

Jupyter Kernel Management 0.5

This package provides the Python API for starting, managing and communicating with
Jupyter kernels.
For information on messaging with Jupyter kernels, please
refer to the Jupyter Protocol documentation [https://jupyter-protocol.readthedocs.io/en/latest/index.html].

Note

This is a new interface under development, and may still change.
Not all Jupyter applications use this yet.
See the jupyter_client [https://pexpect.readthedocs.io/en/latest/] docs for the established way of
discovering and managing kernels.

Application Developers

	Kernel Finder
	Finding kernels

	Launching kernels

	Kernel Manager

	Kernel Client

	Kernel Restarter

	Standalone Usage

	Use with Jupyter Server

See also

High Level API

Kernel Provider Developers

	Kernel Providers
	Creating a kernel provider

	Finding kernel types

	Included kernel providers

	Included kernel launchers

	Glossary

API

	Kernel Management APIs
	High Level API

	Kernel Finder

	Kernel Provider

	Kernel Launchers

	Kernel Manager

	Kernel Client

	Kernel Restarter

Changes

	Changes in Jupyter Kernel Mgmt
	0.5.1

	0.5.0

	0.4.0

	0.3.0

	0.2.0

	0.1.1

Indices and tables

	Index

	Module Index

	Search Page

Kernel Finder

The jupyter_kernel_mgmt package provides a means of discovering kernel types
that are available for use. This is accomplished using the
KernelFinder class.

KernelFinder instances are
created in one of two ways.

	The most common way is to call KernelFinder’s class method
KernelFinder.from_entrypoints().
This loads all registered kernel providers.

	You can also provide a list of kernel provider
instances to KernelFinder’s constructor.
This loads only those instances provided.

Once an instance of KernelFinder has
been created, kernels can be discovered and launched via KernelFinder’s
instance methods, find_kernels() and
launch(), respectively.

Finding kernels

Available kernel types are discovered using KernelFinder’s
KernelFinder.find_kernels() method. This method is a generator that walks
the set of loaded kernel providers calling each of their
KernelProvider.find_kernels() methods
yielding each entry.

Each kernel type has an ID (e.g. spec/python3) and a dictionary containing
information to help a program or a user select an appropriate kernel.
Different providers may include different metadata in this dictionary.

Kernel Specifications

The main built-in kernel provider,
KernelSpecProvider,
looks for kernels described by files in certain specific folders.
Each kernel is described by one directory, and the name of the directory is
used in its kernel type ID.
These kernel spec directories may be in a number of locations:

	Type

	Unix

	Windows

	System

	/usr/share/jupyter/kernels

/usr/local/share/jupyter/kernels

	%PROGRAMDATA%\jupyter\kernels

	User

	~/.local/share/jupyter/kernels (Linux)

~/Library/Jupyter/kernels (Mac)

	%APPDATA%\jupyter\kernels

	Env

	{sys.prefix}/share/jupyter/kernels

The user location takes priority over the system locations, and the case of the
names is ignored, so selecting kernels works the same way whether or not the
filesystem is case sensitive.

Since kernel names, and their provider ids, show up in URLs and other places,
a kernelspec is required to have a simple name, only containing ASCII letters, ASCII numbers, and the simple separators: - hyphen, . period, _ underscore.

Other locations may also be searched if the JUPYTER_PATH environment
variable is set.

For IPython kernels, three types of files are presently used:
kernel.json, kernel.js, and logo image files. However, different Kernel Providers
can support other files and directories within the kernel directory or may not even
use a directory for their kernel discovery model. That said, for kernels prior
to Kernel Providers or those discovered by instances of class
KernelSpecProvider, the most important
file is kernel.json. This file consists of a JSON-serialized dictionary
that adheres to the kernel specification format.

For example, the kernel.json file for the IPython kernel looks like this:

{
 "argv": ["python3", "-m", "IPython.kernel",
 "-f", "{connection_file}"],
 "display_name": "Python 3",
 "language": "python"
}

Kernel Specification Format

The information contained in each entry returned from a Kernel Provider’s
find_kernels() method consists of a
dictionary containing the following keys and values:

	display_name: The kernel’s name as it should be displayed in the UI.
Unlike the kernel name used in the API, this can contain arbitrary unicode
characters. This value should be provided by all kernel providers.

	language: The name of the language of the kernel.
When loading notebooks, if no matching kernelspec key (may differ across machines)
is found, a kernel with a matching language will be used.
This allows a notebook written on any Python or Julia kernel to be properly
associated with the user’s Python or Julia kernel, even if they aren’t listed
under the same name as the author’s. This value should be provided by all kernel providers.

	metadata (optional): A dictionary of additional attributes about this
kernel. Metadata added here should be namespaced for the tool reading and
writing that metadata.

Kernelspec-based providers obtain this information from a kernel.json file located in a
directory pertaining to the kernel’s name. Other fields in the kernel.json file include
information used to launch and manage the kernel. As a result, you’ll also find the following
fields in kernel.json files:

	argv: (optional): A list of command line arguments used to start the kernel. For
instances of class KernelSpecProvider the text
{connection_file} in any argument will be replaced with the path to the
connection file. However, subclasses of KernelSpecProvider
may choose to provide different substitutions, especially if they don’t use a connection file.

	interrupt_mode (optional): May be either signal or message and
specifies how a client is supposed to interrupt cell execution on this kernel,
either by sending an interrupt signal via the operating system’s
signalling facilities (e.g. SIGINT on POSIX systems), or by sending an
interrupt_request message on the control channel (see
kernel interrupt [https://jupyter-protocol.readthedocs.io/en/latest/messaging.html#msging-interrupt]).
If this is not specified signal mode will be used.

	env (optional): A dictionary of environment variables to set for the kernel.
These will be added to the current environment variables before the kernel is
started.

However, whether a provider exposes information used during their kernel’s
launch is entirely up to the provider.

IPython kernel provider

A second built-in kernel provider,
IPykernelProvider, identifies if
ipykernel is importable by the same Python the frontend is running on.
If so, it provides exactly one kernel type, pyimport/kernel, which runs the
IPython kernel in that same Python environment.

This may be functionally a duplicate of a kernel type discovered through an
installed kernelspec.

Launching kernels

Launching kernels works similarly to their discovery. To launch a previously discovered kernel,
the kernel’s fully qualified kernel type is provided to KernelFinder’s
launch() method.

Note

A fully qualified kernel type includes a prefix of the kernel’s provider id followed by a
forward slash (‘/’). For example, the python3 kernel as provided by the
KernelSpecProvider
would have a fully qualified kernel type of spec/python3.

The application is responsible for ensuring the name passed to
KernelFinder.launch() is prefixed with a provider id. For backwards
compatibility with existing kernelspecs, a prefix of spec/ is recommended in such cases so as to associate it with
the KernelSpecProvider.

