
Junebug Documentation
Release 0.1.40

Praekelt Foundation

Jan 24, 2018

Contents

1 Contents 3
1.1 Installation . 3
1.2 Getting started . 3
1.3 Command-line Reference . 7
1.4 Named Arguments . 8
1.5 Config File Reference . 9
1.6 Design . 12
1.7 Internal Architecture . 14
1.8 HTTP API . 15
1.9 AMQP integration . 28
1.10 Plugin Reference . 28
1.11 Routers . 30
1.12 Release Notes . 31

2 Indices and tables 43

HTTP Routing Table 45

i

ii

Junebug Documentation, Release 0.1.40

Junebug is a messaging gateway which is intended to provide the means to connect to mobile network infrastructure
to enable the managing of text messages via a RESTful HTTP interface.

Contents 1

Junebug Documentation, Release 0.1.40

2 Contents

CHAPTER 1

Contents

1.1 Installation

Junebug requires Python (version 2.7) to be installed. This installation method also requires pip. Both of these must
be installed before following the installation steps below.

Junebug also needs Redis and RabbitMQ. On Debian-based systems, one can install them using:

$ apt-get install redis-server rabbitmq-server

The Python cryptography library that Junebug depends on requires that the SSL and FFI library headers be installed.
On Debian-based systems, one can install these using:

$ apt-get install libssl-dev libffi-dev

Junebug can be then installed using:

$ pip install junebug

1.2 Getting started

This guides assumed you have already followed the installation guide.

If you prefer a video tutorial, you can start by watching our demo.

First, make sure you have Redis and RabbitMQ running. On a Debian-based system, one can run them with:

$ service redis-server start
$ service rabbitmq-server start

We can now launch Junebug:

3

https://www.python.org/
https://pip.pypa.io/en/latest/index.html
http://redis.io/
https://www.rabbitmq.com/
https://archive.org/details/Junebug010Demo
http://redis.io/
https://www.rabbitmq.com/

Junebug Documentation, Release 0.1.40

$ jb -p 8000

This starts the Junebug HTTP API running on port 8000. At the moment it won’t have any transports running, so let’s
create one using the API:

$ curl -X POST \
-d '{
"type": "telnet",
"label": "My First Channel",
"mo_url": "http://requestb.in/pzvivfpz",
"config": {"twisted_endpoint": "tcp:9001"}
}' \

http://localhost:8000/channels/

Here, we tell Junebug to send all mobile-originating messages received by this channel to mo_url. We use a requestb.in
url so that we can inspect the messages.

This creates a simple telnet transport that listens on port 9001. You should get a response like:

{
"status": 200,
"code": "OK",
"description": "channel created",
"result": {

"status": {
"status": null,
"inbound_message_rate": 0,
"outbound_message_rate": 0,
"submitted_event_rate": 0,
"rejected_event_rate": 0,
"delivery_succeeded_rate": 0,
"delivery_pending_rate": 0,
"delivery_failed_rate": 0,
"components": {},

},
"mo_url": "http://requestb.in/pzvivfpz",
"label": "My First Channel",
"type": "telnet",
"config": {"twisted_endpoint": "tcp:9001"},
"id": "bc5f2e63-7f53-4996-816d-4f89f45a5842"

}
}

With the telnet transport running, we can now connect to the telnet transport:

$ telnet localhost 9001

If we take a look at the requestbin we gave as the mo_url when creating the channel, we should see something like
this:

{
"channel_data": {"session_event": "new"},
"from": "127.0.0.1:53378",
"channel_id": "bc5f2e63-7f53-4996-816d-4f89f45a5842",
"timestamp": "2015-10-06 14:16:34.578820",
"content": null,
"to": "0.0.0.0:9001",
"reply_to": null,

4 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

"group": null,
"message_id": "35f3336d4a1a46c7b40cd172a41c510d"

}

This message was sent to the channel when we connected to the telnet transport, and is equivalent to starting a session
for a session-based transport type like USSD.

Now, lets send a message to the telnet transport via junebug:

$ curl -X POST \
-d '{

"to": "127.0.0.1:53378",
"content": "hello"

}' \
localhost:8000/channels/bc5f2e63-7f53-4996-816d-4f89f45a5842/messages/

Here, we sent a message to the address 127.0.0.1:53378. We should see a hello message appear in our telnet client.

We should also get the message details returned as the response to our request

{
"status": 200,
"code": "OK",
"description": "message sent",
"result": {

"channel_data": {},
"from": null,
"channel_id": "bc5f2e63-7f53-4996-816d-4f89f45a5842",
"timestamp": "2017-11-16 07:22:25.162779",
"content": "hello",
"to": "127.0.0.1:53378",
"reply_to": null,
"group": null,
"message_id": "5ee304925efd4afcaa6211a9a578a9f1"

}
}

We can use this message ID to get the details of our sent message:

$ curl localhost:8000/channels/bc5f2e63-7f53-4996-816d-4f89f45a5842/messages/
→˓5ee304925efd4afcaa6211a9a578a9f1

Which should give us a response similar to

{
"status": 200,
"code": "OK",
"description": "message status",
"result": {

"events": [
{
"channel_id": "bc5f2e63-7f53-4996-816d-4f89f45a5842",
"event_type": "submitted",
"timestamp": "2017-11-16 07:22:25.169550",
"event_details": {},
"message_id": "5ee304925efd4afcaa6211a9a578a9f1"

}
],

1.2. Getting started 5

Junebug Documentation, Release 0.1.40

"last_event_timestamp": "2017-11-16 07:22:25.169550",
"id": "5ee304925efd4afcaa6211a9a578a9f1",
"last_event_type": "submitted"

}
}

Which tells us that our message was successfully submitted.

Now, lets try receive a message via junebug by entering a message in our telnet client (followed by a new line):

> Hi there

If we take a look at our requestbin url, we should see a new request:

{
"channel_data": {"session_event": "resume"},
"from": "127.0.0.1:53378",
"channel_id": "bc5f2e63-7f53-4996-816d-4f89f45a5842",
"timestamp": "2015-10-06 14:30:51.876897",
"content": "Hi there",
"to": "0.0.0.0:9001",
"reply_to": null,
"message_id": "22c9cd74c5ff42d9b8e1a538e2a17175"

}

Now, lets send a reply to this message by referencing its message_id:

$ curl -X POST \
-d '{

"reply_to": "22c9cd74c5ff42d9b8e1a538e2a17175",
"content": "hello again"

}' \
localhost:8000/channels/bc5f2e63-7f53-4996-816d-4f89f45a5842/messages/

We should see hello again appear in our telnet client.

Those are the basics for sending and receiving messages via junebug. Take a look at junebug’s HTTP API documenta-
tion to see how else one can interact with junebug, and junebug’s CLI and config references for more on how junebug
can be configured.

1.2.1 Infrastructure Diagram

This diagram is an example configuration of how all the parts of Junebug fit together in a typical setup.

6 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

This diagram details a simple application that uses Junebug. It has two lines. The first line is a USSD line which the
users will use to answer survey questions. The second is an SMS line, which is used for bulk message sending to
prompt the users to dial the USSD line when a new survey is available.

