
JupyterLab Documentation
发发发布布布 0.18.4

Project Jupyter

2018年年年 09月月月 29日日日

Getting Started

1 Overview 3

2 Installation 5

3 Starting JupyterLab 7

4 Frequently Asked Questions (FAQ) 9

5 JupyterLab Changelog 11

6 JupyterLab接接接口口口 (API) 25

7 JupyterLab链链链接接接(URLs) 31

8 File的的的工工工作作作过过过程程程 33

9 文文文本本本编编编辑辑辑器器器 37

10 Notebooks 39

11 Code Consoles 41

12 终终终端端端（（（Terminals））） 43

13 管管管理理理内内内核核核和和和终终终端端端 45

14 命命命令令令调调调用用用板板板 (Command Palette) 47

15 文文文件件件和和和内内内核核核 49

16 文文文件件件和和和输输输出出出格格格式式式 51

17 扩扩扩展展展 59

18 JupyterLab执执执行行行在在在 JupyterHub里里里 63

19 General Codebase Orientation 65

20 Extension Developer Guide 67

i

21 Documents 75

22 Overview of document architecture 77

23 Notebook 81

24 Design Patterns 87

25 CSS Patterns 91

26 Writing Documentation 95

27 Virtual DOM and React 99

28 Adding Content 101

29 Examples 103

30 Terminology 107

31 Let’s Make an xkcd JupyterLab Extension 109

32 Indices and Tables 125

ii

JupyterLab Documentation,发发发布布布 0.18.4

JupyterLab is the next-generation web-based user interface for Project Jupyter. Try it on Binder. JupyterLab follows
the Jupyter [Community Guides](https://jupyter.readthedocs.io/en/latest/community/content-community.html).

Getting Started 1

https://mybinder.org/v2/gh/jupyterlab/jupyterlab-demo/master?urlpath=lab/tree/demo
https://jupyter.readthedocs.io/en/latest/community/content-community.html

JupyterLab Documentation,发发发布布布 0.18.4

2 Getting Started

CHAPTER 1

Overview

JupyterLab is the next-generation web-based user interface for Project Jupyter.

JupyterLab enables you to work with documents and activities such as Jupyter notebooks, text editors, terminals,
and custom components in a flexible, integrated, and extensible manner. You can arrange multiple documents and
activities side by side in the work area using tabs and splitters. Documents and activities integrate with each other,
enabling new workflows for interactive computing, for example:

• Code Consoles provide transient scratchpads for running code interactively, with full support for rich output. A
code console can be linked to a notebook kernel as a computation log from the notebook, for example.

3

JupyterLab Documentation,发发发布布布 0.18.4

• Kernel-backed documents enable code in any text file (Markdown, Python, R, LaTeX, etc.) to be run interactively
in any Jupyter kernel.

• Notebook cell outputs can be mirrored into their own tab, side by side with the notebook, enabling simple
dashboards with interactive controls backed by a kernel.

• Multiple views of documents with different editors or viewers enable live editing of documents reflected in
other viewers. For example, it is easy to have live preview of Markdown, 分隔符分隔值, or Vega/Vega-Lite
documents.

JupyterLab also offers a unified model for viewing and handling data formats. JupyterLab understands many file
formats (images, CSV, JSON, Markdown, PDF, Vega, Vega-Lite, etc.) and can also display rich kernel output in these
formats. See文件和输出格式 for more information.

To navigate the user interface, JupyterLab offers customizable keyboard shortcuts and the ability to use key maps from
vim, emacs, and Sublime Text in the text editor.

JupyterLab extensions can customize or enhance any part of JupyterLab, including new themes, file editors, and custom
components.

JupyterLab is served from the same server and uses the same notebook document format as the classic Jupyter Note-
book.

1.1 JupyterLab Releases

The current release of JupyterLab is suitable for general daily use. Please review the JupyterLab Changelog for
detailed descriptions of each release.

The extension developer API is evolving, and we also are currently iterating on UI/UX improvements. We appreciate
feedback on our GitHub issues page as we evolve towards a stable extension development API.

JupyterLab will eventually replace the classic Jupyter Notebook. Throughout this transition, the same notebook docu-
ment format will be supported by both the classic Notebook and JupyterLab.

4 Chapter 1. Overview

https://jupyter-notebook.readthedocs.io/en/stable/
http://nbformat.readthedocs.io/en/latest/
https://github.com/jupyterlab/jupyterlab/issues

CHAPTER 2

Installation

JupyterLab can be installed using conda, pip, or pipenv.

2.1 conda

If you use conda, you can install it with:

conda install -c conda-forge jupyterlab

2.2 pip

If you use pip, you can install it with:

pip install jupyterlab

If installing using pip install --user, you must add the user-level bin directory to your PATH environment
variable in order to launch jupyter lab.

2.3 pipenv

If you use pipenv, you can install it as:

pipenv install jupyterlab
pipenv shell

or from a git checkout:

pipenv install git+git://github.com/jupyterlab/jupyterlab.git#egg=jupyterlab
pipenv shell

5

JupyterLab Documentation,发发发布布布 0.18.4

When using pipenv, in order to launch jupyter lab, you must activate the project’s virtualenv. For example, in
the directory where pipenv’s Pipfile and Pipfile.lock live (i.e., where you ran the above commands):

pipenv shell
jupyter lab

2.4 Installing with Previous Versions of Notebook

If you are using a version of Jupyter Notebook earlier than 5.3, then you must also run the following command to
enable the JupyterLab server extension:

jupyter serverextension enable --py jupyterlab --sys-prefix

2.5 Prerequisites

JupyterLab requires the Jupyter Notebook version 4.3 or later. To check the version of the notebook package that
you have installed:

jupyter notebook --version

2.6 Supported browsers

The latest versions of the following browsers are currently known to work:

• Firefox

• Chrome

• Safari

Earlier browser versions may also work, but come with no guarantees.

JupyterLab uses CSS Variables for styling, which is one reason for the minimum versions listed above. IE 11+ or
Edge 14 do not support CSS Variables, and are not directly supported at this time. A tool like postcss can be used to
convert the CSS files in the jupyterlab/build directory manually if desired.

6 Chapter 2. Installation

http://postcss.org/

CHAPTER 3

Starting JupyterLab

Start JupyterLab using:

jupyter lab

JupyterLab will open automatically in your browser.

You may access JupyterLab by entering the notebook server’s URL into the browser. JupyterLab sessions always
reside in a workspace. The default workspace is the main /lab URL:

http(s)://<server:port>/<lab-location>/lab

Because JupyterLab is a server extension of the classic Jupyter Notebook server, you can launch JupyterLab by calling
jupyter notebook and visiting the /lab URL.

Like the classic notebook, JupyterLab provides a way for users to copy URLs that open a specific notebook or file.
Additionally, JupyterLab URLs are an advanced part of the user interface that allows for managing workspaces. To
learn more about URLs in Jupyterlab, visit JupyterLab链接(URLs).

To open the classic Notebook from JupyterLab, select “Launch Classic Notebook” from the JupyterLab Help menu,
or you can change the URL from /lab to /tree.

JupyterLab has the same security model as the classic Jupyter Notebook; for more information see the security section
of the classic Notebook’s documentation.

7

https://jupyter-notebook.readthedocs.io/en/stable/security.html

JupyterLab Documentation,发发发布布布 0.18.4

8 Chapter 3. Starting JupyterLab

CHAPTER 4

Frequently Asked Questions (FAQ)

Below are some frequently asked questions. Click on a question to be directed to relevant information in our docu-
mentation or our GitHub repo.

4.1 General

• What is JupyterLab?

• Is JupyterLab ready to use?

• What will happen to the classic Jupyter Notebook?

• Where is the official online documentation for JupyterLab?

4.2 Development

• How can you report a bug or provide feedback?

• How can you contribute?

• How can you extend or customize JupyterLab?

9

https://jupyterlab.readthedocs.io/en/stable/
https://github.com/jupyterlab/jupyterlab/issues
https://github.com/jupyterlab/jupyterlab/blob/master/CONTRIBUTING.md

JupyterLab Documentation,发发发布布布 0.18.4

10 Chapter 4. Frequently Asked Questions (FAQ)

CHAPTER 5

JupyterLab Changelog

5.1 v0.34.0

5.1.1 August 18, 2018

See the JupyterLab 0.34.0 milestone on GitHub for the full list of pull requests and issues closed.

5.1.2 Key Features

• Notebooks, consoles, and text files now have access to completions for local tokens.

• Python 3.5+ is now required to use JupyterLab. Python 2 kernels can still be run within JupyterLab.

• Added the pipe (|) character as a CSV delimiter option.

• Added “Open From Path. . . ”” to top level File menu.

• Added “Copy Download Link” to context menu for files.

5.1.3 Changes for Developers

• Notebooks, consoles, and text files now have access to completions for local tokens. If a text file has a running
kernel associated with its path (as happens with an attached console), it also gets completions and tooltips from
that kernel. (#5049)

• The FileBrowser widget has a new constructor option refreshInterval, allowing the creator to cus-
tomize how often the widget polls the storage backend. This can be useful to prevent rate-limiting in certain
contexts. (#5048)

• The application shell now gets a pair of CSS data attributes indicating the current theme, and whether it is light
or dark. Extension authors can write CSS rules targeting these to have their extension UI elements respond to
the application theme. For instance, to write a rule targeting whether the theme is overall light or dark, you can
use

11

https://github.com/jupyterlab/jupyterlab/milestone/16?closed=1
https://github.com/jupyterlab/jupyterlab/pull/5049
https://github.com/jupyterlab/jupyterlab/pull/5048

JupyterLab Documentation,发发发布布布 0.18.4

[data-theme-light="true"] your-ui-class {
background-color: white;

}
[data-theme-light="false"] your-ui-class {
background-color: black;

}

The theme name can also be targeted by writing CSS rules for data-theme-name. (#5078)

• The IThemeManager interface now exposes a signal for themeChanged, allowing extension authors to
react to changes in the theme. Theme extensions must also provide a new boolean property isLight, declaring
whether they are broadly light colored. This data allows third-party extensions to react better to the active
application theme. (#5078)

• Added a patch to update the uploads for each FileBrowserModel instantly whenever a file upload errors.
Previously, the upload that erred was only being removed from uploads upon an update. This would allow the
status bar component and other extensions that use the FileBrowserModel to be more precise. (#5077)

• Cell IDs are now passed in the shell message as part of the cell metadata when a cell is executed. This helps in
developing reactive kernels. (#5033)

• The IDs of all deleted cells since the last run cell are now passed as part of the cell metadata on execution. The
IDs of deleted cells since the last run cell are stored as deletedCells in NotebookModel. This helps in
developing reactive kernels. (#5037)

• The ToolbarButton in apputils has been refactored with an API change and now uses a React component
ToolbarButtonComponent to render its children. It is now a div with a single button child, which in
turn as two span elements for an icon and text label. Extensions that were using the className options
should rename it as iconClassName. The className options still exists, but it used as the CSS class on
the button element itself. The API changes were done to accommodate styling changes to the button. (#5117)

• The Toolbar.createFromCommand function has been replaced by a dedicated ToolbarButton sub-
class called CommandToolbarButton, that wraps a similarly named React component. (#5117)

• The design and styling of the right and left sidebars tabs has been improved to address #5054. We are now
using icons to render tabs for the extensions we ship with JupyterLab and extension authors are encouraged to
do the same (text labels still work). Icon based tabs can be used by removing widget.caption and adding
widget.iconClass = '<youriconclass> jp-SideBar-tabIcon';. (#5117)

• The style of buttons in JupyterLab has been updated to a borderless design. (#5117)

• A new series of helper CSS classes for stying SVG-based icons at different sizes has been added: jp-Icon,
jp-Icon-16, jp-Icon-18, jp-Icon-20.

• The rank of the default sidebar widget has been updated. The main change is giving the extension manager a
rank of 1000 so that it appears at the end of the default items.

• Python 3.5+ is now required to use JupyterLab. Python 2 kernels can still be run within JupyterLab. (#5119)

• JupyterLab now uses yarn 1.9.4 (aliased as jlpm), which now allows uses to use Node 10+. (#5121)

• Clean up handling of baseUrl and wsURL for PageConfig and ServerConnection. (#5111)

5.1.4 Other Changes

• Added the pipe (|) character as a CSV delimiter option. (#5112)

• Added Open From Path... to top level File menu. (#5108)

• Added a saveState signal to the document context object. (#5096)

12 Chapter 5. JupyterLab Changelog

https://github.com/jupyterlab/jupyterlab/pull/5078
https://github.com/jupyterlab/jupyterlab/pull/5078
https://github.com/jupyterlab/jupyterlab/pull/5077
https://github.com/jupyterlab/jupyterlab/pull/5033
https://github.com/jupyterlab/jupyterlab/pull/5037
https://github.com/jupyterlab/jupyterlab/pull/5117
https://github.com/jupyterlab/jupyterlab/pull/5117
https://github.com/jupyterlab/jupyterlab/issues/50
https://github.com/jupyterlab/jupyterlab/pull/5117
https://github.com/jupyterlab/jupyterlab/pull/5117
https://github.com/jupyterlab/jupyterlab/pull/5119
https://github.com/jupyterlab/jupyterlab/pull/5121
https://github.com/jupyterlab/jupyterlab/pull/5111
https://github.com/jupyterlab/jupyterlab/pull/5112
https://github.com/jupyterlab/jupyterlab/pull/5108
https://github.com/jupyterlab/jupyterlab/pull/5096

JupyterLab Documentation,发发发布布布 0.18.4

• Added “Copy Download Link” to context menu for files. (#5089)

• Extensions marked as deprecated are no longer shown in the extension manager. (#5058)

• Remove In and Out text from cell prompts. Shrunk the prompt width from 90px to 64px. In the light theme,
set the prompt colors of executed console cells to active prompt colors and reduced their opacity to 0.5. In the
dark theme, set the prompt colors of executed console cells to active prompt colors and set their opacity to 1.
(#5097 and #5130)

5.1.5 Bug Fixes

• Fixed a bug in the rendering of the “New Notebook” item of the command palette. (#5079)

• We only create the extension manager widget if it is enabled. This prevents unnecessary network requests to
npmjs.com. (#5075)

• The running panel now shows the running sessions at startup. (#5118)

• Double clicking a file in the file browser always opens it rather than sometimes selecting it for a rename. (#5101)

5.2 v0.33.0

5.2.1 July 26, 2018

See the JupyterLab 0.33.0 milestone on GitHub for the full list of pull requests and issues closed.

5.2.2 Key Features:

• No longer in beta

• Workspaces

• Menu items

• Keyboard shortcuts

• Command palette items

• Settings

• Larger file uploads

• Extension management and installation

• Interface changes

• Renderers

• Changes for developers

• Other fixes

5.2.3 No longer in beta

In JupyterLab 0.33, we removed the “Beta” label to better signal that JupyterLab is ready for users to use on a daily
basis. The extension developer API is still being stabilized. See the release blog post for details. (#4898, #4920)

5.2. v0.33.0 13

https://github.com/jupyterlab/jupyterlab/pull/5089
https://github.com/jupyterlab/jupyterlab/pull/5058
https://github.com/jupyterlab/jupyterlab/pull/5097
https://github.com/jupyterlab/jupyterlab/pull/5130
https://github.com/jupyterlab/jupyterlab/pull/5079
https://github.com/jupyterlab/jupyterlab/pull/5075
https://github.com/jupyterlab/jupyterlab/pull/5118
https://github.com/jupyterlab/jupyterlab/pull/5101
https://github.com/jupyterlab/jupyterlab/milestone/12?closed=1
https://github.com/jupyterlab/jupyterlab/issues/4898
https://github.com/jupyterlab/jupyterlab/pull/4920

JupyterLab Documentation,发发发布布布 0.18.4

5.2.4 Workspaces

We added new workspace support, which enables you to have multiple saved layouts, including in different browser
windows. See the workspace documentation for more details. (#4502, #4708, #4088, #4041 #3673, #4780)

5.2.5 Menu items

• “Activate Previously Used Tab” added to the Tab menu (Ctrl/Cmd Shift ') to toggle between the previ-
ously active tabs in the main area. (#4296)

• “Reload From Disk” added to the File menu to reload an open file from the state saved on disk. (#4615)

• “Save Notebook with View State” added to the File menu to persist the notebook collapsed and
scrolled cell state. We now read the collapsed, scrolled, jupyter.source_hidden and
jupyter.outputs_hidden notebook cell metadata when opening. collapsed and jupyter.
outputs_hidden are redundant and the initial collapsed state is the union of both of them. When the state
is persisted, if an output is collapsed, both will be written with the value true, and if it is not, both will not be
written. (#3981)

• “Increase/Decrease Font Size” added to the text editor settings menu. (#4811)

• “Show in File Browser” added to a document tab’s context menu. (#4500)

• “Open in New Browser Tab” added to the file browser context menu. (#4315)

• “Copy Path” added to file browser context menu to copy the document’s path to the clipboard. (#4582)

• “Show Left Area” has been renamed to “Show Left Sidebar” for consistency (same for right sidebar). (#3818)

5.2.6 Keyboard shortcuts

• “Save As. . . ” given the keyboard shortcut Ctrl/Cmd Shift S. (#4560)

• “Run All Cells” given the keyboard shortcut Ctrl/Cmd Shift Enter. (#4558)

• “notebook:change-to-cell-heading-X” keyboard shortcuts (and commands) renamed to “notebook:change-cell-
to-heading-X” for X=1. . . 6. This fixes the notebook command-mode keyboard shortcuts for changing headings.
(#4430)

• The console execute shortcut can now be set to either Enter or Shift Enter as a Console setting. (#4054)

5.2.7 Command palette items

• “Notebook” added to the command palette to open a new notebook. (#4812)

• “Run Selected Text or Current Line in Console” added to the command palette to run the selected text or current
line from a notebook in a console. A default keyboard shortcut for this command is not yet provided, but can
be added by users with the notebook:run-in-console command. To add a keyboard shortcut Ctrl G
for this command, use the “Settings” | “Advanced Settings Editor” menu item to open the “Keyboard Shortcuts”
advanced settings, and add the following JSON in the shortcut JSON object in the User Overrides pane (adjust
the actual keyboard shortcut if you wish). (#3453, #4206, #4330)

"notebook:run-in-console": {
"command": "notebook:run-in-console",
"keys": ["Ctrl G"],
"selector": ".jp-Notebook.jp-mod-editMode"

}

14 Chapter 5. JupyterLab Changelog

https://jupyterlab.readthedocs.io/en/stable/user/urls.html
https://github.com/jupyterlab/jupyterlab/issues/4502
https://github.com/jupyterlab/jupyterlab/pull/4708
https://github.com/jupyterlab/jupyterlab/issues/4088
https://github.com/jupyterlab/jupyterlab/pull/4041
https://github.com/jupyterlab/jupyterlab/issues/3673
https://github.com/jupyterlab/jupyterlab/pull/4780
https://github.com/jupyterlab/jupyterlab/pull/4296
https://github.com/jupyterlab/jupyterlab/pull/4615
https://github.com/jupyterlab/jupyterlab/pull/3981
https://github.com/jupyterlab/jupyterlab/pull/4811
https://github.com/jupyterlab/jupyterlab/pull/4500
https://github.com/jupyterlab/jupyterlab/pull/4315
https://github.com/jupyterlab/jupyterlab/pull/4582
https://github.com/jupyterlab/jupyterlab/pull/3818
https://github.com/jupyterlab/jupyterlab/pull/4560
https://github.com/jupyterlab/jupyterlab/pull/4558
https://github.com/jupyterlab/jupyterlab/pull/4430
https://github.com/jupyterlab/jupyterlab/pull/4054
https://github.com/jupyterlab/jupyterlab/pull/4812
https://github.com/jupyterlab/jupyterlab/issues/3453
https://github.com/jupyterlab/jupyterlab/issues/4206
https://github.com/jupyterlab/jupyterlab/pull/4330

JupyterLab Documentation,发发发布布布 0.18.4

• The command palette now renders labels, toggled state, and keyboard shortcuts in a more consistent and correct
way. (#4533, #4510)

5.2.8 Settings

• “fontFamily”, “fontSize”, and “lineHeight” settings added to the text editor advanced settings. (#4673)

• Solarized dark and light text editor themes from CodeMirror. (#4445)

5.2.9 Larger file uploads

• Support for larger file uploads (>15MB) when using Jupyter notebook server version >= 5.1. (#4224)

5.2.10 Extension management and installation

• New extension manager for installing JupyterLab extensions from npm within the JupyterLab UI. You can
enable this from the Advanced Settings interface. (#4682, #4925)

• Please note that to install extensions in JupyterLab, you must use NodeJS version 9 or earlier (i.e., not NodeJS
version 10). We will upgrade yarn, with NodeJS version 10 support, when a bug in yarn is fixed. (#4804)

5.2.11 Interface changes

• Wider tabs in the main working area to show longer filenames. (#4801)

• Initial kernel selection for a notebook or console can no longer be canceled: the user must select a kernel.
(#4596)

