

﻿JQM

The aptly named Job Queue Manager, or JQM for short, is a queue manager. It has three goals:

	to optimize and streamline the execution of jobs, whatever they may be, by using queues with rich configuration

	to make job administration simple

	to be easy to include or embed in most environments.

The result is a small-footprint, easy to use grid execution system that takes care of everything which would be
boilerplate code or missing otherwise: configuring logs, throttling processes, handling priorities between different classes of
jobs, distributing the load over multiple servers, distributing the files created by the jobs, and much more…

It is able to run anything that can be run on the command line without modifications. It also has a very rich Java integration which make it
an ideal “job application server” for Java users - with no modifications required, allowing to directly use code from plain Main to
Spring Batch and other frameworks…

Jobs and users also optionally benefit from rich REST APIs exposing all JQM data and operations.

There are many use cases for JQM. Common real-world examples include:

	replacing another job execution manager, like the one inside OS/400 - a reference as far as job queuing is concerned

	adding a distributed execution capability to a scheduler or any application

	removing load from a paid application server

	removing asynchronous executions from a web application server, not designed to deal with long running threads

	throttling jobs, like allowing only one instance of the same job at a time

Also of note that JQM was created with compatibility in mind:

	uses either PostgreSQL, Oracle, MySQL, DB2 or an embedded HSQLDB

	one of the client API implementations is a REST-like API, callable from everywhere, not only Java but also .NET or shell scripts

	the Java implementation of the client API is usable in all application servers and JSE code (tested with WebSphere 8.x, Glassfish 3.x, Tomcat 7.x, JBoss 7+…)

	under an Apache 2 license, which basically allows you to do anything you want with the product and its code in any situation.

Finally, JQM is a free (as beer) and open source product backed by the IT consulting firm [Enioka](http://www.enioka.com)
which first developed it for an international conglomerate. Enquiries about support, development of extensions,
integration with other products, consulting and other commercial questions are more than welcome at contact@enioka.com.
Community support is of course freely offered on GitHub using the bug-tracker.

	1. JQM features

	2. ﻿How JQM works

	3. Quickstart

	4. Shell Payload development
	4.1. Execution context

	4.2. Calling JQM APIs

	4.3. Logging

	5. Java Payload development
	5.1. Payload basics

	5.2. Logging

	5.3. Using resources

	5.4. Engine API

	5.5. Packaging

	5.6. Testing payloads

	5.7. Understanding the execution context

	5.8. Using Spring

	6. ﻿Client development
	6.1. ﻿Introduction

	6.2. Simple web API

	6.3. Full client API
	6.3.1. Basics

	6.3.2. Client API details

	6.3.3. Query API

	6.3.4. JPA Client API

	6.3.5. Web Service Client API

	6.4. CLI API

	6.5. Engine API

	7. ﻿Administration
	7.1. Installation

	7.2. Command Line Interface (CLI)

	7.3. ﻿JMX monitoring

	7.4. Web administration console

	7.5. Logs

	7.6. ﻿Operations

	7.7. Parameters

	7.8. Managing queues

	7.9. Administrating resources

	7.10. Managing history

	7.11. Data security

	7.12. Database and reliability

	7.13. Administration web services

	7.14. Scheduling jobs

	7.15. Compatibility matrix

	8. ﻿In case of trouble
	8.1. ﻿Troubleshooting

	8.2. Reporting bugs and requests

	9. Developement
	9.1. Contributing to JQM

	9.2. Conventions and style

	9.3. Release process

	9.4. Release notes

	9.5. Classloading

	9.6. Testing

	10. Glossary

1. JQM features

	The only dedicated job queueing server

	Open Source under the Apache 2 licence, a business-friendly licence securing your investments in JQM

	No-cost ready to use solution. Paying support can if needed be purchased from the original authors
at contact@enioka.com or at any other firm open to doing maintenance on the tool.

	Fully documented

Full command line integration:

	launch any command - be it a shell command or an executable with no need for a shell

	use many environment variables provided by JQM

	easily call JQM APIs with provided account and URL

	store files for later retrieval by end users or admins

	deal with parent/child relationship

Optional rich Java integration:

	Runs existing Java 1.8 to 1.10 code, without need for programming specifically for JQM

	Possible (but not required) to use a specific framework of your choice (Spring batch, etc.)

	Possible (but not required) to easily tweak class loading to enable advance scenarios

	Many samples for all features (inside JQM’s own integration tests)

	Specific API to handle file creation and easy retrieval (a file can be created on any server and retrieved from another in a single call)

	Embedded standard JNDI directory with JDBC connection pooling for jobs needing database connectivity

	Jobs can be tested as if they were running inside a JQM node thanks to a test library which can be
used in JUnit tests.

	Can easily report an advancement status to users or administrators

	All JQM artifacts (optional libraries developers may want to use in some cases) are published on Maven Central and therefore easily
integrate with most build systems

Interacting with batch jobs is simple:

	Query API enabling to easily create client applications (with two full samples included in the distribution), such as
web pages listing all the jobs for given user, for a given module, etc.

	Feature rich REST API with provided Java clients, which can be used out of the box for launching jobs,
cancelling them, changing their priorities…

Java batch packaging: just use your own

	Full Maven 3 support: as a Maven-created jar contains its pom.xml, JQM is able to retrieve all the dependencies, simplifying packaging libraries.

	It is even possible to directly run Maven coordinates without providing any jar file!

	More classic packaging also supported (library directory, or putting all libraries inside the jar)

Administration is a breathe:

	Both command line and web-based graphic user interface for administration

	Can run in Docker environments with provided images optimized for development usage as well as scale-out production scenarios (Swarm, Kubernetes…)

	Can run as a Windows service or a Linux /etc/init.d script

	Fully ready to run out of the box without complicated configuration

	Supported on most OSes and databases

	Log files can be accessed easily through a distributed web GUI

	Easy definition of service classes (VIP jobs, standard jobs, …) through queues

	Easy integration with schedulers and CLI

	Most configuration changes are hot-applied, with little to no need for server restarts

	Resists most environment failures (database failure, network failure, …)

	Maintenance jobs are integrated

	Can be fully monitored through JMX - which make it compatible with most monitoring systems out of the box (a Zabbix template is provided)

	Authentication and permissions handling is fully in-box, including an optional PKI to create
client certificates.

2. ﻿How JQM works

2.1. Basic JQM concepts

The goal of JQM is to launch payloads, i.e. an executable or Java code doing something useful, asynchronously. This payload can be anything -
a shell script, a Spring batch, really anything that can be launched in a CLI or works with Java SE.

The payload is described inside a job definition - so that JQM knows things like the class to load, the path of the jar file if any, etc.
It is usually contained within an XML file. The job definition is actually a deployment descriptor - for the Java inclined, it is the batch equivalent for a web.xml or an ejb-jar.xml.

