
josbohde-event-notes Documentation
Release 0.1

Josh Bohde

November 12, 2016

Contents

1 PyCodeConf 3
1.1 The Future Is Bright . 3
1.2 Embracing The GIL . 5
1.3 What Makes Python AWESOME? . 8
1.4 Backbone.js and Django for a Faster WebUI . 11
1.5 PyPy is your Past, Present, and Future . 13
1.6 Processing Firefox Crash Reports With Python . 16
1.7 The Future of Collaboration in the Python community and beyond 20
1.8 The State of Packaging & Dependency Management . 25
1.9 Python For Humans . 27
1.10 Python is Only Slow If You Use it Wrong . 31
1.11 Amazing Things In Open Source . 34
1.12 The Prejudgement of Programming Languages . 38
1.13 Cherry-picking for Huge Success . 39
1.14 Breakdancer . 43
1.15 The Many Hats of Building and Launching a Web Startup . 43
1.16 Future of Python and NumPy for array-oriented computing . 46
1.17 Lightning Talks . 48

2 PyCon 2012 51
2.1 Keynote with Stormy Peters . 51
2.2 Paul Graham Keynote . 52
2.3 Graph Processing in Python . 55
2.4 Fast Test, Slow Test . 55
2.5 Stop Writing Classes . 55
2.6 Code Generation in Python: Dismantling Jinja . 57
2.7 Putting Python in PostgreSQL . 59
2.8 pandas: Powerful data analysis tools for Python . 61
2.9 Lightning Talks . 62
2.10 Keynote: David Beazley . 64
2.11 Why PyPy By Example . 64
2.12 Flexing SQLAlchemy’s Relational Power . 66
2.13 Hand Coded Applications with SQLAlchemy . 67
2.14 Advanced Celery . 68

3 Indices and tables 71

i

ii

josbohde-event-notes Documentation, Release 0.1

Contents:

Contents 1

josbohde-event-notes Documentation, Release 0.1

2 Contents

CHAPTER 1

PyCodeConf

1.1 The Future Is Bright

1.1.1 Author

Talk by Jesse Noller

• PSF Member

• Pycon Chair

1.1.2 Intro

• Aimed at all communities.

• “Kids are okay”.

1.1.3 What is Python?

• Python = python language + community.

• Includes IronPython, Jython, Pypy.

• Heroku blog post says it really well http://blog.heroku.com/archives/2011/9/28/python_and_django/

1.1.4 Who uses Python

• Everyone.

• Scales up to 100k users, to a script to calculate budget.

• Easy to teach. Fits in head. Scales up well, and scales down.

1.1.5 Where is the language

• ~123 accepted PEPs.

• ~80 builtin functions

• ~285 documented modules.

3

http://blog.heroku.com/archives/2011/9/28/python_and_django/

josbohde-event-notes Documentation, Release 0.1

1.1.6 What’s the Future?

• 2.7 is the last release of 2.x

• Py3k

• Proposals for Coroutines, async IO, cofunctions, daemon, asyncIO for subprocess, OS and Exception heirarchy.

1.1.7 What should Python be?

• Should be the Borg, by borrowing the good ideas from other languages.

• Ease of use, simplicity.

• Adopt, but make it Pythonic.

• Must continue to look outside the language

1.1.8 Things Jesse Wants

• Communication (messaging)

• Lightweight processes

• Actors.

• Gevent, libevent,

1.1.9 What we need

• Cleaner, more Pythonic APIs.

• Don’t leak.

• Balance advanced users versus keeping it simple.

• Modernize standard library.

• Python is a conservative language. Doesn’t blaze the path.

• Core language must be able to fit in one’s head.

1.1.10 Interpreters

• Pypy

– It’s fast. blazingly fast.

– Magic in the RPython.

• CPython

– It’s the cockroach.

– Simple, uncomplicated C code.

– Battle tested.

