jy-transform/issues/15]] Measure test code coverage and add a badge

		[#12 [https://github.com/deadratfink/jy-transform/issues/12]] Create middleware collection file to use by clients and internally

		[#11 [https://github.com/deadratfink/jy-transform/issues/11]] Check all Promises for optimization possibilities

		[#10 [https://github.com/deadratfink/jy-transform/issues/10]] Integrate project with Travis

		[#9 [https://github.com/deadratfink/jy-transform/issues/9]] Resolve origin and target from file extension whenever possible

		[#8 [https://github.com/deadratfink/jy-transform/issues/8]] Enable JS reading with require(...)

		[#7 [https://github.com/deadratfink/jy-transform/issues/7]] YAML indent is not set to Constants.MIN_YAML_INDENT when indent is set to 0

		[#6 [https://github.com/deadratfink/jy-transform/issues/6]] Finish full JSDoc for all methods

		[#5 [https://github.com/deadratfink/jy-transform/issues/5]] Write unit tests

		[#4 [https://github.com/deadratfink/jy-transform/issues/4]] Export variable for JS output

		[#3 [https://github.com/deadratfink/jy-transform/issues/3]] Promise array as middleware solved with Promise.all([...])

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/comment-bright.png

BADGES.html

 Navigation

 		
 index

 		jy-transform stable documentation »

Stats

General

License [https://github.com/deadratfink/jy-transform/blob/master/LICENSE.md]	Issues [https://github.com/deadratfink/jy-transform/issues]	Releases [https://github.com/deadratfink/jy-transform/releases]	Tags [https://github.com/deadratfink/jy-transform/tags]	Travis CI [https://travis-ci.org]	Waffle [https://waffle.io/deadratfink/jy-transform]	Code Climate [https://codeclimate.com/github/deadratfink/jy-transform]
—	—	—	—	—	—	—
![License][gh-license-image] [https://github.com/deadratfink/jy-transform/blob/master/LICENSE.md]	![Issue Stats][gh-issues-image] [https://github.com/deadratfink/jy-transform/issues]	![Releases][gh-releases-image] [https://github.com/deadratfink/jy-transform/releases]	![Tags][gh-tags-image] [https://github.com/deadratfink/jy-transform/tags]	![Build Status][ci-image] [https://travis-ci.org/deadratfink/jy-transform/branches]	![Waffle][waffle-image] [https://waffle.io/deadratfink/jy-transform]	![Code Climate][cocl-image] [https://codeclimate.com/github/deadratfink/jy-transform]

Branches

Branch	Codecov [https://codecov.io]	Coveralls [https://coveralls.io]	Inch CI [http://inch-ci.org]	David [https://david-dm.org] DM	David [https://david-dm.org] DM (dev)
—	—	—	—	—	—
master	![codecov.io][cc-image-master] [https://codecov.io/github/deadratfink/jy-transform?branch=master]	![coveralls.io][ca-image-master] [https://coveralls.io/github/deadratfink/jy-transform?branch=master]	![inch-ci.org][inch-image-master] [https://inch-ci.org/github/deadratfink/jy-transform?branch=master]	![Dependency Status][dep-image-master] [https://david-dm.org/deadratfink/jy-transform/master]	![devDependency Status][devdep-image-master] [https://david-dm.org/deadratfink/jy-transform/master#info=devDependencies]
development	![codecov.io][cc-image-development] [https://codecov.io/github/deadratfink/jy-transform?branch=development]	![coveralls.io][ca-image-development] [https://coveralls.io/github/deadratfink/jy-transform?branch=development]	![inch-ci.org][inch-image-development] [https://inch-ci.org/github/deadratfink/jy-transform?branch=development]	![Dependency Status][dep-image-development] [https://david-dm.org/deadratfink/jy-transform/development]	![devDependency Status][devdep-image-development] [https://david-dm.org/deadratfink/jy-transform/development#info=devDependencies]

Coverage

master	development
—	—
[image: codecov.io]	[image: codecov.io]

NPM

[image: NPM] [https://nodei.co/npm/jy-transform/]
[image: NPM] [https://nodei.co/npm-dl/jy-transform/]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

USAGE.html

 Navigation

 		
 index

 		jy-transform stable documentation »

Motivation

Why this module? After struggling with some huge YAML file and accidentally
occurring wrong indentions which results in an annoying failure investigation,
I decided to get rid of the YAML file and therefore, create a module which
should be aimed as the swiss army knife for transforming YAML, JS and JSON
types into each other format.