• Consoles now do not display output from other clients by default. A new “Show All Kernel Activity” console
context menu item has been added to show all activity from a kernel in the console. (#4503)

• The favicon now shows the busy status of the kernels in JupyterLab. (#4361, #3957, #4966)

5.2.12 Renderers

• JupyterLab now ships with a Vega4 renderer by default (upgraded from Vega3). (#4806)

• The HTML sanitizer now allows some extra tags in rendered HTML, including kbd, sup, and sub. (#4618)

• JupyterLab now recognizes the .tsv file extension as tab-separated files. (#4684)

• Javascript execution in notebook cells has been re-enabled. (#4515)

5.2.13 Changes for developers

• A new signal for observing application dirty status state changes. (#4840)

• A new signal for observing notebook cell execution. (#4740, #4744)

• A new anyMessage signal for observing any message a kernel sends or receives. (#4437)

• A generic way for different widgets to register a “Save with extras” command that appears in the File menu
under save. (#3981)

5.2. v0.33.0 15

https://github.com/jupyterlab/jupyterlab/pull/4533
https://github.com/jupyterlab/jupyterlab/pull/4510
https://github.com/jupyterlab/jupyterlab/pull/4673
https://github.com/jupyterlab/jupyterlab/pull/4445
https://github.com/jupyterlab/jupyterlab/pull/4224
https://github.com/jupyterlab/jupyterlab/pull/4682
https://github.com/jupyterlab/jupyterlab/pull/4925
https://github.com/yarnpkg/yarn/issues/5935
https://github.com/jupyterlab/jupyterlab/pull/4804
https://github.com/jupyterlab/jupyterlab/pull/4801
https://github.com/jupyterlab/jupyterlab/pull/4596
https://github.com/jupyterlab/jupyterlab/pull/4503
https://github.com/jupyterlab/jupyterlab/pull/4361
https://github.com/jupyterlab/jupyterlab/issues/3957
https://github.com/jupyterlab/jupyterlab/pull/4966
https://github.com/jupyterlab/jupyterlab/pull/4806
https://github.com/jupyterlab/jupyterlab/pull/4618
https://github.com/jupyterlab/jupyterlab/pull/4684
https://github.com/jupyterlab/jupyterlab/pull/4682
https://github.com/jupyterlab/jupyterlab/issues/4840
https://github.com/jupyterlab/jupyterlab/issues/4740
https://github.com/jupyterlab/jupyterlab/pull/4744
https://github.com/jupyterlab/jupyterlab/pull/4437
https://github.com/jupyterlab/jupyterlab/pull/3981

JupyterLab Documentation,发发发布布布 0.18.4

• A new API for removing groups from a JupyterLab menu. addGroup now returns an IDisposable which
can be used to remove the group. removeGroup has been removed. (#4890)

• The Launcher now uses commands from the application CommandRegistry to launch new activities. Ex-
tension authors that add items to the launcher will need to update them to use commands. (#4757)

• There is now a top-level addToBottomArea function in the application, allowing extension authors to add
bottom panel items like status bars. (#4752)

• Rendermime extensions can now indicate that they are the default rendered widget factory for a file-type. For
instance, the default widget for a markdown file is a text editor, but the default rendered widget is the markdown
viewer. (#4692)

• Add new workspace REST endpoints to jupyterlab_launcher and make them available in
@jupyterlab/services. (#4841)

• Documents created with a mimerenderer extension can now be accessed using an IInstanceTracker
which tracks them. Include the token IMimeDocumentTracker in your plugin to access this. The
IInstanceTracker interface has also gained convenience functions find and filter to simplify iter-
ating over instances. (#4762)

• RenderMime render errors are now displayed to the user. (#4465)

• getNotebookVersion is added to the PageConfig object. (#4224)

• The session kernelChanged signal now contains both the old kernel and the new kernel to make it easy to
unregister things from the old kernel. (#4834)

• The connectTo functions for connecting to kernels and sessions are now synchronous (returning a connection
immediately rather than a promise). The DefaultSession clone and update methods are also synchronous
now. (#4725)

• Kernel message processing is now asynchronous, which guarantees the order of processing even if a handler
is asynchronous. If a kernel message handler returns a promise, kernel message processing is paused until the
promise resolves. The kernel’s anyMessage signal is emitted synchronously when a message is received be-
fore asynchronous message handling, and the iopubMessage and unhandledMessage signals are emitted
during asynchronous message handling. These changes mean that the comm onMsg and onClose handlers
and the kernel future onReply, onIOPub, and onStdin handlers, as well as the comm target and message
hook handlers, may be asynchronous and return promises. (#4697)

• Kernel comm targets and message hooks now are unregistered with removeCommTarget and
removeMessageHook, instead of using disposables. The corresponding registerCommTarget and
registerMessageHook functions now return nothing. (#4697)

• The kernel connectToComm function is synchronous, and now returns the comm rather than a promise to the
comm. (#4697)

• The KernelFutureHandler class expectShell constructor argument is renamed to expectReply.
(#4697)

• The kernel future done returned promise now resolves to undefined if there is no reply message. (#4697)

• The IDisplayDataMsg is updated to have the optional transient key, and a new
IUpdateDisplayDataMsg type was added for update display messages. (#4697)

• The uuid function from @jupyterlab/coreutils is removed. Instead import UUID from @phosphor/
coreutils and use UUID.uuid4() . (#4604)

• Main area widgets like the launcher and console inherit from a common MainAreaWidget class which pro-
vides a content area (.content) and a toolbar (.toolbar), consistent focus handling and activation behavior,
and a spinner displayed until the given reveal promise is resolved. Document widgets, like the notebook and

16 Chapter 5. JupyterLab Changelog

https://github.com/jupyterlab/jupyterlab/pull/4890
https://github.com/jupyterlab/jupyterlab/pull/4757
https://github.com/jupyterlab/jupyterlab/pull/4752
https://github.com/jupyterlab/jupyterlab/pull/4692
https://github.com/jupyterlab/jupyterlab/pull/4841
https://github.com/jupyterlab/jupyterlab/pull/4762
https://github.com/jupyterlab/jupyterlab/pull/4465
https://github.com/jupyterlab/jupyterlab/pull/4224
https://github.com/jupyterlab/jupyterlab/pull/4834
https://github.com/jupyterlab/jupyterlab/pull/4725
https://github.com/jupyterlab/jupyterlab/pull/4697
https://github.com/jupyterlab/jupyterlab/pull/4697
https://github.com/jupyterlab/jupyterlab/pull/4697
https://github.com/jupyterlab/jupyterlab/pull/4697
https://github.com/jupyterlab/jupyterlab/pull/4697
https://github.com/jupyterlab/jupyterlab/pull/4697
https://github.com/jupyterlab/jupyterlab/pull/4604

JupyterLab Documentation,发发发布布布 0.18.4

text editor and other documents opened from the document manager, implement the IDocumentWidget in-
terface (instead of DocumentRegistry.IReadyWidget), which builds on MainAreaWidget and adds
a .context attribute for the document context and makes dirty handling consistent. Extension authors may
consider inheriting from the MainAreaWidget or DocumentWidget class for consistency. Several effects
from these changes are noted below. (#3499, #4453)

– The notebook panel .notebook attribute is renamed to .content.

– The text editor is now the .content of a DocumentWidget, so the top-level editor widget has a
toolbar and the editor itself is widget.content.editor rather than just widget.editor.

– Mime documents use a MimeContent widget embedded inside of a DocumentWidget now.

– Main area widgets and document widgets now have a revealed promise which resolves when the widget
has been revealed (i.e., the spinner has been removed). This should be used instead of the ready promise.

Changes in the JupyterLab code infrastructure include:

• The JupyterLab TypeScript codebase is now compiled to ES2015 (ES6) using TypeScript 2.9. We also turned on
the TypeScript esModuleInterop flag to enable more natural imports from non-es2015 JavaScript modules.
With the update to ES2015 output, code generated from async/await syntax became much more manageable,
so we have started to use async/await liberally throughout the codebase, especially in tests. Because we use
Typedoc for API documentation, we still use syntax compatible with TypeScript 2.7 where Typedoc is used.
Extension authors may have some minor compatibility updates to make. If you are writing an extension in
TypeScript, we recommend updating to TypeScript 2.9 and targeting ES2015 output as well. (#4462, #4675,
#4714, #4797)

• The JupyterLab codebase is now formatted using Prettier. By default the development environment installs a
pre-commit hook that formats your staged changes. (#4090)

• Updated build infrastructure using webpack 4 and better typing. (#4702, #4698)

• Upgraded yarn to version 1.6. Please note that you must use NodeJS version 9 or earlier with JupyterLab (i.e.,
not NodeJS version 10). We will upgrade yarn, with NodeJS version 10 support, when a bug in yarn is fixed.
(#4804)

• Various process utilities were moved to jupyterlab_launcher. (#4696)

5.2.14 Other fixes

• Fixed a rendering bug with the Launcher in single-document mode. (#4805)

• Fixed a bug where the native context menu could not be triggered in a notebook cell in Chrome. (#4720)

• Fixed a bug where the cursor would not show up in the dark theme. (#4699)

• Fixed a bug preventing relative links from working correctly in alternate IDrives. (#4613)

• Fixed a bug breaking the image viewer upon saving the image. (#4602)

• Fixed the font size for code blocks in notebook Markdown headers. (#4617)

• Prevented a memory leak when repeatedly rendering a Vega chart. (#4904)

• Support dropped terminal connection re-connecting. (#4763, #4802)

• Use require.ensure in vega4-extension to lazily load vega-embed and its dependencies on first
render. (#4706)

• Relative links to documents that include anchor tags will now correctly scroll the document to the right place.
(#4692)

• Fix default settings JSON in setting editor. (#4591, #4595)

5.2. v0.33.0 17

https://github.com/jupyterlab/jupyterlab/pull/3499
https://github.com/jupyterlab/jupyterlab/pull/4453
https://github.com/jupyterlab/jupyterlab/pull/4462
https://github.com/jupyterlab/jupyterlab/pull/4675
https://github.com/jupyterlab/jupyterlab/pull/4714
https://github.com/jupyterlab/jupyterlab/pull/4797
https://github.com/prettier/prettier
https://github.com/jupyterlab/jupyterlab/pull/4090
https://github.com/jupyterlab/jupyterlab/pull/4702
https://github.com/jupyterlab/jupyterlab/pull/4698
https://github.com/yarnpkg/yarn/issues/5935
https://github.com/jupyterlab/jupyterlab/pull/4804
https://github.com/jupyterlab/jupyterlab/pull/4696
https://github.com/jupyterlab/jupyterlab/pull/4805
https://github.com/jupyterlab/jupyterlab/pull/4720
https://github.com/jupyterlab/jupyterlab/pull/4699
https://github.com/jupyterlab/jupyterlab/pull/4613
https://github.com/jupyterlab/jupyterlab/pull/4602
https://github.com/jupyterlab/jupyterlab/pull/4617
https://github.com/jupyterlab/jupyterlab/pull/4904
https://github.com/jupyterlab/jupyterlab/issues/4763
https://github.com/jupyterlab/jupyterlab/pull/4802
https://github.com/jupyterlab/jupyterlab/pull/4706
https://github.com/jupyterlab/jupyterlab/pull/4692
https://github.com/jupyterlab/jupyterlab/issues/4591
https://github.com/jupyterlab/jupyterlab/pull/4595

JupyterLab Documentation,发发发布布布 0.18.4

• Fix setting editor pane layout’s stretch factor. (#2971, #4772)

• Programmatically set settings are now output with nicer formatting. (#4870)

• Fixed a bug in displaying one-line CSV files. (#4795, #4796)

• Fixed a bug where JSON arrays in rich outputs were collapsed into strings. (#4480)

5.3 Beta 2 (v0.32.0)

5.3.1 Apr 16, 2018

This is the second in the JupyterLab Beta series of releases. It contains many enhancements, bugfixes, and refinements,
including:

• Better handling of a corrupted or invalid state database. (#3619, #3622, #3687, #4114).

• Fixing file dirty status indicator. (#3652).

• New option for whether to autosave documents. (#3734).

• More commands in the notebook context menu. (#3770, #3909)

• Defensively checking for completion metadata from kernels. (#3888)

• New “Shutdown all” button in the Running panel. (#3764)

• Performance improvements wherein non-focused documents poll the server less. (#3931)

• Changing the keyboard shortcut for singled-document-mode to something less easy to trigger. (#3889)

• Performance improvements for rendering text streams, especially around progress bars. (#4045).

• Canceling a “Restart Kernel” now functions correctly. (#3703).

• Defer loading file contents until after the application has been restored. (#4087).

• Ability to rotate, flip, and invert images in the image viewer. (#4000)

• Major performance improvements for large CSV viewing. (#3997).

• Always show the context menu in the file browser, even for an empty directory. (#4264).

• Handle asynchronous comm messages in the services library more correctly (Note: this means @jupyterlab/
services is now at version 2.0!) ([#4115](https://github.com/jupyterlab/jupyterlab/issues/4115)).

• Display the kernel banner in the console when a kernel is restarted to mark the restart
([#3663](https://github.com/jupyterlab/jupyterlab/issues/3663)).

• Many tweaks to the UI, as well as better error handling.

5.4 Beta 1 (v0.31.0)

5.4.1 Jan 11, 2018

• Add a /tree handler and Copy Shareable Link to file listing right click menu: https://github.com/
jupyterlab/jupyterlab/pull/3396

• Experimental support for saved workspaces: #3490, #3586

• Added types information to the completer: #3508

18 Chapter 5. JupyterLab Changelog

https://github.com/jupyterlab/jupyterlab/issues/2971
https://github.com/jupyterlab/jupyterlab/pull/4772
https://github.com/jupyterlab/jupyterlab/pull/4870
https://github.com/jupyterlab/jupyterlab/issues/4795
https://github.com/jupyterlab/jupyterlab/pull/4796
https://github.com/jupyterlab/jupyterlab/pull/4480
https://github.com/jupyterlab/jupyterlab/issues/3619
https://github.com/jupyterlab/jupyterlab/issues/3622
https://github.com/jupyterlab/jupyterlab/issues/3687
https://github.com/jupyterlab/jupyterlab/issues/4114
https://github.com/jupyterlab/jupyterlab/issues/3652
https://github.com/jupyterlab/jupyterlab/issues/3734
https://github.com/jupyterlab/jupyterlab/issues/3770
https://github.com/jupyterlab/jupyterlab/issues/3909
https://github.com/jupyterlab/jupyterlab/issues/3888
https://github.com/jupyterlab/jupyterlab/issues/3764
https://github.com/jupyterlab/jupyterlab/issues/3931
https://github.com/jupyterlab/jupyterlab/issues/3889
https://github.com/jupyterlab/jupyterlab/issues/4045
https://github.com/jupyterlab/jupyterlab/issues/3703
https://github.com/jupyterlab/jupyterlab/issues/4087
https://github.com/jupyterlab/jupyterlab/issues/4000
https://github.com/jupyterlab/jupyterlab/issues/3997
https://github.com/jupyterlab/jupyterlab/issues/4264
https://github.com/jupyterlab/jupyterlab/pull/4115
https://github.com/jupyterlab/jupyterlab/pull/3663
https://github.com/jupyterlab/jupyterlab/pull/3396
https://github.com/jupyterlab/jupyterlab/pull/3396
https://github.com/jupyterlab/jupyterlab/issues/3490
https://github.com/jupyterlab/jupyterlab/issues/3586
https://github.com/jupyterlab/jupyterlab/issues/3508

JupyterLab Documentation,发发发布布布 0.18.4

• More improvements to the top level menus: https://github.com/jupyterlab/jupyterlab/pull/3344

• Editor settings for notebook cells: https://github.com/jupyterlab/jupyterlab/pull/3441

• Simplification of theme extensions: https://github.com/jupyterlab/jupyterlab/pull/3423

• New CSS variable naming scheme: https://github.com/jupyterlab/jupyterlab/pull/3403

• Improvements to cell selection and dragging: https://github.com/jupyterlab/jupyterlab/pull/3414

• Style and typography improvements: https://github.com/jupyterlab/jupyterlab/pull/3468 https:
//github.com/jupyterlab/jupyterlab/pull/3457 https://github.com/jupyterlab/jupyterlab/pull/3445 https:
//github.com/jupyterlab/jupyterlab/pull/3431 https://github.com/jupyterlab/jupyterlab/pull/3428 https:
//github.com/jupyterlab/jupyterlab/pull/3408 https://github.com/jupyterlab/jupyterlab/pull/3418

5.5 v0.30.0

5.5.1 Dec 05, 2017

• Semantic menus: https://github.com/jupyterlab/jupyterlab/pull/3182

• Settings editor now allows comments and provides setting validation: https://github.com/jupyterlab/jupyterlab/
pull/3167

• Switch to Yarn as the package manager: https://github.com/jupyterlab/jupyterlab/pull/3182

• Support for carriage return in outputs: #2761

• Upgrade to TypeScript 2.6: https://github.com/jupyterlab/jupyterlab/pull/3288

• Cleanup of the build, packaging, and extension systems. jupyter labextension install is now the
recommended way to install a local directory. Local directories are considered linked to the application. cf
https://github.com/jupyterlab/jupyterlab/pull/3182

• --core-mode and --dev-mode are now semantically different. --core-mode is a version of JupyterLab
using released JavaScript packages and is what we ship in the Python package. --dev-mode is for unreleased
JavaScript and shows the red banner at the top of the page. https://github.com/jupyterlab/jupyterlab/pull/3270

5.6 v0.29.2

5.6.1 Nov 17, 2017

Bug fix for file browser right click handling. https://github.com/jupyterlab/jupyterlab/issues/3019

5.7 v0.29.0

5.7.1 Nov 09, 2017

• Create new view of cell in cell context menu. #3159

• New Renderers for VDOM and JSON mime types and files. #3157

• Switch to React for our VDOM implementation. Affects the VDomRenderer class. #3133

• Standalone Cell Example. #3155

5.5. v0.30.0 19

https://github.com/jupyterlab/jupyterlab/pull/3344
https://github.com/jupyterlab/jupyterlab/pull/3441
https://github.com/jupyterlab/jupyterlab/pull/3423
https://github.com/jupyterlab/jupyterlab/pull/3403
https://github.com/jupyterlab/jupyterlab/pull/3414
https://github.com/jupyterlab/jupyterlab/pull/3468
https://github.com/jupyterlab/jupyterlab/pull/3457
https://github.com/jupyterlab/jupyterlab/pull/3457
https://github.com/jupyterlab/jupyterlab/pull/3445
https://github.com/jupyterlab/jupyterlab/pull/3431
https://github.com/jupyterlab/jupyterlab/pull/3431
https://github.com/jupyterlab/jupyterlab/pull/3428
https://github.com/jupyterlab/jupyterlab/pull/3408
https://github.com/jupyterlab/jupyterlab/pull/3408
https://github.com/jupyterlab/jupyterlab/pull/3418
https://github.com/jupyterlab/jupyterlab/pull/3182
https://github.com/jupyterlab/jupyterlab/pull/3167
https://github.com/jupyterlab/jupyterlab/pull/3167
https://github.com/jupyterlab/jupyterlab/pull/3182
https://github.com/jupyterlab/jupyterlab/issues/2761
https://github.com/jupyterlab/jupyterlab/pull/3288
https://github.com/jupyterlab/jupyterlab/pull/3182
https://github.com/jupyterlab/jupyterlab/pull/3270
https://github.com/jupyterlab/jupyterlab/issues/3019
https://github.com/jupyterlab/jupyterlab/issues/3159
https://github.com/jupyterlab/jupyterlab/issues/3157
https://github.com/jupyterlab/jupyterlab/issues/3133
https://github.com/jupyterlab/jupyterlab/issues/3155

JupyterLab Documentation,发发发布布布 0.18.4

5.8 v0.28.0

5.8.1 Oct 16, 2017

This release generally focuses on developer and extension author enhancements and general bug fixes.

• Plugin id and schema file conventions change. https://github.com/jupyterlab/jupyterlab/pull/2936.

• Theme authoring conventions change. #3061

• Enhancements to enabling and disabling of extensions. #3078

• Mime extensions API change (name -> id and new naming convention). #3078

• Added a jupyter lab --watch mode for extension authors. #3077

• New comprehensive extension authoring tutorial. #2921

• Added the ability to use an alternate LaTeX renderer. #2974

• Numerous bug fixes and style enhancements.

5.9 v0.27.0

5.9.1 Aug 23, 2017

• Added support for dynamic theme loading. https://github.com/jupyterlab/jupyterlab/pull/2759

• Added an application splash screen. https://github.com/jupyterlab/jupyterlab/pull/2899

• Enhancements to the settings editor. https://github.com/jupyterlab/jupyterlab/pull/2784

• Added a PDF viewer. #2867

• Numerous bug fixes and style improvements.