Each of these lines is connected to a Junebug channel.

The USSD channel sends all of its incoming messages to an application which knows what to do with the messages,
and can generate appropriate responses. In this case, the application will store the user’s answer, and send the user the
next question in the survey.

The SMS channel receives messages that it must send out on its messages endpoint. These messages are generated by
the bulk send application, which notifies the users when a new survey is available.

Both of the channels send their status events to a status monitoring app, which sends out emails to the correct people
when there is something wrong with either of the channels.

1.3 Command-line Reference

Junebug. A system for managing text messaging transports via a RESTful HTTP interface

usage: jb [-h] [--config CONFIG_FILENAME] [--interface INTERFACE]
[--port PORT] [--log-file LOGFILE] [--sentry-dsn SENTRY_DSN]
[--redis-host REDIS_HOST] [--redis-port REDIS_PORT]
[--redis-db REDIS_DB] [--redis-password REDIS_PASS]
[--amqp-host AMQP_HOST] [--amqp-vhost AMQP_VHOST]
[--amqp-port AMQP_PORT] [--amqp-user AMQP_USER]
[--amqp-password AMQP_PASS]
[--inbound-message-ttl INBOUND_MESSAGE_TTL]
[--outbound-message-ttl OUTBOUND_MESSAGE_TTL]
[--allow-expired-replies] [--channels CHANNELS]
[--replace-channels REPLACE_CHANNELS] [--routers ROUTERS]
[--replace-routers REPLACE_ROUTERS] [--plugin PLUGINS]
[--metric-window METRIC_WINDOW] [--logging-path LOGGING_PATH]
[--log-rotate-size LOG_ROTATE_SIZE] [--max-log-files MAX_LOG_FILES]
[--max-logs MAX_LOGS]
[--rabbitmq-management-interface RABBITMQ_MANAGEMENT_INTERFACE]

1.3. Command-line Reference 7

Junebug Documentation, Release 0.1.40

1.4 Named Arguments

--config, -c Path to config file. Optional. Command line options override config options

--interface, -i The interface to expose the API on. Defaults to “localhost”

--port, -p The port to expose the API on, defaults to “8080”

--log-file, -l The file to log to. Defaults to not logging to a file

--sentry-dsn, -sd The DSN to log exceptions to. Defaults to not logging

--redis-host, -redish The hostname of the redis instance. Defaults to “localhost”

--redis-port, -redisp The port of the redis instance. Defaults to “6379”

--redis-db, -redisdb The database to use for the redis instance. Defaults to “0”

--redis-password, -redispass The password to use for the redis instance. Defaults to “None”

--amqp-host, -amqph The hostname of the amqp endpoint. Defaults to “127.0.0.1”

--amqp-vhost, -amqpvh The amqp vhost. Defaults to “/”

--amqp-port, -amqpp The port of the amqp endpoint. Defaults to “5672”

--amqp-user, -amqpu The username to use for the amqp auth. Defaults to “guest”

--amqp-password, -amqppass The password to use for the amqp auth. Defaults to “guest”

--inbound-message-ttl, -ittl The maximum time allowed to reply to a message (in seconds).Defaults
to 600 seconds (10 minutes).

--outbound-message-ttl, -ottl The maximum time allowed for events to arrive for messages (in sec-
onds). Defaults to 172800 seconds (2 days)

--allow-expired-replies, -aer If enabled messages with a reply_to that arrive for which the original
inbound cannot be found (possible of the TTL expiring) are sent as normal out-
bound messages.

--channels, -ch Add a mapping to the list of channels, in the format “channel_type:python_class”.

--replace-channels, -rch If True, replaces the default channels with ‘channels‘. If False, adds ‘chan-
nels‘ to the list of default channels. Defaults to False.

--routers Add a mapping to the list of routers, in the format “router_type:python_class”.

--replace-routers If True, replaces the default routers with ‘routers‘. If False, adds ‘routers‘ to the
list of default routers. Defaults to False.

--plugin, -pl Add a plugins to the list of plugins, as a json blob of the plugin config. Must
contain a ‘type‘ key, with the full python class path of the plugin

--metric-window, -mw The size of each bucket (in seconds) to use for metrics. Defaults to 10 seconds.

--logging-path, -lp The path to place log files for each channel. Defaults to ‘logs/‘

--log-rotate-size, -lrs The maximum size (in bytes) for each log file before it gets rotated. Defaults to
1000000.

--max-log-files, -mlf the maximum number of log files to keep before deleting old files. defaults to 5.
0 is unlimited.

--max-logs, -ml the maximum number of log entries to to allow to be fetched through the API.
Defaults to 100.

8 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

--rabbitmq-management-interface, -rmi This should be the url string of the rabbitmq management
interface. If set, the health of each individual queue will be checked. This is only
available for RabbitMQ

We also have the following environment variables:

JUNEBUG_REACTOR Choose which twisted reactor to use for Junebug. Can be one of SELECT,
POLL, KQUEUE, WFMO, IOCP or EPOLL.

JUNEBUG_DISABLE_LOGGING Set to true to disable logging to the command line for Junebug.

1.5 Config File Reference

A yaml config file can be given using the -c command line option. Note that command line options override config
fields.

1.5.1 Fields

interface Interface to expose the API on

type: str
default: 'localhost'

port Port to expose the API on

type: int
default: 8080

logfile File to log to or ‘None‘ for no logging

type: str
default: None

sentry_dsn DSN to send exceptions

type: str
default: None

redis Config to use for redis connection

type: dict
default: {'db': 0, 'host': 'localhost', 'password': None, 'port':
6379}

1.5. Config File Reference 9

http://yaml.org/

Junebug Documentation, Release 0.1.40

amqp Config to use for amqp connection

type: dict
default:

{'db': 0,
'hostname': '127.0.0.1',
'password': 'guest',
'port': 5672,
'username': 'guest',
'vhost': '/'}

inbound_message_ttl Maximum time (in seconds) allowed to reply to messages

type: int
default: 600

outbound_message_ttl Maximum time (in seconds) allowed for events to arrive for messages

type: int
default: 172800

allow_expired_replies If ‘True‘ messages with a reply_to that arrive for which the original inbound
cannot be found (possible of the TTL expiring) are sent as normal outbound messages.

type: bool
default: False

channels Mapping between channel types and python classes.

type: dict
default: {}

replace_channels If ‘True‘, replaces the default channels with ‘channels‘. If ‘False‘, ‘channels‘ is added
to the default channels.

type: bool
default: False

routers Mapping between router types and python classes.

