

Welcome to juwo’s documentation!

A full fledged social web app (news feed, posts/tweets, likes, comments, shares, notifications, livestreaming, IRC, private instant messaging[rabbitmq], etc...) used as an experiment for every new technology using primarily Nodejs.

Project Home Page

Link : https://github.com/anirbanroydas/juwo

Details

	Author:	Anirban Roy Das

	Email:	anirban.nick@gmail.com

	Copyright(C):	2017, Anirban Roy Das <anirban.nick@gmail.com>

Check juwo/LICENSE file for full Copyright notice.

Contents:

	Overview

	Features
	Technical Specs

	Feature Specs

	Installation
	Prerequisites (Optional)

	Dependencies

	Install

	CI Setup

	Usage
	Run

	Logging

	Testing

Indices and tables

	Index

	Module Index

	Search Page

Overview

Its a full fledged social web app which consists of instant messaging both public and private, news feed, tweet-like feature, with comments, likes, shares, notifications**, livestream of activities and a web interface to view and use the application.

NOTE: This is a smaple project still in progress.

This project was made with the intention of using NodeJs and Koa framework to experiment with.

This project also experiments with many web technologies and present day social features like news feed, posts (like twitter’s tweets), **notifications, livestream of activities (like facebook’s tickr), material design.

This project uses many computer science enginnering tools and tries to solve experiment with problems like what are the methods to show live stream of activities, how to store and show news feed, the engineering problems that come across to solve these problems and many more. All in all, this project is a very good smaple project to learn many new technologies and solve good computer science problems. Its also good for system design and also who want to start off with nodejs and koa.

It uses gulp as the task runner with intentions to move to webpack. presently the web interface is primarily usign bootstrap and plain html5 along with css3 but plans to move to react with redux.

Features

Technical Specs

	Javascript:	Primary Language

	Node 7:	The runtime engine

	Koa 1.x:	The web framework for nodejs, good alternative to express

	Bootstrap:	The html-css framework for frontend

	Redis:	The session and cache storage

	MongoDB:	The main database

	RabbitMQ:	The message broker and queue engine, also used in notifications, feeds, livestreaming events.

	Travis-CI (Optional):

	 	A hosted CI server free for open-source projecs

	Docker:	A containerization tool for better devops

Feature Specs

	Web App

	Instant Messaging

	News Feed

	Tweets like feature.

	Notifications

	Livestream of activities and events

Installation

Prerequisites (Optional)

To safegurad secret and confidential data leakage via your git commits to public github repo, check git-secrets.

This git secrets [https://github.com/awslabs/git-secrets] project helps in preventing secrete leakage by mistake.

Dependencies

	Docker

	Make (Makefile)

See, there are so many technologies used mentioned in the tech specs and yet the dependencies are just two. This is the power of Docker.

Install

	Step 1 - Install Docker

Follow my another github project, where everything related to DevOps and scripts are mentioned along with setting up a development environemt to use Docker is mentioned.

	Project: https://github.com/anirbanroydas/DevOps

	Go to setup directory and follow the setup instructions for your own platform, linux/macos

	Step 2 - Install Make

(Mac Os)
$ brew install automake

(Ubuntu)
$ sudo apt-get update
$ sudo apt-get install make

	Step 3 - Install Dependencies

Install the following dependencies on your local development machine which will be used in various scripts.

	openssl

	ssh-keygen

	openssh

Travis Setup

These steps will encrypt your environment variables to secure your confidential data like api keys, docker based keys, deploy specific keys.

$ make travis-setup

Jenkins Setup

These steps will encrypt your environment variables to secure your confidential data like api keys, docker based keys, deploy specific keys.

$ make jenkins-setup

CI Setup

If you are using the project in a CI setup (like travis, jenkins), then, on every push to github, you can set up your travis build or jenkins pipeline. Travis will use the .travis.yml file and Jenknis will use the Jenkinsfile to do their jobs. Now, in case you are using Travis, then run the Travis specific setup commands and for Jenkins run the Jenkins specific setup commands first. You can also use both to compare between there performance.

The setup keys read the values from a .env file which has all the environment variables exported. But you will notice an example env file and not a .env file. Make sure to copy the env file to .env and change/modify the actual variables with your real values.

The .env files are not commited to git since they are mentioned in the .gitignore file to prevent any leakage of confidential data.

After you run the setup commands, you will be presented with a number of secure keys. Copy those to your config files before proceeding.

NOTE: This is a one time setup.
NOTE: Check the setup scripts inside the scripts/ directory to understand what are the environment variables whose encrypted keys are provided.
NOTE: Don’t forget to Copy the secure keys to your .travis.yml or Jenkinsfile

NOTE: If you don’t want to do the copy of env to .env file and change the variable values in .env with your real values then you can just edit the travis-setup.sh or jenknis-setup.sh script and update the values their directly. The scripts are in the scripts/ project level directory.

IMPORTANT: You have to run the travis-setup.sh script or the jenkins-setup.sh script in your local machine before deploying to remote server.

Usage

After having installed the above dependencies, and ran the Optional (If not using any CI Server) or Required (If using any CI Server) CI Setup Step, then just run the following commands to use it:

You can run and test the app in your local development machine or you can run and test directly in a remote machine. You can also run and test in a production environment.

Run

The below commands will start everythin in development environment. To start in a production environment, suffix -prod to every make command.

For example, if the normal command is make start, then for production environment, use make start-prod. Do this modification to each command you want to run in production environment.

Exceptions: You cannot use the above method for test commands, test commands are same for every environment. Also the make system-prune command is standalone with no production specific variation (Remains same in all environments).

	Start Applcation

$ make clean
$ make build
$ make start

OR

$ docker-compose up -d

	Stop Application

$ make stop

OR

$ docker-compose stop

	Remove and Clean Application

$ make clean

OR

$ docker-compose rm --force -v
$ echo "y" | docker system prune

	Clean System

$ make system-prune

OR

$ echo "y" | docker system prune

Logging

	To check the whole application Logs

$ make check-logs

OR

$ docker-compose logs --follow --tail=10

	To check just the python app’s logs

$ make check-logs-app

OR

$ docker-compose logs --follow --tail=10 identidock

Testing

Now, testing is the main deal of the project. You can test in many ways, namely, using make commands as mentioned in the below commands, which automates everything and you don’t have to know anything else, like what test library or framework is being used, how the tests are happening, either directly or via docker containers. Nothing is required to be known.

But running the make commands is always the go to strategy and reccomended approach for this project.

	To Test everything

$ make test

Any Other method without using make will involve writing a lot of commands. So use the make command preferrably

	To perform Unit Tests

$ make test-unit

	To perform Component Tests

$ make test-component

	To perform Contract Tests

$ make test-contract

	To perform Integration Tests

$ make test-integration

	To perform End To End (e2e) or System or UI Acceptance or Functional Tests

$ make test-e2e

OR

$ make test-system

OR

$ make test-ui-acceptance

OR

$ make test-functional

Index

 _static/comment.png

nav.xhtml

 Table of Contents

 		Welcome to juwo's documentation!

 		Overview

 		Features

 		Technical Specs

 		Feature Specs

 		Installation

 		Prerequisites (Optional)

 		Dependencies

 		Install

 		Travis Setup

 		Jenkins Setup

 		CI Setup

 		Usage

 		Run

 		Logging

 		Testing

_static/down-pressed.png

_static/up.png

_static/down.png

_static/minus.png

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/up-pressed.png

_static/comment-close.png