Usage

The module can be used on CLI or as API (the latter is fully Promise [http://bluebirdjs.com/docs/api-reference.html]
based).

Usage Types

Since the module can be used in two different ways, use installation as follows:

		CLI: install globally via -g option

		API: install locally

Both usage types are described in more detail in the following sections.

Use Cases

So, what are the typical use cases for this module? In terms of transformation
these consists of different phases:

		Reading files (Reader)

		Transforming JSON objects (Transformer)

		Apply dedicated actions on the intermediate JSON objects (Transformer + Middleware)

		Writing files (Writer)

Reading

Reading from:

		*.yaml file

		*.js file

		*.json file

Additionally, on API level to a:

		stream.Readable

		Serialized JSON and YAML

		Requires options.origin property set

		Reads as UTF-8

		JS object (actually, this means the reading phase is skipped, because object is in-memory already)

Transformation

The transformation can take place into several directions:

		YAML ⇒ JS

		YAML ⇒ JSON

		JS ⇒ YAML

		JSON ⇒ YAML

		JS ⇒ JSON

		JSON ⇒ JS

		YAML ⇒ YAML

		JSON ⇒ JSON

		JS ⇒ JS

while:

		YAML [http://http://yaml.org/] = _*.yaml_, _*.yml_

		JS [https://developer.mozilla.org/en-US/docs/Web/JavaScript] = _*.js_ (JS object)

		JSON [http://json.org] = _*.json_ (JS object serialized as JSON)

Middleware

Apply actions on the intermediate JS object via injected Promise [http://bluebirdjs.com/docs/api-reference.html]
functions. This is an optional part for transformation phase.

Writing

Writing to:

		*.yaml file

		*.js file

		*.json file

Additionally, on API level to a:

		stream.Writable

		Serialized JS, JSON and YAML

		Requires options.target property set

		Writes UTF-8

		JS object

Limitations

		Since this module is build to transform from and to different type formats, any
Functions residing in JS type objects are not supported, e.g. transforming

module.exports = {
 fooKey: 'foo',
 fooFunction: foo() {...}
}

to JSON would simply result in

{
 fooKey: 'foo'
}

while transforming to YAML type would even result in an Error, e.g. printed
on CLI usage like this:

ERROR: YAMLException: unacceptable kind of an object to dump [object Function]

		Multidocument handling would be a cool feature which refers in general to YAML
and JS only, but at the moment we require that each document to transform is a
single one per source (or in case of JS could be identified)! This feature is
planned and reflected in #14 [https://github.com/deadratfink/jy-transform/issues/14].

		Schema validation for input and output is another topic which is planned by
#1 [https://github.com/deadratfink/jy-transform/issues/1] and
#2 [https://github.com/deadratfink/jy-transform/issues/2].

CLI Usage

The CLI provides the jyt command (actually, this requires the use of options).
After the global installation you can access the Transformer command options
with the usual command option --help option which prints an overview about all
available CLI properties:

$ jyt --help
Usage:
 jyt INPUT-FILE [OUTPUT-FILE] [OPTIONS]

Options:
 -o, --origin [STRING] The origin type of INPUT-FILE: [js | json | yaml]. (Default is if not given, the type is tried to be inferred from the extension of source path, else it is 'yaml')
 -t, --target [STRING] The target type of OUTPUT-FILE: [js | json | yaml]. (Default is if not given, the type is tried to be inferred from the extension of destination path, else it is 'js')
 -i, --indent [NUMBER] The indention for pretty-print: 1 - 8. (Default is 4)
 -f, --force Force overwriting of existing output files on write phase. When files are not overwritten (which is default),
 then the next transformation with same output file name gets a consecutive number on the base file name, e.g. in
 case of foo.yaml it would be foo(1).yaml.
 -m, --imports STRING Define a 'module.exports[.identifier] = ' identifier (to read from JS _source_ file only, must be a valid JS
 identifier!).
 -x, --exports STRING Define a 'module.exports[.identifier] = ' identifier (for usage in JS destination file only, must be a valid JS
 identifier!).
 -k, --no-color Omit color from output
 --debug Show debug information
 -v, --version Display the current version
 -h, --help Display help and usage details