10 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

type: dict
default: {}

replace_routers If ‘True‘, replaces the default routers with ‘routers‘. If ‘False‘,‘routers‘ is added to the
default routers.

type: bool
default: False

plugins A list of dictionaries describing all of the enabled plugins. Each item should have a ‘type‘ key,
with the full python class name of the plugin.

type: list
default: []

metric_window The size of the buckets (in seconds) used for metrics.

type: float
default: 10.0

logging_path The path to place log files in.

type: str
default: 'logs/'

log_rotate_size The maximum size (in bytes) of a log file before it gets rotated.

type: int
default: 1000000

max_log_files The maximum amount of log files allowed before old files start to get deleted. 0 is unlim-
ited.

type: int
default: 5

max_logs The maximum amount of logs that is allowed to be retrieved via the API.

type: int

1.5. Config File Reference 11

Junebug Documentation, Release 0.1.40

default: 100

rabbitmq_management_interface This should be the url string of the rabbitmq management interface.If
set, the health of each individual queue will be checked. This is only available for RabbitMQ

type: str
default: None

1.6 Design

An HTTP API for managing text-based messaging channels such as SMS, USSD, XMPP, Twitter, IRC.

Any design goals marked in italics are goals that are not yet implemented in the code base.

1.6.1 Features

Junebug is a system for managing text messaging transports via a RESTful HTTP interface that supports:

• Creating, introspecting, updating and deleting transports

• Sending and receiving text messages

• Receiving status updates on text messages sent

• Monitoring transport health and performance

• Retrieving recent transport logs for debugging transport issues.

1.6.2 Design principles

Junebug aims to satisfy the following broad criteria:

• Avoid replication of work to integrate with aggregators and MNOs (and to maintain these connections).

• Maximum simplicity (narrow scope, minimal useful feature set).

• Provide a common interface to diverse connection protocols.

• Handle buffering of messages and events in both inbound and outbound directions.

• Minimum dependencies.

• Easy to install.

1.6.3 Design goals

Outbound message sending

• Simple universal HTTP API for sending.

• Each channel is independent and cannot block or cause others to fail.

• Does not handle routing. Channel to send to is specified when making the HTTP API request.

• Configurable rate-limiting on each connection.

12 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

• Queues for each connection.

• Multiple priority levels supported for each connection. We need at least two priority levels: “bulk” and “real-
time”.

Delivery and status reports for outbound messages

• Can specify an HTTP URL with each outgoing request, as the callback for delivery status reports for that
message.

• Callback URL supports template variables (like Kannel does).

Channel creation and management

• CRUD operations on channels.

• Possible to list channels.

• Possible to query the queue length.

• Possible to query the message sending, delivery and failure rates.

• Possible to cancel the sending of all queued messages.

Inbound messages

• Able to specify a URL, per channel

• Inbound message URL supports configurable (substituted) parameters.

• Retries delivery on failures

Logging

Accessing detailed log messages is a vital requirement for debugging issues with connections to third parties.

• Be able to access PDUs or similar detailed channel message logs for recent messages.

• Logs should be retrievable by associated channel id.

• Logs should be retrievable by associated message id.

1.6.4 Relevant prior works

Other systems that have acted as inspirations or components of Junebug:

• Vumi and Vumi Go

• Kannel

• CloudHopper

1.6.5 Glossary

channel a single connection to a provider

channel type connections are instances of channel types. Example: Twilio, SMPP 3.4, etc.

1.6. Design 13

https://github.com/praekelt/vumi
https://github.com/praekelt/vumi-go
http://kannel.org/
https://github.com/twitter/cloudhopper-smpp

Junebug Documentation, Release 0.1.40

1.6.6 System Architecture

Junebug relies on Redis for temporary storage, RabbitMQ for message queueing, and files on disc for logs. This setup
was chosen so that Junebug would be easy to setup and start using, and not require a large, complicated, multi-system
setup.

There are downsides to this approach, however, Junebug is currently restricted to a single threaded process.

1.7 Internal Architecture

Internal Junebug is structured as a set of services that live within a single process.

Each Junebug channel creates three services – a transport, a message forwarder and a status receiver.

Transports are Vumi transport workers that send and receive SMSes, USSD requests or other text messages from
external service providers such as MNOs (mobile network operators) or aggregators (re-sellers of connections to
multiple MNOs).

Message Forwarders receive inbound (MO, mobile originated) messages from transports and relay to applications
either via HTTP or AMQP depending on the channel configuration.

Channel Status Processors receive status events from transports and store them in redis and forward them on via HTTP
to interested applications.

Junebug uses Redis to store configuration and temporary state such as channel status. Services that use Redis are
marked with an “R” in the diagram below. Some types of transports will also make use of Redis.

14 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

1.8 HTTP API

Junebug’s HTTP API.

1.8.1 HTTP API endpoints

Channels

GET /channels/
List all channels

POST /channels/
Create a channel.

Parameters

• type (str) – channel type (e.g. smpp, twitter, xmpp)

• label (str) – user-defined label

• config (dict) – channel connection settings (a blob to pass to the channel type imple-
mentor)

• metadata (dict) – user-defined data blob (used to record user-specified information
about the channel, e.g. the channel owner)

1.8. HTTP API 15

Junebug Documentation, Release 0.1.40

• status_url (str) – URL that junebug should send status events to. May be null if
not desired. Not supported by every channel.

• mo_url (str) – URL to call on incoming messages (mobile originated) from this channel.
One or both of mo_url or amqp_queue must be specified. If both are specified, messages
will be sent to both.

• mo_url_auth_token (str) – The token to use for authentication if the mo_url requires
token auth.

• amqp_queue (str) – AMQP queue to repost messages onto for mobile originated mes-
sages. One or both of mo_url or amqp_queue must be specified. If both are specified,
messages are sent to both. See AMQP integration for more details.

• rate_limit_count (int) – Number of incoming messages to allow in a given time
window. Not yet implemented. See rate_limit_window.

• rate_limit_window (int) – Size of throttling window in seconds. Not yet imple-
mented.

• character_limit (int) – Maximum number of characters allowed per message.

Returns:

Parameters

• status (int) – HTTP status code (201 on success).

• code (str) – HTTP status string.

• description (str) – Description of result ("channel created" on success).

• result (dict) – The channel created.

GET /channels/(channel_id: str)
Return the channel configuration and a nested status object.

The status object takes the following form:

Parameters

• status (str) – The worst case of each component’s status level. For example if the
redis component’s status is degraded and the amqp component’s status is down, this
field’s value will will be down.

• components (dict) – An object showing the most recent status event for each compo-
nent.

• inbound_message_rate (float) – The inbound messages per second for the channel.

• outbound_message_rate (float) – The outbound messages per second for the chan-
nel.

• submitted_event_rate (float) – The submitted events per second for the channel.

• rejected_event_rate (float) – The rejected events per second for the channel.

• delivery_succeeded_rate (float) – The delivery succeeded events per second for
the channel.

• delivery_failed_rate (float) – The delivery failed events per second for the chan-
nel.

• delivery_pending_rate (float) – The delivery pending events per second for the
channel.