4 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

1.1.11 Predictions

• Pypy will become the dominant interpreter. CPython won’t die, and it will be reliable.

• PyPy, CPython, Jython, and ironPython are BFFs.

1.1.12 Python3

• Keep Calm, and Carry On.

• Python is over 21 years old.

• 5 years is nothing for migrating a community so big.

1.1.13 Community

• Cannot afford to be idle.

• Cannot be hostile, but welcoming.

• Get involved locally.

• Be open to criticism, especially constructive.

• Look through the pile of vitrol, to find the core of truth.

1.2 Embracing The GIL

1.2.1 Author

• David Beazley (@dabeaz)

1.2.2 Intro

• Railed on GIL at PyCon, thought it deserved some Love

• Godwin’s Law of Python

1.2.3 Interest

• Fun hard systems problem

• Likes to break GILs as a hobby

1.2.4 Threads are Useful

• People love to hate on threads...

• Because they are being used.

• They solve tricky problems.

1.2. Embracing The GIL 5

josbohde-event-notes Documentation, Release 0.1

1.2.5 In A Nutshell

• Python code -> VM instructions

• Can’t execute VM instructions concurrently, therefore locking

• Keep things safe * Ref counts * Mutable types * Internal bookkepping * Thread safety

• All low level.

1.2.6 An Experiment in Messaging

• Comes up in a lot of contexts

• Involves IO

• Foundation for working around the GIL

• Shows an experiment in messaging using 5 implementations

– C + ZeroMQ

– Python + ZeroMQ (C extensions)

– Python + multiprocessing

– Python + blocking sockets

– Python + nonblocking sockets

• Tested on xlarge EC2 instance.

1.2.7 Scenario 1

• Unloaded server

• Expect ~10 seconds (10 seconds of sleep in there)

• All roughly the same (~13 seconds for each)

• Shows a real time example

1.2.8 Scenario 2

• Implement a thread to calculate Fib(200) (Referencing Node.js is a cancer)

• C version is barely affected.

• Python blocking goes to 142 seconds.

• Real time example takes a long time.

1.2.9 Commentary

• This aggression will not stand.

6 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

1.2.10 Thoughts

• Try Pypy

– Test on Pypy (6k seconds)

– fixed in trunk

• Try 2.7

– Within 2x

1.2.11 GUI

• Uses Idle with threads (esp CPU bound)

• Kills performance to the point of completely unusable

• Can barely type into Idle

1.2.12 Thread Switching

• GIL aquisition based on timeout

• Thread that want the GIL must wait 5ms

• Causes a problem on release

• 5ms delays build up

1.2.13 What’s Really Happening

• Before send and recv, acquire GIL

• After release

1.2.14 How to Fix

• Thread priorities

• Was in the original “New GIL” patch

• Should be revisited

1.2.15 Experiment

• Has an experimental python 3.2 with priorities

• Really minimal

• Threads can set their priority

• Performance that is comparable to version without threads.

• Makes GUI completely usable.

• Tried with 1.4k threads.

1.2. Embracing The GIL 7

josbohde-event-notes Documentation, Release 0.1

1.2.16 More Thoughts

• Huge boost in performance with few modifications

• Not the only way to improve the GIL

• Example: Should the GIL release on nonblocking IO?

• Currently releases on every IO

• If you are doing nonblocking IO, you aren’t blocking.

1.2.17 Wrapping Up

• Python programmers should be interested in improving the GIL

• Doesn’t have to be huge, incremental.

• http://www.dabeaz.com/talks/EmbraceGIL

• Code available via version control

1.2.18 Questions

• Did you do an academic paper on this?

– No, but I think there is room for it.

– The interesting question is if the OS thread library gives enough help to languages with a GIL.

– Could it cooperate to tell the thread that it will be context switched.

– At Pycon, OS kernel hackers came to talk about this.

– Should say “Fixing the GIL is impossible”.

• Is priority code production runnable?

– No

– Threads cannot quit.