A running payload is called a job instance (the “instance of a job definition”). These instances wait in queues to be
run, then are run and finally archived.
To create a job instance, a job request is posted by a client. It contains things such as optional parameters values, but most importantly
it specifies a job definition so that JQM will know what to run.

Job instances are run by one or many engines called JQM nodes. These are simply Java processes that poll the different queues
in which job instances are waiting. Processes are launched with JQM as their parent, while Java job instances take place within threads, each with a dedicated class loader so as to fully isolate them from each others
(this is the default behaviour - class loader sharing is also possible).

Full definitions are given inside the Glossary.

2.2. General architecture

[image: _images/pic_general.png]
On this picture, JQM elements are in green while non-JQM elements are in blue.

By default, JQM works like this:

	an application (for example, a J2EE web application but it could be anything as long as it can call a REST web service or a Java SE library) needs to launch an asynchronous job

	it uses an implementation of the JQM client (one of the two - web service or direct-to-database. There are two dotted lines representing this choice on the diagram)

	it uses the ‘enqueue’ method of the client, passing it a job request with the name of the job definition to launch (and potentially parameters, tags, …)

	a job instance is created inside the database

	engines are polling the database (see below). One of them with enough free resources takes the job instance

	if a Java job: it creates a dedicated class loader for this job instance, imports the correct libraries with it, launches the payload inside a thread

	if a shell job: it created a new process for the job instance and waits for its death

	during the run, the application that was at the origin of the request can use other methods of the client API to retrieve the status, the advancement, etc. of the job instance

	at the end of the run, the JQM engine updates the database and is ready to accept new jobs. The client can still query the history of executions.

It should be noted that clients never speak directly to a JQM engine - it all goes through the database.

Note

There is one exception to this:
when job instances create files that should be retrieved by the requester, the ‘direct to database’ client will
download the files through a direct HTTP GET call to
the engine. This avoids creating and maintaining a central file repository. The ‘web service’ client does not have this issue as it always uses web
services for all methods.

 3. Quickstart

3. Quickstart

This guide will show how to run a job inside JQM with the strict minimum of operations.
The resulting installation is not suitable for production at all, but perfect for development environments.
It also gives pointers to the general documentation.

3.1. Docker on Windows or Linux/Mac

Prerequisites:

	Docker is configured and can access public images

	A recent Windows (greater or equal to 1709) or Linux (this includes Macs which run containers inside a hidden Linux VM)

Just run the very classic:

docker run -it --rm -p 1789:1789 enioka/jqm

The log inside the console should give you an indication “Jetty has started on port 1789”. You can now use your preferred browser
to go to http://localhost:1789 and browse the administration console.

Go to the last tab, click on “new launch” on the bottom, select the “DemoEcho” job and validate. The job should run and appear in the
history list when clicking on “refresh”. Congratulations, that was a first JQM job instance launch!

Use Ctrl+C inside the console to stop the engine with the container.

3.2. Windows without Docker

Prerequisites:

	A directory where JQM will be installed, named JQM_ROOT afterwards.

	A supported JRE, with java in the path.

	An account with full permissions in JQM_ROOT. Not need for admin or special rights - it just needs to be able to open a PowerShell session.

The following script will download and copy the binaries (adapt the first two lines).

$JQM_ROOT = "C:\TEMP\jqm" ## Change this
$JQM_VERSION = "1.3.3" ## Change this
mkdir -Force $JQM_ROOT; cd $JQM_ROOT
Invoke-RestMethod https://github.com/enioka/jqm/releases/download/jqm-all-$JQM_VERSION/jqm-$JQM_VERSION.zip -OutFile jqm.zip
$shell = new-object -com shell.application
$zip = $shell.NameSpace((Resolve-Path .\jqm.zip).Path)
foreach($item in $zip.items()) { $shell.Namespace($JQM_ROOT).copyhere($item) }
rm jqm.zip; mv jqm*/* .

The following script will create a database and reference the test jobs (i.e. payloads) inside a test database:

./jqm.ps1 createnode # This will create a new node named after the computer name
./jqm.ps1 allxml # This will import all the test job definitions

The following script will enable the web console with account root/test (do not use this in production!):

./jqm.ps1 enablegui -RootPassword test

The following script will enqueue an execution request for one of the test jobs:

./jqm.ps1 -Enqueue DemoEcho

Finally this will start an engine inside the console.:

./jqm.ps1 startconsole

Just check the JQM_ROOT/logs directory - a numbered log file should have appeared, containing the log of the test job.

The log inside the console should give you an indication “Jetty has started on port <PORT>”. You can now use your preferred browser
to go to localhost:port and browse the administration console. Use Ctrl+C inside the PowerShell console to stop the engine.

3.3. Linux / Unix without Docker

Prerequisites:

	A directory where JQM will be installed, named JQM_ROOT afterwards.

	A supported JRE, with java in the path.

	An account with full permissions in JQM_ROOT. Not need for administrative or special permissions.

The following script will download and install the binaries (adapt the first two lines).

wget https://github.com/enioka/jqm/releases/download/jqm-all-1.3.3/jqm-1.3.3.tar.gz # For 1.3.3 release. Adapt it to the one you want.
tar xvf jqm-1.3.3.tar.gz

The following script will create a database and reference the test jobs (i.e. payloads) inside a test database:

cd jqm-1.3.3
./jqm.sh createnode
./jqm.sh allxml # This will import all the test job definitions

The following script will enable the web console with account root/test (do not use this in production!):

./jqm.sh enablegui test

The following script will enqueue an execution request for one of the test jobs:

./jqm.sh enqueue DemoEcho

Finally this will start an engine inside the console.:

./jqm.sh startconsole

Just check the JQM_ROOT/logs directory - a numbered log file should have appeared, containing the log of the test job.

3.4. Next steps…

Note

Congratulations, you’ve just run your first JQM batch! This batch is simply a jar with a main function doing an echo - a totally
usual Java JSE program with no extensions whatsoever. If using standard JSE is not enough, just read the Java Payload development chapter.

 4. Shell Payload development

4. Shell Payload development

	4.1. Execution context
	4.1.1. Launching the process
	4.1.1.1. Default shell

	4.1.1.2. Powershell

	4.1.1.3. Direct executable

	4.1.2. Environment variables

	4.1.3. Permissions

	4.1.4. Result

	4.1.5. Stopping a job

	4.2. Calling JQM APIs
	4.2.1. Environment variables

	4.2.2. WS APIs

	4.2.3. Creating temp files

	4.2.4. Creating result files

	4.2.5. Unavailable APIs

	4.3. Logging

 4.1. Execution context

4.1. Execution context

4.1.1. Launching the process

The new process is created according to a parameter of the job definition.

4.1.1.1. Default shell

Under Linux, this is the shell at /bin/sh. The actual shell behind this depends on the Linux/Unix distribution. Under
Windows, this is always cmd.exe.