KernelFinder’s launch method then locates the provider and calls the specific kernel provider’s
launch() method.

KernelFinder.launch(name, cwd=None, launch_params=None)
takes two additional (and optional) arguments.

cwd (optional) specifies the current working directory relative to the notebook.
Use of this value is up to the provider, as some kinds of kernels may not see
the same filesystem as the process launching them.

launch_params (optional) specifies a dictionary of provider-specific name/value pairs that can can
be used during the kernel’s launch. What parameters are used can also be specified in the form of JSON
schema embedded in the provider’s kernel specification returned from its
find_kernels() method. The application retrieving the kernel’s
information and invoking its subsequent launch, is responsible for providing appropriately relevant values.

Using launched kernels

A 2-tuple of connection information [https://jupyter-protocol.readthedocs.io/en/latest/kernels.html#connection-files] and the provider’s
kernel manager instance are returned
from KernelFinder’s launch method.

Although the KernelManager instance allows an application to manage a kernel’s lifecycle, it
does not provide a means of communicating with the kernel. To communicate with the kernel, an
instance of KernelClient is required.

If the application would like to perform automatic
restart operations (where the application detects the kernel is no longer running and issues a
restart request) the application should establish a KernelRestarter instance.

Kernel Manager

The kernel manager is the primary interface through which an application controls
a kernel’s lifecycle upon its successful launch. Implemented by the provider,
it exposes well-known methods to determine if the kernel is alive, as well as its interruption and shutdown,
among other things. Applications like Jupyter Notebook invoke a majority of these methods indirectly via
the REST API upon a user’s request, while others are invoked from within the application itself.

Kernel Client

To communicate with the kernel, an instance of KernelClient is required. This class instance
takes its parameters from the application and formats them according to the
Jupyter message protocol [https://jupyter-protocol.readthedocs.io/en/latest/messaging.html].

Kernel Restarter

Applications that wish to perform automatic restart operations (where the application
detects the kernel is no longer running and issues a restart request) use a
kernel restarter. This instance is associated to
the appropriate kernel manager instance to accomplish
the restart functionality.

Standalone Usage

The aim of the Kernel Management is to be integrated in larger applications such as the Jupyter Server.

Although, it can be used as a standalone module to, for example, launch a Kernel Finder
from the command line and get a list of Kernel Specifications

python -m jupyter_kernel_mgmt.discovery

Similarly to jupyter_client [https://github.com/jupyter/jupyter_client], the Kernel Management can be used in different flavors and use cases.
We are looking to your contributions to enrich the example use cases.
You can get inspiration from the test_client.py [https://github.com/takluyver/jupyter_kernel_mgmt/blob/master/jupyter_kernel_mgmt/tests/test_client.py] source code.

PS: The existing separated jupyter_client [https://github.com/jupyter/jupyter_client] can not be used in combination with the Kernel Management.
The KernelClient code to use should be the one shipped by Kernel Management, not by jupyter_client [https://github.com/jupyter/jupyter_client].

Use with Jupyter Server

This page describes the way Jupyter Server [https://github.com/jupyter/jupyter_server] uses the Kernel Management module.

[image: _images/kernel_mgmt_server.svg]On the Jupyter Server side, WEB handlers receive the javascript requests and are responsible for the communication with the Kernel Manager and Providers.

The MainKernelSpecHandler in services/kernelsspecs/handlers is reponsible to find the available Kernel Specs.

The other Handlers located in services/kernels/handlers are reponsible to launch and pass the message to the ZeroMQ channels:

	KernelHandler - accessible on endpoint /api/kernels

	MainKernelHandler - accessible on endpoint /api/kernels/<kernel_id>

	KernelActionHandler - accessible on endpoint /api/kernels/<kernel_id>/{interrupt,restart}

	ZMQChannelsHandler - accessible on endpoint /api/kernels/<kernel_id>/channels

Jupyter Server runs with a single ServerApp that initializes each of the handlers with services related to the Kernels:

	A kernel_manager - the default manager is MappingKernelManager provided by jupyter_server.

	A kernel_finder - is imported from the jupyter_kernel_mgmt library.

	A session_manager - uses a kernel_manager MappingKernelManager.

A single instance of MappingKernelManager is shared across all other objects (singleton pattern).
The MappingKernelManager instance has a KernelFinder field.

The kernel_manager we are referring to in Jupyter Server should not be confused with the kernel_manager of the Kernel Manager it self.
To avoid confusion, we will name the Servers’s one mapping_kernel_manager in the next sections.

Notably, the ZMQChannelsHandler has access to the kernel’s client interface via its kernel_client property.

In order to be found by a kernel_finder, Kernel Providers need to register them selves via the entrypoint mechanism.

The included kernel providers, KernelSpecProvider and IPykernelProvider, register by default their entrypoints.

entrypoints:
 jupyter_kernel_mgmt.kernel_type_providers' : [
 'spec = jupyter_kernel_mgmt.discovery:KernelSpecProvider',
 'pyimport = jupyter_kernel_mgmt.discovery:IPykernelProvider',
]

The system administrator can install additional providers.
In that case, those external providers can register their own entypoints, see e.g kubernetes_kernel_provider [https://github.com/gateway-experiments/kubernetes_kernel_provider], yarn_kernel_provider [https://github.com/gateway-experiments/yarn_kernel_provider]…

The interactions sequence between Jupyter Server and the Kernel Management is sketched here.
Please note that this diagram just gives an idea of the interactions and is not aimed to reflect an exhaustive list of object constructs nor method calls…

[image: _images/kernel_mgmt_server_sequence.svg]

Kernel Providers

Creating a kernel provider

By writing a kernel provider, you can extend how Jupyter applications discover
and start kernels. For example, you could find kernels in an environment system
like conda, or kernels on remote systems which you can access.

To write a kernel provider, subclass
KernelProviderBase, giving your provider an ID
and overriding two methods.

	
class MyKernelProvider

	
	
id

	A short string identifying this provider. Cannot contain forward slash
(/).

	
find_kernels()

	Get the available kernel types this provider knows about.
Return an iterable of 2-tuples: (name, attributes).
name is a short string identifying the kernel type.
attributes is a dictionary with information to allow selecting a kernel.
This may also contain metadata describing other information pertaining to
the kernel’s launch - parameters, environment, etc.

	
launch(name, cwd=None, launch_params=None)

	Launches the kernel and returns a 2-tuple: (connection_info, kernel_manager).
connection_info is a dictionary consisting of the connection information
pertaining to the launched kernel.
kernel_manager is a KernelManager instance.

name is a name returned from find_kernels().

cwd is a string indicating the (optional) working directory in which the
kernel should be launched.

launch_params is a dictionary of name/value pairs to be used by the provider
and/or passed to the kernel as parameters.