16 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

Example response:

{
"status": 200,
"code": "OK",
"description": "channel found",
"result": {

"id": "89b71dfe-afd8-4e0d-9290-bba791458627",
"type": "smpp",
"label": "An SMPP Transport",
"config": {
"system_id": "secret_id",
"password": "secret_password"

},
"metadata": {

"owned_by": "user-5"
},
"status_url": "http://example.com/user-5/status",
"mo_url": "http://example.com/user-5/mo",
"rate_limit_count": 500,
"rate_limit_window": 10,
"character_limit": null,
"status": {

"status": "ok",
"components": {

"smpp": {
"component": "smpp",
"channel_id": "89b71dfe-afd8-4e0d-9290-bba791458627",
"status": "ok",
"details": {},
"message": "Successfully bound",
"type": "bound"

}
},
"inbound_message_rate": 1.75,
"outbound_message_rate": 7.11,
"submitted_event_rate": 6.2,
"rejected_event_rate": 2.13,
"delivery_succeeded_rate": 5.44,
"delivery_failed_rate": 1.27,
"delivery_pending_rate": 4.32

}
}

}

POST /channels/(channel_id: str)
Modify a channel’s configuration.

Accepts the same parameters as POST /channels/. Only the parameters provided are updated. Others
retain their original values.

DELETE /channels/(channel_id: str)
Stops a channel and deletes it’s configuration.

POST /channels/(channel_id: str)/restart
Restart a channel.

1.8. HTTP API 17

Junebug Documentation, Release 0.1.40

Channel Logs

GET /channels/(channel_id: str)/logs
Get the most recent logs for a specific channel.

Query Parameters

• n (int) – Optional. The number of logs to fetch. If not supplied, then the configured max-
imum number of logs are returned. If this number is greater than the configured maximum
logs value, then only the configured maximum number of logs will be returned.

The response is a list of logs, with each log taking the following form:

Parameters

• logger (str) – The logger that created the log, usually the channel id.

• level (int) – The level of the logs. Corresponds to the levels found in the python module
logging.

• timestamp (float) – Timestamp, in the format of seconds since the epoch.

• message (str) – The message of the log.

In the case of an exception, there will be an exception object, with the following parameters:

Parameters

• class (str) – The class of the exception.

• instance (str) – The specific instance of the exception.

• stack (list) – A list of strings representing the traceback of the error.

Example Request:

GET /channels/123-456-7a90/logs?n=2 HTTP/1.1
Host: example.com
Accept: application/json, text/javascript

Example response:

{
"status": 200,
"code": "OK",
"description": "logs retrieved",
"result": [

{
"logger": "123-456-7a90",
"level": 40,
"timestamp": 987654321.0,
"message": "Last log for the channel",
"exception": {

"class": "ValueError",
"instance": "ValueError(\"Bad value\",)",
"stack": [

"..."
]

}
},
{

"logger": "123-456-7a90",
"level": 20,

18 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

"timestamp": 987654320.0,
"message": "Second last log for the channel"

}
]

}

Channel Messages

POST /channels/(channel_id: str)/messages/
Send an outbound (mobile terminated) message.

Parameters

• to (str) – the address (e.g. MSISDN) to send the message too. If Junebug is configured
with allow_expired_replies The to parameter is used as a fallback in case the
value of the reply_to parameter does not resolve to an inbound message.

• from (str) – the address the message is from. May be null if the channel only supports
a single from address.

• group (str) – If supported by the channel, the group to send the messages to. Not re-
quired, and may be null

• reply_to (str) – the uuid of the message being replied to if this is a response to a
previous message. Important for session-based transports like USSD. Optional. Can be
combined with to and from if Junebug is configured with allow_expired_replies.
If that is the case the to and from values will be used as a fallback in case the value of the
reply_to parameter does not resolve to an inbound message. The default settings allow
10 minutes to reply to a message, after which an error will be returned.

• content (str) – The text content of the message. Required.

• event_url (str) – URL to call for status events (e.g. acknowledgements and delivery
reports) related to this message. The default settings allow 2 days for events to arrive, after
which they will no longer be forwarded.

• event_auth_token (str) – The token to use for authentication if the event_url requires
token auth.

• priority (int) – Delivery priority from 1 to 5. Higher priority messages are delivered
first. If omitted, priority is 1. Not yet implemented.

• channel_data (dict) – Additional data that is passed to the channel to interpret. E.g.
continue_session for USSD, direct_message or tweet for Twitter.

Example request:

{
"to": "+26612345678",
"from": "8110",
"reply_to": "uuid-1234",
"event_url": "http://example.com/events/msg-1234",
"content": "Hello world!",
"priority": 1,
"channel_data": {
"continue_session": true,

}
}

1.8. HTTP API 19

Junebug Documentation, Release 0.1.40

Example response:

{
"status": 201,
"code": "created",
"description": "message submitted",
"result": {

"message_id": "message-uuid-1234"
}

}

GET /channels/(channel_id: str)/messages/
msg_id: str Retrieve a message’s status.

Example response:

{
"status": 200,
"code": "OK",
"description": "message status",
"result": {

"id": "msg-uuid-1234",
"last_event_type": "ack",
"last_event_timestamp": "2015-06-15 13:00:00",
"events": [

"...array of all events; formatted like events..."
]

}
}

Routers

GET /routers/
Get a list of routers.

Example response:

{
"status": 200,
"code": "OK",
"description": "routers retrieved",
"results": [
"89b9e287-f437-4f71-afcf-3d581716a221",
"512cb98c-39f0-49b2-9938-8bb2ab9da704"

]
}

POST /routers/
Create a new router.

Parameters

• type (str) – the type of router to create. Required.

• label (str) – user-defined label. Ignored by the router, but can be used to store an
application specific label, e.g. the name of the router that you want to appear on the front
end. Not required.

20 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

• config (dict) – the config to send to the router type to create the new router. This config
differs per router type. Required.

• metadata (dict) – user-defined data blob. Ignored by the router, but can be used to store
application specific information, eg. the owner of the router. Not required.

Returns:

Parameters

• status (int) – HTTP status code (201 on success).

• code (str) – HTTP status string.

• description (str) – Description of result ("router created" on success).

• result (dict) – The router created.

Example request:

{
"type": "from_address",
"label": "SMS longcode 12345",
"config": {

"channel": "65227a53-b785-4679-a8e6-b53115b7995a"
},
"metadata": {

"owner": 7
}

}

Example response:

{
"status": 201,
"code": "Created",
"description": "router created",
"result": {

"id": "512cb98c-39f0-49b2-9938-8bb2ab9da704",
"type": "from_address",
"label": "SMS longcode 12345",
"config": {
"channel": "65227a53-b785-4679-a8e6-b53115b7995a"

},
"metadata": {

"owner": 7
},
"status": {
"inbound_message_rate": 1.75,
"outbound_message_rate": 7.11,
"submitted_event_rate": 6.2,
"rejected_event_rate": 2.13,
"delivery_succeeded_rate": 5.44,
"delivery_failed_rate": 1.27,
"delivery_pending_rate": 4.32

}
}

}

GET /routers/(router_id: str)
Get the configuration and status information for a router. Returns in the same format as creating a router.

1.8. HTTP API 21

Junebug Documentation, Release 0.1.40

PUT /routers/(router_id: str)
Replace the router’s configuration with the one provided. Takes and returns the same parameters as creating a
router.