CLI Args

The ARGS are more formally defined in the following table:

Arg	Type	Description	Default	Required
—	—	—	—	—
INPUT-FILE	URI	The source file path for transformation.	-	yes
OUTPUT-FILE	URI	The destination file path to transform to.	When this options is omitted then the output file is stored relative to the input file (same base name but with another extension if type differs). If input and output type are the same then the file overwriting is handled depending on the --force value!	no

NOTE: the input file has to be specified and should first argument (in fact, it can be anywhere but it must be before an out file argument)!

CLI Options

The OPTIONS are more formally defined in the following table:

| Option (short) | Option (long) | Type | Description | Default | Required |
| — | — | — | — | — | — |
| -o | --origin | string of: [js

|

 json |

 yaml] | The transformation origin type. | if not given, the type is tried to be inferred from the extension of source path, else it is yaml | no |
| -t | --target | string of: [js |

 json |

 yaml] | The transformation target type. | if not given, the type is tried to be inferred from the extension of destination path, else it is js | no |
| -i | --indent | integer
[1 - 8]
The code indention used in destination files.	4	no			
-f	--force	n/a	Force overwriting of existing output files on write phase. When files are not overwritten (which is default), then the next transformation with same output file name gets a consecutive number on the base file name, e.g. in case of foo.yaml it would be foo(1).yaml.	false	no
-m	--imports	string	Define a ‘module.exports[.identifier] = ‘ identifier (to read from JS source file only, must be a valid JS identifier!)	undefined	no
-x	--exports	string	Define a ‘module.exports[.identifier] = ‘ identifier (for usage in JS destination file only, must be a valid JS identifier!)	undefined	no
-k	--no-color	n/a	Omit color from output.	color	no
n/a	--debug	n/a	Show debug information.	false	no
-v	--version	n/a	Display the current version.	n/a	no
-h	--help	n/a	Display help and usage details.	n/a	no

NOTE: an invalid indention setting (1 > -i, --indent > 8) does not raise an error but a default of 4 SPACEs is applied instead.

Examples

Now we know which properties we can apply on CLI, so let’s assume we
have a YAML file located in foo.yaml holding this data:

foo: bar

Example: YAML ⇒ JSON

then we can transform it to a JSON file foo.json

{
 "foo": "bar"
}

using this command:

$ jyt foo.yaml -t json -i 2

In this example we have overwritten the standard target type (which is js)
and applying an indent of 2 instead of the default 4. As default the output
file foo.json is written relative to the input file (simply omitting the
dest option here).

NOTE: here you have to provide the target with -t json or else the
default js would have been applied! If the source would have been a js
type like

$ jyt foo.js -t json -i 2

then the js value for origin is automatically inferred from file extension.
Accordingly, this is also true for the target option.

Example: JSON ⇒ JS

$ jyt foo.json -i 2

module.exports = {
 foo: "bar"
}

Example: JS ⇒ YAML

$ jyt foo.js -t yaml

foo: bar

Example: Transformation with Different Destination

Simply specify the output file with a different file name:

$ jyt foo.json results/foobar.yaml

Example: Transformation with Unsupported Source File Extension

As said, normally we infer from file extension to the type but assume the source
file has a file name which does not imply the type (here a JSON
type in a TEXT file), then you can simply provide the -o option with the
correct origin type (of course, the -t option works analogous):

$ jyt foo.txt foobar.yaml -o json

Example: Read from File with Exports Identifier

It could be that a JS source exports several objects and you want to read
from exactly the one you specify, then provide the -m (--imports) option.

In this this example we have a foo.js file exporting two objects:

module.exports.foo = {
 foo: 'bar'
};

module.exports.bar = {
 bar: 'foo'
};

but you want to convert bar object, then call:

$ jyt foo.js bar.yaml -m bar

to get the YAML result:

bar: foo

NOTE: the same applies on API level when using JS objects as dest:

var fooBar = {
 foo: 'bar',
 bar: 'foo'
};

var options = {
 src: fooBar,
 dest: {},
 exports: 'bar'
};

//...transform

The transformation will result in this in-memory object:

bar: {
 foo: 'bar',
 bar: 'foo'
}

as sub-node of options.dest.