5.10 v0.26.0

5.10.1 Jul 21, 2017

• Implemented server side handling of users settings: https://github.com/jupyterlab/jupyterlab/pull/2585

• Revamped the handling of file types in the application - affects document and mime renderers: https://github.
com/jupyterlab/jupyterlab/pull/2701

• Updated dialog API - uses virtual DOM instead of raw DOM nodes and better use of the widget lifecycle:
https://github.com/jupyterlab/jupyterlab/pull/2661

5.11 v0.25.0

5.11.1 Jul 07, 2017

• Added a new extension type for mime renderers, with the vega2-extension as a built-in example. Also
overhauled the rendermime interfaces. https://github.com/jupyterlab/jupyterlab/pull/2488 https://github.com/

20 Chapter 5. JupyterLab Changelog

https://github.com/jupyterlab/jupyterlab/pull/2936
https://github.com/jupyterlab/jupyterlab/issues/3061
https://github.com/jupyterlab/jupyterlab/issues/3078
https://github.com/jupyterlab/jupyterlab/issues/3078
https://github.com/jupyterlab/jupyterlab/issues/3077
https://github.com/jupyterlab/jupyterlab/issues/2921
https://github.com/jupyterlab/jupyterlab/issues/2974
https://github.com/jupyterlab/jupyterlab/pull/2759
https://github.com/jupyterlab/jupyterlab/pull/2899
https://github.com/jupyterlab/jupyterlab/pull/2784
https://github.com/jupyterlab/jupyterlab/issues/2867
https://github.com/jupyterlab/jupyterlab/pull/2585
https://github.com/jupyterlab/jupyterlab/pull/2701
https://github.com/jupyterlab/jupyterlab/pull/2701
https://github.com/jupyterlab/jupyterlab/pull/2661
https://github.com/jupyterlab/jupyterlab/pull/2488
https://github.com/jupyterlab/jupyterlab/pull/2555
https://github.com/jupyterlab/jupyterlab/pull/2555

JupyterLab Documentation,发发发布布布 0.18.4

jupyterlab/jupyterlab/pull/2555 https://github.com/jupyterlab/jupyterlab/pull/2595

• Finished JSON-schema based settings system, using client-side storage for now. https://github.com/jupyterlab/
jupyterlab/pull/2411

• Overhauled the launcher design. https://github.com/jupyterlab/jupyterlab/pull/2506 https://github.com/
jupyterlab/jupyterlab/pull/2580

• Numerous bug fixes and style updates.

5.12 v0.24.0

5.12.1 Jun 16, 2017

• Overhaul of the launcher. #2380

• Initial implementation of client-side settings system. #2157

• Updatable outputs. #2439

• Use new Phosphor Datagrid for CSV viewer. #2433

• Added ability to enable/disable extensions without rebuilding. #2409

• Added language and tab settings for the file viewer. #2406

• Improvements to real time collaboration experience. #2387 #2333

• Compatibility checking for extensions. #2410

• Numerous bug fixes and style improvements.

5.13 v0.23.0

5.13.1 Jun 02, 2017

• Chat box feature. https://github.com/jupyterlab/jupyterlab/pull/2118

• Collaborative cursors. https://github.com/jupyterlab/jupyterlab/pull/2139

• Added concept of Drive to ContentsManager. https://github.com/jupyterlab/jupyterlab/pull/2248

• Refactored to enable switching the theme. https://github.com/jupyterlab/jupyterlab/pull/2283

• Clean up the APIs around kernel execution. https://github.com/jupyterlab/jupyterlab/pull/2266

• Various bug fixes and style improvements.

5.14 v0.22.0

5.14.1 May 18, 2017

• Export To. . . for notebooks. https://github.com/jupyterlab/jupyterlab/pull/2200

• Change kernel by clicking on the kernel name in the notebook. https://github.com/jupyterlab/jupyterlab/pull/
2195

5.12. v0.24.0 21

https://github.com/jupyterlab/jupyterlab/pull/2555
https://github.com/jupyterlab/jupyterlab/pull/2555
https://github.com/jupyterlab/jupyterlab/pull/2595
https://github.com/jupyterlab/jupyterlab/pull/2411
https://github.com/jupyterlab/jupyterlab/pull/2411
https://github.com/jupyterlab/jupyterlab/pull/2506
https://github.com/jupyterlab/jupyterlab/pull/2580
https://github.com/jupyterlab/jupyterlab/pull/2580
https://github.com/jupyterlab/jupyterlab/issues/2380
https://github.com/jupyterlab/jupyterlab/issues/2157
https://github.com/jupyterlab/jupyterlab/issues/2439
https://github.com/jupyterlab/jupyterlab/issues/2433
https://github.com/jupyterlab/jupyterlab/issues/2409
https://github.com/jupyterlab/jupyterlab/issues/2406
https://github.com/jupyterlab/jupyterlab/issues/2387
https://github.com/jupyterlab/jupyterlab/issues/2333
https://github.com/jupyterlab/jupyterlab/issues/2410
https://github.com/jupyterlab/jupyterlab/pull/2118
https://github.com/jupyterlab/jupyterlab/pull/2139
https://github.com/jupyterlab/jupyterlab/pull/2248
https://github.com/jupyterlab/jupyterlab/pull/2283
https://github.com/jupyterlab/jupyterlab/pull/2266
https://github.com/jupyterlab/jupyterlab/pull/2200
https://github.com/jupyterlab/jupyterlab/pull/2195
https://github.com/jupyterlab/jupyterlab/pull/2195

JupyterLab Documentation,发发发布布布 0.18.4

• Improved handling of running code in text editors. https://github.com/jupyterlab/jupyterlab/pull/2191

• Can select file in file browser by typing: https://github.com/jupyterlab/jupyterlab/pull/2190

• Ability to open a console for a notebook. https://github.com/jupyterlab/jupyterlab/pull/2189

• Upgrade to Phosphor 1.2 with Command Palette fuzzy matching improvements. #1182

• Rename of widgets that had Widget in the name and associated package names. https://github.com/jupyterlab/
jupyterlab/pull/2177

• New jupyter labhub command to launch JupyterLab on JupyterHub: https://github.com/jupyterlab/
jupyterlab/pull/2222

• Removed the utils from @jupyterlab/services in favor of PageConfig and
ServerConnection. https://github.com/jupyterlab/jupyterlab/pull/2173 https://github.com/jupyterlab/
jupyterlab/pull/2185

• Cleanup, bug fixes, and style updates.

5.15 v0.20.0

5.15.1 Apr 21, 2017

Release Notes:

• Overhaul of extension handling, see updated docs for users and developers. https://github.com/jupyterlab/
jupyterlab/pull/2023

• Added single document mode and a Tabs sidebar. https://github.com/jupyterlab/jupyterlab/pull/2037

• More work toward real time collaboration - implemented a model database interface that can be in-memory by
real time backends. https://github.com/jupyterlab/jupyterlab/pull/2039

Numerous bug fixes and improvements.

5.16 v0.19.0

5.16.1 Apr 04, 2017

Mainly backend-focused release with compatibility with Phosphor 1.0 and a big refactor of session handling (the
ClientSession class) that provides a simpler object for classes like notebooks, consoles, inspectors, etc. to use to
communicate with the API. Also includes improvements to the development workflow of JupyterLab itself after the
big split.

https://github.com/jupyterlab/jupyterlab/pull/1984 https://github.com/jupyterlab/jupyterlab/pull/1927

5.17 v0.18.0

5.17.1 Mar 21, 2017

• Split the repository into multiple packages that are managed using the lerna build tool. https://github.com/
jupyterlab/jupyterlab/issues/1773

• Added restoration of main area layout on refresh. https://github.com/jupyterlab/jupyterlab/pull/1880

22 Chapter 5. JupyterLab Changelog

https://github.com/jupyterlab/jupyterlab/pull/2191
https://github.com/jupyterlab/jupyterlab/pull/2190
https://github.com/jupyterlab/jupyterlab/pull/2189
https://github.com/jupyterlab/jupyterlab/issues/1182
https://github.com/jupyterlab/jupyterlab/pull/2177
https://github.com/jupyterlab/jupyterlab/pull/2177
https://github.com/jupyterlab/jupyterlab/pull/2222
https://github.com/jupyterlab/jupyterlab/pull/2222
https://github.com/jupyterlab/jupyterlab/pull/2173
https://github.com/jupyterlab/jupyterlab/pull/2185
https://github.com/jupyterlab/jupyterlab/pull/2185
https://github.com/jupyterlab/jupyterlab/blob/dd83a2e4be8bf23c610c163afe4b480215514764/tutorial/extensions_user.md
https://github.com/jupyterlab/jupyterlab/blob/dd83a2e4be8bf23c610c163afe4b480215514764/tutorial/extensions_dev.md
https://github.com/jupyterlab/jupyterlab/pull/2023
https://github.com/jupyterlab/jupyterlab/pull/2023
https://github.com/jupyterlab/jupyterlab/pull/2037
https://github.com/jupyterlab/jupyterlab/pull/2039
https://github.com/jupyterlab/jupyterlab/pull/1984
https://github.com/jupyterlab/jupyterlab/pull/1927
https://github.com/jupyterlab/jupyterlab/issues/1773
https://github.com/jupyterlab/jupyterlab/issues/1773
https://github.com/jupyterlab/jupyterlab/pull/1880

JupyterLab Documentation,发发发布布布 0.18.4

• Numerous bug fixes and style updates.

5.18 v0.17.0

5.18.1 Mar 01, 2017

• Upgrade to new @phosphor packages - brings a new Command Palette interaction that should be more intu-
itive, and restores the ability to drag to dock panel edges https://github.com/jupyterlab/jupyterlab/pull/1762.

• Refactor of RenderMime and associated renders to use live models. See https://github.com/jupyterlab/
jupyterlab/pull/1709 and https://github.com/jupyterlab/jupyterlab/issues/1763.

• Improvements and bug fixes for the completer widget: https://github.com/jupyterlab/jupyterlab/pull/1778

• Upgrade CodeMirror to 5.23: https://github.com/jupyterlab/jupyterlab/pull/1764

• Numerous style updates and bug fixes.

5.19 v0.16.0

5.19.1 Feb 09, 2017

• Adds a Cell Tools sidebar that allows you to edit notebook cell metadata. #1586.

• Adds keyboard shortcuts to switch between tabs (Cmd/Ctrl LeftArrow and Cmd/Ctrl RightArrow). #1647

• Upgrades to xterm.js 2.3. #1664

• Fixes a bug in application config, but lab extensions will need to be re-enabled. #1607

• Numerous other bug fixes and style improvements.

5.18. v0.17.0 23

https://github.com/jupyterlab/jupyterlab/pull/1762
https://github.com/jupyterlab/jupyterlab/pull/1709
https://github.com/jupyterlab/jupyterlab/pull/1709
https://github.com/jupyterlab/jupyterlab/issues/1763
https://github.com/jupyterlab/jupyterlab/pull/1778
https://github.com/jupyterlab/jupyterlab/pull/1764
https://github.com/jupyterlab/jupyterlab/issues/1586
https://github.com/jupyterlab/jupyterlab/issues/1647
https://github.com/jupyterlab/jupyterlab/issues/1664
https://github.com/jupyterlab/jupyterlab/issues/1607

JupyterLab Documentation,发发发布布布 0.18.4

24 Chapter 5. JupyterLab Changelog

CHAPTER 6

JupyterLab接口 (API)

JupyterLab为交互式探索性计算提供灵活的构建块。虽然 JupyterLab具有传统集成开发环境（IDE）中的许
多功能，但它仍然专注于交互式探索性计算。

JupyterLab界面包含一个主工作区 ，包含文档和活动选项卡，可折叠左侧边栏和菜单栏。左侧边栏包含
文件浏览器，正在运行的内核和终端列表，命令选项板，笔记本单元工具检查器和选项卡列表。

JupyterLab会话始终驻留在工作空间中。工作区包含JupyterLab的状态：当前打开的文件，应用程序区域和
选项卡的布局等。工作区可以使用命名工作区URL保存在服务器上。要了解有关Jupyterlab中URL的更多信
息，请访问 JupyterLab链接(URLs)。

25

JupyterLab Documentation,发发发布布布 0.18.4

6.1 菜菜菜单单单栏栏栏 (Menu Bar)

JupyterLab顶部的菜单栏有一个顶级菜单，允许您通过键盘快捷键显示 JupyterLab中可用的操作。默认菜单
是：

• File: 与文件和目录相关的操作

• Edit: 与编辑文件和其他活动有关的行动

• View: 改变 JupyterLab外观的动作

• Run: 用于在不同活动中运行代码的操作，例如 notebooks和 consoles

• Kernel: 用于管理内核的操作，内核是用于运行代码的单独进程

• Tabs: 停靠面板中的打开文档和活动列表

• Settings: 常用设置和高级设置编辑器

• Help: JupyterLab和内核帮助链接列表

JupyterLab extensions还可以在菜单栏中创建新的顶级菜单.

6.2 左左左侧侧侧边边边栏栏栏 (Left Sidebar)

左侧边栏包含许多常用选项卡，例如文件浏览器，正在运行的内核和终端列表，命令选项板以及主工作区
中的选项卡列表：

26 Chapter 6. JupyterLab接接接口口口 (API)

JupyterLab Documentation,发发发布布布 0.18.4

通过在“视图”菜单中选择“显
示左侧边栏”或单击活动侧边栏选项卡，可以折叠或展开左侧边栏：

JupyterLab扩展可以向左侧边栏添加其他面板。

6.3 主主主工工工作作作区区区 (Main Work Area)

JupyterLab中的 主工作区 使您可以将文档（notebooks，文本文件等）和其他活动（terminals，code con-
soles等）排列到可以调整大小或细分的选项卡面板中。将选项卡拖动到选项卡面板的中心可将选项卡移动
到面板。通过将选项卡拖动到面板的左侧，右侧，顶部或底部来细分选项卡面板：

工作区域只有一个当前活动。当前活动的选项卡标有彩色顶部边框（默认为蓝色）。

6.3. 主主主工工工作作作区区区 (Main Work Area) 27

JupyterLab Documentation,发发发布布布 0.18.4

6.4 标标标签签签 (tabs)和和和单单单文文文档档档模模模式式式

左侧栏中的“选项卡”面板列出了主要工作区中的打开文档或活动：

选项卡菜单中也提供了相同的信息：

28 Chapter 6. JupyterLab接接接口口口 (API)

JupyterLab Documentation,发发发布布布 0.18.4

在不关闭主工作区域中的其他选项卡的情况下，关注单个文档或活动通常很有用。 单文档模式启用此功
能，同时可以轻松返回主工作区中的多活动布局。使用“视图”菜单切换单文档模式：

离开单文档模式时，将恢复主区域的原始布局。

6.5 上上上下下下文文文菜菜菜单单单 (Context Menus)

JupyterLab的许多部分（例如 notebooks，文本文件，code consoles和选项卡）都有上下文菜单，可以通过右
键单击元素来访问它们：

可以通过按住‘‘Shift‘‘和右键单击来访问浏览器的本机上下文菜单：:

6.6 键键键盘盘盘快快快捷捷捷键键键

与经典 Notebook一样，您可以通过键盘快捷键导航用户界面。您可以通过选择“设置”菜单中的“高级设置编
辑器”项，然后在“设置”选项卡中选择“键盘快捷键”来查找和自定义当前键盘快捷键列表。

您还可以使用“设置”菜单中的“:ref:‘ 文本编辑器<file-editor>‘ 键映射”子菜单自定义文本编辑器以使
用vim，emacs或Sublime Text键盘映射：

6.5. 上上上下下下文文文菜菜菜单单单 (Context Menus) 29

JupyterLab Documentation,发发发布布布 0.18.4

30 Chapter 6. JupyterLab接接接口口口 (API)

CHAPTER 7

JupyterLab链接(URLs)

与经典 notebook 一样，JupyterLab为用户提供了一种复制打开特定笔记本或文件的URL的方法。 此
外，JupyterLab 连接(URLs)是用户界面的高级部分，允许管理工作区。 这两个函数 - 文件路径和工作空
间 -可以组合在打开特定工作空间中特定文件的URL中。 .. _url-tree:

7.1 文文文件件件导导导航航航 /tree

JupyterLab的文件导航URL采用经典 notebook的命名法;这些URL是 /tree URLs:

http(s)://<server:port>/<lab-location>/lab/tree/path/to/notebook.ipynb

输入此URL将以单文档模式在 JupyterLab中打开 notebook。

7.2 管管管理理理工工工作作作区区区

JupyterLab会话始终驻留在工作空间中。工作区包含 JupyterLab的状态：当前打开的文件，应用程序区域和
选项卡的布局等。刷新页面时，将还原工作区。

默认工作空间未命名，仅将其状态保存在用户的本地浏览器中：

http(s)://<server:port>/<lab-location>/lab

命名工作区将其状态保存在服务器上，并且可以在多个用户（或浏览器）之间共享，只要他们可以访问同
一服务器：

http(s)://<server:port>/<lab-location>/lab/workspaces/foo

工作区应该一次只能在一个浏览器选项卡中打开。如果JupyterLab检测到同时多次打开工作空间，则会提示
输入新的工作空间名称。同时也不支持在两个不同的浏览器选项卡中打开文档。

31

JupyterLab Documentation,发发发布布布 0.18.4

7.3 克克克隆隆隆工工工作作作区区区

您可以使用 clone url参数将工作空间的内容复制到另一个工作空间。

要将工作区 foo的内容复制到工作区 bar中：

http(s)://<server:port>/<lab-location>/lab/workspaces/bar?clone=foo

要将默认工作空间的内容复制到工作空间 foo中：

http(s)://<server:port>/<lab-location>/lab/workspaces/foo?clone

要将工作空间 foo的内容复制到默认工作空间：

http(s)://<server:port>/<lab-location>/lab?clone=foo

7.4 重重重置置置工工工作作作区区区

使用 reset url参数清除其内容的工作空间。

要重置工作空间 foo的内容：

http(s)://<server:port>/<lab-location>/lab/workspaces/foo?reset

要重置默认工作区的内容：

http(s)://<server:port>/<lab-location>/lab/workspaces/lab?reset

7.5 组组组合合合URL功功功能能能

这些URL功能可以单独使用，如上所述，也可以组合使用。

要重置工作区 foo并在以后加载特定 notebook：

http(s)://<server:port>/<lab-location>/lab/workspaces/foo/tree/path/to/notebook.ipynb?
→˓reset

要将工作区栏的内容克隆到工作区 foo中，然后加载 notebook：

http(s)://<server:port>/<lab-location>/lab/workspaces/foo/tree/path/to/notebook.ipynb?
→˓clone=bar

要重置默认工作区的内容并加载 notebook：

http(s)://<server:port>/<lab-location>/lab/tree/path/to/notebook.ipynb?reset

32 Chapter 7. JupyterLab链链链接接接(URLs)

CHAPTER 8

File的工作过程

8.1 打打打开开开文文文件件件

使用文件浏览器和“文件”菜单可以处理系统上的文件和目录。这包括打开，创建，删除，重命名，下载，
复制和共享文件和目录。

文件浏览器位于左侧边栏“文件”选项卡中：

对文件的许多操作也可以在“文件”菜单中执行：

33

JupyterLab Documentation,发发发布布布 0.18.4

要打开任何文件，请在文件浏览器中双击其名称：

你还可以将文件拖到主工作区中以创建新选项卡：

许多文件类型都有:ref:多个视图/编辑器 <file-and-output-formats>。 例如，您可以在 文本编辑器 中打
开Markdown文件，也可以将其作为呈现的HTML打开。 JupyterLab扩展还可以为文件添加新的查看器/编辑
器。要在非默认查看器/编辑器中打开文件，请在文件浏览器中右键单击其名称，然后使用“Open With. . . ”子
菜单选择查看器/编辑器：

可以在多个查看器/编辑器中同时打开单个文件，它们将保持同步：

可以通过双击列表中的文件夹或单击目录列表顶部的文件夹来导航文件系统：

右键单击文件或目录，然后选择“Copy Shareable Link”以复制可用于打开JupyterLab的URL，并打开该文件或
目录。

右键单击文件或目录，然后选择“Copy Path”以复制文件
系统相对路径。这可以用于将参数传递给各种内核中调用的函数中的打开文件。

34 Chapter 8. File的的的工工工作作作过过过程程程

JupyterLab Documentation,发发发布布布 0.18.4

8.2 创创创建建建文文文件件件和和和活活活动动动

单击文件浏览器顶部的 +按钮创建新文件或活动。这将在主工作区中打开一个新的Launcher选项卡，使您
可以选择一个活动和内核：

您还可以使用“文件”菜单创建新文档或活动：

新活动或文档的当前
工作目录将是文件浏览器中列出的目录（Terminal除外，它始终在文件浏览器的根目录中启动）：

使用默认名称创建新文件。通过在文件浏览器中右键单击其名称并从上下文菜单中选择 “Rename”来重命名
文件：

8.3 上上上传传传和和和下下下载载载

通过将文件拖放到文件浏览器上，或者通过单击文件浏览器顶部的“Upload Files”按钮，可以将文件上载到
文件浏览器的当前目录：

可以通过在文件浏览器中右键单击其名称并从上下文菜单中选择“Download”来下载JupyterLab中的任何文
件：

8.2. 创创创建建建文文文件件件和和和活活活动动动 35

JupyterLab Documentation,发发发布布布 0.18.4

36 Chapter 8. File的的的工工工作作作过过过程程程

CHAPTER 9

文本编辑器

JupyterLab中的文本编辑器使您可以在JupyterLab中编辑文本文件：

文本编辑器包括语法突出显示，可配置缩进（制表符或空格）， key maps和基本主题。可以在“settings”菜
单中找到这些设置：

37

JupyterLab Documentation,发发发布布布 0.18.4

要编辑现有文本文件，请在文件浏览器中双击其名称或将其拖到主工作区：

要在文件浏览器的当前目录中创建新的文本文件，请单击文件浏览器顶部的 +按钮以创建新的Launcher选项
卡，然后单击Launcher中的“Text Editor”卡：