PATCH /routers/(router_id: str)
Replace parts of the router’s configuration with the parts provided. Takes and returns the same parameters as
creating a router, except no parameters are required.

DELETE /routers/(router_id: str)
Stops a router and deletes its configuration.

Router Destinations

GET /routers/(router_id: str)/destinations/
Get a list of destinations for the specified router

Example response:

{
"status": 200,
"code": "OK",
"description": "destinations retrieved",
"result": [
"53ed5492-48a1-4aec-9d64-b9080893cb4a",
"7b23a20f-9330-4a4e-8bd1-4819470ffa31"

]
}

POST /routers/(router_id: str)/destinations/
Create a new destination for a router.

Parameters

• label (str) – user-defined label. Ignored by the destination, but can be used to store an
application specific label, e.g. the name of the destination that you want to appear on the
front end. Not required.

• config (dict) – The configuration for this destination. Configuration is specific to the
type of router. Required.

• metadata (dict) – user-defined data blob. Ignored by the destination, but can be used to
store application specific information, eg. the owner of the destination. Not required.

• mo_url (str) – The url to send inbound (mobile originated) to. None, one, or both of
mo_url and amqp_queue may be specified. If none are specified, messages are ignored. If
both are specified, messages are sent to both. Optional.

• mo_url_token (str) – The token to use for authentication if the mo_url requires token
auth. Optional.

• amqp_queue (str) – The queue to place messages on for this destination. Optional.

• character_limit (int) – Maximum number of characters allowed per message.

Returns:

Parameters

• status (int) – HTTP status code (201 on success)

• code (str) – HTTP status string

22 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

• description (str) – Description of result (“destination created” on success)

• result (dict) – The destination created.

Example request:

{
"label": "*123*4567*1# subcode",
"config": {

"regular_expression": "^*123*4567*1#$"
},
"metadata": {

"owner": 7
},
"mo_url": "https://www.example.org/messages",
"mo_url_token": "my-secret-token",
"amqp_queue": "subcode_1_queue",
"character_limit": 140

}

Example response:

{
"status": 201,
"code": "Created",
"description": "destination created",
"result": {

"id": "7b23a20f-9330-4a4e-8bd1-4819470ffa31",
"label": "*123*4567*1# subcode",
"config": {

"regular_expression": "^*123*4567*1#$"
},
"metadata": {

"owner": 7
},
"mo_url": "https://www.example.org/messages",
"mo_url_token": "my-secret-token",
"amqp_queue": "subcode_1_queue",
"character_limit": 140,
"status": {

"inbound_message_rate": 1.75,
"outbound_message_rate": 7.11,
"submitted_event_rate": 6.2,
"rejected_event_rate": 2.13,
"delivery_succeeded_rate": 5.44,
"delivery_failed_rate": 1.27,
"delivery_pending_rate": 4.32

}
}

}

GET /routers/(router_id: str)/destinations/
destination_id: str Get the configuration and status information for a destination. Returns in the same
format as creating a destination.

PUT /routers/(router_id: str)/destinations/
destination_id: str Replace the destination’s configuration with the one provided. Takes and returns
the same parameters as creating a destination.

PATCH /routers/(router_id: str)/destinations/

1.8. HTTP API 23

Junebug Documentation, Release 0.1.40

destination_id: str Replace parts of the destination’s configuration with the parts provided. Takes and
returns the same parameters as creating a destination, except no parameters are required.

DELETE /routers/(router_id: str)/destinations/
destination_id: str Stops a destination and deletes its configuration.

Router logs

GET /routers/(router_id: str)/logs
Get the latest logs for a router. Takes and returns the same parameters as channel logs.

GET /routers/(router_id: str)/destinations/
destination_id: str/logs Get the latest logs for a destination. Takes and returns the same parameters
as channel logs.

Router Destination Messages

POST /routers/(router_id: str)/destinations/
destination_id: str/messages Send a message from a destination of a router. Takes and returns the
same parameters as sending a channel message. Messages can also be sent through the sending a channel
message endpoint.

GET /routers/(router_id: str)/destinations/
destination_id: str/messages/message-id: str Get the status of a message. Takes and returns
the same parameters as getting the status of a channel message. Message statuses can also be found at the getting
the status of a channel message endpoint.

1.8.2 Events

Events POSTed to the event_url specified in POST /channels/(channel_id:str)/messages/ have
the following format:

POST /event/url

Parameters

• event_type (str) – The type of the event. See the list of event types below.

• message_id (str) – The UUID of the message the event is for.

• channel_id (str) – The UUID of the channel the event occurred for.

• timestamp (str) – The timestamp at which the event occurred.

• event_details (dict) – Details specific to the event type.

Events are posted to the message’s event_url after the message is submitted to the provider, and when delivery
reports are received. The default settings allow events to arrive for up to 2 days; any further events will not be
forwarded.

Request example:

{
"event_type": "submitted",
"message_id": "msg-uuid-1234",
"channel_id": "channel-uuid-5678",
"timestamp": "2015-06-15 13:00:00",
"event_details": {

24 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

"...detail specific to the channel implementation..."
}

}

Event types

Sent when the message is submitted to the provider:

• submitted: message successfully sent to the provider.

• rejected: message rejected by the channel.

Sent later when (or if) delivery reports are received:

• delivery_succeeded: provider confirmed that the message was delivered.

• delivery_failed: provider declared that message delivery failed.

• delivery_pending: provider is still attempting to deliver the message.

1.8.3 Inbound (Mobile Originated) Messages

Inbound messages that are POSTed to the mo_url specified in POST /channels/ have the following format:

POST /mobile_originated/url

Parameters

• to (str) – The address that the message was sent to.

• from (str) – The address that the message was sent from.

• group (str) – If the transport supports groups, the group that the message was sent in.

• message_id (str) – The string representation of the UUID of the message.

• channel_id (str) – The string representation of the UUID of the channel that the mes-
sage came in on.

• timestamp (str) – The timestamp of when the message arrived at the channel, in the
format "%Y-%m-%d %H:%M:%S.%f.

• reply_to (str) – If this message is a reply of an outbound message, the string represen-
tation of the UUID of the outbound message.

• content (str) – The text content of the message.

• channel_data (dict) – Any channel implementation specific data. The contents of this
differs between channel implementations.

Request example:

{
"to": "+27821234567",
"from": "12345",
"group": null,
"message_id": "35f3336d4a1a46c7b40cd172a41c510d"
"channel_id": "bc5f2e63-7f53-4996-816d-4f89f45a5842",
"timestamp": "2015-10-06 14:16:34.578820",
"reply_to": null,
"content": "Test message",

1.8. HTTP API 25

Junebug Documentation, Release 0.1.40

"channel_data": {
"session_event": "new"

},
}

1.8.4 Status events

Status events POSTed to the status_url specified in POST /channels/ have the following format:

POST /status/url

Parameters

• component (str) – The component relevant to this status event.

• channel_id (str) – The UUID of the channel the status event occurred for.

• status (str) – The status level this event was categorised under.

• type (str) – A programmatically usable string value describing the reason for the status
event.