The command provided will simply be run as /bin/sh -c COMMAND. The command is always passed as a single argument,
so there is no need to enclose it inside quotes. This means that the command should be typed exactly as it would be in
an interactive shell - no need for double escaping.

The command can be up to 1000 caracters long. Beyond that, please write a script file and launch that script instead.

In case there are explicit parameters (beyond what is inside of the command itself) as allowed by the deployment descriptor,
the parameter values are sorted by key and added to the command sperated by spaces. The keys are only used for sorting,
and are not present inside the resulting command, so --file FILENAME is two parameters. However, using this is
strongly discouraged - a shell command should be something simple. The administration GUI does not expose this ability on purpose.

4.1.1.2. Powershell

Same as default shell, but powershell is always used as the shell. This means powershell core under Linux.
Job instances will obvioulsy crash if powershell is not present in the PATH seen by JQM.

4.1.1.3. Direct executable

In this case, the commmand given must be an executable path (absolute or relative to JQM_HOME) without parameters.
Parameters should be placed inside the explicit parameter section of the deployment descriptor. The value of parameters
is added sorted by key. The keys are only used for sorting, and are not present inside the resulting command, so
--file FILENAME is two parameters.

Note that in this case there is no shell available, and shell usual functions are not available. For example, there
is no wildcard expansion, no environment variable is usable in the command or its parameters, internal shell commands
are not available and the command cannot be a shell pipe or multiple chained commands.

Of course, it is possible to specify /bin/bash or whatever shell as the command and -c and my shell commands as
two parameters, but in this case it is easier to use the default shell or powershell modes.

4.1.2. Environment variables

The following variables can be used by the created process (and inside the shell command if launched through a shell).

	Name

	Description

	JQM_JD_APPLICATION_NAME

	Name of the job definition as defined by thje deployment descriptor

	JQM_JD_KEYWORD_1

	Tag from the deployment descriptor

	JQM_JD_KEYWORD_2

	Tag from the deployment descriptor

	JQM_JD_KEYWORD_3

	Tag from the deployment descriptor

	JQM_JD_MODULE

	Tag from the deployment descriptor

	JQM_JD_PRIORITY

	Default job priority from the deployment descriptor

	JQM_JI_ID

	ID assigned by JQM to this particular job instance. Unique througout the cluster

	JQM_JI_PARENT_ID

	ID of the parent job instance, if any

	JQM_JI_KEYWORD_1

	Tag assigned inside the execution request

	JQM_JI_KEYWORD_2

	Tag assigned inside the execution request

	JQM_JI_KEYWORD_3

	Tag assigned inside the execution request

	JQM_JI_MODULE

	Tag assigned inside the execution request

	JQM_JI_USER_NAME

	Tag assigned inside the execution request

	JQM_JI_TEMP_DIR

	An already existing directory, purged at the end by JQM

	JQM_JI_DELIVERY_DIR

	An already existing directory in which to store produced files

	JQM_NODE_NAME

	Name (from configuration) of the node having launched the job instance

	JQM_NODE_APPLICATION_ROOT

	Path (from node configuration) to the application repository

	JQM_NODE_LOG_LEVEL

	DEBUG, WARN, INFO, ERROR

	JQM_Q_NAME

	Name (from configuration) of the queue having launched the job instance

	JQM_API_LOGIN

	A user which can call the JQM web APIs. See below.

	JQM_API_PASSWORD

	Password for JQM_API_LOGIN

	JQM_API_LOCAL_URL

	A URL (using localhost) pointing to the JQM web APIs

4.1.3. Permissions

The process is launched by JQM under the account JQM itself is running.

4.1.4. Result

A job instance is considered as failed if its return code is different than zero.

4.1.5. Stopping a job

When a kill order is given, JQM will (asynchronously) send a SIGTERM or equivalent to the process and all its children.

 4.2. Calling JQM APIs

4.2. Calling JQM APIs

4.2.1. Environment variables

Rather than having to call an API to obtain infomration as would be done in a programming language,
JQM readily puts at the process disposal quite a few information on itself. See Environment variables for a list.

4.2.2. WS APIs

An account is provided to call the JQM client APIs. Please see ﻿Client development for details on how to use
this API.

The account is garanteed to stay valid at least 24 hours and should not be used for any longer than 24H.
(It is destroyed randomly by JQM between 24 and 48 hours).

For example, a bash script may use this command to request the execution of a child job:

curl --user "${JQM_API_LOGIN}:${JQM_API_PASSWORD}" --url "${JQM_API_LOCAL_URL}/ws/simple/ji" -d "applicationname=ChildAppName&parentid=${JQM_JI_ID}" -H "Content-Type: application/x-www-form-urlencoded"

4.2.3. Creating temp files

It is recommended to use the directory designated by the environment variable JQM_JI_TEMP_DIR for creating those.
This directory is purged at the end of the execution. It is specific to a single job instance.

4.2.4. Creating result files

Those are files that need to be kept after the run and made available to users through the APIs. They usually are
the results of the execution: a report, an accounting book, a graph…

These files simply have to be created inside or moved at the root of the directory JQM_JI_DELIVERY_DIR. They will be referenced by
file name by JQM.

Note that JQM moves the files from JQM_JI_DELIVERY_DIR to its own internal directory hierarchy after the execution
has ended.

Warning

result files are only collected if the job instance succeeds.

 4.3. Logging

4.3. Logging

Executables may of course use whatever logging they wish. For increased administrability, it is recommended to simply write to the
standard output and standard error flows, as those are captured by JQM and made available through the client APIs.

It is also possible to specify a log file as a deliverable file.

Finally, JQM exposes its log level as environment variable JQM_NODE_LOG_LEVEL which the executable may choose to respect.

 5. Java Payload development

5. Java Payload development

	5.1. Payload basics

	5.2. Logging

	5.3. Using resources

	5.4. Engine API

	5.5. Packaging

	5.6. Testing payloads

	5.7. Understanding the execution context

	5.8. Using Spring

 5.1. Payload basics

5.1. Payload basics

JQM is a specialized application server dedicated to ease the management of Java batch jobs.
Application servers usually have two main aspects: on one hand they bring in frameworks to help writing the business programs,
on the other they try to ease daily operations. For example, JBoss or Glassfish provide an implementation of the EE6 framework for building
web applications, and provide many administration utilities to deploy applications, monitor them, load balance them, etc.

JQM’s philosophy is that all existing Java programs should be reusable as is, and that programmers should be free to use whatever frameworks
they want (if any at all). Therefore, JQM nearly totally forgoes the “framework” part and concentrates on
the management part. For great frameworks created for making batch jobs easier to write, look at Spring batch, a part of Spring, or JSR 352, a part of EE7.
As long as the required libraries are provided, JQM can run payloads based on all these frameworks.