您还可以使用“文件”菜单创建新的文本文件：

使用默认名称创建新文件。通过在文件浏览器中右键单击其名称并从上下文菜单中选择“Rename”来重命名
文件：

38 Chapter 9. 文文文本本本编编编辑辑辑器器器

CHAPTER 10

Notebooks

Jupyter notebooks是将实时可运行代码与描述文本（Markdown），方程式（LaTeX），images，交互式可视
化和其他丰富输出相结合的文档：

JupyterLab完完完全全全支支支持持持Jupyter笔笔笔记记记本本本（（（.ipynb文文文件件件）））。。。 JupyterLab中使用的笔记本文档格式与经典的Jupyter
Notebook相同。 您现有的笔记本应该在JupyterLab中正确打开。 如果他们不这样做，请在我们的 GitHub
issues页面上打开一个问题。

单击文件浏览器中的 +按钮，然后在新的Launcher选项卡中选择内核，创建一个笔记本：

使用默认名称创建新文件。通过在文件浏览器中右键单击其名称并从上下文菜单中选择“Rename”来重命名
文件：

39

https://github.com/jupyterlab/jupyterlab/issues
https://github.com/jupyterlab/jupyterlab/issues

JupyterLab Documentation,发发发布布布 0.18.4

JupyterLab中 Notebooks的用户界面紧跟经典 Jupyter Notebook的用户界面。经典笔记本的键盘快捷键继续
工作（使用命令和编辑模式）。但是，JupyterLab中的笔记本电脑可能会有许多新功能。

拖放单元格以重新排列笔记本：

在笔记本之间拖动单元格以快速复制内容：

创建单个 notebook的多个同步 views：

使用 View menu或每个单元格左侧的蓝色伸缩按钮折叠并展开代码和输出：

通过右键单击单元格并选择 “为输出启用滚动”，启用长输出滚动：

创建单元格输出的新同步视图：

选项卡完成（使用 Tab键激活）现在可以包含有关匹配项类型的其他信息：

注意：IPython 6.3.1 暂时禁用了类型注释。 要重新启用它们，请将‘‘c.Completer.use_jedi = True‘‘ 添加到
ipython_config.py文件中。

工具提示（使用 Shift Tab激活）包含有关对象的其他信息：

您可以将代码控制台连接到笔记本内核，以便按照完成它们的顺序在内核中完成计算日志。附加的代码
控制台还提供了交互式检查内核状态而无需更改笔记本的位置。 右键单击笔记本并选择“New Console for
Notebook”：

40 Chapter 10. Notebooks

http://ipython.readthedocs.io/en/stable/development/config.html

CHAPTER 11

Code Consoles

Code Consoles使您能够在内核中以交互方式运行代码。 Code Consoles的单元格显示了代码在内核中执行的
顺序，而不是 notebook文档中单元格的显式排序。代码控制台也显示丰富的输出，就像笔记本电脑一样。

单击文件浏览器中的 +按钮并选择内核，创建一个新的代码控制台：

使用 Shift Enter运行代码。使用向上和向下箭头浏览以前运行的代码的历史记录：

选项卡完成（Tab）和工具提示（Shift Tab）在笔记本中起作用：

通过右键单击代码控制台并选择“Clear Console Cells”，清除代码控制台的单元格而不重新启动内核：

从 file menu 创建代码控制台可让您为代码控制台选择现有内核。 然后代码控制台充当该内核中计算的日
志，以及可以在内核中交互式检查和运行代码的位置：

41

JupyterLab Documentation,发发发布布布 0.18.4

42 Chapter 11. Code Consoles

CHAPTER 12

终端（Terminals）

JupyterLab终端在Mac / Linux和Windows上的PowerShell上提供对系统shell（bash，tsch等）的完全支持。您
可以使用终端在系统shell中运行任何内容，包括vim或emacs等程序。终端在运行Jupyter服务器的系统上运
行，具有用户的权限。因此，如果JupyterLab安装在本地计算机上，则JupyterLab终端将在那里运行。

要打开新终端，请单击文件浏览器中的 +按钮，然后在新的Launcher选项卡中选择终端：

关闭终端选项卡将使其在服务器上运行，但您可以使用左侧栏中的运行选项卡重新打开它：

43

JupyterLab Documentation,发发发布布布 0.18.4

44 Chapter 12. 终终终端端端（（（Terminals）））

CHAPTER 13

管理内核和终端

左侧栏中的“运行”面板显示当前在所有 notebooks ，code consoles 和文件夹中运行的所有内核和终端的列
表：

与经典的Jupyter Notebook一样，当您关闭笔记
本文档，代码控制台或终端时，服务器上运行的底层内核或终端将继续运行。这使您可以执行长时间运行
的操作并在以后返回。使用“运行”面板可以重新打开或聚焦链接到给定内核或终端的文档：

45

JupyterLab Documentation,发发发布布布 0.18.4

可以从“运行”面板关闭内核或终端：

您可以通过单击 X来关闭所有内核和终端按钮：

46 Chapter 13. 管管管理理理内内内核核核和和和终终终端端端

CHAPTER 14

命令调用板 (Command Palette)

JupyterLab中的所有用户操作都通过集中式命令系统进行处理。 这些命令在JupyterLab中共享和使用（菜
单栏，上下文菜单，键盘快捷键等）。 左侧栏中的命令选项板提供了一种键盘驱动的方式来搜索和运
行JupyterLab命令：

47

JupyterLab Documentation,发发发布布布 0.18.4

可以使用键盘快捷键 Command/Ctrl Shift
C访问命令调用板：

48 Chapter 14. 命命命令令令调调调用用用板板板 (Command Palette)

CHAPTER 15

文件和内核

在Jupyter体系结构中，内核是由服务器启动的独立进程，它以不同的编程语言和环境运行代码。 Jupyter-
Lab使您可以将任何打开的文本文件连接到代码控制台和内核。这意味着您可以交互式地从内核中的文本
文件轻松运行代码。

右键单击文档，然后选择“Create Console for Editor”：

代码控制台打开后，发送一行代码或选择一段代码，然后通过按 Shift Enter 键将其发送到代码控制
台：

在Markdown文档中， Shift Enter将自动检测光标是否在代码块内，如果没有选择则运行整个块：

文本文件编辑器中的*任何*文本文件（Markdown，Python，R，LaTeX，C ++等）都可以这种方式连接到代
码控制台和内核。

49

JupyterLab Documentation,发发发布布布 0.18.4

50 Chapter 15. 文文文件件件和和和内内内核核核

CHAPTER 16

文件和输出格式

JupyterLab提供统一的体系结构，用于以各种格式查看和编辑数据。无论数据是在文件中还是由内核提供为
笔记本或代码控制台中的富单元输出，此模型都适用。

对于文件，数据格式由文件的扩展名检测（如果没有扩展名，则检测整个文件名）。 单个文件扩展名
可能会注册多个编辑者或查看者。 例如，Markdown文件（.md）可以在文件编辑器中编辑，也可以呈现
为HTML格式。您可以通过右键单击文件浏览器中的文件名并使用“Open With”子菜单打开文件的不同编辑
器和查看器：

51

JupyterLab Documentation,发发发布布布 0.18.4

要在笔记本电脑或代码控制台中使用这些不同的数据格式作为输出，您可以使用您正在使用的内核的相关
显示API。例如，IPython内核提供了各种便利类来显示丰富的输出：

from IPython.display import display, HTML
display(HTML('<h1>Hello World</h1>'))

运行此代码将在笔记本或代码控制台单元格的输出中显示HTML：

52 Chapter 16. 文文文件件件和和和输输输出出出格格格式式式

JupyterLab Documentation,发发发布布布 0.18.4

IPython显示功能还可以从密钥字典（MIME类型）和值（MIME数据）构造原始丰富输出消息：

from IPython.display import display
display({'text/html': '<h1>Hello World</h1>', 'text/plain': 'Hello World'}, raw=True)

其他Jupyter内核提供类似的API。

本节的其余部分将重点介绍JupyterLab默认支持的一些常见数据格式。 JupyterLab扩展还可以添加对其他文
件格式的支持。

16.1 Markdown

• File extension: .md

• MIME type: text/markdown

Markdown是一种简单而流行的标记语言，用于Jupyter Notebook中的文本编辑。

Markdown文档可以像文本文件一样编辑，并且可以渲染后呈现：

此模式支持的Markdown语法与Jupyter Notebook中使用的语法相同（例如，LaTeX方程式工作）。如动画中
所示，对Markdown源的编辑会立即反映在渲染后的版本中。

16.2 图图图片片片

• File extension: .bmp, .gif, .jpeg, .jpg, .png, .svg

• MIME type: image/bmp, image/gif, image/jpeg, image/png, image/svg+xml

JupyterLab支持单元格输出图像数据以及上述格式的文件。在图像文件查看器中，您可以使用键盘快捷键
（如‘‘+‘‘和 -）来缩放图像，[``和]‘‘旋转图像，使用‘‘H‘‘和‘‘V‘‘来水平和垂直翻转图像。使用‘‘I‘‘反转
颜色，并使用‘‘0‘‘重置图像。

16.1. Markdown 53

JupyterLab Documentation,发发发布布布 0.18.4

要将SVG图像编辑为文本文件，请在文件浏览器中右键单击SVG文件名，然后在“Open With”子菜单中选
择“Editor”项：

16.3 分分分隔隔隔符符符分分分隔隔隔值值值

• File extension: .csv

• MIME type: None

具有分隔符分隔行的文件（如CSV文件）是表格数据的常用格式。 JupyterLab中这些文件的默认查看器是一
个高性能数据网格查看器，它可以显示以逗号分隔，制表符分隔和分号分隔的值：

虽然可以通过网格查看器读取制表符分隔行文件，但它当前不会自动识别 .tsv文件。要查看，您必须将
扩展名更改为 .csv并将分隔符设置为选项卡。

要将CSV文件编辑为文本文件，请在文件浏览器中右键单击该文件，然后在“Open With”子菜单中选
择“Editor”项：

JupyterLab的网格查看器可以打开大文件，最大可达特定浏览器的字符串大小。下面的表格显示了我们在每
个支持的浏览器中成功打开的最大测试文件的大小：

Browser Max Size
Firefox 250MB
Chrome 730MB
Safari 1.8GB

可以成功加载的文件的实际最大大小将根据浏览器版本和文件内容而有所不同。

16.4 JSON

• File extension: .json

• MIME type: application/json

JavaScript Object Notation（JSON）文件在数据科学的实践中很常见。 JupyterLab支持在单元格输出中显
示JSON数据或使用树视图查看JSON文件：

要将JSON编辑为文本文件，请在文件浏览器中右键单击文件名，然后在“Open With”子菜单中选
择“Editor”项：

16.5 HTML

• File extension: .html

• MIME type: text/html

JupyterLab支持在单元格输出中呈现HTML，并在文件编辑器中将HTML文件编辑为文本。

16.6 LaTeX

• File extension: .tex

54 Chapter 16. 文文文件件件和和和输输输出出出格格格式式式

JupyterLab Documentation,发发发布布布 0.18.4

• MIME type: text/latex

JupyterLab支持在单元格输出LaTeX方程，并在文件编辑器中将LaTeX文件编辑为文本。

16.7 PDF

• File extension: .pdf

• MIME type: application/pdf

PDF是文档的通用标准文件格式。要在JupyterLab中查看PDF文件，请在文件浏览器中双击该文件：

16.8 Vega/Vega-Lite

Vega:

• File extensions: .vg, .vg.json

• MIME type: application/vnd.vega.v2+json

Vega-Lite:

• File extensions: .vl, .vl.json

• MIME type: application/vnd.vegalite.v1+json

Vega和Vega-Lite是声明性可视化语法，可以将可视化编码为JSON数据。有关更多信息，请参阅Vega或Vega-
Lite的文档。 JupyterLab支持在文件和单元格输出Vega 2.x和Vega-Lite 1.x数据。

可以通过双击文件浏览器中的文件来打开具有 .vl或 .vl.json文件扩展名的Vega-Lite 1.x文件：

也可以通过文件浏览器内容菜单中的“Open With. . . ”子菜单在JSON查看器或文件编辑器中打开文件：

与JupyterLab中的其他文件一样，单个文件的多个视图保持同步，使您能够以交互方式编辑和渲染Vega /
Vega-Lite可视化数据：

相同的工作流程也适用于Vega 2.x文件，文件扩展名为 .vg或 .vg.json。

笔 记 本 电 脑 或 代 码 控 制 台 中Vega / Vega-Lite的 输 出 支 持 是 通 过 第 三 方 库 提 供 的 ， 例
如Altair（Python），vegalite R软件包或Vegas（Scala / Spark）。

16.7. PDF 55

JupyterLab Documentation,发发发布布布 0.18.4

可可可在此处找到支持Vega 3.x和Vega-Lite 2.x的JupyterLab扩展。

16.9 Virtual DOM

• File extensions: .vdom, .json

• MIME type: application/vdom.v1+json

诸如 react.js 之类的虚拟DOM库极大地改善了在HTML中呈现交互式内容的体验。 nteract项目与Project
Jupyter密切合作，为虚拟DOM数据创建了一个声明性JSON格式。 JupyterLab可以使用react.js呈现此数据。
这适用于扩展名为 .vdom的VDOM文件或笔记本输出中的VDOM文件。

以下是以交互方式编辑和呈现的 .vdom文件的示例：

The nteract/vdom库提供了一个Python API，用于创建在nteract和JupyterLab中呈现的VDOM输出：

56 Chapter 16. 文文文件件件和和和输输输出出出格格格式式式

https://github.com/jupyterlab/jupyter-renderers
https://reactjs.org/
https://github.com/nteract/vdom
https://github.com/nteract/vdom

JupyterLab Documentation,发发发布布布 0.18.4

16.9. Virtual DOM 57

JupyterLab Documentation,发发发布布布 0.18.4

58 Chapter 16. 文文文件件件和和和输输输出出出格格格式式式

CHAPTER 17

扩展

从根本上说，JupyterLab的设计是可扩展的。 JupyterLab扩展可以自定义或增强JupyterLab的任何部分。他们
可以为 Notebook中的丰富输出提供新的皮肤，文件查看器和编辑器或渲染器。扩展可以将项添加到菜单或
命令选项板，键盘快捷键或设置系统中的设置。扩展可以为其他扩展提供API，并且可以依赖于其他扩展。
事实上，整个JupyterLab本身只是一个扩展的集合，它们不比任何自定义扩展有更多的强大。

JupyterLab 采用npm包（Javascript开发中的标准包格式）进行扩展。 在GitHub上构建了许多社区开发的扩
展。您可以搜索GitHub主题 jupyterlab-extension来查找扩展名。有关开发扩展的信息，请参阅开发人员文
档。

注注注解解解: 如果您是JupyterLab扩展开发人员，请注意扩展开发人员API不稳定，并且会不断更新。

要安装JupyterLab扩展，您需要安装Node.js版本4或更高版本。如果您使用 conda，您可以使用：

conda install -c conda-forge nodejs

如果你的操作系统是MacOS，可以通过 Homebrew安装:

brew install node

您也可以‘Node.js website <https://nodejs.org/>‘__的官网下载 Node.js，并且安装。

17.1 安安安装装装扩扩扩展展展

The base JupyterLab application includes a core set of extensions, which provide the features described in this user
guide (notebook, terminal, text editor, etc.) You can install new extensions into the application using the command:

JupyterLab application包含一组核心扩展，提供本用户指南（notebook，终端，文本编辑器等）中描述的功
能。您可以使用以下命令在应用程序中安装新扩展：

jupyter labextension install my-extension

59

https://github.com/topics/jupyterlab-extension
https://brew.sh/
https://nodejs.org/

JupyterLab Documentation,发发发布布布 0.18.4

其中‘‘my-extension‘‘是 npm上有效的JupyterLab扩展名npm包的名称。使用my-extension @ version语法安装
特定版本的扩展，例如：

jupyter labextension install my-extension@1.2.3

您还可以安装未上传到npm的扩展，即‘‘my-extension‘‘可以是包含扩展名，gzip压缩包或gzip压缩包
的URL的本地目录。

我们鼓励扩展作者将‘‘jupyterlab-extension‘‘ 添加到任何具有JupyterLab扩展名的GitHub存储库，以便于发
现。您可以通过在GitHub中搜索‘jupyterlab-extension <https://github.com/search?utf8=%E2%9C%93&q=topic%
3Ajupyterlab-extension&type=Repositories>‘__主题来查看扩展列表。

您可以通过运行以下命令列出当前安装的扩展：

jupyter labextension list

通过运行以下命令卸载扩展：

jupyter labextension uninstall my-extension

其中 my-extension是扩展名，打印在扩展名列表中。您也可以使用此命令卸载核心扩展（您可以随时重
新安装核心扩展）。

安装和卸载扩展可能需要一些时间，因为它们已下载，与核心扩展捆绑在一起，整个应用程序将 Rebuild。
您可以通过在 install命令后列出其名称来在同一命令中安装/卸载多个扩展。

If you are installing/uninstalling several extensions in several stages, you may want to defer rebuilding the application
by including the flag --no-build in the install/uninstall step. Once you are ready to rebuild, you can run the
command:

如果要在几个阶段中安装/卸载多个扩展，则可能需要通过在安装/卸载步骤中包含标志‘‘–no-build‘‘来推迟重
建应用程序。准备好Rebuid后，可以运行以下命令：

jupyter lab build

17.2 禁禁禁用用用扩扩扩展展展程程程序序序

您可以通过运行以下命令禁用特定的JupyterLab扩展（包括核心扩展），而无需Rebuild应用程序：

jupyter labextension disable my-extension

这将阻止扩展程序在浏览器中加载，但不需要Rebuild。

您可以使用以下命令重新启用扩展：

jupyter labextension enable my-extension

17.3 高高高级级级用用用法法法

JupyterLab持久存储的任何信息都存储在其应用程序目录中，包括设置和构建资产。这与安装Python包的位
置（例如在‘‘site_packages‘‘中）是分开的，因此安装目录是不可变的。

可以在任何JupyterLab命令中使用 --app-dir 覆盖应用程序目录，也可以通过设置JUPYTERLAB_DIR环
境变量来覆盖应用程序目录。如果未指定，则默认为‘‘<sys-prefix>/share/jupyter/lab‘‘，其中<sys-prefix>是当

60 Chapter 17. 扩扩扩展展展

https://www.npmjs.com
https://github.com/search?utf8=%E2%9C%93&q=topic%3Ajupyterlab-extension&type=Repositories
https://github.com/search?utf8=%E2%9C%93&q=topic%3Ajupyterlab-extension&type=Repositories

JupyterLab Documentation,发发发布布布 0.18.4

前Python环境的特定于站点的目录前缀。您可以通过运行 jupyter lab path来查询当前的应用程序路
径。

17.3.1 JupyterLab Build过过过程程程

要 rebuild app目录，请运行‘‘jupyter lab build‘‘。默认情况下，jupyter labextension install` 命令
构建应用程序，因此您通常不需要直接调用``build。

Build过程包括:

• 使用模板文件填充‘‘staging‘‘目录

• 处理任何本地安装的包

• 确保所有已安装的资源（assets）都可用

• 打包资源（assets）

• 将打包的资源（assets）复制到‘‘static‘‘目录

Note that building will always use the latest JavaScript packages that meet the dependency requirements of JupyterLab
itself and any installed extensions. If you wish to run JupyterLab with the set of pinned requirements that was shipped
with the Python package, you can launch as jupyter lab –core-mode.