1.3 What Makes Python AWESOME?

1.3.1 Author

• Raymond Hettinger (@raymondh)

1.3.2 Context for Success

• OS License

• Commercial distributions

– Sponsor advancements

• Zen

– Guides the language and community

8 Chapter 1. PyCodeConf

http://www.dabeaz.com/talks/EmbraceGIL

josbohde-event-notes Documentation, Release 0.1

• Community

– Killer feature

• Repositories (Pypi)

– Solved problems are a pip install away.

1.3.3 High level qualities

• Ease of learning

– Can build a Python programmer in a week and a half

• Rapid Dev Cycle

– Used in a high frequency trading company

– More important to react to market

• Economy of Expression

• Readability and Beauty

– Makes it easy to work in, and less tiring

• One way to do it

– Once you learn an aspect, you can apply it somewhere else

1.3.4 A bit of Awesomeness

• Five minutes to write code to find duplicate files.

• Can throw away.

• How long to write in C?

– Infinite

– You won’t write it

– Python programmers write things C programmers won’t.

• Just the same as any other scripting language?

Why is Python Awesome?

1.3.5 Indentation

• How we write psuedocode

• Contributes to readability

• Shows an example of indentation in C lying

1.3. What Makes Python AWESOME? 9

josbohde-event-notes Documentation, Release 0.1

1.3.6 Iterator protocol

• Lots of stuf is iterable

• Hold the language together

• sets, lists, dicts, files

• shows sorted(set(‘abracadabra’))

• sorted(set(open(filename)))

• Like legos: fit together perfectly

• Shows an analogy between that and Unix pipes.

• Not enough, GOF pattern

1.3.7 List Comprehension

• More flexibile than functional style

1.3.8 Generators

• Easiest way to write an iterator

• Adds one keyword (yield)

• Makes tricky iterators easy

1.3.9 Generator Expressions

• Produce values just-in-time

• sum(x**3 for x in xrange(1000000))

• In Pypy, roughly C speed

• setcomps and dictcomps

1.3.10 Generators that accept Input

• generators support send(), throw(), and close()

• Unique to Python

• Can make Twisted’s inline deferreds using this

• A state machine with callbacks.

• Write code that looks procedural, but uses callbacks

• Monocle (https://github.com/saucelabs/monocle), Twisted inline deferred

• Fantastic improvement of callback code.

10 Chapter 1. PyCodeConf

https://github.com/saucelabs/monocle

josbohde-event-notes Documentation, Release 0.1

1.3.11 Decorators

• Expressive

• Always worked for function

• Initial response: Syntactic sugar

• Community rose up and demanded it from Guido.

• Easy on the eyes

• Shows example using itty (https://github.com/toastdriven/itty) using decorators for routing.

• Ping into another machine using curl to lookup environment variables in 3 lines.

• Web service in 20 lines, made possible by decorators

• Thanks Django!

1.3.12 With Statement

• Clean, elegant

• Profoundly important

• Sandwich analogy

• Subroutines factor out the ‘meat’ of the code

• With statments factor out the ‘bread’ of the code

• Factors out common setup and teardown methods.

1.3.13 Abstract Base Classes

• Uniform definition of what it means to be a sequence, mapping, etc.

• Ability to override isinstance() and issubclass()

• Duck-typing says: “If it says it’s a duck...”

• Mixin capability (DictMixin)

• Can provide the base of a class

– shows using a list-based set with __iter__, __contains__, and something else

– Mixin provides the rest

1.4 Backbone.js and Django for a Faster WebUI

1.4.1 Author

• Leah Culver (http://twitter.com/leahculver)

• Cofounder of Pownce, one of the first big Django applications.

• Works at Convore (https://convore.com/)

1.4. Backbone.js and Django for a Faster WebUI 11

https://github.com/toastdriven/itty
http://twitter.com/leahculver
https://convore.com/

josbohde-event-notes Documentation, Release 0.1

1.4.2 Leafy Chat

• Web frontend for IRC

• Done in Django Dash (2008?)