• message (str) – A human-readable string value describing the reason for the status event.

• details (dict) – Details specific to this event intended to be used for debugging pur-
poses. For example, if the event was related to a component establishing a connection, the
host and port are possible fields.

Request Example:

{
"status": "down",
"component": "smpp",
"channel_id": "channel-uuid-5678",
"type": "connection_lost",
"message": "Connection lost",
"details": {}

}

Components

Each status event published by a channel describes a component used as part of the channel’s operation. For example,
an smpp channel type will have a redis component describing its redis connection, an amqp component describing
its amqp connection and an smpp component describing events specific to the SMPP protocol (for example, connec-
tions, binds, throttling).

Status levels

A status event can be categorised under one of the following levels:

• ok: The component is operational.

• degraded: The component is operational, but there is an issue which may affect the operation of the compo-
nent. For example, the component may be throttled.

• down: The component is not operational as a result of the issue described by the event.

26 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

1.8.5 Health

GET /health/

Provides HTTP GET access to test or verify the health of the system.

If the rabbitmq_management_interface config item is set it will also query the RabbitMQ Management
interface to check the health of each queue. This is only available for RabbitMQ.

Returns:

param int status

HTTP status code.

• 200: Everything is healthy.

• 500: There are queues stuck.

param str code HTTP status string.

param str description

Description of result

• "health ok": Everything is healthy and rabbitmq_management_interface is
not set.

• "queues ok": Everything is healthy and rabbitmq_management_interface is
set.

• "queues stuck": There are queues stuck and
rabbitmq_management_interface is set.

param dict result A list of queues with details (Only if rabbitmq_management_interface is
set).

Response Example without ‘‘rabbitmq_management_interface‘‘:

{
"status": 200,
"code": "OK",
"description": "health ok"

}

Response Example with ‘‘rabbitmq_management_interface‘‘:

{
"status": 200,
"code": "OK",
"description": "queues ok",
"result": [

{
"stuck": false,
"rate": 1.3,
"messages": 4583,
"name": "b4fda175-011f-40bd-91da-5c88789e1e2a.inbound"

},
{

"stuck": false,
"rate": 1.6,
"messages": 43,
"name": "b4fda175-011f-40bd-91da-5c88789e1e2a.outbound"

1.8. HTTP API 27

Junebug Documentation, Release 0.1.40

}
]

}

1.9 AMQP integration

Should you choose to use the AMQP queues to handle messaging with Junebug, when you specify the amqp_queue
parameter when you configure the channel, the usage is as follows:

• Inbound (mobile originated) messages are sent to the routing key of {amqp_queue}.inbound

• Events are sent to the routing key of {amqp_queue}.event

• Outbound (mobile terminated) messages will be fetched from queue {amqp_queue}.outbound

Remember to bind the routing key to your desired queue, and that the Exchange name defaults to vumi, else it you
will not recieve the messages. Please have a look at https://www.rabbitmq.com/tutorials/amqp-concepts.html for more
information.

The data sent over AMQP is the standard Vumi data format.

An example of the data format is:

{
"transport_name": "2427d857-688d-4cee-88d9-8e0e32dfdc13",
"from_addr_type": null,
"group": null,
"from_addr": "127.0.0.1:46419",
"timestamp": "2016-03-18 11:49:36.830534",
"in_reply_to": null,
"provider": null,
"to_addr": "0.0.0.0:9001",
"routing_metadata": {},
"message_id": "a5d2800751f54b55a622e3965e1b71ec",
"content": "a",
"to_addr_type": null,
"message_version": "20110921",
"transport_type": "telnet",
"helper_metadata": {

"session_event": "resume"
},
"transport_metadata": {},
"session_event": "resume",
"message_type": "user_message"

}

1.10 Plugin Reference

A Junebug plugin is a class that has specific methods that get called during specific events that happen within Junebug.
Plugins provide a way to hook into Junebug and add extra functionality.

1.10.1 Installing plugins

The CLI and config references describe how you can add plugins to Junebug.

28 Chapter 1. Contents

https://www.rabbitmq.com/tutorials/amqp-concepts.html

Junebug Documentation, Release 0.1.40

1.10.2 Methods

The following methods are available to plugins to perform actions according to events that happen within Junebug:

class junebug.plugin.JunebugPlugin
Base class for all Junebug plugins

channel_started(channel)
Called whenever a channel is started. Should be implemented by the plugin. Can return a deferred.

Parameters channel (Channel) – The channel that has been started.

channel_stopped(channel)
Called whenever a channel is stopped. Should be implemented by the plugin. Can return a deferred.

Parameters channel (Channel) – The channel that has been stopped.

start_plugin(config, junebug_config)
Can be overridden with any required startup code for the plugin. Can return a deferred.

Parameters

• config (dictionary) – The config specific to the plugin.

• junebug_config (JunebugConfig) – The config that Junebug was started with.

stop_plugin()
Can be overridden with any required shutdown code for the plugin. Can return a deferred.

1.10.3 Creating Plugins

In order to create a plugin, create a python class that inherits from junebug.plugin.JunebugPlugin, and implements
any of the methods. Then add the plugin to Junebug through either the CLI or a config file, as described in Installing
plugins.

1.10.4 Bundled plugins

Nginx

Maintains configuration for an nginx virtual host for Junebug to expose http-based channels, reloading nginx whenever
a new http-based channel is added.

The plugin looks for web_path and web_port config fields in each channel config given to POST /channels/.
web_port determines the internal tcp port for the server that nginx should proxy requests to. web_path determines
the path to expose the http-channel on (e.g. '/foo/bar') for the vhost.

The plugin will also look for a public_http object in each added channel’s config. public_http.web_path
and public_http.web_port override web_path and web_port respectively. Additionally, one can disable
the plugin for a particular channel by setting public_http.enabled to false.

Config options:

vhost_file The file to write the junebug nginx vhost file to

type: str
default: '/etc/nginx/sites-enabled/junebug.conf'

1.10. Plugin Reference 29

http://nginx.org/

Junebug Documentation, Release 0.1.40

locations_dir The directory to write location block config files to

type: str
default: '/etc/nginx/includes/junebug/'

server_name Server name to use for nginx vhost

type: str
default: None

vhost_template Path to the template file to use for the vhost config

type: str
default: '/home/docs/checkouts/readthedocs.org/user_builds/junebug/
envs/latest/local/lib/python2.7/site-packages/junebug-0.1.40-py2.
7.egg/junebug/plugins/nginx/vhost.template'

location_template Path to the template file to use for each channel’s location config

type: str
default: '/home/docs/checkouts/readthedocs.org/user_builds/junebug/
envs/latest/local/lib/python2.7/site-packages/junebug-0.1.40-py2.
7.egg/junebug/plugins/nginx/location.template'

Note: The plugin needs permissions to write the vhost and location config files it maintains. See the config options
for the default paths that the plugin will write these files to.

1.11 Routers

Note: Not yet implemented

1.11.1 Introduction

Routers in Junebug allow you to use a single channel with multiple applications.