For example, imagine we want to tell Jupyter about kernels for a new language
called oblong:

oblong_provider.py
import asyncio
from jupyter_kernel_mgmt.discovery import KernelProviderBase
from jupyter_kernel_mgmt import KernelManager
from shutil import which

class OblongKernelProvider(KernelProviderBase):
 id = 'oblong'

 @asyncio.coroutine
 def find_kernels(self):
 if not which('oblong-kernel'):
 return # Check it's available

 # Two variants - for a real kernel, these could be something like
 # different conda environments.
 yield 'standard', {
 'display_name': 'Oblong (standard)',
 'language': {'name': 'oblong'},
 'argv': ['oblong-kernel'],
 }
 yield 'rounded', {
 'display_name': 'Oblong (rounded)',
 'language': {'name': 'oblong'},
 'argv': ['oblong-kernel'],
 }

 async def launch(self, name, cwd=None, launch_params=None):
 if name == 'standard':
 return await my_launch_method(cwd=cwd, launch_params=launch_params,
 kernel_cmd=['oblong-kernel'],
 extra_env={'ROUNDED': '0'})
 elif name == 'rounded':
 return await my_launch_method(cwd=cwd, launch_params=launch_params,
 kernel_cmd=['oblong-kernel'],
 extra_env={'ROUNDED': '1'})
 else:
 raise ValueError("Unknown kernel %s" % name)

You would then register this with an entry point. In your setup.py, put
something like this:

setup(...
 entry_points = {
 'jupyter_kernel_mgmt.kernel_type_providers' : [
 # The name before the '=' should match the id attribute
 'oblong = oblong_provider:OblongKernelProvider',
]
})

Finding kernel types

To find and start kernels in client code, use
KernelFinder. This uses multiple kernel
providers to find available kernels. Like a kernel provider, it has methods
find_kernels and launch. The kernel names it works
with have the provider ID as a prefix, e.g. oblong/rounded (from the example
above).

from jupyter_kernel_mgmt.discovery import KernelFinder
kf = KernelFinder.from_entrypoints()

Find available kernel types
for name, attributes in kf.find_kernels():
 print(name, ':', attributes['display_name'])
oblong/standard : Oblong (standard)
oblong/rounded : Oblong(rounded)
...

Start a kernel by name
connect_info, manager = await kf.launch('oblong/standard')

client = IOLoopKernelClient(connect_info, manager=manager)
try:
 await asyncio.wait_for(client.wait_for_ready(), timeout=startup_timeout)
except RuntimeError:
 await client.shutdown_or_terminate()
 await client.close()
 await manager.kill()

Use `manager` for lifecycle management, `client` for communication

Included kernel providers

jupyter_kernel_mgmt includes two kernel providers in its distribution.

1. KernelSpecProvider handles the discovery and launch
of most existing kernelspec-based kernels that exist today.

2. IPykernelProvider handles the discover and launch
of any IPython kernel that is located in the executing python’s interpreter. For example, if the
application is running in a virtual Python environment, this provider identifies if any IPython
kernel is local to that environment and may not be identified by the path algorithm
used by KernelSpecProvider.

Included kernel launchers

The kernel provider is responsible for launching the kernel and returning the connection
information and kernel manager instance. Typically, a provider
will implement a launcher to perform this action.

For those providers launching their kernels using the subprocess module’s Popen class,
jupyter_kernel_mgmt includes two kernel launcher implementations in its distribution.

1. SubprocessKernelLauncher launches kernels using
the ‘tcp’ transport.

2. SubprocessIPCKernelLauncher launchers kernels using
the ‘ipc’ transport (using filesystem sockets).

Both launchers return the resulting connection information and an instance of
KernelManager, which is subsequently used to manage the
rest of the kernel’s lifecycle.

Glossary

	Kernel instance
	A running kernel, a process which can accept ZMQ connections from frontends.
Its state includes a namespace and an execution counter.

	Kernel type
	The software to run a kernel instance, along with the context in which a
kernel starts. One kernel type allows starting multiple, initially similar
kernel instances. For instance, one kernel type may be associated with one
conda environment containing ipykernel. The same kernel software in
another environment would be a different kernel type. Another software package
for a kernel, such as IRkernel, would also be a different kernel type.

	Kernel provider
	A Python class to discover kernel types and allow a client to start instances
of those kernel types. For instance, one kernel provider might find conda
environments containing ipykernel and allow starting kernel instances in
these environments. While another kernel provider might enable the ability
to launch kernels across a Kubernetes cluster.

	Provider Id
	A simple string ([a-z,0-9,_,-,.]) that identifies the provider. Each kernel
name returned from the provider’s find_kernels() method will be prefixed
by the provider id followed by a ‘/’ separator.

Kernel Management APIs

	High Level API
	Async interface

	Blocking interface

	Kernel Finder

	Kernel Provider

	Kernel Launchers

	Kernel Manager

	Kernel Client

	Kernel Restarter

High Level API

These functions are convenient interfaces to start and interact with Jupyter
kernels.

Async interface

These functions are meant to be called from an asyncio event loop.

	
class jupyter_kernel_mgmt.run_kernel_async(name, **kwargs)

	Context manager to run a kernel by kernel type name.

Gives an async client:

async with run_kernel_blocking("pyimport/kernel") as kc:
 await kc.execute("a = 6 * 7")

	
async jupyter_kernel_mgmt.start_kernel_async(name, cwd=None, launch_params=None, finder=None)

	Start a kernel by kernel type name, return (manager, async client)

Blocking interface

	
jupyter_kernel_mgmt.run_kernel_blocking(name, **kwargs)

	Context manager to run a kernel by kernel type name.

Gives a blocking client:

with run_kernel_blocking("pyimport/kernel") as kc:
 kc.execute_interactive("print(6 * 7)")

	
jupyter_kernel_mgmt.start_kernel_blocking(name, *, cwd=None, launch_params=None, finder=None, startup_timeout=60)

	Start a kernel by kernel type name, return (manager, blocking client)

Kernel Finder

The Kernel Finder API is used by applications wishing to discover, launch,
and manage Jupyter kernels. KernelFinder is not meant to be subclassed.
To make it discover additional kernels, see Kernel Providers.

	
class jupyter_kernel_mgmt.discovery.KernelFinder(providers)

	Manages a collection of kernel providers to find available kernel types.
providers should be a list of kernel provider instances.

	
find_kernels()

	Iterate over available kernel types.
Yields 2-tuples of (prefixed_name, attributes)

	
classmethod from_entrypoints()

	Load all kernel providers advertised by entry points.

Kernel providers should use the “jupyter_kernel_mgmt.kernel_type_providers”
entry point group.

Returns an instance of KernelFinder.

	
async launch(name, cwd=None, launch_params=None)

	Launch a kernel of a given kernel type using asyncio.