请注意，构建将始终使用最新的JavaScript包，以满足JupyterLab本身和任何已安装扩展的依赖性要求。如果
您希望使用Python包附带的一组固定需求运行JupyterLab，您可以启动为‘jupyter lab –core-mode‘。

17.3.2 JupyterLab app目目目录录录

JupyterLab应用程序目录包含子目录‘‘extensions‘‘, schemas, settings, staging, static, and themes。

extensions

extensions 目录包含应用程序的每个已安装扩展的打包tarball。 如果应用程序目录与‘‘sys-prefix‘‘目录
不同，则‘‘sys-prefix‘‘目录中安装的扩展将在app目录中使用。 如果在‘‘sys-prefix‘‘目录中存在的app目录中
安装了扩展，则它将隐藏‘‘sys-prefix‘‘版本。 卸载扩展将首先卸载带阴影的扩展，然后再次调用时尝试卸
载‘‘sys-prefix‘‘版本。如果无法卸载‘‘sys-prefix‘‘版本，则仍可使用设置中的‘‘ignoredPackages‘‘元数据忽略其
插件。

schemas

schemas目录包含描述各个扩展使用的设置的 JSON Schemas。用户可以使用JupyterLab设置编辑器编辑这
些设置。

settings

settings``目录包含 ``page_config.json和‘‘build_config.json‘‘文件。

page_config.json

page_config.json数据用于向应用程序环境提供配置数据。

page_config.json文件中的两个重要字段可以控制加载哪些插件：

1. disabledExtensions表示根本不应加载的扩展名。

17.3. 高高高级级级用用用法法法 61

http://json-schema.org/

JupyterLab Documentation,发发发布布布 0.18.4

2. 对于在某些内容需要之前不加载的扩展的‘‘deferredExtensions‘‘，无论它们是否
将‘‘autostart‘‘设置为‘‘true‘‘。

每个字段的值是一个字符串数组。对‘‘disabledExtensions‘‘和‘‘deferredExtensions‘‘中的模式执行以下检查序
列。

• 如 果 在 配 置 值 和 包 名 称 之 间 发 生 相 同 的 字 符 串 匹 配 （ 例 如 ，“@jupyterlab/
apputils-extension”），则整个包被禁用（或延迟）。

• 如 果 字 符 串 值 被 编 译 为 正 则 表 达 式 并 且 对 包 名 称 测 试 为 正 （ 例
如，“disabledExtensions”：[“@jupyterlab/apputils*$”]），则整个包被禁用（或
延迟）。

• 如 果 在 配 置 值 和 包 中 的 单 个 插 件ID之 间 发 生 相 同 的 字 符 串 匹 配 （ 例
如，“disabledExtensions”：[“@jupyterlab/apputils-extension：settings”]），则
该特定插件被禁用（或延迟）。

• 如 果 将 字 符 串 值 编 译 为 正 则 表 达 式 并 对 包 中 的 单 个 插 件ID进 行 正 向 测 试 （ 例
如，"disabledExtensions": ["^@jupyterlab/apputils-extension:set.*$"]），则
该特定插件被禁用（或延期）。

build_config.json

build_config.json``文件用于跟踪使用 ``jupyter labextension install <directory> 安
装的本地目录，以及已明确卸载的核心扩展。 build_config.json文件的示例是：

{
"uninstalled_core_extensions": [

"@jupyterlab/markdownwidget-extension"
],
"local_extensions": {

"@jupyterlab/python-tests": "/path/to/my/extension"
}

}

staging and static

static 目录包含将由JuptyerLab应用程序加载的assets。 staging 目录用于创建构建，然后填
充‘‘staging‘‘目录。

运行‘‘jupyter lab‘‘将尝试在应用程序目录中运行‘‘static assets‘‘（如果存在）。您可以运行‘‘jupyter lab –core-
mode‘‘来加载核心JupyterLab应用程序（即没有任何扩展的应用程序）。

themes

themes目录包含JupyterLab Themes扩展的资源（例如CSS和图标）。

62 Chapter 17. 扩扩扩展展展

CHAPTER 18

JupyterLab执行在 JupyterHub里

JupyterLab与JupyterHub一起开箱即用，甚至可以与经典Notebook并排运行。

18.1 默默默认认认情情情况况况下下下使使使用用用JupyterLab

如果在运行JupyterHub的系统上安装JupyterLab，它将立即在 /lab URL上可用，但默认情况下用户仍将被
定向到经典Notebook（/tree）。 要将用户的默认用户界面更改为JupyterLab，请在jupyterhub_config.py文
件中设置以下配置选项： jupyterhub_config.py file:

c.Spawner.default_url = '/lab'

在此配置中，用户仍然可以在‘‘/tree‘‘访问经典Notebook，方法是在浏览器中键入该URL，或者使
用JupyterLab的“帮助”菜单中的 “Launch Classic Notebook”项。

18.2 进进进一一一步步步整整整合合合

JupyterLab和JupyterHub之间的额外集成由JupyterLab的 jupyterlab-hub扩展提供。它提供了一个Hub菜单，其
中包含访问JupyterHub控制面板或注销集线器的项目。

安装 jupyterlab-hub extension,执行:

jupyter labextension install @jupyterlab/hub-extension

jupyterlab-hub GitHub repository存储库提供了进一步的说明。

18.3 示示示例例例配配配置置置

有关将JupyterLab与JupyterHub一起使用的完整配置示例，请参阅‘jupyterhub-deploy-teaching <https://github.
com/jupyterhub/jupyterhub-deploy-teaching>‘__存储库。 Jupylab开发指南是开发 Jupylab扩展 (extensions)或

63

https://github.com/jupyterhub/jupyterlab-hub
https://github.com/jupyterhub/jupyterlab-hub
https://github.com/jupyterhub/jupyterhub-deploy-teaching
https://github.com/jupyterhub/jupyterhub-deploy-teaching

JupyterLab Documentation,发发发布布布 0.18.4

开发 Jupylab自身。

64 Chapter 18. JupyterLab执执执行行行在在在 JupyterHub里里里

CHAPTER 19

General Codebase Orientation

jupyterlab/jupyterlab包含两个 package的声明:

• 在 repo的根目录中的 ‘‘package.json‘‘文件指示的是 npm包

• 在repo的根目录中的 ‘‘setup.py‘‘文件指示的是Python包

npm包和Python包都命名为 jupyterlab.

请查看 Contributing Guidelines开发安装说明

19.1 项项项目目目文文文件件件夹夹夹 (Directories)说说说明明明

19.1.1 NPM package: src/, lib/, typings/, buildutils/

• src/: Typescript源文件.

– jlpm run build build源文件，将build后的文件放入 lib/文件夹里.

– jlpm run clean``删除 ``lib/里的文件.

• typings/: 外部Typescript的 library定义的类型 needs.

• buildutils/: 管理 repo的 build过程

19.1.2 实实实例例例: examples/

examples/目录包含组件的独立示例，例如页面上的简单笔记本，控制台，终端和文件浏览器。 lab示例
说明了 JupyterLab中使用的组件的简化组合。此示例显示多个独立组件组合在一起以创建更复杂的应用程
序。

65

https://github.com/jupyterlab/jupyterlab/blob/master/CONTRIBUTING.md

JupyterLab Documentation,发发发布布布 0.18.4

19.1.3 测测测试试试: test/

测试存储并在 ‘‘test/‘‘目录中运行。源文件位于‘‘test/src/‘‘中。

19.1.4 Notebook extension: jupyterlab/

jupyterlab/目录包含Jupyter服务器扩展。

服务器扩展包括一个私有的npm包，以便构建扩展服务的 webpack bundle。私有npm包依赖于 repo根目录
中的 jupyterlab npm包。

19.1.5 Git hooks: git-hooks/

git-hooks/目录存储了一些方便的git hooks，每次你在git repo中签出或合并（通过pull请求或
直接push到master）时，它会自动重建npm包和服务器扩展。

19.1.6 Documentation: docs/

在构建文档（ jlpm run docs）之后， docs / index.html就是了文档的入口点。

66 Chapter 19. General Codebase Orientation

CHAPTER 20

Extension Developer Guide

警警警告告告: The extension developer API is not stable and will evolve in JupyterLab releases in the near future.

JupyterLab can be extended in four ways via:

• application plugins (top level): Application plugins extend the functionality of JupyterLab itself.

• mime renderer extensions (top level): Mime Renderer extensions are a convenience for creating an extension
that can render mime data and potentially render files of a given type.

• theme extensions (top level): Theme extensions allow you to customize the appearance of JupyterLab by
adding your own fonts, CSS rules, and graphics to the application.

• document widget extensions (lower level): Document widget extensions extend the functionality of document
widgets added to the application, and we cover them in Documents.

See Let’s Make an xkcd JupyterLab Extension to learn how to make a simple JupyterLab extension.

To understand how to wrap an Angular application as a JupyterLab extension, see the “Create your own Angular
JupyerLab extension” guide provided by Scripted Forms.

A JupyterLab application is comprised of:

• A core Application object

• Plugins

20.1 Plugins

A plugin adds a core functionality to the application:

• A plugin can require other plugins for operation.

• A plugin is activated when it is needed by other plugins, or when explicitly activated.

67

https://github.com/SimonBiggs/scriptedforms/blob/master/scriptedforms/docs/create-your-own-angular-jupyterlab-extension.md#create-your-own-angular-jupyerlab-extension
https://github.com/SimonBiggs/scriptedforms/blob/master/scriptedforms/docs/create-your-own-angular-jupyterlab-extension.md#create-your-own-angular-jupyerlab-extension
https://github.com/SimonBiggs/scriptedforms

JupyterLab Documentation,发发发布布布 0.18.4

• Plugins require and provide Token objects, which are used to provide a typed value to the plugin’s
activate() method.

• The module providing plugin(s) must meet the JupyterLab.IPluginModule interface, by exporting a plugin object
or array of plugin objects as the default export.

We provide two cookie cutters to create JuptyerLab plugin extensions in CommonJS and TypeScript.

The default plugins in the JupyterLab application include:

• Terminal - Adds the ability to create command prompt terminals.

• Shortcuts - Sets the default set of shortcuts for the application.

• Images - Adds a widget factory for displaying image files.

• Help - Adds a side bar widget for displaying external documentation.

• File Browser - Creates the file browser and the document manager and the file browser to the side bar.

• Editor - Add a widget factory for displaying editable source files.

• Console - Adds the ability to launch Jupyter Console instances for interactive kernel console sessions.

A dependency graph for the core JupyterLab plugins (along with links to their source) is shown here:

20.2 Application Object

The JupyterLab Application object is given to each plugin in its activate() function. The Application object has
a:

• commands - used to add and execute commands in the application.

• keymap - used to add keyboard shortcuts to the application.

• shell - a JupyterLab shell instance.

20.3 JupyterLab Shell

The JupyterLab shell is used to add and interact with content in the application. The application consists of:

• A top area for things like top level menus and toolbars

• Left and right side bar areas for collapsible content

• A main work area for user activity.

• A bottom area for things like status bars

20.4 Phosphor

The Phosphor library is used as the underlying architecture of JupyterLab and provides many of the low level primitives
and widget structure used in the application. Phosphor provides a rich set of widgets for developing desktop-like
applications in the browser, as well as patterns and objects for writing clean, well-abstracted code. The widgets in
the application are primarily Phosphor widgets, and Phosphor concepts, like message passing and signals, are used
throughout. Phosphor messages are a many-to-one interaction that enables information like resize events to flow
through the widget hierarchy in the application. Phosphor signals are a one-to-many interaction that enable listeners
to react to changes in an observed object.

68 Chapter 20. Extension Developer Guide

http://jupyterlab.github.io/jupyterlab/interfaces/_application_src_index_.jupyterlab.ipluginmodule.html
https://github.com/jupyterlab/extension-cookiecutter-js
https://github.com/jupyterlab/extension-cookiecutter-ts
https://github.com/jupyterlab/jupyterlab/blob/master/packages/terminal-extension/src/index.ts
https://github.com/jupyterlab/jupyterlab/blob/master/packages/shortcuts-extension/src/index.ts
https://github.com/jupyterlab/jupyterlab/blob/master/packages/imageviewer-extension/src/index.ts
https://github.com/jupyterlab/jupyterlab/blob/master/packages/help-extension/src/index.tsx
https://github.com/jupyterlab/jupyterlab/blob/master/packages/filebrowser-extension/src/index.ts
https://github.com/jupyterlab/jupyterlab/blob/master/packages/fileeditor-extension/src/index.ts
https://github.com/jupyterlab/jupyterlab/blob/master/packages/console-extension/src/index.ts
http://jupyterlab.github.io/jupyterlab/classes/_application_src_shell_.applicationshell.html

JupyterLab Documentation,发发发布布布 0.18.4

20.5 Extension Authoring

An Extension is a valid npm package that meets the following criteria:

• Exports one or more JupyterLab plugins as the default export in its main file.

• Has a jupyterlab key in its package.json which has "extension" metadata. The value can be true
to use the main module of the package, or a string path to a specific module (e.g. "lib/foo").

While authoring the extension, you can use the command:

npm install # install npm package dependencies
npm run build # optional build step if using TypeScript, babel, etc.
jupyter labextension install # install the current directory as an extension

This causes the builder to re-install the source folder before building the application files. You can re-build at any
time using jupyter lab build and it will reinstall these packages. You can also link other local npm packages
that you are working on simultaneously using jupyter labextension link; they will be re-installed but not
considered as extensions. Local extensions and linked packages are included in jupyter labextension list.

When using local extensions and linked packages, you can run the command

jupyter lab --watch

This will cause the application to incrementally rebuild when one of the linked packages changes. Note that only
compiled JavaScript files (and the CSS files) are watched by the WebPack process. This means that if your extension
is in TypeScript you’ll have to run a jlpm run build before the changes will be reflected in JupyterLab. To avoid this
step you can also watch the TypeScript sources in your extension which is usually assigned to the tsc -w shortcut.

Note that the application is built against released versions of the core JupyterLab extensions. If your extension depends
on JupyterLab packages, it should be compatible with the dependencies in the jupyterlab/static/package.
json file. Note that building will always use the latest JavaScript packages that meet the dependency requirements
of JupyterLab itself and any installed extensions. If you wish to test against a specific patch release of one of the core
JupyterLab packages you can temporarily pin that requirement to a specific version in your own dependencies.

If you must install a extension into a development branch of JupyterLab, you have to graft it into the source tree of
JupyterLab itself. This may be done using the command

jlpm run add:sibling <path-or-url>

in the JupyterLab root directory, where <path-or-url> refers either to an extension npm package on the local file
system, or a URL to a git repository for an extension npm package. This operation may be subsequently reversed by
running

jlpm run remove:package <extension-dir-name>

This will remove the package metadata from the source tree, but will not remove any files added by the addsibling
script, which should be removed manually.

The package should export EMCAScript 5 compatible JavaScript. It can import CSS using the syntax
require('foo.css'). The CSS files can also import CSS from other packages using the syntax @import
url('~foo/index.css'), where foo is the name of the package.

The following file types are also supported (both in JavaScript and CSS): json, html, jpg, png, gif, svg, js.map, woff2,
ttf, eot.

If your package uses any other file type it must be converted to one of the above types. If your JavaScript is written in
any other dialect than EMCAScript 5 it must be converted using an appropriate tool.

20.5. Extension Authoring 69

https://docs.npmjs.com/getting-started/what-is-npm

JupyterLab Documentation,发发发布布布 0.18.4

If you publish your extension on npm.org, users will be able to install it as simply jupyter labextension
install <foo>, where <foo> is the name of the published npm package. You can alternatively provide a
script that runs jupyter labextension install against a local folder path on the user’s machine or a pro-
vided tarball. Any valid npm install specifier can be used in jupyter labextension install (e.g.
foo@latest, bar@3.0.0.0, path/to/folder, and path/to/tar.gz).

There are a number of helper functions in testutils in this repo (which is a public npm package called @jupyter-
lab/testutils) that can be used when writing tests for an extension. See tests/test-application for an example of the
infrastructure needed to run tests. There is a karma config file that points to the parent directory’s karma config, and a
test runner, run-test.py that starts a Jupyter server.

20.6 Mime Renderer Extensions

Mime Renderer extensions are a convenience for creating an extension that can render mime data and potentially
render files of a given type. We provide cookiecutters for Mime render extensions in JavaScript and TypeScript.

Mime renderer extensions are more declarative than standard extensions. The extension is treated the same from
the command line perspective (jupyter labextension install), but it does not directly create JupyterLab
plugins. Instead it exports an interface given in the rendermime-interfaces package.

The JupyterLab repo has an example mime renderer extension for pdf files. It provides a mime renderer for pdf data
and registers itself as a document renderer for pdf file types.

The rendermime-interfaces package is intended to be the only JupyterLab package needed to create a mime
renderer extension (using the interfaces in TypeScript or as a form of documentation if using plain JavaScript).

The only other difference from a standard extension is that has a jupyterlab key in its package.json with
"mimeExtension" metadata. The value can be true to use the main module of the package, or a string path to a
specific module (e.g. "lib/foo").

The mime renderer can update its data by calling .setData() on the model it is given to render. This can be used
for example to add a png representation of a dynamic figure, which will be picked up by a notebook model and added
to the notebook document. When using IDocumentWidgetFactoryOptions, you can update the document
model by calling .setData() with updated data for the rendered MIME type. The document can then be saved by
the user in the usual manner.

20.7 Themes

A theme is a JupyterLab extension that uses a ThemeManager and can be loaded and unloaded dynamically. The
package must include all static assets that are referenced by url() in its CSS files. Local URLs can be used to
reference files relative to the location of the referring CSS file in the theme directory. For example url('images/
foo.png') or url('../foo/bar.css')can be used to refer local files in the theme. Absolute URLs (starting
with a /) or external URLs (e.g. https:) can be used to refer to external assets. The path to the theme assets
is specified package.json under the "jupyterlab" key as "themeDir". See the JupyterLab Light Theme
for an example. Ensure that the theme files are included in the "files" metadata in package.json. A theme can
optionally specify an embed.css file that can be consumed outside of a JupyterLab application.

To quickly create a theme based on the JupyterLab Light Theme, follow the instructions in the contributing guide
and then run jlpm run create:theme from the repository root directory. Once you select a name, title and a
description, a new theme folder will be created in the current directory. You can move that new folder to a location of
your choice, and start making desired changes.

The theme extension is installed in the same way as a regular extension (see extension authoring).

70 Chapter 20. Extension Developer Guide

https://github.com/jupyterlab/mimerender-cookiecutter
https://github.com/jupyterlab/mimerender-cookiecutter-ts
http://jupyterlab.github.io/jupyterlab/interfaces/_rendermime_interfaces_src_index_.irendermime.iextension.html
https://github.com/jupyterlab/jupyterlab/tree/master/packages/pdf-extension
https://github.com/jupyterlab/jupyterlab/tree/master/packages/theme-light-extension
https://github.com/jupyterlab/jupyterlab/blob/master/CONTRIBUTING.md#setting-up-a-development-environment

JupyterLab Documentation,发发发布布布 0.18.4

20.8 Standard (General-Purpose) Extensions

JupyterLab’s modular architecture is based around the idea that all extensions are on equal footing, and that they
interact with each other through typed interfaces that are provided by Token objects. An extension can provide a
Token to the application, which other extensions can then request for their own use.

20.8.1 Core Tokens

The core packages of JupyterLab provide a set of tokens, which are listed here, along with short descriptions of when
you might want to use them in your extensions.

• @jupyterlab/application:ILayoutRestorer: An interface to the application layout restoration
functionality. Use this to have your activities restored across page loads.

• @jupyterlab/application:IMimeDocumentTracker: An instance tracker for documents rendered
using a mime renderer extension. Use this if you want to list and interact with documents rendered by such
extensions.

• @jupyterlab/application:IRouter: The URL router used by the application. Use this to add custom
URL-routing for your extension (e.g., to invoke a command if the user navigates to a sub-path).

• @jupyterlab/apputils:ICommandPalette: An interface to the application command palette in the
left panel. Use this to add commands to the palette.

• @jupyterlab/apputils:ISplashScreen: An interface to the splash screen for the application. Use
this if you want to show the splash screen for your own purposes.

• @jupyterlab/apputils:IThemeManager: An interface to the theme manager for the application.
Most extensions will not need to use this, as they can register a theme extension.

• @jupyterlab/apputils:IWindowResolver: An interface to a window resolver for the application.
JupyterLab workspaces are given a name, which are determined using the window resolver. Require this if you
want to use the name of the current workspace.

• @jupyterlab/codeeditor:IEditorServices: An interface to the text editor provider for the appli-
cation. Use this to create new text editors and host them in your UI elements.

• @jupyterlab/completer:ICompletionManager: An interface to the completion manager for the
application. Use this to allow your extension to invoke a completer.

• @jupyterlab/console:IConsoleTracker: An instance tracker for code consoles. Use this if you
want to be able to iterate over and interact with code consoles created by the application.

• @jupyterlab/console:IContentFactory: A factory object that creates new code consoles. Use this
if you want to create and host code consoles in your own UI elements.

• @jupyterlab/coreutils:ISettingRegistry: An interface to the JupyterLab settings system. Use
this if you want to store settings for your application. See extension settings for more information.

• @jupyterlab/coreutils:IStateDB: An interface to the JupyterLab state database. Use this if you
want to store data that will persist across page loads. See state database for more information.

• @jupyterlab/docmanager:IDocumentManager: An interface to the manager for all documents used
by the application. Use this if you want to open and close documents, create and delete files, and otherwise
interact with the file system.

• @jupyterlab/filebrowser:IFileBrowserFactory: A factory object that creates file browsers.
Use this if you want to create your own file browser (e.g., for a custom storage backend), or to interact with
other file browsers that have been created by extensions.