1.4.3 Grove

• New project

• Internal IRC for your company

• https://grove.io

1.4.4 Chat Systems

• Built a lot of them

• Leafy chat - only used jQuery, lots of javascript

• Using Backbone in Grove

1.4.5 Examples

• Show an example of using jQuery to build UI.

• Embedded HTML in javascript.

1.4.6 Backbone and Grove

• The UI looks the same

• Backbone gives MVC style, in a single file.

• You can roll it yourself, making it easy to get started.

• Not actually MVC, actually Models, Templates, and Views

1.4.7 Models

• Shows Backbone.Model.extend({})

• http://documentcloud.github.com/backbone/#Model

1.4.8 Collections

• Shows Backbone.Collection.extend({})

• http://documentcloud.github.com/backbone/#Collection

12 Chapter 1. PyCodeConf

https://grove.io
http://documentcloud.github.com/backbone/#Model
http://documentcloud.github.com/backbone/#Collection

josbohde-event-notes Documentation, Release 0.1

1.4.9 Views

• Highlight the Backbone Views on the Grove app page.

• Demonstrates Backbone Event binding

– Creates the view from the model data

– Bind updating view when the model changes

1.4.10 Templates

• Uses handlebars.js (http://www.handlebarsjs.com/)

• Looks like Django

• Specify templates to a view.

• use include_raw templatetag http://djangosnippets.org/snippets/1684/

Additional Goodies

1.4.11 Sync

• Used to synchronize data on Django server

• Shows request.raw_post_data to get JSON objects.

• https://gist.github.com/1265346

1.4.12 Events

• Can update multiple views for a single model.

• App.trigger(‘messageAdded’, ...)

1.4.13 Router

• Will trigger Events based upon the hash

1.4.14 Questions

• Do you feel bad that your Django app is now Javascript?

– No, this is how apps are going.

1.5 PyPy is your Past, Present, and Future

1.5.1 Author

• Alex Gaynor (http://twitter.com/alex_gaynor)

• Still in school, core Django, CPython, and Pypy committer

1.5. PyPy is your Past, Present, and Future 13

http://www.handlebarsjs.com/
http://djangosnippets.org/snippets/1684/
https://gist.github.com/1265346
http://twitter.com/alex_gaynor

josbohde-event-notes Documentation, Release 0.1

1.5.2 Intro

• There are 2 things faster than C

– Neutrinos

– Pypy

1.5.3 Story

• Armin wanted to write a JIT for Python (Psyco)

• Psyco was the written by Armin.

• Kind of messing.

• Generators came along, and not supported

• 64-bit computers weren’t supported either

• Started writing Python in Python

• About 2000x slower than CPython

• Somethings in the standard library were in python

• Copied some optimizations over (TimSort)

• Writing JITs sucked.

• Writing a JIT generator for arbitrary languages is much simpler than writing a JIT for Python

• ~2-3 years ago Alex got into Pypy

• Beat C in str_cmp ~1 month ago

• http://speed.pypy.org

• Tries to show example of real time video analysis, mplayer broke.

1.5.4 Numpy

• Science likes big datasets, use Numpy

• Numpy is in C

• Numpy likes speed, so does pypy

• Started reimplementing Numpy in Pypy

1.5.5 Hotspot Detection

• Humans are bad at detecting slow downs

• Pypy has a JITViewer

– http://morepypy.blogspot.com/2011/08/visualization-of-jitted-code.html

– Allows you to view code in levels

– Python, Assembler, etc.

• Shows demo fo JITViewer

14 Chapter 1. PyCodeConf

http://speed.pypy.org
http://morepypy.blogspot.com/2011/08/visualization-of-jitted-code.html

josbohde-event-notes Documentation, Release 0.1

• Look into code

– “I think that’s too many instructions”

– Optimize code!