This section aims at giving all the keys to developers in order to create great batch jobs for JQM. This may seem in contradiction with
what was just said: why have a “develop for JQM” chapter if JQM runs any Java code?

	First, as in all application server containers, there a a few guidelines to respect, such as packaging rules.

	Then, as an option, JQM provides a few APIs that can be of help to batch jobs, such as getting the ID of the run or the caller name.

But this document must insist: unless there is a need to use the APIs, there is no need to develop specifically for JQM. JQM
runs standard JSE code.

5.1.1. Payloads types

There are three payload types: programs with a good old main (the preferred method for newly written jobs), and two
types designed to allow reuse of even more existing binaries: Runnable implementers & JobBase extenders.

5.1.1.1. Main

This a classic class containing a “static void main(String[] args)” function.

In that case, JQM will simply launch the main function. If there are some arguments defined (default arguments in the JobDef or
arguments given at enqueue time) their value will be put inside the String[] parameter ordered by key name.

There is no need for any dependencies towards any JQM libraries in that case - direct reuse of existing code is possible.

This would run perfectly, without any specific dependencies or imports:

public class App
{
 public static void main(String[] args)
 {
 System.out.println("main function of payload");
 }
}

Note

It is not necessary to make jars executable. The jar manifest is ignored by JQM.

 5.2. Logging

5.2. Logging

Once again, running Java code inside JQM is exactly as running the same code inside a bare JVM. Therefore, there is nothing specific concerning logging:
if some code was using log4j, logback or whatever, it will work. However, for more efficient logging, it may be useful to take some extra care in setting
the parameters of the loggers:

	the “current directory” is not defined (or rather, it is defined but is guaranteed to be the same each time), so absolute paths are better

	JQM captures the console output of a job to create a log file that can be retrieved later through APIs.

Therefore, the recommended approach for logging in a JQM payload is to use a Console Appender and no explicit log file.

 5.3. Using resources

5.3. Using resources

5.3.1. Introduction

Most programs use some sort of resource - some read files, other write to a relational database, etc.
In this document, we will refer to a “resource” as the description containing all the necessary data
to use it (a file path, a database connection string + password, …)

There are many approaches to define these resources (directly in the code, in a configuration file…) but they all have caveats
(mostly: they are not easy to use in a multi environment context, where resource descriptions change from one environment to another).
All these approaches can be used with JQM since JQM runs all JSE code.
Yet, Java has standardized JNDI [http://en.wikipedia.org/wiki/Java_Naming_and_Directory_Interface] as a way to retrieve these resources, and JQM provides a limited JNDI directory implementation that can be used by
the payloads.

JQM JNDI directory can be used for:

	JDBC connections

	JMS resources

	Files

	URLs

	Simple Strings

	Mail session (outgoing SMTP only)

	every ObjectFactory provided by the payloads

Warning

JNDI is actually part of JEE, not JSE, but it is so useful in the context of JQM use cases that it was implemented. The fact
that it is present does not mean that JQM is a JEE container. Notably, there is no injection mechanism and JNDI resources have to be
manualy looked up.

 5.4. Engine API

5.4. Engine API

The engine API is an interface offered optionally to running job instances allowing them to interact with JQM.

It allows them to do some operations only available to running jobs (such as specifying that a file they have just
created should be made available to end users) as well as a subset of operations coming directly from the Full client API.
The latter is mostly for convenience - that way, clients do not have to import, set parameters and initialize the full API - everything
is readied by the engine (and very quickly because the engine reuses some of its own already-initialized objects).

Using the API is easy: one just has to declare, inside the job main class, a Field of JobManager type. It can be static.
Then, the JQM engine will inject an instance inside that field at runtime and it can be used without further ado.

	
class JobManager

	This interface gives access to JQM engine variables and methods. It allows to retrieve the characteristics of the currently running
job instances, as well as creating new instances and other useful methods.
It should never be instantiated but injected by the JQM engine. For the injection to take place,
the payload main class should have a field of type JobManager (directly or through inheritance, as well as public or private).

Use is very straightforward:

public class App implements Runnable
{
 private JobManager jm;

 @Override
 public void run()
 {
 // JM can be used immediately.
 jm.enqueue("otherjob", "me");
 }
}

5.4.1. Current job metadata

For the description of these items, please see the job instance description. Please note that these are methods, not fields - this is
only because Java does not allow to specify fields inside an interface.

	
JobManager.parentId() → int

	

	
JobManager.jobApplicationId() → int

	

	
JobManager.jobInstanceID() → int

	

	
JobManager.canBeRestarted() → boolean

	

	
JobManager.applicationName() → String

	

	
JobManager.sessionID() → String

	

	
JobManager.application() → String

	

	
JobManager.module() → String

	

	
JobManager.keyword1() → String

	

	
JobManager.keyword2() → String

	

	
JobManager.keyword3() → String

	

	
JobManager.userName() → String

	

	
JobManager.parameters() → Map<String, String>

	

5.4.2. Enqueue & retrieve jobs

	
JobManager.enqueue(String applicationName, String user, String mail, String sessionId, String application, String module, String keyword1, String keyword2, String keyword3, Map<String, String> parameters) → int

	Enqueues a new execution request. This is asynchronous - it returns as soon as the request was posted.

Equivalent to JqmClient.enqueue(), but where the parameters are given directly instead of using a JobRequest instance.
This is a little ugly but necessary due to the underlying class loader proxying magic.

	
JobManager.enqueueSync(String applicationName, String user, String mail, String sessionId, String application, String module, String keyword1, String keyword2, String keyword3, Map<String, String> parameters) → int

	Calls enqueue() and waits for the end of the execution.

	
JobManager.waitChild(int jobInstanceId) → void

	

	
JobManager.waitChildren() → void

	

	
JobManager.hasEnded(int jobInstanceId) → Boolean

	

	
JobManager.hasSucceeded(int jobInstanceId) → Boolean

	

	
JobManager.hasFailed(int jobInstanceId) → Boolean

	

5.4.3. Communications

	
JobManager.sendMsg(String message) → void

	Messages are strings that can be retrieved during run by other applications, so that interactive human users may
have a measure of a job instance progress. (typical messages highlight the job’s internal steps)

	
JobManager.sendProgress(Integer progress) → void

	Progress is an integer that can be retrieved during run by other applications, so that interactive human users may have
a measure of a job instance progress. (typically used for percent of completion)

	
JobManager.addDeliverable(String path, String fileLabel) → int

	When a file is created and should be retrievable from the client API, the file must be referenced with this method.

The file is moved by this method! Only call when you don’t need the file any more.

It is strongly advised to use getWorkDir() to get a directory where to first create your files.

5.4.4. Misc.

	
JobManager.defaultConnect() → String

	The default connection JNDI alias. To retrieve a default connection, simply use:

((DataSource)InitialContext.doLookup(jm.defaultConnect)).getConnection();

See JDBC for more details.