20.8. Standard (General-Purpose) Extensions 71

JupyterLab Documentation,发发发布布布 0.18.4

• @jupyterlab/fileeditor:IEditorTracker: An instance tracker for file editors. Use this if you
want to be able to iterate over and interact with file editors created by the application.

• @jupyterlab/imageviewer:IImageTracker: An instance tracker for images. Use this if you want to
be able to iterate over and interact with images viewed by the application.

• @jupyterlab/inspector:IInspector: An interface for adding variable inspectors to widgets. Use
this to add the ability to hook into the variable inspector to your extension.

• @jupyterlab/launcher:ILauncher: An interface to the application activity launcher. Use this to add
your extension activities to the launcher panel.

• @jupyterlab/mainmenu:IMainMenu: An interface to the main menu bar for the application. Use this if
you want to add your own menu items.

• @jupyterlab/notebook:ICellTools: An interface to the Cell Tools panel in the application left
area. Use this to add your own functionality to the panel.

• @jupyterlab/notebook:IContentFactory: A factory object that creates new notebooks. Use this if
you want to create and host notebooks in your own UI elements.

• @jupyterlab/notebook:INotebookTracker: An instance tracker for code consoles. Use this if you
want to be able to iterate over and interact with notebooks created by the application.

• @jupyterlab/rendermime:IRenderMimeRegistry: An interface to the rendermime registry for the
application. Use this to create renderers for various mime-types in your extension. Most extensions will not
need to use this, as they can register a mime renderer extension.

• @jupyterlab/rendermime:ILatexTypesetter: An interface to the LaTeX typesetter for the appli-
cation. Use this if you want to typeset math in your extension.

• @jupyterlab/settingeditor:ISettingEditorTracker: An instance tracker for setting editors.
Use this if you want to be able to iterate over and interact with setting editors created by the application.

• @jupyterlab/terminal:ITerminalTracker: An instance tracker for terminals. Use this if you want
to be able to iterate over and interact with terminals created by the application.

• @jupyterlab/tooltip:ITooltipManager: An interface to the tooltip manager for the application.
Use this to allow your extension to invoke a tooltip.

20.8.2 Standard Extension Example

For a concrete example of a standard extension, see How to Extend the Notebook Plugin. Notice that the mime
renderer and themes extensions above use a limited, simplified interface to JupyterLab’s extension system. Modifying
the notebook plugin requires the full, general-purpose interface to the extension system.

20.8.3 Storing Extension Data

In addition to the file system that is accessed by using the @jupyterlab/services package, JupyterLab offers
two ways for extensions to store data: a client-side state database that is built on top of localStorage and a plugin
settings system that provides for default setting values and user overrides.

Extension Settings

An extension can specify user settings using a JSON Schema. The schema definition should be in a file that resides in
the schemaDir directory that is specified in the package.json file of the extension. The actual file name should
use is the part that follows the package name of extension. So for example, the JupyterLab apputils-extension
package hosts several plugins:

72 Chapter 20. Extension Developer Guide

./notebook.html#how-to-extend-the-notebook-plugin

JupyterLab Documentation,发发发布布布 0.18.4

• '@jupyterlab/apputils-extension:menu'

• '@jupyterlab/apputils-extension:palette'

• '@jupyterlab/apputils-extension:settings'

• '@jupyterlab/apputils-extension:themes'

And in the package.json for @jupyterlab/apputils-extension, the schemaDir field is a directory
called schema. Since the themes plugin requires a JSON schema, its schema file location is: schema/themes.
json. The plugin’s name is used to automatically associate it with its settings file, so this naming convention is
important. Ensure that the schema files are included in the "files" metadata in package.json.

See the fileeditor-extension for another example of an extension that uses settings.

State Database

The state database can be accessed by importing IStateDB from @jupyterlab/coreutils and adding it to the
list of requires for a plugin:

const id = 'foo-extension:IFoo';

const IFoo = new Token<IFoo>(id);

interface IFoo {}

class Foo implements IFoo {}

const plugin: JupyterLabPlugin<IFoo> = {
id,
requires: [IStateDB],
provides: IFoo,
activate: (app: JupyterLab, state: IStateDB): IFoo => {
const foo = new Foo();
const key = `${id}:some-attribute`;

// Load the saved plugin state and apply it once the app
// has finished restoring its former layout.
Promise.all([state.fetch(key), app.restored])

.then(([saved]) => { /* Update `foo` with `saved`. */ });

// Fulfill the plugin contract by returning an `IFoo`.
return foo;

},
autoStart: true

};

20.8.4 Context Menus

JupyterLab has an application-wide context menu available as app.contextMenu. See the Phosphor docs for
the item creation options. If you wish to preempt the application context menu, you can use a ‘contextmenu’ event
listener and call event.stopPropagation to prevent the application context menu handler from being called (it
is listening in the bubble phase on the document). At this point you could show your own Phosphor contextMenu,
or simply stop propagation and let the system context menu be shown. This would look something like the following
in a Widget subclass:

20.8. Standard (General-Purpose) Extensions 73

https://github.com/jupyterlab/jupyterlab/tree/master/packages/fileeditor-extension
http://phosphorjs.github.io/phosphor/api/widgets/interfaces/contextmenu.iitemoptions.html
http://phosphorjs.github.io/phosphor/api/widgets/classes/contextmenu.html

JupyterLab Documentation,发发发布布布 0.18.4

// In `onAfterAttach()`
this.node.addEventListener('contextmenu', this);

// In `handleEvent()`
case 'contextmenu':

event.stopPropagation();

74 Chapter 20. Extension Developer Guide

CHAPTER 21

Documents

JupyterLab can be extended in several ways:

• Extensions (top level): Application extensions extend the functionality of JupyterLab itself, and we cover them
in the Extension Developer Guide.

• Document widget extensions (lower level): Document widget extensions extend the functionality of document
widgets added to the application, and we cover them in this section.

For this section, the term ‘document’ refers to any visual thing that is backed by a file stored on disk (i.e. uses Contents
API).

75

JupyterLab Documentation,发发发布布布 0.18.4

76 Chapter 21. Documents

CHAPTER 22

Overview of document architecture

A ‘document’ in JupyterLab is represented by a model instance implementing the IModel interface. The model
interface is intentionally fairly small, and concentrates on representing the data in the document and signaling changes
to that data. Each model has an associated context instance as well. The context for a model is the bridge between the
internal data of the document, stored in the model, and the file metadata and operations possible on the file, such as
save and revert. Since many objects will need both the context and the model, the context contains a reference to the
model as its .model attribute.

A single file path can have multiple different models (and hence different contexts) representing the file. For example,
a notebook can be opened with a notebook model and with a text model. Different models for the same file path do
not directly communicate with each other.

Document widgets represent a view of a document model. There can be multiple document widgets associated with a
single document model, and they naturally stay in sync with each other since they are views on the same underlying
data model.

The Document Registry is where document types and factories are registered. Plugins can require a document registry
instance and register their content types and providers.

The Document Manager uses the Document Registry to create models and widgets for documents. The Document
Manager is only meant to be accessed by the File Browser itself.

22.1 Document Registry

Document widget extensions in the JupyterLab application can register:

• file types

• model factories for specific file types

• widget factories for specific model factories

• widget extension factories

• file creators

77

http://jupyterlab.github.io/jupyterlab/interfaces/_docregistry_src_registry_.documentregistry.imodel.html
http://jupyterlab.github.io/jupyterlab/interfaces/_docregistry_src_registry_.documentregistry.icontext.html
http://jupyterlab.github.io/jupyterlab/classes/_docregistry_src_registry_.documentregistry.html
http://jupyterlab.github.io/jupyterlab/classes/_docregistry_src_registry_.documentregistry.html
http://jupyterlab.github.io/jupyterlab/classes/_docmanager_src_manager_.documentmanager.html

JupyterLab Documentation,发发发布布布 0.18.4

22.1.1 Widget Factories

Create a widget for a given file.

Example

• The notebook widget factory that creates NotebookPanel widgets.

22.1.2 Model Factories

Create a model for a given file.

Models are generally differentiated by the contents options used to fetch the model (e.g. text, base64, notebook).

22.1.3 Widget Extension Factories

Adds additional functionality to a widget type. An extension instance is created for each widget instance, enabling the
extension to add functionality to each widget or observe the widget and/or its context.

Examples

• The ipywidgets extension that is created for NotebookPanel widgets.

• Adding a button to the toolbar of each NotebookPanel widget.

22.1.4 File Types

Intended to be used in a “Create New” dialog, providing a list of known file types.

22.1.5 File Creators

Intended for create quick launch file creators.

The default use will be for the “create new” dropdown in the file browser, giving list of items that can be created with
default options (e.g. “Python 3 Notebook”).

22.1.6 Document Models

Created by the model factories and passed to widget factories and widget extension factories. Models are the way in
which we interact with the data of a document. For a simple text file, we typically only use the to/fromString()
methods. A more complex document like a Notebook contains more points of interaction like the Notebook metadata.

22.1.7 Document Contexts

Created by the Document Manager and passed to widget factories and widget extensions. The context contains the
model as one of its properties so that we can pass a single object around.

They are used to provide an abstracted interface to the session and contents API from @jupyterlab/services
for the given model. They can be shared between widgets.

The reason for a separate context and model is so that it is easy to create model factories and the heavy lifting of the
context is left to the Document Manager. Contexts are not meant to be subclassed or re-implemented. Instead, the
contexts are intended to be the glue between the document model and the wider application.

78 Chapter 22. Overview of document architecture

JupyterLab Documentation,发发发布布布 0.18.4

22.2 Document Manager

The Document Manager handles:

• document models

• document contexts

The File Browser uses the Document Manager to open documents and manage them.

22.2. Document Manager 79

JupyterLab Documentation,发发发布布布 0.18.4

80 Chapter 22. Overview of document architecture

CHAPTER 23

Notebook

23.1 Background

A JupyterLab architecture walkthrough from June 16, 2016, provides an overview of the notebook architecture.

The most complicated plugin included in the JupyterLab application is the Notebook plugin.

The NotebookWidgetFactory constructs a new NotebookPanel from a model and populates the toolbar with default
widgets.

23.2 Structure of the Notebook plugin

The Notebook plugin provides a model and widgets for dealing with notebook files.

23.2.1 Model

The NotebookModel contains an observable list of cells.

A cell model can be:

• a code cell

• a markdown cell

• raw cell

A code cell contains a list of output models. The list of cells and the list of outputs can be observed for changes.

Cell operations

The NotebookModel cell list supports single-step operations such as moving, adding, or deleting cells. Compound cell
list operations, such as undo/redo, are also supported by the NotebookModel. Right now, undo/redo is only supported

81

http://jupyterlab.github.io/jupyterlab/classes/_notebook_src_widgetfactory_.notebookwidgetfactory.html
http://jupyterlab.github.io/jupyterlab/classes/_notebook_src_panel_.notebookpanel.html
http://jupyterlab.github.io/jupyterlab/classes/_notebook_src_model_.notebookmodel.html
http://jupyterlab.github.io/jupyterlab/modules/_cells_src_model_.html

JupyterLab Documentation,发发发布布布 0.18.4

on cells and is not supported on notebook attributes, such as notebook metadata. Currently, undo/redo for individual
cell input content is supported by the CodeMirror editor’s undo feature. (Note: CodeMirror editor’s undo does not
cover cell metadata changes.)

Metadata

The notebook model and the cell model (i.e. notebook cells) support getting and setting metadata through an IOb-
servableJSON object. You can use this to get and set notebook/cell metadata, as well as subscribe to changes to
it.

23.2.2 Notebook widget

After the NotebookModel is created, the NotebookWidgetFactory constructs a new NotebookPanel from the model.
The NotebookPanel widget is added to the DockPanel. The NotebookPanel contains:

• a Toolbar

• a Notebook widget.

The NotebookPanel also adds completion logic.

The NotebookToolbar maintains a list of widgets to add to the toolbar. The Notebook widget contains the rendering
of the notebook and handles most of the interaction logic with the notebook itself (such as keeping track of interactions
such as selected and active cells and also the current edit/command mode).

The NotebookModel cell list provides ways to do fine-grained changes to the cell list.

Higher level actions using NotebookActions

Higher-level actions are contained in the NotebookActions namespace, which has functions, when given a notebook
widget, to run a cell and select the next cell, merge or split cells at the cursor, delete selected cells, etc.

Widget hierarchy

A Notebook widget contains a list of cell widgets, corresponding to the cell models in its cell list.

• Each cell widget contains an InputArea,

– which contains n CodeEditorWrapper,

* which contains a JavaScript CodeMirror instance.

A CodeCell also contains an OutputArea. An OutputArea is responsible for rendering the outputs in the Out-
putAreaModel list. An OutputArea uses a notebook-specific RenderMimeRegistry object to render display_data
output messages.

Rendering output messages

A Rendermime plugin provides a pluggable system for rendering output messages. Default renderers are provided
for markdown, html, images, text, etc. Extensions can register renderers to be used across the entire application by
registering a handler and mimetype in the rendermime registry. When a notebook is created, it copies the global Ren-
dermime singleton so that notebook-specific renderers can be added. The ipywidgets widget manager is an example
of an extension that adds a notebook-specific renderer, since rendering a widget depends on notebook-specific widget
state.

82 Chapter 23. Notebook

http://jupyterlab.github.io/jupyterlab/modules/_observables_src_observablejson_.iobservablejson.html
http://jupyterlab.github.io/jupyterlab/modules/_observables_src_observablejson_.iobservablejson.html
http://jupyterlab.github.io/jupyterlab/modules/_apputils_src_toolbar_.html
http://jupyterlab.github.io/jupyterlab/classes/_notebook_src_widget_.notebook.html
http://jupyterlab.github.io/jupyterlab/classes/_notebook_src_actions_.notebookactions.html
http://jupyterlab.github.io/jupyterlab/modules/_cells_src_widget_.html
http://jupyterlab.github.io/jupyterlab/classes/_cells_src_inputarea_.inputarea.html
http://jupyterlab.github.io/jupyterlab/classes/_codeeditor_src_widget_.codeeditorwrapper.html
http://jupyterlab.github.io/jupyterlab/classes/_cells_src_widget_.codecell.html
http://jupyterlab.github.io/jupyterlab/classes/_outputarea_src_widget_.outputarea.html
http://jupyterlab.github.io/jupyterlab/classes/_outputarea_src_model_.outputareamodel.html
http://jupyterlab.github.io/jupyterlab/classes/_outputarea_src_model_.outputareamodel.html
http://jupyterlab.github.io/jupyterlab/classes/_rendermime_src_registry_.rendermimeregistry.html

JupyterLab Documentation,发发发布布布 0.18.4

23.3 How to extend the Notebook plugin

We’ll walk through two notebook extensions:

• adding a button to the toolbar

• adding an ipywidgets extension

23.3.1 Adding a button to the toolbar

Start from the cookie cutter extension template.

pip install cookiecutter
cookiecutter https://github.com/jupyterlab/extension-cookiecutter-ts
cd my-cookie-cutter-name

Install the dependencies. Note that extensions are built against the released npm packages, not the development
versions.

npm install --save @jupyterlab/notebook @jupyterlab/application @jupyterlab/apputils
→˓@jupyterlab/docregistry @phosphor/disposable

Copy the following to src/index.ts:

import {
IDisposable, DisposableDelegate

} from '@phosphor/disposable';

import {
JupyterLab, JupyterLabPlugin

} from '@jupyterlab/application';

import {
ToolbarButton

} from '@jupyterlab/apputils';

import {
DocumentRegistry

} from '@jupyterlab/docregistry';

import {
NotebookActions, NotebookPanel, INotebookModel

} from '@jupyterlab/notebook';

/**
* The plugin registration information.

*/
const plugin: JupyterLabPlugin<void> = {

activate,
id: 'my-extension-name:buttonPlugin',
autoStart: true

};

/**
(continues on next page)

23.3. How to extend the Notebook plugin 83

JupyterLab Documentation,发发发布布布 0.18.4

(续上页)

* A notebook widget extension that adds a button to the toolbar.

*/
export
class ButtonExtension implements DocumentRegistry.IWidgetExtension<NotebookPanel,
→˓INotebookModel> {
/**
* Create a new extension object.

*/
createNew(panel: NotebookPanel, context: DocumentRegistry.IContext<INotebookModel>

→˓): IDisposable {
let callback = () => {

NotebookActions.runAll(panel.content, context.session);
};
let button = new ToolbarButton({

className: 'myButton',
iconClassName: 'fa fa-fast-forward',
onClick: callback,
tooltip: 'Run All'

});

panel.toolbar.insertItem(0, 'runAll', button);
return new DisposableDelegate(() => {
button.dispose();

});
}

}

/**
* Activate the extension.

*/
function activate(app: JupyterLab) {

app.docRegistry.addWidgetExtension('Notebook', new ButtonExtension());
};

/**
* Export the plugin as default.

*/
export default plugin;

Run the following commands:

npm install
npm run build
jupyter labextension install .
jupyter lab

Open a notebook and observe the new “Run All” button.

23.3.2 The ipywidgets third party extension

This discussion will be a bit confusing since we’ve been using the term widget to refer to phosphor widgets. In the
discussion below, ipython widgets will be referred to as ipywidgets. There is no intrinsic relation between phosphor
widgets and ipython widgets.

The ipywidgets extension registers a factory for a notebook widget extension using the Document Registry. The

84 Chapter 23. Notebook

http://jupyterlab.github.io/jupyterlab/classes/_docregistry_src_registry_.documentregistry.html

JupyterLab Documentation,发发发布布布 0.18.4

createNew() function is called with a NotebookPanel and DocumentContext. The plugin then creates a ipywidget
manager (which uses the context to interact the kernel and kernel’s comm manager). The plugin then registers an
ipywidget renderer with the notebook instance’s rendermime (which is specific to that particular notebook).

When an ipywidget model is created in the kernel, a comm message is sent to the browser and handled by the ipywidget
manager to create a browser-side ipywidget model. When the model is displayed in the kernel, a display_data out-
put is sent to the browser with the ipywidget model id. The renderer registered in that notebook’s rendermime is asked
to render the output. The renderer asks the ipywidget manager instance to render the corresponding model, which
returns a JavaScript promise. The renderer creates a container phosphor widget which it hands back synchronously to
the OutputArea, and then fills the container with the rendered ipywidget when the promise resolves.

Note: The ipywidgets third party extension has not yet been released.

23.3. How to extend the Notebook plugin 85

http://jupyterlab.github.io/jupyterlab/interfaces/_docregistry_src_registry_.documentregistry.icontext.html

JupyterLab Documentation,发发发布布布 0.18.4

86 Chapter 23. Notebook

CHAPTER 24

Design Patterns

There are several design patterns that are repeated throughout the repository. This guide is meant to supplement the
TypeScript Style Guide.

24.1 TypeScript

TypeScript is used in all of the source code. TypeScript is used because it provides features from the most recent
EMCAScript 6 standards, while providing type safety. The TypeScript compiler eliminates an entire class of bugs,
while making it much easier to refactor code.

24.2 Initialization Options

Objects will typically have an IOptions interface for initializing the widget. The use of this interface enables options
to be later added while preserving backward compatibility.

24.3 ContentFactory Option

A common option for a widget is a IContentFactory, which is used to customize the child content in the widget.
If not given, a defaultRenderer instance is used if no arguments are required. In this way, widgets can be
customized without subclassing them, and widgets can support customization of their nested content.

24.4 Static Namespace

An object class will typically have an exported static namespace sharing the same name as the object. The namespace
is used to declutter the class definition.

87

https://github.com/jupyterlab/jupyterlab/wiki/TypeScript-Style-Guide

JupyterLab Documentation,发发发布布布 0.18.4

24.5 Private Module Namespace

The “Private” module namespace is used to group variables and functions that are not intended to be exported and may
have otherwise existed as module-level variables and functions. The use of the namespace also makes it clear when a
variable access is to an imported name or from the module itself. Finally, the namespace enables the entire section to
be collapsed in an editor if desired.

24.6 Disposables

JavaScript does not support “destructors”, so the IDisposable pattern is used to ensure resources are freed and
can be claimed by the Garbage Collector when no longer needed. It should always be safe to dispose() of an
object more than once. Typically the object that creates another object is responsible for calling the dispose method
of that object unless explicitly stated otherwise.
To mirror the pattern of construction, super.dispose() should be called last in the dispose() method if there
is a parent class. Make sure any signal connections are cleared in either the local or parent dispose() method. Use
a sentinel value to guard against reentry, typically by checking if an internal value is null, and then immediately
setting the value to null. A subclass should never override the isDisposed getter, because it short-circuits the
parent class getter. The object should not be considered disposed until the base class dispose() method is called.

24.7 Messages

Messages are intended for many-to-one communication where outside objects influence another object. Messages can
be conflated and processed as a single message. They can be posted and handled on the next animation frame.