This can be useful in cases where, for example with an SMPP transport, you have a single bind with a provider, but
multiple SMS lines.

Or if you have a USSD line, and you want the subcodes to go to different applications.

30 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

The routers are desgined in such a way that you can do both one to many, and many to one routing, for example
where you have multiple MNOs that you have a separate channel for each, but you want all messages to go to a single
application.

See also:

Routers How to use routers with the http API

Config File Reference How to add new router types via a config file

Command-line Reference How to add new router types via command line arguments

1.11.2 Built in router types

The following routers are available with any default setup and installation of Junebug.

From address router

The from_address router type routes inbound messages based on regex rules on the from address.

The config for the router takes the following parameters:

channel (str) The channel ID of the channel whose messages you want to route. This channel may not
have an amqp_queue parameter specified. Required.

The config for each of the router destinations takes the following parameters:

regular_expression (str) The regular expression to match the from address on. Any inbound messages
with a from address that matches this regular expression will be sent to this destination.

default (bool) Whether or not this destination is the default destination. Only one destination may be the
default destination. Any messages that don’t match any of the configured destinations will be sent
to the default destination. If no default destination is configured, then non-matching messages will
be dropped. Optional, defaults to false.

1.12 Release Notes

1.12.1 v0.1.40

– Fixes

• Destination reply to messages fetches from correct place and saves outbound.

1.12.2 v0.1.39

– Fixes

• View messages on destination now fetches from the correct place.

• Disabled channel messages endpoint if there is no destination configured.

1.12. Release Notes 31

Junebug Documentation, Release 0.1.40

1.12.3 v0.1.38

– Features

• Endpoint to create and view messages directly on a routers destination.

1.12.4 v0.1.37

– Features

• Added a log endpoint for routers

1.12.5 v0.1.36

• Fixes

– Validation on router PATCH api endpoint.

1.12.6 v0.1.35

• Fixes

– Store outbound messages that the from address router is forwarding, so that we can forward the events
to the correct place.

1.12.7 v0.1.34

8 January 2018

• Fixes

– Add handling for outbound messages from destinations on the from address router

1.12.8 v0.1.33

4 January 2018

– Features

• Added a base router class and a new from address router.

1.12.9 v0.1.32

13 December 2017

• Documentation

– Fixed the mo_url_auth_token field description for channels

• Fixes

– Fixed character limit validation for router destinations

32 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

1.12.10 v0.1.31

12 December 2017

• Features

– Added endpoints for creating, modifying, deleting and listing router destinations.

• Documentation

– Remove not yet implemented note for router destinations.

1.12.11 v0.1.30

12 December 2017

• Documentation

– Add format for inbound messages send from Junebug.

• Fixes

– Add handling for invalid JSON in the request body

1.12.12 v0.1.29

6 December 2017

• Fixes

– Fix the name clash of validate_config for creating routers

– Fix the TestRouter so that it can be used as an actual router for testing

1.12.13 v0.1.28

5 December 2017

• Features

– Added the endpoints for creating, modifying, and deleting routers.

• Documentation

– Removed not yet implemented from Router endpoints.

1.12.14 v0.1.27

27 November 2017

• Features

– Added a config option for RabbitMQ Management Interface to see status of each queue with the health
check.

• Fixes

– Change created API endpoint statuses to 201 to match documentation

• Documentation

1.12. Release Notes 33

Junebug Documentation, Release 0.1.40

– Use older version of docutils in documentation build, since txJSON-RPC does not work with the
newer version.

– Create minimal sphinx argparse implementation to use until official sphinx-argparse is made to work
with readthedocs again

– Bring release notes up to date

– Update design notes to mark what has been implemented and what is yet to be implemented

– Bring getting started section up to date with what the current API actually returns

– Adding section in getting started to show getting the related events for a message

– Update HTTP API documentation to what the API actually looks like

– Update Readme to give more information to someone who wants to work on the project.

1.12.15 v0.1.26

07 September 2017

• Fixes

– Also catch RequestTransmissionFailed for HTTP requests. This should fix the issue where messages
or events would stop being processed in the case of an HTTP error

1.12.16 v0.1.25

28 August 2017

• Features

– Update to vumi 0.6.18

1.12.17 v0.1.24

31 July 2017

• Features

– Allow event auth token to be specified when sending a message

• Documentation

– Add documentation mentioning specifying an auth token for the mo_url and for the event URL

1.12.18 v0.1.23

28 July 2017

• Features

– Allow specifying all of to, from, and reply to when sending a message, defaulting to using reply_to if
specified.

– If allow_expired_replies is specified in the configuration, then if to, from, and reply_to is specified,
and reply_to does not resolve to a valid message in the message store, then we will fall back to to and
from for creating the message.

34 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

1.12.19 v0.1.22

24 July 2017

• Features

– Allow token and basic auth for sending of event messages

1.12.20 v0.1.21

21 July 2017

• Features

– Upgrade to vumi 0.6.17

1.12.21 v0.1.20

18 July 2017

• Fixes

– Allow any 6.x.x version for Raven (Sentry)

1.12.22 v0.1.19

17 July 2017

• Features

– Expose ‘group’ attribute from vumi message in message payload

• Documentation

– Add newline in cli reference so that documentation renders correctly

– Fix example response for message creation

– Update documentation for reply_to change

1.12.23 v0.1.18

12 July 2017

• Fixes

– Change to setup.py to allow Junebug to be installable on python 3

1.12.24 v0.1.17

10 July 2017

• Features

– Display more information on HTTP failure when logging failure

– Allow an auth token to be specified for inbound (mobile originated) messages being sent over HTTP

• Fixes

1.12. Release Notes 35

Junebug Documentation, Release 0.1.40

– Also catch CancelledError for HTTP timeouts

1.12.25 v0.1.16

7 June 2017

• Features

– Upgrade to pypy 5.7.1

– Add ability to log exceptions to Sentry

1.12.26 v0.1.15

29 May 2017

• Features

– Upgrade vumi to 0.6.16

1.12.27 v0.1.14

31 March 2017

• Fixes

– Fix tests for new Twisted error output

1.12.28 v0.1.13

Skipped

1.12.29 v0.1.12

31 March 2017

• Features

– Upgrade vumi to 0.6.14

1.12.30 v0.1.11

10 February 2017

• Fixes

– Trap ConnectionRefusedError that can happen when trying to relay a message to an event_url of
mo_url.

36 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

1.12.31 v0.1.10

06 February 2017

• Fixes

– Make Junebug gracefully handle timeouts and connection failure for events and messages posted to
URL endpoints.

1.12.32 v0.1.9

02 February 2017

• Fixes

– Allow one to set the status_url and the mo_url for a channel to None to disable pushing of
status events and messages to these URLs.

1.12.33 v0.1.8

18 January 2017

• Fixes

– Change the default smpp channel type from the depricated SmppTransport (SmppTransceiverTrans-
portWithOldConfig), to the new SmppTransceiverTransport.