Preferably use directly JobManager.getDefaultConnection() to directly retrieve a connection.

	
JobManager.getDefaultConnection() → Connection

	A connection as described by the default JNDI alias. See JDBC for more details.

	
JobManager.getWorkDir() → File

	If temp files are necessary, use this directory. The directory already exists. It is used by a single instance. It is purged at the end of the run.

	
JobManager.yield() → void

	This simply notifies the engine that it can briefly take over the thread, mostly to check if the thread should commit
suicide. See Going to the culling for more details.

 5.5. Packaging

5.5. Packaging

JQM is able to load payloads from jar files (in case your code is actually inside a war, it is possible to simply rename the file), which gives
a clear guidance as to how the code should be packaged. However, there are also other elements that JQM needs to run the code.

For example, when a client requests the payload to run, it must be able to refer to the code unambiguously, therefore JQM must know
an “application name” corresponding to the code. This name, with other data, is to be put inside an XML file that will be imported
by JQM - it’s a deployment descriptor, akin to a web.xml or an ejb-jar.xml.
A code can only run if its XML has been imported (or the corresponding values manually entered though the web administration console,
or manually written inside the database, which by the way is a fully unsupported way to do it).

Should some terms prove to be obscure, please refer to the Glossary.

5.5.1. Libraries handling

JQM itself is hidden from the payloads - payloads cannot see any of its internal classes and resources. So JQM itself does not provide anything to
payloads in terms of libraries (with the exception of libraries explicitly added to the ext directory, see below).

But there are two ways, each with two variants, to make sure that required libraries are present at runtime.

Note

All the four variants are exclusive. Only one library source it used at the same time.

 5.6. Testing payloads

5.6. Testing payloads

5.6.1. Unit testing

By unit testing, we mean here running a single payload inside a JUnit test or any other form of test (including a ‘main’ Java program) without
needing a full JQM engine.

JQM provides a library named jqm-tst which allows tests that will run a single job instance in a stripped-down synchronous version of an embedded JQM engine requiring no configuration.
The engine is destroyed immediately after the run.
Single job instance also has for consequence that if your job enqueues new execution requests these will be ignored.

An example taken from JQM’s own unit tests:

@Test
public void testOne()
{
 JobInstance res = com.enioka.jqm.test.JqmTester.create("com.enioka.jqm.test.Payload1").addParameter("arg1", "testvalue").run();
 Assert.assertEquals(State.ENDED, res.getState());
}

Here, we just have to give the class of the payload, optionally parameters and that’s it. The result returned is from the client API.

Refer to JqmTester javadoc for further details, including how to specify JNDI resource if needed.

5.6.2. Integration tests

If you have to test interactions between jobs (for example, one job instance queueing another), it may be necessary to use a full JQM engine. JQM provides another embedded
tester class to do so. It is inside the same jqm-tst library.

These are the steps to follow to launch an integration test:

	create the tester object

	add at least on node (engine)

	add at least one queue

	deploy a queue on a node (i.e. set a node to poll a queue)

	start the engines

	create a job definition (the equivalent of the deployment descriptor XML file, which describes where the class to launch is, its parameters…)

	launch a new job instance and other normal JQM client interactions using the client API.

	stop the engines.

When using test frameworks like JUnit, all the node creation stuff is usually inside @BeforeClass methods, like in the following example.:

public class MyIntegrationTest
{
 public static JqmAsyncTester tester;

 @BeforeClass
 public static void beforeClass()
 {
 // This creates a cluster with two JQM nodes, three queues (queue1 polled by node1, queue2 polled by node2, queue3 polled by both nodes).
 // The nodes are started at the end of this line.
 tester = JqmAsyncTester.create().addNode("node1").addNode("node2").addQueue("queue1").addQueue("queue2").addQueue("queue3")
 .deployQueueToNode("queue1", 10, 100, "node1").deployQueueToNode("queue2", 10, 100, "node2")
 .deployQueueToNode("queue3", 10, 100, "node1", "node2").start();
 }

 @AfterClass
 public static void afterClass()
 {
 // Only stop the cluster when all tests are done. This means there is no reboot or cleanup between tests if tester.cleanupAllJobDefinitions() is not explicitely called.
 tester.stop();
 }

 @Before
 public void before()
 {
 // A helper method to ensure there is no traces left of previous executions and job definitions from other tests
 tester.cleanupAllJobDefinitions();
 }

 @Test
 public void testOne()
 {
 // Quickly create a job definition from a class present in the test class path.
 tester.addSimpleJobDefinitionFromClasspath(Payload1.class);

 // Request a launch of this new job definition. Note we could simply use the JqmClient API.
 tester.enqueue("Payload1");

 // Launches are asynchronous, so wait for results (with a timeout).
 tester.waitForResults(1, 10000);

 // Actual tests
 Assert.assertEquals(1, tester.getOkCount());
 Assert.assertEquals(1, tester.getHistoryAllCount());
 }

 @Test
 public void testTwo()
 {
 // Quickly create a job definition from a class present in a jar. This is the way production JQM nodes really work - they load jar stored on the local file system.
 tester.addSimpleJobDefinitionFromLibrary("payload1", "App", "../jqm-tests/jqm-test-datetimemaven/target/test.jar")

 tester.enqueue("payload1");
 tester.waitForResults(1, 10000, 0);

 Assert.assertTrue(tester.testCounts(1, 0));
 }
}

Refer to JqmAsyncTester javadoc for further details, including how to specify JNDI resource and retrieving files created by the job instances.

Note

the tester outputs logs on stdout using log4j. You can set set log level through a tester method. If you use other loggers, this may result in a mix of different logger outputs.

 5.7. Understanding the execution context

5.7. Understanding the execution context

JQM has a basic promise: your code runs as if it were running inside a standalone JVM. That’s all.
If your code runs fine with java -jar my.jar (or My.class…), you are all set. Your code will never
see anything from the engine (like the libraries the engine itself use - everything is fully hidden),
nor from other jobs which may run at the same time. It really behaves as if a brand new JVM had been created
just for your job instance (and a new one is created for each different launch).

This chapter is an advanced topic useful if you want to go beyond that and weaken the isolation.

5.7.1. The default mode: isolation

As written above, the default mode is “every launch is fully isolated”. It works this way: a different class loader
is created for each launch. It only has access to the classes inside the job (the job jar file, its optional “lib”
directory and its optional Maven dependencies) and the “ext” directory, which contains libraries shared by all job
definitions.

At the end of each launch, the class loader is garbage collected and never reused.

This means all libraries and classes are loaded on each and every launch. There is no static context which is kept between
launches. This is exactly what happens when a user launches a program inside a JVM, and the JVM stops at the end of the execution.