• Shows example of sum(x**3 for x in xrange(10000))

• JVM Community has good tooling

• Python could use that too.

1.5.6 Current

• Usually benchmark against C

• Experimenting with using C extensions.

1.5.7 Where we’re going

• Many projects are being migrated

– Django

• Porting to Python3

1.5.8 Architecture

• Because they use a JIT Generator, can improve constantly

• Speedups in Python3 will improve Python2

1.5.9 GIL

• Wrote a blogpost on STM (Software Transactional Memory).

– http://morepypy.blogspot.com/2011/08/we-need-software-transactional-memory.html

• Think STM would be slower for single core

• STM for multicore workloads

• GIL for single core.

1.5.10 What People Are Doing with Pypy

• Researchers getting results over lunch, instead of over night.

• Financial company for market analysis

• Engineers at CERN

1.5. PyPy is your Past, Present, and Future 15

http://morepypy.blogspot.com/2011/08/we-need-software-transactional-memory.html

josbohde-event-notes Documentation, Release 0.1

1.5.11 What Pypy Needs from the Community

• Encourages use of pypy if you are CPU bound

• Requests for slow code, and they’ll use it in benchmarks

• Want to make Python the right tool for the job in more places

• Work on the ecosystem and tools

1.6 Processing Firefox Crash Reports With Python

1.6.1 Author

• Laura Thompson (http://twitter.com/lxt)

• Works on lots of internal tools at Mozilla

1.6.2 Socorro

• Named after an array in New Mexico

• Is today’s browser more or less crashy than yesterday’s?

• If you see the Firefo crash popup, please submit it.

• Shows Mozilla Crash Stats https://crash-stats.mozilla.com/products/Firefox

1.6.3 Architecture

• Collector

– web.py app behind apache

– Puts on disk

• Store in HBase (crashmover)

• Write to Postgres by monitor

• Webapp and API

• All Python

1.6.4 Lifetime of a Crash

• Raw dump submitted by POST, JSON + minidump

• Stored

• Processed

16 Chapter 1. PyCodeConf

http://twitter.com/lxt
https://crash-stats.mozilla.com/products/Firefox

josbohde-event-notes Documentation, Release 0.1

1.6.5 Processing

• Processing spins off minidumpstackwalk (msdws)

• Tries to regenerate stack

• Processor generates a signature

• Tries avoid things like malloc

• Writes to Postgres, which acts like a large, relational cache.

1.6.6 Backend Processing

• Cron

• Calculate aggregates

– Top crashers by signature

– URL

– Domain (hates Farmville)

• Process incoming builds

• Match known crashes to mozilla bugs

• Dupe detection

• Match up crash pairs, e.g. plugin containers and browsers

• Generate CSV extracts for engineers for analysis

1.6.7 Middleware

• Move data access to REST API

– Allow engineers to build apps against the data

• Enable to rewrite app in Django in 2012

1.6.8 Webapp

• How to visualize?

– Many builds: release channel, nightly, hourly

• Reporting in build time

– Rebuilding in Django in 2012, because it’s Crufty

– Maybe Flast

• Almost all new Mozilla apps are Django

• Don’t need models, though

1.6. Processing Firefox Crash Reports With Python 17

josbohde-event-notes Documentation, Release 0.1

1.6.9 Implementation

• Use Python2.6

• Postgres 9.1, some stored procedures

• memcached

• Thrift for HBase access

– HBase written in Java

– Thought about rewriting Hbase parts on JVM

– Decided not to, Clojure not common, Jython for various reasons

1.6.10 Scaling

• Different

– Usually scale to millions of users.

– Crash Center has terrabytes of data, ~100 users.

• 2300 crashes per minute

– Going down

• 2.5 million per day

• Median size 150k

• Max 20MB

• Reject bigger, since probably not useful since mem dump

• ~110TB in HDFS (3x replicatoin)

1.6.11 What Can We Do?

• Compare beta null signature crashes.