Kernel Provider

The Kernel Provider API is what a third-party would implement to introduce a form of
kernel management that might differ from the more common KernelSpecProvider kernel.
For example, a kernel provider might want to launch (and manage) kernels across a Kubernetes cluster.
They would then implement a provider that performs the necessary action for launch and provide
a KernelManager instance that can perform the appropriate actions to control
the kernel’s lifecycle.

See also

Kernel Providers

	
class jupyter_kernel_mgmt.discovery.KernelProviderBase

	
	
abstract find_kernels()

	Return an iterator of (kernel_name, kernel_info_dict) tuples.

	
abstract async launch(name, cwd=None, launch_params=None)

	Launch a kernel, returns a 2-tuple of (connection_info, kernel_manager).

name will be one of the kernel names produced by find_kernels() and
known to this provider.

cwd (optional) a string that specifies the path to the current directory of the
notebook as conveyed by the client. Its interpretation is provider-specific.

launch_params (optional) a dictionary consisting of the launch parameters used
to launch the kernel. Its interpretation is provider-specific.

This method launches and manages the kernel in an asynchronous (non-blocking) manner.

	
load_config(config=None)

	Loads the configuration corresponding to the hosting application. This method
is called during KernelFinder initialization prior to any other methods.
The Kernel provider is responsible for interpreting the config parameter
(when present).

config (optional) an instance of Config [https://traitlets.readthedocs.io/en/stable/config.html#the-main-concepts]
consisting of the hosting application’s configurable traitlets.

	
class jupyter_kernel_mgmt.discovery.KernelSpecProvider(search_path=None)

	Offers kernel types from installed kernelspec directories.

	
find_kernels()

	Return an iterator of (kernel_name, kernel_info_dict) tuples.

	
async launch(name, cwd=None, launch_params=None)

	Launch a kernel, returns a 2-tuple of (connection_info, kernel_manager).

name will be one of the kernel names produced by find_kernels() and
known to this provider.

cwd (optional) a string that specifies the path to the current directory of the
notebook as conveyed by the client. Its interpretation is provider-specific.

launch_params (optional) a dictionary consisting of the launch parameters used
to launch the kernel. Its interpretation is provider-specific.

This method launches and manages the kernel in an asynchronous (non-blocking) manner.

	
class jupyter_kernel_mgmt.discovery.IPykernelProvider

	Offers a kernel type using the Python interpreter it’s running in.
This checks if ipykernel is importable first. If import fails, it doesn’t offer a kernel type.

	
find_kernels()

	Return an iterator of (kernel_name, kernel_info_dict) tuples.

	
async launch(name, cwd=None, launch_params=None)

	Launch a kernel, returns a 2-tuple of (connection_info, kernel_manager).

name will be one of the kernel names produced by find_kernels() and
known to this provider.

cwd (optional) a string that specifies the path to the current directory of the
notebook as conveyed by the client. Its interpretation is provider-specific.

launch_params (optional) a dictionary consisting of the launch parameters used
to launch the kernel. Its interpretation is provider-specific.

This method launches and manages the kernel in an asynchronous (non-blocking) manner.

Kernel Launchers

The kernel provider is responsible for launching the kernel and returning the connection
information and kernel manager instance. For those providers
choosing to use Popen as their means of launching their kernels, jupyter_kernel_mgmt provides
SubprocessKernelLauncher for the ‘tcp’ transport and and SubprocessIPCKernelLauncher
for the ‘ipc’ transport (using filesystem sockets).

	
class jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher(kernel_cmd, cwd, extra_env=None, ip=None, launch_params=None)

	Run a kernel asynchronously in a subprocess.

	Parameters

	
	kernel_cmd (list of str) – The Popen command template to launch the kernel

	cwd (str) – The working directory to launch the kernel in

	extra_env (dict, optional) – Dictionary of environment variables to update the existing environment

	ip (str, optional) – Set the kernel’s IP address [default localhost].
If the IP address is something other than localhost, then
Consoles on other machines will be able to connect
to the Kernel, so be careful!

	
build_popen_kwargs(connection_file)

	Build a dictionary of arguments to pass to Popen

	
files_to_cleanup(connection_file, connection_info)

	Find files to be cleaned up after this kernel is finished.

This method is mostly to be overridden for cleaning up IPC sockets.

	
format_kernel_cmd(connection_file, kernel_resource_dir=None)

	Replace templated args (e.g. {connection_file})

	
async launch()

	The main method to launch a kernel.

Returns (connection_info, kernel_manager)

	
make_connection_file()

	Generates a JSON config file, including the selection of random ports.

	
make_ports()

	Randomly select available ports for each of port_names

	
class jupyter_kernel_mgmt.subproc.launcher.SubprocessIPCKernelLauncher(kernel_cmd, cwd, extra_env=None, ip=None, launch_params=None)

	Start a kernel on this machine to listen on IPC (filesystem) sockets

	
files_to_cleanup(connection_file, connection_info)

	Find files to be cleaned up after this kernel is finished.

This method is mostly to be overridden for cleaning up IPC sockets.

	
make_ports()

	Randomly select available ports for each of port_names

Kernel Manager

The Kernel Manager API is used to manage a kernel’s lifecycle. It does not provide
communication support between the application and the kernel itself. Any third-parties
implementing their own KernelProvider would likely
implement their own KernelManager derived from the KernelManagerABC abstract base class.
However, those providers using Popen to launch local kernels
can use KernelManager directly.

	
class jupyter_kernel_mgmt.managerabc.KernelManagerABC

	Abstract base class from which all KernelManager classes are derived.

	
kernel_id

	The id associated with the kernel.

	
abstract async is_alive()

	Check whether the kernel is currently alive (e.g. the process exists)

	
abstract async wait()

	Wait for the kernel process to exit.

Returns True if the kernel is still alive after waiting, False if it
exited (like is_alive()).

	
abstract async signal(signum)

	Send a signal to the kernel.

	
abstract async interrupt()

	Interrupt the kernel by sending it a signal or similar event

Kernels can request to get interrupts as messages rather than signals.
The manager is not expected to handle this.
KernelClient.interrupt() should send an interrupt_request or
call this method as appropriate.

	
abstract async kill()

	Forcibly terminate the kernel.

This method may be used to dispose of a kernel that won’t shut down.
Working kernels should usually be shut down by sending shutdown_request
from a client and giving it some time to clean up.

	
async cleanup()

	Clean up any resources, such as files created by the manager.

	
class jupyter_kernel_mgmt.subproc.manager.KernelManager(popen, files_to_cleanup=None, win_interrupt_evt=None)

	Manages a single kernel in a subprocess on this host.