1.12.34 v0.1.7

10 January 2017

• Features

– Update the minimum version of vumi to get the latest version of the SMPP transport, which allows us
to set the keys of the data coding mapping to strings. This allows us to use the data coding mapping
setting in Junebug, since in JSON we cannot have integers as keys in an object.

1.12.35 v0.1.6

3 October 2016

• Fixes

– Fix the teardown of the MessageForwardingWorker so that if it didn’t start up properly, it would still
teardown properly.

– Handling for 301 redirect responses improved by providing the URL to be redirected to in the body
as well as the Location header.

– We no longer crash if we get an event without the user_message_id field. Instead, we just don’t store
that event.

• Features

– Update channel config error responses with the field that is causing the issue.

– Set a minimum twisted version that we support (15.3.0), and ensure that we’re testing against it in our
travis tests.

1.12. Release Notes 37

Junebug Documentation, Release 0.1.40

– The logging service now creates the logging directory if it doesn’t exist and if we have permissions.
Previously we would give an error if the directory didn’t exist.

• Documentation

– Added instructions to install libssl-dev and libffi-dev to the installation instructions.

– Added documentation and diagrams for the internal architecture of Junebug.

1.12.36 v0.1.5

19 April 2016

• Fixes

– Have nginx plugin add a leading slash to location paths if necessary.

1.12.37 v0.1.4

12 April 2016

• Fixes

– Fix nginx plugin to properly support reading of web_path and web_port configuration.

– Add endpoint for restarting channels.

– Automate deploys.

1.12.38 v0.1.3

5 April 2016

• Fixes

– Reload nginx when nginx plugin starts so that the vhost file is loaded straight away if the nginx plugin
is active.

1.12.39 v0.1.2

5 April 2016

• Fixes

– Added manifest file to fix nginx plugin template files that were missing from the built Junebug pack-
ages.

• Features

– Added environment variable for selecting reactor

• Documentation

– Extended AMQP documentation

38 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

1.12.40 v0.1.1

1 March 2016

• Fixes

– Junebug now works with PyPy again

– Fixed sending messages over AMQP

1.12.41 v0.1.0

18 December 2015

• Fixes

– Fixed config file loading

• Features

– We can now get message and event rates on a GET request to the channel endpoint

– Can now get the last N logs for each channel

– Can send and receive messages to and from AMQP queues as well as HTTP

– Dockerfile for creating docker containers

• Documentation

– Add documentation for message and event rates

– Add documentation for getting a list of logs for a channel

– Add a changelog to the documentation

– Update documentation to be ready for v0.1.0 release

– Remove Alpha version warning

1.12.42 v0.0.5

9 November 2015

• Fixes

– When Junebug is started up, all previously created channels are now started

• Features

– Send errors replies for messages whose length is greater than the configured character limit for the
channel

– Ability to add additional channel types through config

– Get a message status and list of events for that message through an API endpoint

– Have channel statuses POSTed to the configured URL on status change

– Show the latest channel status event for each component and the overall status sumary with a GET
request to the specific channel endpoint.

– Add infrastructure for Junebug Plugins

1.12. Release Notes 39

Junebug Documentation, Release 0.1.40

– Add Nginx Junebug Plugin that automatically updates the nginx config when it is required for HTTP
based channels

– Add SMPP and Dmark USSD channel types to the default list of channel types, as we now support
those channels fully

• Documentation

– Add getting started documentation

– Updates for health events documentation

– Add documentation for plugins

– Add documentation for the Nginx plugin

1.12.43 v0.0.4

23 September 2015

• Fixes

– Ignore events without an associated event forwarding URL, instead of logging an error.

– Fix race condition where an event could come in before the message is stored, leading to the event not
being forwarded because no URL was found

1.12.44 v0.0.3

23 September 2015

• Fixes

– Remove channel from channel list when it is deleted

• Features

– Ability to specify the config in a file along with through the command line arguments

– Ability to forward MO messages to a configured URL

– Ability to reply to MO messages

– Ability to forward message events to a per-message configured URL

• Documentation

– Add documentation about configurable TTLs for inbound and outbound messages

1.12.45 v0.0.2

9 September 2015

• Fixes

– Collection API endpoints now all end in a /

– Channels are now only started/stopped once instead of twice

• Features

– Ability to send a MT message through an API endpoint

40 Chapter 1. Contents

Junebug Documentation, Release 0.1.40

– Ability to get a list of channels through an API endpoint

– Ability to delete a channel through an API endpoint

1.12.46 v0.0.1

1 September 2015

• Features:

– API endpoint structure

– API endpoint validation

– Health endpoint

– jb command line script

– Ability to create, get, and modify channels

• Documentation:

– API endpoint documentation

– Installation documentation

– Run command documentation

1.12. Release Notes 41

Junebug Documentation, Release 0.1.40

42 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

43

Junebug Documentation, Release 0.1.40

44 Chapter 2. Indices and tables

HTTP Routing Table

/channels
GET /channels/, 15
GET /channels/(channel_id:str), 16
GET /channels/(channel_id:str)/logs, 18
GET /channels/(channel_id:str)/messages/(msg_id:str),

20
POST /channels/, 15
POST /channels/(channel_id:str), 17
POST /channels/(channel_id:str)/messages/,

19
POST /channels/(channel_id:str)/restart,

17
DELETE /channels/(channel_id:str), 17

/event
POST /event/url, 24

/health
GET /health/, 27

/mobile_originated
POST /mobile_originated/url, 25

/routers
GET /routers/, 20
GET /routers/(router_id:str), 21
GET /routers/(router_id:str)/destinations/,

22
GET /routers/(router_id:str)/destinations/(destination_id:str),

23
GET /routers/(router_id:str)/destinations/(destination_id:str)/logs,

24
GET /routers/(router_id:str)/destinations/(destination_id:str)/messages/(message-id:str),

24
GET /routers/(router_id:str)/logs, 24
POST /routers/, 20
POST /routers/(router_id:str)/destinations/,

22

POST /routers/(router_id:str)/destinations/(destination_id:str)/messages,
24

PUT /routers/(router_id:str), 21
PUT /routers/(router_id:str)/destinations/(destination_id:str),

23
DELETE /routers/(router_id:str), 22
DELETE /routers/(router_id:str)/destinations/(destination_id:str),

24
PATCH /routers/(router_id:str), 22
PATCH /routers/(router_id:str)/destinations/(destination_id:str),

23

/status
POST /status/url, 26

45

Junebug Documentation, Release 0.1.40

46 HTTP Routing Table

Index

C
channel_started() (junebug.plugin.JunebugPlugin

method), 29
channel_stopped() (junebug.plugin.JunebugPlugin

method), 29

J
JunebugPlugin (class in junebug.plugin), 29

S
start_plugin() (junebug.plugin.JunebugPlugin method),

29
stop_plugin() (junebug.plugin.JunebugPlugin method),

29

47

	Contents
	Installation
	Getting started
	Command-line Reference
	Named Arguments
	Config File Reference
	Design
	Internal Architecture
	HTTP API
	AMQP integration
	Plugin Reference
	Routers
	Release Notes

	Indices and tables
	HTTP Routing Table