• Analyze Flash versions crashes

• Detect duplicate crashes

• Detect explosive crashes

• Find “frankeninstalls”

– Some Windows updaters don’t work properly

– Keep duplicate but out of version dlls

1.6.12 Implementation Scale

• >115 Physical Boxes

– About to rollout Elastic Search

• 8 Devs, sysadmins, qa, hadoop ops, analysts

– Hiring

18 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

1.6.13 Managing Complexity

• Fork

– Hard to install

– Use version control VMs

– Found to help with complex dev environments

• Pull requests with bugfix features

• Jenkins polls master on github

– Runs tests

– Build package

– Push out to dev environment

– builds release branch

– manual push staging

– missed rest of this

1.6.14 Continous Deployment

• Critical

• Build machinery for Continuous Deploy, even if you don’t

• Can deploy at 10 a.m.

• Everyone relaxed

• Deployment is not a big deal

1.6.15 Config Management

• Automate configs

– Managed through Puppet

1.6.16 Virtualization

• Don’t want to bulid HBase

• Use Vagrant (http://vagrantup.com/)

• Jenkins builds Vagrant VMs

• Puppet configures VMs.

• Tricky to get data

• This + Github increased community activity

1.6. Processing Firefox Crash Reports With Python 19

http://vagrantup.com/

josbohde-event-notes Documentation, Release 0.1

1.6.17 Upcoming

• ElasticSearch

– Lucene, distributed flexible search engine

– Don’t know how to tune

• Analytics

– Detect explosive crashes

– Detect malware

• Better queueing

– Sagrada queue

– Mozilla Services - Ben Bangert (https://github.com/bbangert/moz_mq ?)

1.6.18 Open Source

• Almost everything is open

1.7 The Future of Collaboration in the Python community and beyond

1.7.1 Author

• Daniel Greenfield (http://twitter.com/pydanny)

• Cartwheel Web/ Revsys

• Django Packages (http://djangopackages.com)

• Whitespace Jobs (https://whitespacejobs.org)

• Fiance of Audrey Row

1.7.2 Mark Pilgrim is Gone

• He did feedparser, httplib2

– aside: httplib2 was actually by Joe Gregorio

• Dive into Python

• Dive into HTML5

• Other things

• We lost a lot with him leaving, sad to see him go.

1.7.3 What Happened to his Projects?

• What is the copyright?

– A: CC-SA

• What about his code?

20 Chapter 1. PyCodeConf

https://github.com/bbangert/moz_mq
http://twitter.com/pydanny
http://djangopackages.com
https://whitespacejobs.org

josbohde-event-notes Documentation, Release 0.1

– httplib2 is a big dependency of many projects

– That’s how found out he was gone

– Pypi didn’t host it

– Google Code didn’t host it anymore.

1.7.4 PyPI issues

• Too easy to delete a package * Dependency checks for that package * Request a project handoff * Other projects
need to be notified * RSS feeds

• Human moderation * Some can be automate * Burdens PyPI team

1.7.5 Repeating History

• Django-lint

• Django-Piston

– social factors caused no release in years

• python.org

• opencomparison.org

– Host djangopackages.com

– How does this get maintained?

1.7.6 Dark Future

• Critical Packages Breakdown

• Python packages vanish

• Build scripts fail

• Replace from caches/backups

1.7.7 Repercussions

• Lose domain knowledge

• Python can’t move forward.

• Social Issues

• 3rd Party Community is just as critical as Python core

1.7.8 Not the Future

• It’s today

• Legacy code with legacy packages

• Build scripts fail

1.7. The Future of Collaboration in the Python community and beyond 21

josbohde-event-notes Documentation, Release 0.1

• Example of NASA issue

– caused project to go to ColdFusion

• We have lost works of antiquity

– Blame is moot

• Stuff we make today is legacy in 5 years

1.7.9 Trust Issues

• This causes a lack of trust in Python

• Without trust, we can’t collaborate as well

– The disease that will trigger zombie apocolypse

1.7.10 Solutions

• Money!