	Parameters

	
	popen (subprocess.Popen or asyncio.subprocess.Process) – The process with the started kernel. Windows will use
Popen (by default), while non-Windows will use asyncio’s Process.

	files_to_cleanup (list of paths, optional) – Files to be cleaned up after terminating this kernel.

	win_interrupt_evt – On Windows, a handle to be used to interrupt the kernel.
Not used on other platforms.

	
async cleanup()

	Clean up resources when the kernel is shut down

	
async interrupt()

	Interrupts the kernel by sending it a signal.

Unlike signal_kernel, this operation is well supported on all
platforms.

Kernels may ask for interrupts to be delivered by a message rather than
a signal. This method does not handle that. Use KernelClient.interrupt
to send a message or a signal as appropriate.

	
async is_alive()

	Is the kernel process still running?

	
async kill()

	Kill the running kernel.

	
async signal(signum)

	Sends a signal to the process group of the kernel (this
usually includes the kernel and any subprocesses spawned by
the kernel).

Note that since only SIGTERM is supported on Windows, this function is
only useful on Unix systems.

	
async wait()

	Wait for kernel to terminate

Kernel Client

The Kernel Client API is how an application communicates with a previously
launched kernel using the Jupyter message protocol (FIXME jupyter_protocol) [https://jupyter-client.readthedocs.io/en/stable/messaging.html].
For applications based on IO loops, Jupyter Kernel Management provides IOLoopKernelClient.

	
class jupyter_kernel_mgmt.client_base.KernelClient(connection_info, manager=None, use_heartbeat=True)

	Communicates with a single kernel on any host via zmq channels.

The messages that can be sent are exposed as methods of the
client (KernelClient.execute, complete, history, etc.). These methods only
send the message, they don’t wait for a reply. To get results, use e.g.
get_shell_msg() to fetch messages from the shell channel.

	
close()

	Close sockets of this client.

After calling this, the client can no longer be used.

	
comm_info(target_name=None, _header=None)

	Request comm info

	Returns

	

	Return type

	The msg_id of the message sent

	
complete(code, cursor_pos=None, _header=None)

	Tab complete text in the kernel’s namespace.

	Parameters

	
	code (str) – The context in which completion is requested.
Can be anything between a variable name and an entire cell.

	cursor_pos (int, optional) – The position of the cursor in the block of code where the completion was requested.
Default: len(code)

	Returns

	

	Return type

	The msg_id of the message sent.

	
execute(code, silent=False, store_history=True, user_expressions=None, allow_stdin=None, stop_on_error=True, _header=None)

	Execute code in the kernel.

	Parameters

	
	code (str) – A string of code in the kernel’s language.

	silent (bool, optional (default False)) – If set, the kernel will execute the code as quietly possible, and
will force store_history to be False.

	store_history (bool, optional (default True)) – If set, the kernel will store command history. This is forced
to be False if silent is True.

	user_expressions (dict, optional) – A dict mapping names to expressions to be evaluated in the user’s
dict. The expression values are returned as strings formatted using
repr().

	allow_stdin (bool, optional (default self.allow_stdin)) – Flag for whether the kernel can send stdin requests to frontends.

Some frontends (e.g. the Notebook) do not support stdin requests.
If raw_input is called from code executed from such a frontend, a
StdinNotImplementedError will be raised.

	stop_on_error (bool, optional (default True)) – Flag whether to abort the execution queue, if an exception is encountered.

	Returns

	

	Return type

	The msg_id of the message sent.

	
history(raw=True, output=False, hist_access_type='range', _header=None, **kwargs)

	Get entries from the kernel’s history list.

	Parameters

	
	raw (bool) – If True, return the raw input.

	output (bool) – If True, then return the output as well.

	hist_access_type (str) –
	‘range’ (fill in session, start and stop params), ‘tail’ (fill in n)
	or ‘search’ (fill in pattern param).

	session (int) – For a range request, the session from which to get lines. Session
numbers are positive integers; negative ones count back from the
current session.

	start (int) – The first line number of a history range.

	stop (int) – The final (excluded) line number of a history range.

	n (int) – The number of lines of history to get for a tail request.

	pattern (str) – The glob-syntax pattern for a search request.

	Returns

	

	Return type

	The ID of the message sent.

	
input(string, parent=None)

	Send a string of raw input to the kernel.

This should only be called in response to the kernel sending an
input_request message on the stdin channel.

	
inspect(code, cursor_pos=None, detail_level=0, _header=None)

	Get metadata information about an object in the kernel’s namespace.

It is up to the kernel to determine the appropriate object to inspect.

	Parameters

	
	code (str) – The context in which info is requested.
Can be anything between a variable name and an entire cell.

	cursor_pos (int, optional) – The position of the cursor in the block of code where the info was requested.
Default: len(code)

	detail_level (int, optional) – The level of detail for the introspection (0-2)

	Returns

	

	Return type

	The msg_id of the message sent.

	
interrupt(_header=None)

	Send an interrupt message/signal to the kernel

	
is_complete(code, _header=None)

	Ask the kernel whether some code is complete and ready to execute.

	
kernel_info(_header=None)

	Request kernel info

	Returns

	

	Return type

	The msg_id of the message sent

	
property owned_kernel

	True if this client ‘owns’ the kernel, i.e. started it.

	
shutdown(restart=False, _header=None)

	Request an immediate kernel shutdown.

Upon receipt of the (empty) reply, client code can safely assume that
the kernel has shut down and it’s safe to forcefully terminate it if
it’s still alive.

The kernel will send the reply via a function registered with Python’s
atexit module, ensuring it’s truly done as the kernel is done with all
normal operation.

	Returns

	

	Return type

	The msg_id of the message sent

	
class jupyter_kernel_mgmt.client.IOLoopKernelClient(connection_info, manager=None)

	Uses a zmq/tornado IOLoop to handle received messages and fire callbacks.

Use ClientInThread to run this in a separate thread alongside your
application.

	
add_handler(handler, channels)

	Add a callback for received messages on one or more channels.

	Parameters

	
	handler (function) – Will be called for each message received with the message dictionary
as a single argument.

	channels (set or str) – Channel names: ‘shell’, ‘iopub’, ‘stdin’ or ‘control’

	
close()

	Close the client’s sockets & streams.

This does not close the IOLoop.

	
comm_info(target_name=None, _header=None)

	Request comm info

	Returns

	

	Return type

	The msg_id of the message sent

	
complete(code, cursor_pos=None, _header=None)

	Tab complete text in the kernel’s namespace.

	Parameters

	
	code (str) – The context in which completion is requested.
Can be anything between a variable name and an entire cell.

	cursor_pos (int, optional) – The position of the cursor in the block of code where the completion was requested.
Default: len(code)

	Returns

	

	Return type

	The msg_id of the message sent.

	
execute(code, silent=False, store_history=True, user_expressions=None, allow_stdin=None, stop_on_error=True, interrupt_timeout=None, idle_timeout=None, raise_on_no_idle=False, _header=None)

	Execute code in the kernel.