Also, only the classes which are one of the supported job types (with a static main method, implementing Runnable or implementing JobBase) can run out of the box.

5.7.2. Changing the default mode

A few parameters can be set to change the default behaviour - i.e. the execution context of all jobs which do not request a specific execution context.
Two modes are possible:

	a single shared execution context for all job definitions inside all jars

	one execution context for all jobs inside the same jar (therefore one execution context per jar file)

See the global parameters documentation for more details.

5.7.3. Advanced mode: context definition

It is actually possible to specify options defining the execution context inside the deployment descriptor (see Packaging).

Here is a full example, explained below:

<context>
 <name>MyPrettyContext</name>
 <childFirst>true</childFirst>
 <hiddenJavaClasses>java.maths.*</hiddenJavaClasses>
 <tracingEnabled>false</tracingEnabled>
 <persistent>true</persistent>

 <runners>com.enioka.jqm.tools.LegacyRunner,com.enioka.jqm.tools.MainRunner,com.enioka.jqm.tools.RunnableRunner</runners>

 <eventHandlers>
 <handler>
 <className>com.enioka.handlers.filterOne</className>
 <event>JI_STARTING</event>
 <parameters>
 <parameter>
 <key>keyname</key>
 <value>value</value>
 </parameter>
 <parameter>
 <key>keyname2</key>
 <value>value2</value>
 </parameter>
 </parameters>
 </handler>
 </eventHandlers>
</context>

Inside the “context” tag the only compulsory information is “name”. Everything else is optional and has default values.

A context is defined at the root level of the deployment descriptor. It can be used by any number of job definitions, by using the name of the context:

<jobDefinition>
 <name>Fibo</name>
 <description>Test based on the Fibonachi suite</description>
 <canBeRestarted>true</canBeRestarted>
 <javaClassName>com.enioka.jqm.tests.App</javaClassName>
 <application>CrmBatchs</application>
 <module>Consolidation</module>
 <keyword1>nightly</keyword1>
 <highlander>false</highlander>
 <executionContext>MyPrettyContext</executionContext>
 <parameters>
 <parameter>
 <key>p1</key>
 <value>1</value>
 </parameter>
 <parameter>
 <key>p2</key>
 <value>2</value>
 </parameter>
 </parameters>
</jobDefinition>

(note the “executionContext” tag).

5.7.3.1. Class loading order

A normal JSE class loader is parent first - that is, if a class exists in a lower layer of the class loading hierarchy,
it will be loaded even if your own jar provides a class of the same package + name.

For example, if your jar contains a java.util.String class, it will never be loaded as it’s defined in the JDK itself,
the lowest level and therefore the highest priority.

Sometimes, you will want to give priority to your own classes. This is done by setting “childFirst” to “true”. In that case,
a class will be loaded from the lower levels only if not defined in your job (and its libraries).

A similar effect can be obtained by simply hiding classes, see next paragraph.

Default is “false” - meaning parent first.

5.7.3.2. Hiding Java classes

Changing the class loading loading priority is radical, sometimes you just want to override a small set of classes. To do that,
just put a comma-separated list of regular expressions inside the “hiddenJavaClasses” tag. Classes which match at least one of the regular expressions will never ever
be loaded from a source outside your own jar and libraries.

Default is no exclusions.

5.7.3.3. Class loading tracing

To debug “why isn’t my library loaded” issues, you can enable a trace by setting the “tracingEnabled” parameter to “true”.
The trace is written in the log (and stdout if active).

Default is “false” - meaning disabled.

5.7.3.4. Context persistence

By default, the context is destroyed at the end of a run. This means there is no possibility to set anything static in a first
run and retrieve it in a further job. While this is most often an excellent programming principle (no side effects possible!), it may
be detrimental to some programs. For example, initializing a JPA provider such as Hibernate has a huge cost be it in memory
or CPU cycles, which is why the JPA context (the EntityManagerFactory - EMF) is usually a shared static singleton. But as the context is
thrown out at the end of each execution, with it goes the static context too, and the EMF has to be re-created on each run.

To avoid this, a context can be set as persistent. Just set “persistent” to “true”. In that case the context will be created the
first time it is needed, and kept forever afterwards.

Warning

enabling context persistence also means side effects become possible once again, as well as many other issues like some memory leaks
which otherwise would just disappear with the context. To be enabled only by users who fully understand the implications!

 5.8. Using Spring

5.8. Using Spring

This gives a rundown on how to efficiently use Spring inside JQM. This can of course be an inspiration for other big “container” frameworks.

There are multiple possibilities, and this page shows how to use two of them. They are presented here in order of increasing complexity, which is also the order of decreasing recommendation.

5.8.1. By doing nothing special

It has been said before, by default launching a new job instance in a JQM server is like launching a new JVM: if a Spring job already works from the command line, it will work in JQM without adaptation.

There are different ways to create Spring programs, but they all boil down to: create a Spring context, load configuration inside the context, create the job bean from the context and launch it.

A most common example is by using Spring Boot, which hides most boilerplate code. The main method is simply:

import org.springframework.boot.SpringApplication;

public class Application
{
 public static void main(String[] args)
 {
 SpringApplication.run(MyJob.class, args);
 }
}

And the job implements CommandLineRunner, which will automatically instantiate the bean and run it on context creation:

@Import(ContextConfig.class)
@SpringBootApplication
public class MyJobClass implements CommandLineRunner
{
 @Autowired
 private MyService myServiceToInject;

 @Override
 public void run(String... args) throws Exception
 {
 myServiceToInject.doSomething();
 System.out.println("Job is done!");
 }
}

In terms of job definition, the Application class is the JQM entry point. JQM knows nothing about Spring, it is just another main method to run.

Advantages:

	direct code reuse from CLI batch jobs

	just another job definition - nothing special to do

	free to initialize and configure Spring in any way: annotations, XML, packages to scan or ignore…

Cons:

	the Spring context is recreated on each launch, which is costly.

This is the recommended way of using Spring inside JQM, in the “keep it simple” philosophy.

Note

a full working sample is included inside the JQM integration tests. It is named “jqm-test-spring-1”. (it also uses JPA with a JNDI resource handled by the JQM JNDI directory)

 6. ﻿Client development

6. ﻿Client development

	6.1. ﻿Introduction

	6.2. Simple web API

	6.3. Full client API
	6.3.1. Basics

	6.3.2. Client API details

	6.3.3. Query API

	6.3.4. JPA Client API

	6.3.5. Web Service Client API

	6.4. CLI API

	6.5. Engine API

 6.1. ﻿Introduction

6.1. ﻿Introduction

A “client” is an external agent (Java program, shell script, …) that needs to interact with the root function of JQM: job queueing and execution [1]. JQM
offers multiple ways to do so, each being tailored to a specific type of client.

	a minimal web service API with very simple signatures, designed for scripts and the like, called the simple API

	
	a full client API designed for more evolved programs. It is a superset of the minimal API (and actually directly reuses some of its methods). It has two (functionally equivalent) implementations:

	
	a set of (language agnostic) REST web-services

	a direct-to-database JPA2 implementation

	a minimal command line utility (CLI)

	for payloads running inside a JQM engine only, it is also possible to access a subset of the full client API as exposed through an object injected by the engine. it is called the engine API.