24.8 Signals

Signals are intended for one-to-many communication where outside objects react to changes on another object. Sig-
nals are always emitted with the sender as the first argument, and contain a single second argument with the payload.
Signals should generally not be used to trigger the “default” behavior for an action, but to enable others to trigger addi-
tional behavior. If a “default” behavior is intended to be provided by another object, then a callback should be provided
by that object. Wherever possible as signal connection should be made with the pattern .connect(this._onFoo,
this). Providing the this context enables the connection to be properly cleared by clearSignalData(this).
Using a private method avoids allocating a closure for each connection.

24.9 Models

Some of the more advanced widgets have a model associated with them. The common pattern used is that the model
is settable and must be set outside of the constructor. This means that any consumer of the widget must account for a
model that may be null, and may change at any time. The widget should emit a modelChanged signal to enable
consumers to handle a change in model. The reason to enable a model to swap is that the same widget could be used to
display different model content while preserving the widget’s location in the application. The reason the model cannot
be provided in the constructor is the initialization required for a model may have to call methods that are subclassed.
The subclassed methods would be called before the subclass constructor has finished evaluating, resulting in undefined
state.

88 Chapter 24. Design Patterns

JupyterLab Documentation,发发发布布布 0.18.4

24.10 Getters vs. Methods

Prefer a method when the return value must be computed each time. Prefer a getter for simple attribute lookup. A
getter should yield the same value every time.

24.11 Data Structures

For public API, we have three options: JavaScript Array, IIterator, and ReadonlyArray (an interface defined
by TypeScript).

Prefer an Array for:

• A value that is meant to be mutable.

Prefer a ReadonlyArray

• A return value is the result of a newly allocated array, to avoid the extra allocation of an iterator.

• A signal payload - since it will be consumed by multiple listeners.

• The values may need to be accessed randomly.

• A public attribute that is inherently static.

Prefer an IIterator for:

• A return value where the value is based on an internal data structure but the value should not need to be accessed
randomly.

• A set of return values that can be computed lazily.

24.12 DOM Events

If an object instance should respond to DOM events, create a handleEvent method for the class and
register the object instance as the event handler. The handleEvent method should switch on the event
type and could call private methods to carry out the actions. Often a widget class will add itself as
an event listener to its own node in the onAfterAttach method with something like this.node.
addEventListener('mousedown', this) and unregister itself in the onBeforeDetach method with
this.node.removeEventListener('mousedown', this)Dispatching events from the handleEvent
method makes it easier to trace, log, and debug event handling. For more information about the handleEvent
method, see the EventListener API.

24.13 Promises

We use Promises for asynchronous function calls, and a shim for browsers that do not support them. When handling
a resolved or rejected Promise, make sure to check for the current state (typically by checking an .isDisposed
property) before proceeding.

24.10. Getters vs. Methods 89

https://developer.mozilla.org/en-US/docs/Web/API/EventListener

JupyterLab Documentation,发发发布布布 0.18.4

24.14 Command Names

Commands used in the application command registry should be formatted as follows:
package-name:verb-noun. They are typically grouped into a CommandIDs namespace in the extension that
is not exported.

90 Chapter 24. Design Patterns

CHAPTER 25

CSS Patterns

This document describes the patterns we are using to organize and write CSS for JupyterLab. JupyterLab is developed
using a set of npm packages that are located in packages. Each of these packages has its own style, but depend on
CSS variables dfined in a main theme package.

25.1 CSS checklist

• CSS classnames are defined inline in the code. We used to put them as all caps file-level consts, but we are
moving away from that.

• CSS files for packages are located within the style subdirectory and imported into the plugin’s index.css.

• The JupyterLab default CSS variables in the theme-light-extension and theme-dark-extension
packages are used to style packages where ever possible. Individual packages should not npm-depend on these
packages though, to enable the theme to be swapped out.

• Additional public/private CSS variables are defined by plugins sparingly and in accordance with the conventions
described below.

25.2 CSS variables

We are using native CSS variables in JupyterLab. This is to enable dynamic theming of built-in and third party plugins.
As of December 2017, CSS variables are supported in the latest stable versions of all popular browsers, except for IE.
If a JupyterLab deployment needs to support these browsers, a server side CSS preprocessor such as Myth or cssnext
may be used.

25.2.1 Naming of CSS variables

We use the following convention for naming CSS variables:

• Start all CSS variables with --jp-.

91

JupyterLab Documentation,发发发布布布 0.18.4

• Words in the variable name should be lowercase and separated with -.

• The next segment should refer to the component and subcomponent, such as --jp-notebook-cell-.

• The next segment should refer to any state modifiers such as active, not-active or focused:
--jp-notebook-cell-focused.

• The final segment will typically be related to a CSS properties, such as color, font-size or background:
--jp-notebook-cell-focused-background.

25.2.2 Public/private

Some CSS variables in JupyterLab are considered part of our public API. Others are considered private and should not
be used by third party plugins or themes. The difference between public and private variables is simple:

• All private variables begin with --jp-private-

• All variables without the private- prefix are public.

• Public variables should be defined under the :root pseudo-selector. This ensures that public CSS variables
can be inspected under the top-level <html> tag in the browser’s dev tools.

• Where possible, private variables should be defined and scoped under an appropriate selector other than :root.

25.2.3 CSS variable usage

JupyterLab includes a default set of CSS variables in the file:

packages/theme-light-extension/style/variables.css

To ensure consistent design in JupyterLab, all built-in and third party extensions should use these variables in their
styles if at all possible. Documentation about those variables can be found in the variables.css file itself.

Plugins are free to define additional public and private CSS variables in their own index.css file, but should do so
sparingly.

Again, we consider the names of the public CSS variables in this package to be our public API for CSS.

25.3 File organization

We are organizing our CSS files in the following manner:

• Each package in the top-level packages directory should contain any CSS files in a style subdirectory that
are needed to style itself.

• Multiple CSS files may be used and organized as needed, but they should be imported into a single index.css
at the top-level of the plugin as import ‘../style/index.css’;.

25.4 CSS class names

We have a fairly formal method for naming our CSS classes.

First, CSS class names are associated with TypeScript classes that extend phosphor.Widget:

The .node of each such widget should have a CSS class that matches the name of the TypeScript class:

92 Chapter 25. CSS Patterns

JupyterLab Documentation,发发发布布布 0.18.4

class MyWidget extends Widget {

constructor() {
super();
this.addClass('jp-MyWidget');

}

}

Second, subclasses should have a CSS class for both the parent and child:

class MyWidgetSubclass extends MyWidget {

constructor() {
super(); // Adds `jp-MyWidget`
this.addClass('jp-MyWidgetSubclass');

}

}

In both of these cases, CSS class names with caps-case are reserved for situations where there is a named TypeScript
Widget subclass. These classes are a way of a TypeScript class providing a public API for styling.

Third, children nodes of a Widget should have a third segment in the CSS class name that gives a semantic naming
of the component, such as:

• jp-MyWidget-toolbar

• jp-MyWidget-button

• jp-MyWidget-contentButton

In general, the parent MyWidget should add these classes to the children. This applies when the children are plain
DOM nodes or Widget instances/subclasses themselves. Thus, the general naming of CSS classes is of the form
jp-WidgetName-semanticChild. This enables the styling of these children in a manner that is independent of
the children implementation or CSS classes they have themselves.

Fourth, some CSS classes are used to modify the state of a widget:

• jp-mod-active: applied to elements in the active state

• jp-mod-hover: applied to elements in the hover state

• jp-mod-selected: applied to elements while selected

Fifth, some CSS classes are used to distinguish different types of a widget:

• jp-type-separator: applied to menu items that are separators

• jp-type-directory: applied to elements in the file browser that are directories

25.5 Edge cases

Over time, we have found that there are some edge cases that these rules don’t fully address. Here, we try to clarify
those edge cases.

When should a parent add a class to children?

25.5. Edge cases 93

JupyterLab Documentation,发发发布布布 0.18.4

Above, we state that a parent (MyWidget), should add CSS classes to children that indicate the semantic
function of the child. Thus, the MyWidget subclass of Widget should add jp-MyWidget to itself and
jp-MyWidget-toolbar to a toolbar child.

What if the child itself is a Widget and already has a proper CSS class name itself, such as jp-Toolbar? Why not
use selectors such as .jp-MyWidget .jp-Toolbar or .jp-MyWidget > .jp-Toolbar?

The reason is that these selectors are dependent on the implementation of the toolbar having the jp-Toolbar CSS
class. When MyWidget adds the jp-MyWidget-toolbar class, it can style the child independent of its imple-
mentation. The other reason to add the jp-MyWidget-toolbar class is if the DOM structure is highly recursive,
the usual descendant selectors may not be specific to target only the desired children.

When in doubt, there is little harm done in parents adding selectors to children.

94 Chapter 25. CSS Patterns

CHAPTER 26

Writing Documentation

This section provides information about writing documentation for JupyterLab. See our Contributor Guide for details
on installation and testing.

26.1 Writing Style

• The documentation should be written in the second person, referring to the reader as “you” and not using the
first person plural “we.” The author of the documentation is not sitting next to the user, so using “we” can lead
to frustration when things don’t work as expected.

• Avoid words that trivialize using JupyterLab such as “simply” or “just.” Tasks that developers find simple or
easy may not be for users.

• Write in the active tense, so “drag the notebook cells. . . ” rather than “notebook cells can be dragged. . . ”

• The beginning of each section should begin with a short (1-2 sentence) high-level description of the topic, feature
or component.

• Use “enable” rather than “allow” to indicate what JupyterLab makes possible for users. Using “allow” connotes
that we are giving them permission, whereas “enable” connotes empowerment.

26.2 User Interface Naming Conventions

26.2.1 Documents, Files, and Activities

Files are referrred to as either files or documents, depending on the context.

Documents are more human centered. If human viewing, interpretation, interaction is an important part of the ex-
perience, it is a document in that context. For example, notebooks and markdown files will often be referring to as
documents unless referring to the file-ness aspect of it (e.g., the notebook filename).

Files are used in a less human-focused context. For example, we refer to files in relation to a file system or file name.

95

https://github.com/jupyterlab/jupyterlab/blob/master/CONTRIBUTING.md

JupyterLab Documentation,发发发布布布 0.18.4

Activities can be either a document or another UI panel that is not file backed, such as terminals, consoles or the
inspector. An open document or file is an activity in that it is represented by a panel that you can interact with.

26.2.2 Element Names

• The generic content area of a tabbed UI is a panel, but prefer to refer to the more specific name, such as “File
browser.” Tab bars have tabs which toggle panels.

• The menu bar contains menu items, which have their own submenus.

• The main work area can be referred to as the work area when the name is unambiguous.

• When describing elements in the UI, colloquial names are preferred (e.g., “File browser” instead of “Files
panel”).

The majority of names are written in lower case. These names include:

• tab

• panel

• menu bar

• sidebar

• file

• document

• activity

• tab bar

• main work area

• file browser

• command palette

• cell inspector

• code console

The following sections of the user interface should be in title case, directly quoting a word in the UI:

• File menu

• Files tab

• Running panel

• Tabs panel

• Single-Document Mode

The capitalized words match the label of the UI element the user is clicking on because there does not exist a good
colloquial name for the tool, such as “file browser” or “command palette”.

See JupyterLab接口 (API) for descriptions of elements in the UI.

26.3 Keyboard Shortcuts

Typeset keyboard shortcuts as follows:

96 Chapter 26. Writing Documentation

JupyterLab Documentation,发发发布布布 0.18.4

• Monospace typeface, with spaces between individual keys: Shift Enter.

• For modifiers, use the platform independent word describing key: Shift.

• For the Accel key use the phrase: Command/Ctrl.

• Don’t use platform specific icons for modifier keys, as they are difficult to display in a platform specific way on
Sphinx/RTD.

26.4 Screenshots and Animations

Our documentation should contain screenshots and animations that illustrate and demonstrate the software. Here are
some guidelines for preparing them:

• Set screen resolution to non-hidpi (non-retina)

• Set browser viewport to 1280x720 px. The Firefox Web Developer extension and Chrome Developer Tools offer
device specific rendering that enables you to set this viewport resolution.

• Capture the viewport, not the full browser window, using the capture software of your choice. Do not include
any of the desktop background.

• For PNGs, reduce their size using pngquant. For movies, upload them to the IPython/Juptyter YouTube channel
and embed them in the docs with an iframe. The pngs can live in the main repository. The movies should be
added to the jupyterlab-media repository.

• Use www.youtube-nocookie.com website, which can be found by clicking on the ‘privacy-enhanced’ embedding
option in the Share dialog on YouTube. Add the following parameters the end of the URL ?rel=0&
showinfo=0. This disables the video title and related video suggestions.

• Screenshots or animations should be proceeded by a sentence describing the content, such as “To open a file,
double-click on its name in the File Browser:”.

• We have custom CSS that will add box shadows, and proper sizing of screenshots and embedded YouTube
videos. See examples in the documentation for how to embed these assets.

To help us organize screenshots and animations, please name the files with a prefix that matches the names of the
source file in which they are used:

sourcefile.rst
sourcefile_filebrowser.png
sourcefile_editmenu.png

This will help us to keep track of the images as documentation content evolves.

26.4. Screenshots and Animations 97

JupyterLab Documentation,发发发布布布 0.18.4

98 Chapter 26. Writing Documentation

CHAPTER 27

Virtual DOM and React

JupyterLab is based on PhosphorJS, which provides a flexible Widget class that handles the following:

• Resize events that propagate down the Widget hierarchy.

• Lifecycle events (onBeforeDetach, onAfterAttach, etc.).

• Both CSS-based and absolutely positioned layouts.

In situations where these features are needed, we recommend using Phosphor’s Widget class directly.

The idea of virtual DOM rendering, which became popular in the React community, is a very elegant and efficient way
of rendering and updating DOM content in response to model/state changes.

Phosphor’s Widget class integrates well with ReactJS and we are now using React in JupyterLab to render leaf
content when the above capabilities are not needed.

An example of using React with Phosphor can be found in the launcher of JupyterLab.

99

http://phosphorjs.github.io/
https://reactjs.org/
https://github.com/jupyterlab/jupyterlab/blob/master/packages/launcher/src/index.tsx

JupyterLab Documentation,发发发布布布 0.18.4

100 Chapter 27. Virtual DOM and React

CHAPTER 28

Adding Content

As an example: Add a leaflet viewer plugin for geoJSON files.

• Go to npm: search for leaflet (success!).

• Go to jupyterlab top level source directory: jlpm add leaflet. This adds the file to the
dependencies in package.json.

• Next we see if there is a typing declaration for leaflet: jlpm add --dev @types/leaflet. Success!

• If there are no typings, we must create our own. An example typings file that exports functions is path-posix.
An example with a class is xterm.

• Add a reference to the new library in src/typings.d.ts.

• Create a folder in src for the plugin.

• Add index.ts and plugin.ts files.

• If creating CSS, import them in src/default-themes/index.css.

• The index.ts file should have the core logic for the plugin. In this case, it should create a widget and widget
factory for rendering geojson files (see Documents).

• The plugin.ts file should create the extension and add the content to the application. In this case registering
the widget factory using the document registry.

• Run jlpm run build from jupyterlab/jupyterlab

• Run jupyter lab and verify changes.

101

https://www.npmjs.com/package/leaflet
https://github.com/jupyterlab/jupyterlab/blob/master/packages/coreutils/typings/path-posix/path-posix.d.ts
https://github.com/jupyterlab/jupyterlab/blob/master/packages/terminal/src/xterm.d.ts
documents.html

JupyterLab Documentation,发发发布布布 0.18.4

102 Chapter 28. Adding Content

CHAPTER 29

Examples

The examples directory in the JupyterLab repo contains:

• several stand-alone examples (console, filebrowser, notebook, terminal)

• a more complex example (lab).

Installation instructions for the examples are found in the project’s README.

After installing the jupyter notebook server 4.2+, follow the steps for installing the development version of JupyterLab.
To build the examples, enter from the jupyterlab repo root directory:

jlpm run build:examples

To run a particular example, navigate to the example’s subdirectory in the examples directory and enter:

python main.py

29.1 Dissecting the ‘filebrowser’ example

The filebrowser example provides a stand-alone implementation of a filebrowser. Here’s what the filebrowser’s user
interface looks like:

103

JupyterLab Documentation,发发发布布布 0.18.4

Let’s take a closer look at the source code in examples/filebrowser.

29.1.1 Directory structure of ‘filebrowser’ example

The filebrowser in examples/filebrowser is comprised by a handful of files and the src directory:

104 Chapter 29. Examples

JupyterLab Documentation,发发发布布布 0.18.4

The filebrowser example has two key source files:

• src/index.ts: the TypeScript file that defines the functionality

• main.py: the Python file that enables the example to be run

Reviewing the source code of each file will help you see the role that each file plays in the stand-alone filebrowser
example.

29.1. Dissecting the ‘filebrowser’ example 105

JupyterLab Documentation,发发发布布布 0.18.4

106 Chapter 29. Examples

CHAPTER 30

Terminology

Learning to use a new technology and its architecture can be complicated by the jargon used to describe components.
We provide this terminology guide to help smooth the learning the components.

30.1 Terms

• Application - The main application object that hold the application shell, command registry, and keymap registry.
It is provided to all plugins in their activate method.

• Plugin - An object that provides a service and or extends the application.

• Phosphor - The JavaScript library that provides the foundation of JupyterLab, enabling desktop-like applications
in the browser.

• Standalone example - An example in the examples/ directory that demonstrates the usage of one or more
components of JupyterLab.

• TypeScript - A statically typed language that compiles to JavaScript.

107

JupyterLab Documentation,发发发布布布 0.18.4

108 Chapter 30. Terminology

CHAPTER 31

Let’s Make an xkcd JupyterLab Extension

警警警告告告: The extension developer API is not stable and will evolve in JupyterLab releases in the near future.

JupyterLab extensions add features to the user experience. This page describes how to create one type of extension,
an application plugin, that:

• Adds a “Random xkcd comic” command to the command palette sidebar

• Fetches the comic image and metadata when activated

• Shows the image and metadata in a tab panel

By working through this tutorial, you’ll learn:

• How to setup an extension development environment from scratch on a Linux or OSX machine.

– Windows users: You’ll need to modify the commands slightly.

• How to start an extension project from jupyterlab/extension-cookiecutter-ts

• How to iteratively code, build, and load your extension in JupyterLab

• How to version control your work with git

• How to release your extension for others to enjoy

109

https://xkcd.com
https://github.com/jupyterlab/extension-cookiecutter-ts

JupyterLab Documentation,发发发布布布 0.18.4

Sound like fun? Excellent. Here we go!

31.1 Setup a development environment

31.1.1 Install conda using miniconda

Start by installing miniconda, following Conda’s installation documentation.

31.1.2 Install NodeJS, JupyterLab, etc. in a conda environment

Next create a conda environment that includes:

1. the latest release of JupyterLab

2. cookiecutter, the tool you’ll use to bootstrap your extension project structure

3. NodeJS, the JavaScript runtime you’ll use to compile the web assets (e.g., TypeScript, CSS) for your extension

4. git, a version control system you’ll use to take snapshots of your work as you progress through this tutorial

It’s best practice to leave the root conda environment, the one created by the miniconda installer, untouched and install
your project specific dependencies in a named conda environment. Run this command to create a new environment
named jupyterlab-ext.

110 Chapter 31. Let’s Make an xkcd JupyterLab Extension

https://conda.io/docs/user-guide/install/index.html
https://github.com/audreyr/cookiecutter
https://nodejs.org
https://git-scm.com

JupyterLab Documentation,发发发布布布 0.18.4

conda create -n jupyterlab-ext nodejs jupyterlab cookiecutter git -c conda-forge

Now activate the new environment so that all further commands you run work out of that environment.

conda activate jupyterlab-ext

Note: You’ll need to run the command above in each new terminal you open before you can work with the tools you
installed in the jupyterlab-ext environment.

31.2 Create a repository

Create a new repository for your extension. For example, on GitHub. This is an optional step but highly recommended
if you want to share your extension.

31.3 Create an extension project

31.3.1 Initialize the project from a cookiecutter

Next use cookiecutter to create a new project for your extension. This will create a new folder for your extension in
your current directory.

cookiecutter https://github.com/jupyterlab/extension-cookiecutter-ts

When prompted, enter values like the following for all of the cookiecutter prompts.

author_name []: Your Name
extension_name [myextension]: jupyterlab_xkcd
project_short_description [A JupyterLab extension.]: Show a random xkcd.com comic in
→˓a JupyterLab panel
repository [https://github.com/my_name/jupyterlab_myextension]: https://github.com/my_
→˓name/jupyterlab_xkcd

Note: if not using a repository, leave the field blank. You can come back and edit the repository links in the package.
json file later.

Change to the directory the cookiecutter created and list the files.

cd jupyterlab_xkcd
ls

You should see a list like the following.

README.md package.json src style tsconfig.json

31.3.2 Build and install the extension for development

Your new extension project has enough code in it to see it working in your JupyterLab. Run the following commands
to install the initial project dependencies and install it in the JupyterLab environment. We defer building since it will
be built in the next step.