	Parameters

	
	code (str) – A string of code in the kernel’s language.

	silent (bool, optional (default False)) – If set, the kernel will execute the code as quietly possible, and
will force store_history to be False.

	store_history (bool, optional (default True)) – If set, the kernel will store command history. This is forced
to be False if silent is True.

	user_expressions (dict, optional) – A dict mapping names to expressions to be evaluated in the user’s
dict. The expression values are returned as strings formatted using
repr().

	allow_stdin (bool, optional (default self.allow_stdin)) – Flag for whether the kernel can send stdin requests to frontends.

Some frontends (e.g. the Notebook) do not support stdin requests.
If raw_input is called from code executed from such a frontend, a
StdinNotImplementedError will be raised.

	stop_on_error (bool, optional (default True)) – Flag whether to abort the execution queue, if an exception is encountered.

	Returns

	

	Return type

	The msg_id of the message sent.

	
history(raw=True, output=False, hist_access_type='range', _header=None, **kwargs)

	Get entries from the kernel’s history list.

	Parameters

	
	raw (bool) – If True, return the raw input.

	output (bool) – If True, then return the output as well.

	hist_access_type (str) –
	‘range’ (fill in session, start and stop params), ‘tail’ (fill in n)
	or ‘search’ (fill in pattern param).

	session (int) – For a range request, the session from which to get lines. Session
numbers are positive integers; negative ones count back from the
current session.

	start (int) – The first line number of a history range.

	stop (int) – The final (excluded) line number of a history range.

	n (int) – The number of lines of history to get for a tail request.

	pattern (str) – The glob-syntax pattern for a search request.

	Returns

	

	Return type

	The ID of the message sent.

	
input(string, parent=None)

	Send a string of raw input to the kernel.

This should only be called in response to the kernel sending an
input_request message on the stdin channel.

	
inspect(code, cursor_pos=None, detail_level=0, _header=None)

	Get metadata information about an object in the kernel’s namespace.

It is up to the kernel to determine the appropriate object to inspect.

	Parameters

	
	code (str) – The context in which info is requested.
Can be anything between a variable name and an entire cell.

	cursor_pos (int, optional) – The position of the cursor in the block of code where the info was requested.
Default: len(code)

	detail_level (int, optional) – The level of detail for the introspection (0-2)

	Returns

	

	Return type

	The msg_id of the message sent.

	
async interrupt(_header=None)

	Send an interrupt message/signal to the kernel

	
is_complete(code, _header=None)

	Ask the kernel whether some code is complete and ready to execute.

	
kernel_info(_header=None)

	Request kernel info

	Returns

	

	Return type

	The msg_id of the message sent

	
property owned_kernel

	True if this client ‘owns’ the kernel, i.e. started it.

	
remove_handler(handler, channels=None)

	Remove a previously registered callback.

	
shutdown(restart=False, _header=None)

	Request an immediate kernel shutdown.

Upon receipt of the (empty) reply, client code can safely assume that
the kernel has shut down and it’s safe to forcefully terminate it if
it’s still alive.

The kernel will send the reply via a function registered with Python’s
atexit module, ensuring it’s truly done as the kernel is done with all
normal operation.

	Returns

	

	Return type

	The msg_id of the message sent

	
shutdown_or_terminate(timeout=5.0)

	Ask the kernel to shut down, and terminate it if it takes too long.

The kernel will be given up to timeout seconds to respond to the
shutdown message, then the same timeout to terminate.

Kernel Restarter

The Kernel Restarter API is used by applications wishing to perform automatic kernel
restarts upon detection of the kernel’s unexpected termination. jupyter_kernel_mgmt provides
KernelRestarterBase and provides an implementation of that class for Tornado-based
applications via TornadoKernelRestarter.

	
class jupyter_kernel_mgmt.restarter.KernelRestarterBase(kernel_manager, kernel_type, kernel_finder=None, **kw)

	Monitor and autorestart a kernel.

	
debug

	Whether to include every poll event in debugging output. Has to be set
explicitly, because there will be a lot of output.

	
time_to_dead

	Kernel heartbeat interval in seconds.

	
restart_limit

	The number of consecutive autorestarts before the kernel is presumed dead.

	
start()

	Start monitoring the kernel.

	
stop()

	Stop monitoring.

	
add_callback(f, event)

	Register a callback to fire on a particular event.

	Possible values for event:
	‘died’: the monitored kernel has died

‘restarted’: a restart has been attempted (this does not necessarily mean that the new kernel is usable).

‘failed’: restart_limit attempts have failed in quick succession, and the restarter is giving up.

	
remove_callback(f, event)

	Unregister a callback from a particular event

Possible values for event are the same as in add_callback().

	
async do_restart(auto=False)

	Called when the kernel has died

	
async poll()

	

	
class jupyter_kernel_mgmt.restarter.TornadoKernelRestarter(kernel_manager, kernel_type, kernel_finder=None, **kw)

	Monitor a kernel using the tornado ioloop.

	
add_callback(f, event)

	Register a callback to fire on a particular event.

	Possible values for event:
	‘died’: the monitored kernel has died

‘restarted’: a restart has been attempted (this does not necessarily mean that the new kernel is usable).

‘failed’: restart_limit attempts have failed in quick succession, and the restarter is giving up.

	
add_traits(**traits)

	Dynamically add trait attributes to the HasTraits instance.

	
classmethod class_config_rst_doc()

	Generate rST documentation for this class’ config options.

Excludes traits defined on parent classes.

	
classmethod class_config_section()

	Get the config class config section

	
classmethod class_get_help(inst=None)

	Get the help string for this class in ReST format.

If inst is given, it’s current trait values will be used in place of
class defaults.

	
classmethod class_get_trait_help(trait, inst=None)

	Get the help string for a single trait.

If inst is given, it’s current trait values will be used in place of
the class default.

	
classmethod class_own_trait_events(name)

	Get a dict of all event handlers defined on this class, not a parent.

Works like event_handlers, except for excluding traits from parents.

	
classmethod class_own_traits(**metadata)

	Get a dict of all the traitlets defined on this class, not a parent.

Works like class_traits, except for excluding traits from parents.

	
classmethod class_print_help(inst=None)

	Get the help string for a single trait and print it.

	
classmethod class_trait_names(**metadata)

	Get a list of all the names of this class’ traits.

This method is just like the trait_names() method,
but is unbound.

	
classmethod class_traits(**metadata)

	Get a dict of all the traits of this class. The dictionary
is keyed on the name and the values are the TraitType objects.

This method is just like the traits() method, but is unbound.

The TraitTypes returned don’t know anything about the values
that the various HasTrait’s instances are holding.

The metadata kwargs allow functions to be passed in which
filter traits based on metadata values. The functions should
take a single value as an argument and return a boolean. If
any function returns False, then the trait is not included in
the output. If a metadata key doesn’t exist, None will be passed
to the function.

	
property cross_validation_lock

	A contextmanager for running a block with our cross validation lock set
to True.