[1]
Therefore, all administrative functions (restart a JQM engine, modify a job parameter, …) are fully excluded from this section. They are detailed inside a dedicated section.

 6.2. Simple web API

6.2. Simple web API

This is the strict minimum to allow easy wget/curl integration. Most notably, this is what will be usually
used for integration with a job scheduler like Orsyp $Universe or BMC ControlM.

It allows:

	Submitting a job execution request (returns the query ID)

	Checking the status of a request (identified by its ID)

	Retrieving the logs created by an ended request

	Retrieving the files (PDF reports, etc) created by an ended request

Note

this API should never be used directly from a Java program. The more complete client APIs actually encapsulate the simple API in a Java-friendly manner.

 6.3. Full client API

6.3. Full client API

The client API enables any program (in Java, as well as in any other languages for some implementations of the API) to interact
with the very core function of JQM: asynchronous executions. This API exposes every common method pertaining to this goal:
new execution requests, checking if an execution is finished, listing finished executions, retrieving files created by an execution…

It is named “client API” because it contains the methods that are often directly exposed to human end-users. They may,
for example, have a web-based GUI with buttons such as “I want to run that report”, “let’s synchronize invoices with accounting”, … which
will in turn submit a job execution request to JQM. This client API contains such a submission method, as well as all the
others the end user may need, such as “is my job done”, “cancel this job”, and so on. And obviously, what is true for human clients
is also true for automated systems - for example, a scheduler may use this API (even if the Simple web API may be better suited for this).

	6.3.1. Basics

	6.3.2. Client API details
	6.3.2.1. The JqmClient interface
	6.3.2.1.1. New execution requests

	6.3.2.1.2. Job request deleting

	6.3.2.1.3. Pausing and restarting jobs

	6.3.2.1.4. Queries on Job instances

	6.3.2.1.5. Quick access helpers

	6.3.2.1.6. Files & logs retrieval

	6.3.2.1.7. Referential queries

	6.3.2.2. API objects
	6.3.2.2.1. JobRequest

	6.3.2.2.2. Queue

	6.3.2.2.3. JobDef

	6.3.2.3. Example

	6.3.3. Query API
	6.3.3.1. Basics, running & filtering

	6.3.3.2. Querying live data

	6.3.3.3. Pagination

	6.3.3.4. Sorting

	6.3.3.5. Shortcuts

	6.3.3.6. Sample

	6.3.4. JPA Client API
	6.3.4.1. Parameters

	6.3.4.2. Libraries

	6.3.4.3. Logs

	6.3.4.4. Container integration
	6.3.4.4.1. In a JNDI-enabled container without other JPA use

	6.3.4.4.2. With other JPA use

	6.3.4.5. Making it work with both Tomcat and Glassfish/WebSphere

	6.3.5. Web Service Client API
	6.3.5.1. Client side
	6.3.5.1.1. Using the Java client

	6.3.5.1.2. Interrogating the service directly

	6.3.5.1.3. Choosing between the two approaches

	6.3.5.2. Server side

	6.3.5.3. Service reference

	6.3.5.4. Script sample

 6.3.1. Basics

6.3.1. Basics

The client API is defined an a Java interface, and has two implementations. Therefore, to use the client API,
one of its two implementations must be imported: either the Hibernate JPA 2.0 one
with jqm-api-client-hibernate.jar or the web service client with jqm-api-client-jersey.jar.

Then it is simply a matter of calling:

JqmClientFactory.getClient();

The client returned implements an interface named JqmClient, which is profusely documented in JavaDoc form, as well as in the
next section. Suffice to say that it contains many methods related to:

	queueing new execution requests

	removing requests, killing jobs, pausing waiting jobs

	modifying waiting jobs

	querying job instances along many axis (is running, user, …)

	get messages & advancement notices

	retrieve files created by jobs executions

	some metadata retrieval methods to ease creating a GUI front to the API

For example, to list all executions known to JQM:

List<JobInstance> jobs = JqmClientFactory.getClient().getJobs();

Now, each implementation has different needs as far as configuration is concerned. Basically, Hibernate needs to know how to
connect to the database, and the web service must know the web service server. To allow easy configuration, the following principles apply:

	Each client provider can have one (always optional) configuration file inside the classpath. It is specific for each provider, see their doc

	It is possible to overload these values through the API before the first call to getClient:

Properties p = new Properties();
p.put("com.enioka.jqm.ws.url", "http://localhost:9999/marsu/ws");
JqmClientFactory.setProperties(p);
List<JobInstance> jobs = JqmClientFactory.getClient().getJobs();

	An implementation can use obvious other means. E.g. Hibernate will try JNDI to retrieve a database connection.

The name of the properties depends on the implementation, refer to their respective documentations.

Please note that all implementations are supposed to cache the JqmClient object. Therefore, it is customary to simply use JqmClientFactory.getClient()
each time a client is needed, rather than storing it inside a local variable.

For non-Java clients, use the web service API which can be called from anywhere.

Finally, JQM uses unchecked exception as most APIs should (see this article [http://www.artima.com/intv/handcuffs.html]).
As much as possible (when called from Java) the API will throw:

	JqmInvalidRequestException when the source of the error comes from the caller (inconsistent arguments, null arguments, …)

	JqmClientException when it comes from the API’s internals - usually due to a misconfiguration or an environment issue (network down, etc).

 6.3.2. Client API details

6.3.2. Client API details

6.3.2.1. The JqmClient interface

	
class JqmClient

	This interface contains all the necessary methods to interact with JQM functions.

All methods have detailed Javadoc. The Javadoc is available on Maven Central (as are the binaries and the source code).
This paragraph gives the methods prototypes as well as how they should be used. For details on exceptions thrown, etc. please
refer to the javadoc.

6.3.2.1.1. New execution requests

	
JqmClient.enqueue(JobRequest executionRequest) → integer

	The core method of the Job Queue Manager: it enqueues a new job execution request, as described in the object parameter.
It returns the ID of the request. This ID will be kept throughout the life cycle of the request until it becomes the ID
of the history item after the execution ends. This ID is reused in many other methods of the API.

It consumes a JobRequest item, which is a “form” object in which all ncessary parameters can be specified.

	
JqmClient.enqueue(String applicationName, String user) → integer

	A simplified version of the method above.