Example: Write Exports Identifier for JS File

Assume you want to generate a JS file with an exports string which gets an
identifier. We reuse the YAML file from above

foo: bar

using this command:

$ jyt foo.yaml foobar.js -x foobar

This generates the following output in JS file using foobar as identifier:

module.exports.foobar = {
 foo: "bar"
}

NOTE: the identifier must be a valid JS identifier accoding to ECMAScript 6
(see also Valid JavaScript variable names in ECMAScript 6 [https://mathiasbynens.be/notes/javascript-identifiers-es6]
and Generating a regular expression to match valid JavaScript identifiers [https://mathiasbynens.be/demo/javascript-identifier-regex]).

Example: Force Overwriting

IMPORTANT NOTE: when using this feature then any subsequent
execution which uses the same target/file name,
will overwrite the original source or target created beforehand!

By default this feature is not enabled to prevent you from accidentally
overwriting your input source or already generated targets.

But let’s say we want to overwrite the original source now because you want
to change the indention from 2 to 4 SPACEs, then we can do this as follows:

$ jyt foo.js -f

Of course, leaving out the -f switch creates a new file relatively to
the origin, named as foo(1).js (note the consecutive number). Naturally,
another run of the command would result in a file called foo(2).js
and so forth.

Origin and Target Type Inference

The examples above have shown that we have an automatic type inference from file
extensions. This is supported as shown by the following table (from-to):

File Extension	Type
—	—
*.yaml	yaml
*.yml	yaml
*.js	js
*.json	json

NOTE: if you have files without an extension or e.g. _*.txt_ you have to
specify the origin or target type!

API Usage

Since the usage on CLI is a 2-step process:

		Read from source file to JS object ⇒ 2. Write out (maybe to other type)

the direct API calls additionally provide the usage of a middleware function
where you can alter the input JS object before it is written and therefore, which turns
this into a 3-step process:

		Read from source ⇒ 2. Alter the JS object ⇒ 3. Write out (maybe to other type)

For more details about this and all the functions provided by this module please refer to the
API Reference [https://github.com/deadratfink/jy-transform/wiki/API-v2].

The origin and target type inference is also standard for the API level.

API Properties

The Transformer exposes the following function which takes besides an (optional)
middleware function the necessary options for the transformation:

function transform(options, middleware)

The options object has to follow this key-values table:

Option	Type	Description	Default	Required
—	—	—	—	—
origin	string	The origin type.	If not given, the type is tried to be inferred from the extension of source path, else it is yaml.	no
target	string	The target type.	If not given, the type is tried to be inferred from the extension of destination path, else it is js	no
src	string			

|

 Readable |

 object | The source information object: string is used as file path, Readable stream provides a stringified source and object is used as direct JS source. | - | yes |
| dest | string |

 Writable |

 object | The destination information object: string is used as file path, Writable stream writes a stringified source and object is used as direct JS object for assignment. | The output file is stored relative to the input file (same base name but with another extension if type differs). If input and output type are the same then the file overwriting is handled depending on the ‘force’ value! | no |
indent	number	The indention in files.	4	no
force	boolean	Force overwriting of existing output files on write phase. When files are not overwritten, then the next transformation with same output file name gets a consecutive number on the base file name, e.g. in case of foo.yaml it would be foo(1).yaml.	false	no
imports	string	Define a module.exports[.identifier] = ... identifier (to read from JS source only, must be a valid JS identifier!)	undefined	no
exports	string	Define a module.exports[.identifier] = ... identifier (for usage in JS destination only, must be a valid JS identifier!)	undefined	no

NOTE: an invalid indention setting (1 > indent > 8) does not raise an error but a default of 4 SPACEs is applied instead.

Example

var options = {
 origin: 'json',
 target: 'yaml',
 src: 'foo.json',
 dest: './foo/bar.yaml',
 indent: 2
}

Using Middleware

The middleware is optional but if provided it must be of type Function and
a Promise [http://bluebirdjs.com/docs/api-reference.html]. One of the easiest
ones is the identity function

f(data) → data

which could be expressed as
Promise [http://bluebirdjs.com/docs/api-reference.html] function as follows:

var identity = function (data) {
 return Promise.resolve(data);
}

Of course, this would have no effect on the provided JS data. Actually, this one is
used internally when no middleware is provided to ensure the proper promised
control flow.