At the end of the block, the lock’s value is restored to its value
prior to entering the block.

	
async do_restart(auto=False)

	Called when the kernel has died

	
has_trait(name)

	Returns True if the object has a trait with the specified name.

	
hold_trait_notifications()

	Context manager for bundling trait change notifications and cross
validation.

Use this when doing multiple trait assignments (init, config), to avoid
race conditions in trait notifiers requesting other trait values.
All trait notifications will fire after all values have been assigned.

	
observe(handler, names=traitlets.All, type='change')

	Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

	Parameters

	
	handler (callable) – A callable that is called when a trait changes. Its
signature should be handler(change), where change is a
dictionary. The change dictionary at least holds a ‘type’ key.
* type: the type of notification.
Other keys may be passed depending on the value of ‘type’. In the
case where type is ‘change’, we also have the following keys:
* owner : the HasTraits instance
* old : the old value of the modified trait attribute
* new : the new value of the modified trait attribute
* name : the name of the modified trait attribute.

	names (list, str, All) – If names is All, the handler will apply to all traits. If a list
of str, handler will apply to all names in the list. If a
str, the handler will apply just to that name.

	type (str, All (default: 'change')) – The type of notification to filter by. If equal to All, then all
notifications are passed to the observe handler.

	
on_trait_change(handler=None, name=None, remove=False)

	DEPRECATED: Setup a handler to be called when a trait changes.

This is used to setup dynamic notifications of trait changes.

Static handlers can be created by creating methods on a HasTraits
subclass with the naming convention ‘_[traitname]_changed’. Thus,
to create static handler for the trait ‘a’, create the method
_a_changed(self, name, old, new) (fewer arguments can be used, see
below).

If remove is True and handler is not specified, all change
handlers for the specified name are uninstalled.

	Parameters

	
	handler (callable, None) – A callable that is called when a trait changes. Its
signature can be handler(), handler(name), handler(name, new),
handler(name, old, new), or handler(name, old, new, self).

	name (list, str, None) – If None, the handler will apply to all traits. If a list
of str, handler will apply to all names in the list. If a
str, the handler will apply just to that name.

	remove (bool) – If False (the default), then install the handler. If True
then unintall it.

	
remove_callback(f, event)

	Unregister a callback from a particular event

Possible values for event are the same as in add_callback().

	
classmethod section_names()

	return section names as a list

	
set_trait(name, value)

	Forcibly sets trait attribute, including read-only attributes.

	
setup_instance(*args, **kwargs)

	This is called before self.__init__ is called.

	
start()

	Start the polling of the kernel.

	
stop()

	Stop the kernel polling.

	
classmethod trait_events(name=None)

	Get a dict of all the event handlers of this class.

	Parameters

	name (str (default: None)) – The name of a trait of this class. If name is None then all
the event handlers of this class will be returned instead.

	Returns

	

	Return type

	The event handlers associated with a trait name, or all event handlers.

	
trait_metadata(traitname, key, default=None)

	Get metadata values for trait by key.

	
trait_names(**metadata)

	Get a list of all the names of this class’ traits.

	
traits(**metadata)

	Get a dict of all the traits of this class. The dictionary
is keyed on the name and the values are the TraitType objects.

The TraitTypes returned don’t know anything about the values
that the various HasTrait’s instances are holding.

The metadata kwargs allow functions to be passed in which
filter traits based on metadata values. The functions should
take a single value as an argument and return a boolean. If
any function returns False, then the trait is not included in
the output. If a metadata key doesn’t exist, None will be passed
to the function.

	
unobserve(handler, names=traitlets.All, type='change')

	Remove a trait change handler.

This is used to unregister handlers to trait change notifications.

	Parameters

	
	handler (callable) – The callable called when a trait attribute changes.

	names (list, str, All (default: All)) – The names of the traits for which the specified handler should be
uninstalled. If names is All, the specified handler is uninstalled
from the list of notifiers corresponding to all changes.

	type (str or All (default: 'change')) – The type of notification to filter by. If All, the specified handler
is uninstalled from the list of notifiers corresponding to all types.

	
unobserve_all(name=traitlets.All)

	Remove trait change handlers of any type for the specified name.
If name is not specified, removes all trait notifiers.

	
update_config(config)

	Update config and load the new values

Changes in Jupyter Kernel Mgmt

0.5.1

	Enable support for python 3.5

0.5.0

	Tolerate missing status on kernel-info-reply

	Add some missing dependencies and min versions

	Force pin of pyzmq for travis builds, increase timeout

	Close kernel client in start_new_kernel tests

	Give kernel providers opportunity to load configuration

	Add support for kernel launch parameters

	Add support for native coroutines (async def)

	Significant documentation updates

	Fix operations on Windows

	Rework high-level APIs

0.4.0

	Remove unused import

	Make test fail because of idle-handling bug

	Fix watching for idle after execution

	Allow multiple providers to use kernelspec-based configurations

	Allow multiple providers to use kernelspec-based configurations

0.3.0

	Expose kernel_info_dict on blocking kernel client

	Translate tornado TimeoutError to base Python TimeoutError for blocking client

	Normalise contents of kernel info dicts

	Remove configurable kernel spec class and whitelist

	Remove deprecated method to install IPython kernel spec

	Remove special kernelspec handling for IPython

	Get rid of LoggingConfigurable base class

	Allow passing a different search path for KernelSpecProvider

	Catch unparseable kernelspecs when finding all

	Rework restarter events

	Don’t try to relaunch a dead kernel with the same ports

	Rework message handlers API

	Use tornado event loop to dispatch restart callbacks

	Allow restarter to be used for manual restarts

	Support Python 3.4, missing JSONDecodeError

0.2.0

	Add kernel_info_dict attribute

	Don’t use prerelease versions of test dependencies

	Return message even if status=’error’

	Remove ErrorInKernel exception

0.1.1

	Initial experimental implementation.

Note: Because the code in this repository originated from jupyter_client you may
also want to look at its changelog history [https://jupyter-client.readthedocs.io/en/latest/changelog.html].