	
JqmClient.enqueueFromHistory(Integer jobIdToCopy) → integer

	This method copies an ended request. (this creates a new request - it has no impact whatsoever on the copied request)

6.3.2.1.2. Job request deleting

	
JqmClient.cancelJob(Integer id) → void

	When called on a waiting execution request, removes it from the queue and moves it to history with CANCELLED status.
This is the standard way of cancelling a request.

Synchronous method

	
JqmClient.deleteJob(int id) → void

	This method should not usually be called. It completely removes a job execution request from the database.
Please use cancelJob instead.

Synchronous method

	
JqmClient.killJob(int id) → void

	Attempts to kill a running job instance. As Java thread are quite hard to kill, this may well have no effect.

Asynchronous method

6.3.2.1.3. Pausing and restarting jobs

	
JqmClient.pauseQueuedJob(int id) → void

	When called on a job execution request it is ignored by engines and status forever in queue.

	
JqmClient.resumeJob(int id) → void

	Will re insert a paused execution request into the queue. The place inside the queue may change from what it
used to be before the pause.

	
JqmClient.restartCrachedJob(int id) → int

	Will create an execution request from a crashed history element and remove all traces of the failed execution*.

6.3.2.1.4. Queries on Job instances

The API offers many methods to query either ended jobs or waiting/running ones. When there is a choice, please use
the method which is the mst specific to your needs, as it may have optimizations not present in the more general ones.

	
JqmClient.getJob(int id) → JobInstance

	Returns either a running or an ended job instance.

	
JqmClient.getJobs() → List<JobInstance>

	Returns all job instances.

	
JqmClient.getActiveJobs() → List<JobInstance>

	Lists all waiting or running job instances.

	
JqmClient.getUserActiveJobs(String username) → List<JobInstance>

	Lists all waiting or running job instances which have the given “username” tag.

	
JqmClient.getJobs(Query q) → List<JobInstance>

	please see Query API.

6.3.2.1.5. Quick access helpers

	
JqmClient.getJobMessages(int id) → List<String>

	Retrieves all the messages created by a job instance (ended or not)

	
JqmClient.getJobProgress(int id) → int

	Get the progress indication that may have been given by a job instance (running or done).

6.3.2.1.6. Files & logs retrieval

	
JqmClient.getJobDeliverables(int id) → List<Deliverable>

	Return all metadata concerning the (potential) files created by the job instance: Excel files, PDFs, …
These are the files explicitly referenced by the job instance through the JobManager.addDeliverable() method.

	
JqmClient.getDeliverableContent(Deliverable d) → InputStream

	The actual content of the file described by the Deliverable object.

This method, in all implementations, uses a direct HTTP(S) connection to the engine that has run the job instance.

The responsibility to close the stream lies on the API user

	
JqmClient.getDeliverableContent(int deliverableId) → InputStream

	Same a above.

	
JqmClient.getJobDeliverablesContent(int jobId) → List<InputStream>

	Helper method. A loop on getDeliverableContent() for all files created by a single job instance.

	
JqmClient.getJobLogStdOut(int jobId) → InputStream

	Returns the standard output flow of of an ended job instance.

This method, in all implementations, uses a direct HTTP(S) connection to the engine that has run the job instance.

The responsibility to close the returned stream lies on the API user

	
JqmClient.getJobLogStdErr(int jobId) → InputStream

	Same as getJobLogStdOut() but for standard error flow.

6.3.2.1.7. Referential queries

These methods allow to retrieve all the referential data that may be needed to use the other methods: queue names, application
names, etc.

	
JqmClient.getQueues() → List<Queue>

	

	
JqmClient.getJobDefinitions() → List<JobDef>

	

	
JqmClient.getJobDefinition(String applicationName) → JobDef

	

6.3.2.2. API objects

6.3.2.2.1. JobRequest

	
class JobRequest

	Job execution request. It contains all the data needed to enqueue a request (the application name), as well as non-mandatory data.
It is consumed by JqmClient.enqueue().

Basically, this is the form one has to fill in order to submit an execution request.

6.3.2.2.2. Queue

	
class Queue

	All the metadata describing a queue. Read only element.

Please note there is another queue class that exists within JQM, inside the com.enioka.jqm.jpa packages.
The JPA one is an internal JQM class and should not be confused with the API one, which is a stable interface.

6.3.2.2.3. JobDef

	
class JobDef

	All the metadata describing a job definition. Read-only element.

Please note there is another class with this name that exists within JQM, inside the com.enioka.jqm.jpa packages.
The JPA one is an internal JQM class and should not be confused with the API one, which is a stable interface.

6.3.2.3. Example

Enqueue a job
int i = JqmClientFactory.getClient().enqueue("superbatchjob");

Get its status
Status s = JqmClientFactory.getClient().getStatus(i);

If still waiting, cancel it
if (s.equals(State.WAITING))
 JqmClientFactory.getClient().cancel(i);

 6.3.3. Query API

6.3.3. Query API

The query API is the only part of the client API that goes beyond a simple method call, and hence deserves
a dedicated chapter. This API allows to easily make queries among the past and current job instance s,
using a fluent style.

6.3.3.1. Basics, running & filtering

To create a Query, simply do Query.create(). This will create a query without any predicates - if run, it will return
the whole execution history.

To add predicates, use the different Query methods. For example, this will return every past instance for the job definition named JD:

Query.create().setApplicationName("JD");

To create predicates with wildcards, simply use “%” (the percent sign) as the wildcard. This will return at least the results of the previous
example and potentially more:

Query.create().setApplicationName("J%");

To run a query, simply call run() on it. This is equivalent to calling JqmClientFactory.getClient().getJobs(Query q). Running the previous example
would be:

List<JobInstance> results = Query.create().setApplicationName("J%").run();

6.3.3.2. Querying live data

By default, a Query only returns instances that have ended, not instances that are inside the different queues.
This is for performance reasons - the queues are the most sensitive part of the JQM database, and live in different tables than
the History.

But it is totally supported to query the queues, and this behaviour is controlled through two methods:
Query.setQueryLiveInstances (default is false) and Query.setQueryHistoryInstances (default is true). For example,
the following will query only the queues and won’t touch the history:

Query.create().setQueryLiveInstances(true).setQueryHistoryInstances(false).setUser("test").run();

Note

When looking for instances of a desired state (ENDED, RUNNING, …), it is highly recommended to query only the queue or only the history.
Indeed, states are specific either to the queue or to history: an ended instance is always in the history, a running instance always
in the queue, etc. This is far quicker than querying both history and queues while filtering on state.

 6.3.4. JPA Client API

6.3.4. JPA Client API

Client API is the name of the API offered to the end users of JQM: it allows to interact with running jobs, offering operations
such as creating a new execution request, cancelling a request, viewing all currently running jobs, etc. Read client API
before this chapter, as it gives the definition of many terms used here as well as the general way to use clients.

JQM is very database-centric, with (nearly) all communications going through the database.