31.2. Create a repository 111

https://help.github.com/articles/create-a-repo/

JupyterLab Documentation,发发发布布布 0.18.4

注注注解解解: This tutorial uses jlpm to install Javascript packages and run build commands, which is JupyterLab’s bundled
version of yarn. If you prefer, you can use another Javascript package manager like npm or yarn itself.

jlpm install
jupyter labextension install . --no-build

After the install completes, open a second terminal. Run these commands to activate the jupyterlab-ext en-
vironment and to start a JupyterLab instance in watch mode so that it will keep up with our changes as we make
them.

conda activate jupyterlab-ext
jupyter lab --watch

31.3.3 See the initial extension in action

After building with your extension, JupyterLab should open in your default web browser.

In that window open the JavaScript console by following the instructions for your browser:

• Accessing the DevTools in Google Chrome

• Opening the Web Console in Firefox

After you reload the page with the console open, you should see a message that says JupyterLab extension
jupyterlab_xkcd is activated! in the console. If you do, congrats, you’re ready to start modifying the the
extension! If not, go back, make sure you didn’t miss a step, and reach out if you’re stuck.

Note: Leave the terminal running the jupyter lab --watch command open.

31.3.4 Commit what you have to git

Run the following commands in your jupyterlab_xkcd folder to initialize it as a git repository and commit the
current code.

git init
git add .
git commit -m 'Seed xkcd project from cookiecutter'

Note: This step is not technically necessary, but it is good practice to track changes in version control system in
case you need to rollback to an earlier version or want to collaborate with others. For example, you can compare
your work throughout this tutorial with the commits in a reference version of jupyterlab_xkcd on GitHub at
https://github.com/jupyterlab/jupyterlab_xkcd.

31.4 Add an xkcd widget

31.4.1 Show an empty panel

The command palette is the primary view of all commands available to you in JupyterLab. For your first addition,
you’re going to add a Random xkcd comic command to the palette and get it to show an xkcd tab panel when invoked.

Fire up your favorite text editor and open the src/index.ts file in your extension project. Add the following
import at the top of the file to get a reference to the command palette interface.

112 Chapter 31. Let’s Make an xkcd JupyterLab Extension

https://developer.chrome.com/devtools#access
https://developer.mozilla.org/en-US/docs/Tools/Web_Console/Opening_the_Web_Console
https://github.com/jupyterlab/jupyterlab/blob/master/README.md#getting-help
https://github.com/jupyterlab/jupyterlab_xkcd

JupyterLab Documentation,发发发布布布 0.18.4

import {
ICommandPalette

} from '@jupyterlab/apputils';

You will also need to install this dependency. Run the following command in the repository root folder install the
dependency and save it to your package.json:

jlpm add @jupyterlab/apputils

Locate the extension object of type JupyterLabPlugin. Change the definition so that it reads like so:

/**
* Initialization data for the jupyterlab_xkcd extension.

*/
const extension: JupyterLabPlugin<void> = {

id: 'jupyterlab_xkcd',
autoStart: true,
requires: [ICommandPalette],
activate: (app: JupyterLab, palette: ICommandPalette) => {
console.log('JupyterLab extension jupyterlab_xkcd is activated!');
console.log('ICommandPalette:', palette);

}
};

The requires attribute states that your plugin needs an object that implements the ICommandPalette interface
when it starts. JupyterLab will pass an instance of ICommandPalette as the second parameter of activate
in order to satisfy this requirement. Defining palette: ICommandPalette makes this instance available to
your code in that function. The second console.log line exists only so that you can immediately check that your
changes work.

Run the following to rebuild your extension.

jlpm run build

JupyterLab will rebuild after the extension does. You can see it’s progress in the jupyter lab --watch window.
After that finishes, return to the browser tab that opened when you started JupyterLab. Refresh it and look in the
console. You should see the same activation message as before, plus the new message about the ICommandPalette
instance you just added. If you don’t, check the output of the build command for errors and correct your code.

JupyterLab extension jupyterlab_xkcd is activated!
ICommandPalette: Palette {_palette: CommandPalette}

Note that we had to run npm run build in order for the bundle to update, because it is using the compiled
JavaScript files in /lib. If you wish to avoid running npm run build after each change, you can open a third
terminal, and run the npm run watch command from your extension directory, which will automatically compile
the TypeScript files as they change.

Now return to your editor. Add the following additional import to the top of the file.

import {
Widget

} from '@phosphor/widgets';

Install this dependency as well:

jlpm add @phosphor/widgets

Then modify the activate function again so that it has the following code:

31.4. Add an xkcd widget 113

JupyterLab Documentation,发发发布布布 0.18.4

activate: (app: JupyterLab, palette: ICommandPalette) => {
console.log('JupyterLab extension jupyterlab_xkcd is activated!');

// Create a single widget
let widget: Widget = new Widget();
widget.id = 'xkcd-jupyterlab';
widget.title.label = 'xkcd.com';
widget.title.closable = true;

// Add an application command
const command: string = 'xkcd:open';
app.commands.addCommand(command, {
label: 'Random xkcd comic',
execute: () => {

if (!widget.isAttached) {
// Attach the widget to the main work area if it's not there
app.shell.addToMainArea(widget);

}
// Activate the widget
app.shell.activateById(widget.id);

}
});

// Add the command to the palette.
palette.addItem({command, category: 'Tutorial'});

}

The first new block of code creates a Widget instance, assigns it a unique ID, gives it a label that will appear as its
tab title, and makes the tab closable by the user. The second block of code add a new command labeled Random xkcd
comic to JupyterLab. When the command executes, it attaches the widget to the main display area if it is not already
present and then makes it the active tab. The last new line of code adds the command to the command palette in a
section called Tutorial.

Build your extension again using npm run build (unless you are using npm run watch already) and refresh
the browser tab. Open the command palette on the left side by clicking on Commands and type xkcd in the search box.
Your Random xkcd comic command should appear. Click it or select it with the keyboard and press Enter. You should
see a new, blank panel appear with the tab title xkcd.com. Click the x on the tab to close it and activate the command
again. The tab should reappear. Finally, click one of the launcher tabs so that the xkcd.com panel is still open but no
longer active. Now run the Random xkcd comic command one more time. The single xkcd.com tab should come to the
foreground.

114 Chapter 31. Let’s Make an xkcd JupyterLab Extension

JupyterLab Documentation,发发发布布布 0.18.4

If your widget is not behaving, compare your code with the reference project state at the 01-show-a-panel tag. Once
you’ve got everything working properly, git commit your changes and carry on.

git add .
git commit -m 'Show xkcd command on panel'

31.4.2 Show a comic in the panel

You’ve got an empty panel. It’s time to add a comic to it. Go back to your code editor. Add the following code below
the lines that create a Widget instance and above the lines that define the command.

// Add an image element to the panel
let img = document.createElement('img');
widget.node.appendChild(img);

// Fetch info about a random comic
fetch('https:////egszlpbmle.execute-api.us-east-1.amazonaws.com/prod').then(response
→˓=> {
return response.json();

}).then(data => {
img.src = data.img;
img.alt = data.title;
img.title = data.alt;

});

The first two lines create a new HTML element and add it to the widget DOM node. The next lines make a
request using the HTML fetch API that returns information about a random xkcd comic, and set the image source,
alternate text, and title attributes based on the response.

Rebuild your extension if necessary (npm run build), refresh your browser tab, and run the Random xkcd comic
command again. You should now see a comic in the xkcd.com panel when it opens.

31.4. Add an xkcd widget 115

https://github.com/jupyterlab/jupyterlab_xkcd/tree/0.34-01-show-a-panel
https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API/Using_Fetch

JupyterLab Documentation,发发发布布布 0.18.4

Note that the comic is not centered in the panel nor does the panel scroll if the comic is larger than the panel area. Also
note that the comic does not update no matter how many times you close and reopen the panel. You’ll address both of
these problems in the upcoming sections.

If you don’t see a comic at all, compare your code with the 02-show-a-comic tag in the reference project. When it’s
working, make another git commit.

git add .
git commit -m 'Show a comic in the panel'

31.5 Improve the widget behavior

31.5.1 Center the comic and add attribution

Open style/index.css in our extension project directory for editing. Add the following lines to it.

.jp-xkcdWidget {
display: flex;
flex-direction: column;
overflow: auto;

}

.jp-xkcdCartoon {
margin: auto;

}

(continues on next page)

116 Chapter 31. Let’s Make an xkcd JupyterLab Extension

https://github.com/jupyterlab/jupyterlab_xkcd/tree/0.34-02-show-a-comic

JupyterLab Documentation,发发发布布布 0.18.4

(续上页)

.jp-xkcdAttribution {
margin: 20px auto;

}

The first rule stacks content vertically within the widget panel and lets the panel scroll when the content overflows.
The other rules center the cartoon and attribution badge horizontally and space them out vertically.

Return to the index.ts file. Note that there is already an import of the CSS file in the index.ts file. Modify the
the activate function to apply the CSS classes and add the attribution badge markup. The beginning of the function
should read like the following:

activate: (app: JupyterLab, palette: ICommandPalette) => {
console.log('JupyterLab extension jupyterlab_xkcd is activated!');

// Create a single widget
let widget: Widget = new Widget();
widget.id = 'xkcd-jupyterlab';
widget.title.label = 'xkcd.com';
widget.title.closable = true;
widget.addClass('jp-xkcdWidget'); // new line

// Add an image element to the panel
let img = document.createElement('img');
img.className = 'jp-xkcdCartoon'; // new line
widget.node.appendChild(img);

// New: add an attribution badge
img.insertAdjacentHTML('afterend',
`<div class="jp-xkcdAttribution">

<a href="https://creativecommons.org/licenses/by-nc/2.5/" class="jp-
→˓xkcdAttribution" target="_blank">

</div>`
);

// Keep all the remaining fetch and command lines the same
// as before from here down ...

Build your extension if necessary (npm run build) and refresh your JupyterLab browser tab. Invoke the Random
xkcd comic command and confirm the comic is centered with an attribution badge below it. Resize the browser window
or the panel so that the comic is larger than the available area. Make sure you can scroll the panel over the entire area
of the comic.

31.5. Improve the widget behavior 117

JupyterLab Documentation,发发发布布布 0.18.4

If anything is misbehaving, compare your code with the reference project 03-style-and-attribute tag. When everything
is working as expected, make another commit.

git add .
git commit -m 'Add styling, attribution'

31.5.2 Show a new comic on demand

The activate function has grown quite long, and there’s still more functionality to add. You should refactor the
code into two separate parts:

1. An XkcdWidget that encapsulates the xkcd panel elements, configuration, and soon-to-be-added update be-
havior

2. An activate function that adds the widget instance to the UI and decide when the comic should refresh

Start by refactoring the widget code into the new XkcdWidget class. Add the following additional import to the top
of the file.

import {
Message

} from '@phosphor/messaging';

Install this dependency:

jlpm add @phosphor/messaging

118 Chapter 31. Let’s Make an xkcd JupyterLab Extension

https://github.com/jupyterlab/jupyterlab_xkcd/tree/0.34-03-style-and-attribute

JupyterLab Documentation,发发发布布布 0.18.4

Then add the class just below the import statements in the index.ts file.

/**
* An xckd comic viewer.

*/
class XkcdWidget extends Widget {

/**
* Construct a new xkcd widget.

*/
constructor() {
super();

this.id = 'xkcd-jupyterlab';
this.title.label = 'xkcd.com';
this.title.closable = true;
this.addClass('jp-xkcdWidget');

this.img = document.createElement('img');
this.img.className = 'jp-xkcdCartoon';
this.node.appendChild(this.img);

this.img.insertAdjacentHTML('afterend',
`<div class="jp-xkcdAttribution">

<a href="https://creativecommons.org/licenses/by-nc/2.5/" class="jp-
→˓xkcdAttribution" target="_blank">

</div>`
);

}

/**
* The image element associated with the widget.

*/
readonly img: HTMLImageElement;

/**
* Handle update requests for the widget.

*/
onUpdateRequest(msg: Message): void {
fetch('https://egszlpbmle.execute-api.us-east-1.amazonaws.com/prod').

→˓then(response => {
return response.json();

}).then(data => {
this.img.src = data.img;
this.img.alt = data.title;
this.img.title = data.alt;

});
}

};

You’ve written all of the code before. All you’ve done is restructure it to use instance variables and move the comic
request to its own function.

Next move the remaining logic in activate to a new, top-level function just below the XkcdWidget class defini-
tion. Modify the code to create a widget when one does not exist in the main JupyterLab area or to refresh the comic
in the exist widget when the command runs again. The code for the activate function should read as follows after
these changes:

31.5. Improve the widget behavior 119

JupyterLab Documentation,发发发布布布 0.18.4

/**
* Activate the xckd widget extension.

*/
function activate(app: JupyterLab, palette: ICommandPalette) {

console.log('JupyterLab extension jupyterlab_xkcd is activated!');

// Create a single widget
let widget: XkcdWidget = new XkcdWidget();

// Add an application command
const command: string = 'xkcd:open';
app.commands.addCommand(command, {
label: 'Random xkcd comic',
execute: () => {

if (!widget.isAttached) {
// Attach the widget to the main work area if it's not there
app.shell.addToMainArea(widget);

}
// Refresh the comic in the widget
widget.update();
// Activate the widget
app.shell.activateById(widget.id);

}
});

// Add the command to the palette.
palette.addItem({ command, category: 'Tutorial' });

};

Remove the activate function definition from the JupyterLabPlugin object and refer instead to the top-level
function like so:

const extension: JupyterLabPlugin<void> = {
id: 'jupyterlab_xkcd',
autoStart: true,
requires: [ICommandPalette],
activate: activate

};

Make sure you retain the export default extension; line in the file. Now build the extension again and
refresh the JupyterLab browser tab. Run the Random xkcd comic command more than once without closing the panel.
The comic should update each time you execute the command. Close the panel, run the command, and it should both
reappear and show a new comic.

If anything is amiss, compare your code with the 04-refactor-and-refresh tag to debug. Once it’s working properly,
commit it.

git add .
git commit -m 'Refactor, refresh comic'

31.5.3 Restore panel state when the browser refreshes

You may notice that every time you refresh your browser tab, the xkcd panel disappears, even if it was open before
you refreshed. Other open panels, like notebooks, terminals, and text editors, all reappear and return to where you left
them in the panel layout. You can make your extension behave this way too.

120 Chapter 31. Let’s Make an xkcd JupyterLab Extension

https://github.com/jupyterlab/jupyterlab_xkcd/tree/0.34-04-refactor-and-refresh

JupyterLab Documentation,发发发布布布 0.18.4

Update the imports at the top of your index.ts file so that the entire list of import statements looks like the follow-
ing:

import {
JupyterLab, JupyterLabPlugin, ILayoutRestorer // new

} from '@jupyterlab/application';

import {
ICommandPalette, InstanceTracker // new

} from '@jupyterlab/apputils';

import {
JSONExt // new

} from '@phosphor/coreutils';

import {
Message

} from '@phosphor/messaging';

import {
Widget

} from '@phosphor/widgets';

import '../style/index.css';

Install this dependency:

jlpm add @phosphor/coreutils

Then, add the ILayoutRestorer interface to the JupyterLabPlugin definition. This addition passes the
global LayoutRestorer to the third parameter of the activate.

const extension: JupyterLabPlugin<void> = {
id: 'jupyterlab_xkcd',
autoStart: true,
requires: [ICommandPalette, ILayoutRestorer],
activate: activate

};

Finally, rewrite the activate function so that it:

1. Declares a widget variable, but does not create an instance immediately

2. Constructs an InstanceTracker and tells the ILayoutRestorer to use it to save/restore panel state

3. Creates, tracks, shows, and refreshes the widget panel appropriately

function activate(app: JupyterLab, palette: ICommandPalette, restorer:
→˓ILayoutRestorer) {
console.log('JupyterLab extension jupyterlab_xkcd is activated!');

// Declare a widget variable
let widget: XkcdWidget;

// Add an application command
const command: string = 'xkcd:open';
app.commands.addCommand(command, {
label: 'Random xkcd comic',
execute: () => {

(continues on next page)

31.5. Improve the widget behavior 121

JupyterLab Documentation,发发发布布布 0.18.4

(续上页)

if (!widget) {
// Create a new widget if one does not exist
widget = new XkcdWidget();
widget.update();

}
if (!tracker.has(widget)) {

// Track the state of the widget for later restoration
tracker.add(widget);

}
if (!widget.isAttached) {

// Attach the widget to the main work area if it's not there
app.shell.addToMainArea(widget);

} else {
// Refresh the comic in the widget
widget.update();

}
// Activate the widget
app.shell.activateById(widget.id);

}
});

// Add the command to the palette.
palette.addItem({ command, category: 'Tutorial' });

// Track and restore the widget state
let tracker = new InstanceTracker<Widget>({ namespace: 'xkcd' });
restorer.restore(tracker, {
command,
args: () => JSONExt.emptyObject,
name: () => 'xkcd'

});
};

Rebuild your extension one last time and refresh your browser tab. Execute the Random xkcd comic command and
validate that the panel appears with a comic in it. Refresh the browser tab again. You should see an xkcd panel appear
immediately without running the command. Close the panel and refresh the browser tab. You should not see an xkcd
tab after the refresh.

Refer to the 05-restore-panel-state tag if your extension is misbehaving. Make a commit when the state of your
extension persists properly.

git add .
git commit -m 'Restore panel state'

Congrats! You’ve implemented all of the behaviors laid out at the start of this tutorial. Now how about sharing it with
the world?

31.6 Publish your extension to npmjs.org

npm is both a JavaScript package manager and the de facto registry for JavaScript software. You can sign up for an
account on the npmjs.com site or create an account from the command line by running npm adduser and entering
values when prompted. Create an account now if you do not already have one. If you already have an account, login
by running npm login and answering the prompts.

Next, open the project package.json file in your text editor. Prefix the name field value

122 Chapter 31. Let’s Make an xkcd JupyterLab Extension

https://github.com/jupyterlab/jupyterlab_xkcd/tree/0.34-05-restore-panel-state
https://www.npmjs.com/signup
https://www.npmjs.com/signup

JupyterLab Documentation,发发发布布布 0.18.4

with @your-npm-username>/ so that the entire field reads "name": "@your-npm-username/
jupyterlab_xkcd" where you’ve replaced the string your-npm-username with your real username. Review
the homepage, repository, license, and other supported package.json fields while you have the file open. Then open
the README.md file and adjust the command in the Installation section so that it includes the full, username-prefixed
package name you just included in the package.json file. For example:

jupyter labextension install @your-npm-username/jupyterlab_xkcd

Return to your terminal window and make one more git commit:

git add .
git commit -m 'Prepare to publish package'

Now run the following command to publish your package:

npm publish --access=public

Check that your package appears on the npm website. You can either search for it from the homepage or visit
https://www.npmjs.com/package/@your-username/jupyterlab_xkcd directly. If it doesn’t ap-
pear, make sure you’ve updated the package name properly in the package.json and run the npm command
correctly. Compare your work with the state of the reference project at the 06-prepare-to-publish tag for further
debugging.

You can now try installing your extension as a user would. Open a new terminal and run the following commands,
again substituting your npm username where appropriate (make sure to stop the existing jupyter lab --watch

31.6. Publish your extension to npmjs.org 123

https://docs.npmjs.com/files/package.json
https://github.com/jupyterlab/jupyterlab_xkcd/tree/0.34-06-prepare-to-publish

JupyterLab Documentation,发发发布布布 0.18.4

command first):

conda create -n jupyterlab-xkcd jupyterlab nodejs
conda activate jupyterlab-xkcd
jupyter labextension install @your-npm-username/jupyterlab_xkcd
jupyter lab

You should see a fresh JupyterLab browser tab appear. When it does, execute the Random xkcd comic command to
prove that your extension works when installed from npm.

31.7 Learn more

You’ve completed the tutorial. Nicely done! If you want to keep learning, here are some suggestions about what to try
next:

• Assign a hotkey to the Random xkcd comic command.

• Make the image a link to the comic on https://xkcd.com.

• Push your extension git repository to GitHub.

• Give users the ability to pin comics in separate, permanent panels.

• Learn how to write other kinds of extensions.

124 Chapter 31. Let’s Make an xkcd JupyterLab Extension

https://xkcd.com
./extension_dev.html

CHAPTER 32

Indices and Tables

• genindex

• modindex

• search

125

	Overview
	Installation
	Starting JupyterLab
	Frequently Asked Questions (FAQ)
	JupyterLab Changelog
	JupyterLab 接口 (API)
	JupyterLab 链接(URLs)
	File 的工作过程
	文本编辑器
	Notebooks
	Code Consoles
	终端（Terminals）
	管理内核和终端
	命令调用板 (Command Palette)
	文件和内核
	文件和输出格式
	扩展
	JupyterLab 执行在 JupyterHub 里
	General Codebase Orientation
	Extension Developer Guide
	Documents
	Overview of document architecture
	Notebook
	Design Patterns
	CSS Patterns
	Writing Documentation
	Virtual DOM and React
	Adding Content
	Examples
	Terminology
	Let’s Make an xkcd JupyterLab Extension
	Indices and Tables