 Python Module Index

 j

 		 	

 		
 j	

 	
 	
 jupyter_kernel_mgmt	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | H
 | I
 | J
 | K
 | L
 | M
 | O
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	add_callback() (jupyter_kernel_mgmt.restarter.KernelRestarterBase method)

 	(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	
 	add_handler() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	add_traits() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

B

 	
 	build_popen_kwargs() (jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher method)

C

 	
 	class_config_rst_doc() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_config_section() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_get_help() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_get_trait_help() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_own_trait_events() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_own_traits() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_print_help() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_trait_names() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	class_traits() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	
 	cleanup() (jupyter_kernel_mgmt.managerabc.KernelManagerABC method)

 	(jupyter_kernel_mgmt.subproc.manager.KernelManager method)

 	close() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	comm_info() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	complete() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	cross_validation_lock() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter property)

D

 	
 	debug (jupyter_kernel_mgmt.restarter.KernelRestarterBase attribute)

 	
 	do_restart() (jupyter_kernel_mgmt.restarter.KernelRestarterBase method)

 	(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

E

 	
 	
 environment variable

 	JUPYTER_PATH

 	
 	execute() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

F

 	
 	files_to_cleanup() (jupyter_kernel_mgmt.subproc.launcher.SubprocessIPCKernelLauncher method)

 	(jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher method)

 	find_kernels() (jupyter_kernel_mgmt.discovery.KernelFinder method)

 	(jupyter_kernel_mgmt.discovery.KernelProviderBase method)

 	(MyKernelProvider method)

 	
 	format_kernel_cmd() (jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher method)

 	from_entrypoints() (jupyter_kernel_mgmt.discovery.KernelFinder class method)

H

 	
 	has_trait() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	history() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	
 	hold_trait_notifications() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

I

 	
 	id (MyKernelProvider attribute)

 	input() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	inspect() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	interrupt() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	(jupyter_kernel_mgmt.managerabc.KernelManagerABC method)

 	(jupyter_kernel_mgmt.subproc.manager.KernelManager method)

 	
 	IOLoopKernelClient (class in jupyter_kernel_mgmt.client)

 	IPykernelProvider (class in jupyter_kernel_mgmt.discovery)

 	is_alive() (jupyter_kernel_mgmt.managerabc.KernelManagerABC method)

 	(jupyter_kernel_mgmt.subproc.manager.KernelManager method)

 	is_complete() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

J

 	
 	jupyter_kernel_mgmt (module)

 	
 	JUPYTER_PATH

K

 	
 	kernel_id (jupyter_kernel_mgmt.managerabc.KernelManagerABC attribute)

 	kernel_info() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	KernelClient (class in jupyter_kernel_mgmt.client_base)

 	KernelFinder (class in jupyter_kernel_mgmt.discovery)

 	KernelManager (class in jupyter_kernel_mgmt.subproc.manager)

 	
 	KernelManagerABC (class in jupyter_kernel_mgmt.managerabc)

 	KernelProviderBase (class in jupyter_kernel_mgmt.discovery)

 	KernelRestarterBase (class in jupyter_kernel_mgmt.restarter)

 	KernelSpecProvider (class in jupyter_kernel_mgmt.discovery)

 	kill() (jupyter_kernel_mgmt.managerabc.KernelManagerABC method)

 	(jupyter_kernel_mgmt.subproc.manager.KernelManager method)

L

 	
 	launch() (jupyter_kernel_mgmt.discovery.KernelFinder method)

 	(jupyter_kernel_mgmt.discovery.KernelProviderBase method)

 	(jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher method)

 	(MyKernelProvider method)

 	
 	load_config() (jupyter_kernel_mgmt.discovery.KernelProviderBase method)

M

 	
 	make_connection_file() (jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher method)

 	make_ports() (jupyter_kernel_mgmt.subproc.launcher.SubprocessIPCKernelLauncher method)

 	(jupyter_kernel_mgmt.subproc.launcher.SubprocessKernelLauncher method)

 	
 	MyKernelProvider (built-in class)

O

 	
 	observe() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	on_trait_change() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	
 	owned_kernel() (jupyter_kernel_mgmt.client.IOLoopKernelClient property)

 	(jupyter_kernel_mgmt.client_base.KernelClient property)

P

 	
 	poll() (jupyter_kernel_mgmt.restarter.KernelRestarterBase method)

R

 	
 	remove_callback() (jupyter_kernel_mgmt.restarter.KernelRestarterBase method)

 	(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	remove_handler() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	
 	restart_limit (jupyter_kernel_mgmt.restarter.KernelRestarterBase attribute)

 	run_kernel_async (class in jupyter_kernel_mgmt)

 	run_kernel_blocking() (in module jupyter_kernel_mgmt)

S

 	
 	section_names() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	set_trait() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	setup_instance() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	shutdown() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	(jupyter_kernel_mgmt.client_base.KernelClient method)

 	shutdown_or_terminate() (jupyter_kernel_mgmt.client.IOLoopKernelClient method)

 	signal() (jupyter_kernel_mgmt.managerabc.KernelManagerABC method)

 	(jupyter_kernel_mgmt.subproc.manager.KernelManager method)

 	
 	start() (jupyter_kernel_mgmt.restarter.KernelRestarterBase method)

 	(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	start_kernel_async() (in module jupyter_kernel_mgmt)

 	start_kernel_blocking() (in module jupyter_kernel_mgmt)

 	stop() (jupyter_kernel_mgmt.restarter.KernelRestarterBase method)

 	(jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	SubprocessIPCKernelLauncher (class in jupyter_kernel_mgmt.subproc.launcher)

 	SubprocessKernelLauncher (class in jupyter_kernel_mgmt.subproc.launcher)

T

 	
 	time_to_dead (jupyter_kernel_mgmt.restarter.KernelRestarterBase attribute)

 	TornadoKernelRestarter (class in jupyter_kernel_mgmt.restarter)

 	trait_events() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter class method)

 	
 	trait_metadata() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	trait_names() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	traits() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

U

 	
 	unobserve() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	
 	unobserve_all() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

 	update_config() (jupyter_kernel_mgmt.restarter.TornadoKernelRestarter method)

W

 	
 	wait() (jupyter_kernel_mgmt.managerabc.KernelManagerABC method)

 	(jupyter_kernel_mgmt.subproc.manager.KernelManager method)

 _static/minus.png

_static/plus.png

_static/file.png

nav.xhtml

 Table of Contents

 		
 Jupyter Kernel Management 0.5

 		
 Kernel Finder

 		
 Finding kernels

 		
 Kernel Specifications

 		
 IPython kernel provider

 		
 Launching kernels

 		
 Using launched kernels

 		
 Kernel Manager

 		
 Kernel Client

 		
 Kernel Restarter

 		
 Standalone Usage

 		
 Use with Jupyter Server

 		
 Kernel Providers

 		
 Creating a kernel provider

 		
 Finding kernel types

 		
 Included kernel providers

 		
 Included kernel launchers

 		
 Glossary

 		
 Kernel Management APIs

 		
 High Level API

 		
 Async interface

 		
 Blocking interface

 		
 Kernel Finder

 		
 Kernel Provider

 		
 Kernel Launchers

 		
 Kernel Manager

 		
 Kernel Client

 		
 Kernel Restarter

 		
 Changes in Jupyter Kernel Mgmt

 		
 0.5.1

 		
 0.5.0

 		
 0.4.0

 		
 0.3.0

 		
 0.2.0

 		
 0.1.1