OK, lets go back to a more practical example, e.g. we want to alter the value of
JS property before it is written to a file. Assuming we have this piece of YAML
object as input:

foo: old bar

Applying this Promise [http://bluebirdjs.com/docs/api-reference.html] as middleware

var middleware = function (data) {
 data.foo = 'new bar';
 return Promise.resolve(data);
}

transformer.transform(options, middleware)
 .then(function (msg){
 logger.info(msg);
 })
 .catch(function (err) {
 logger.error(err.stack);
 });

will result in such JSON file:

{
 "foo": "new bar"
}

Of course, in real world scenarios you will have use cases which usually have a
higher complexity where one function might be insufficient or at least
inconvenient. but this does not raise a problem at all, because you can create
several functions to be applied in the whole transformation process by gathering
them in one function.

Let’s assume we have some Promise functions to apply. For simplicity reasons we
simulate these for the moment by two functions, each adding a key-value to the
given (initially empty) JS object.

NOTE: each of them has to resolve with the data object!

function key1(data) {
 objectPath.set(data, 'key1', 'value1');
 return Promise.resolve(data);
}

function key2(data) {
 objectPath.set(data, 'key2', 'value2');
 return Promise.resolve(data);
}

function key3(data) {
 objectPath.set(data, 'key3', 'value3');
 return Promise.resolve(data);
}

These can be collected by different aggregation or composition functions of the underlying
Promise framework, e.g. using the Promise.all([...]) [http://bluebirdjs.com/docs/api/promise.all.html]
function. This one can collect all three functions above and ensure their proper subsequent execution:

var middleware = function (data) {
 return Promise.all([key1(data), key2(data), key3(data)])
 .then(function(result) {
 return Promise.resolve(result[result.length - 1]);
 });
};

var transformer = new Transformer(logger);
var logger = ...;
var options = {
 src: {}
};

return transformer.transform(options, middleware)
 .then(function (msg){
 logger.info(msg);
 })
 .catch(function (err) {
 logger.error(err.stack);
 });

Then the result in the middleware function can be retrieved from the returned
array, i.e. in case of Promise.all([...]) [http://bluebirdjs.com/docs/api/promise.all.html]
you have to pick the last element which contains the “final product”.

From our example above it would be result in this object

{
 key1: 'value1',
 key2: 'value2',
 key3: 'value3'
}

which then is passed back to the transformation chain. Following this pattern
you can do almost everything with the JS object, like

		deleting properties

		changing properties to other types

		validating and throwing error if not valid

		...

Whatever you do during transformation, just keep it valid ;-)

Using Custom Logger

It is usual that you use an own logger in your application. This module supports you by
letting you inject your logger as constructor argument: the Reader, Transformer and
Writer constructor will accept an (optional) logger object.

If you do not provide one, then the default logger is console.

var logger = ...;

var reader = new Reader(logger);
var transformer = new Transformer(logger);
var writer = new Writer(logger);

At least, the passed logger object has to support the following functions:

function info(msg)
function debug(msg)
function trace(msg)
function error(err|msg)

Anyway, there are some fallbacks if a level is not supported:

		DEBUG ⇒ INFO

		TRACE ⇒ DEBUG

API Reference

For more details on how to use the API, please refer to the
API Reference [https://github.com/deadratfink/jy-transform/wiki/API-v2]
wiki which describes the full API and provides more examples.

Contributing

Pull requests and stars are always welcome. Anybody is invited to take part
into this project. For bugs and feature requests, please create an
issue [https://github.com/deadratfink/jy-transform/issues].
See the wiki Contributing [https://github.com/deadratfink/jy-transform/wiki/Changelog]
section for more details about conventions.

 © Copyright 2016.
 Created using Sphinx 1.3.5.

LOGO.html

 Navigation

 		
 index

 		jy-transform stable documentation »

 [image: jy-transform logo]

 © Copyright 2016.
 Created using Sphinx 1.3.5.

TOC.html

 Navigation

 		
 index

 		jy-transform stable documentation »

 © Copyright 2016.
 Created using Sphinx 1.3.5.

_static/up.png