– Sponsorships

– Problems getting money

– Applications

– Focus on sprints

– Code quality issue from sprints

– Ongoing maintenance

1.7.11 Future is still dark

• Community Managers

• Ticket triage, etc.

• Needs core/senior developers

• They are already busy

– Examples pay people to do this

– Volunteers may have life get in the way

• Determining authority

1.7.12 PSF Paid Commmunity Manager

• Proposed solution

• Paid via the PSF

22 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

1.7.13 Repercussions

• Fixes some problems

• Mitigate social issues

• Can still lose domain knowledge

1.7.14 Precedents

• Ubuntu

• Fedory

• Twilio

• Github

1.7.15 Wants

• More reasons to trust

• More reasons to contribute

• Keep projects operating

1.7.16 Call to Action

• This is a proposal

• Wants to see PSF project incubation

• PSF provides seed funding for OS projects

– Should return on investment

– Preferably to Python community

– Needs a viable business model

– PSF is an investor

• Choose from particapants in Django Dash & coding contests

1.7.17 Return

• Gives OS code

• Gives money back to the PSF

1.7.18 What this isn’t

• Covering < $100 for hosting

• Things without a self-supporting business model

1.7. The Future of Collaboration in the Python community and beyond 23

josbohde-event-notes Documentation, Release 0.1

1.7.19 Examples Projects

• djangolint.com

– Little setup requires

– Uses github

– Wants for all Python

– Wants syndication

– How does it make money?

* Pay to analyze privately?

– Easy linting increases trust

• readthedocs.org

– Places in the 2010 Django Dash

– Documentation increases trust

– Business model?

* Pay for private doc hosting would be good.

* Clients don’t want to host docs.

• depot.io

– Freeze your python dependencies

– Doesn’t replace PyPI

– Provides additional security

– Possible Advantages

* Archive legacy packages

* Leave PyPI as the canonical source

* Adds dependablility, trust

• PyPI

– Pay for a PyPI Appliance?

– Github makes “giant” profits on Enterprise Appliance

• djangopackages.com

– Just launched pyramid version

– Plone?

– Python?

– http://bit.ly/django-reg

– Compare and contrast packages

– Helped determine a package to use

– Gives metrics

– Metrics give trust

– As opencomparison, support more things

24 Chapter 1. PyCodeConf

http://bit.ly/django-reg

josbohde-event-notes Documentation, Release 0.1

* Languages

* Syndication

* OAuth

* What’s the business model?

1.7.20 Results

• Don’t have packages vanish.

• Let Python move forward

• Have new social issues.

1.7.21 Paid Community Manager

• Maybe the PSF shouldn’t be involved

• Outside factors?

1.7.22 Project Incubations

• Already exists, just not with PSF

• How much code comes out of these?

• Energy of startup giving back?

1.8 The State of Packaging & Dependency Management

1.8.1 Author

Craig Kerstiens (http://twitter.com/craigkerstiens) Works at Heroku

1.8.2 Packaging

• Need to release it

Where To Release

1.8.3 Your Server

• Full flexibility

• People rely on you being up

• Breaks deploys

• Don’t do this, unless you want to provide better uptime than PyPI

1.8. The State of Packaging & Dependency Management 25

http://twitter.com/craigkerstiens

josbohde-event-notes Documentation, Release 0.1

1.8.4 Github

• Awesome for dev

• Not for release

• Not mean to packages, but source code

1.8.5 PyPI

• Please release it here

• Complain about it being down

• 5 mirrors that are well updated

1.8.6 Managing Dependencies

• Use pip

– Supports uninstalling

– Lots of small improvements

– Supports version control

– Don’t use this in production

• Use virtualenv

– Great for sandboxing

– Destroy and recreate it often

– Pin your dependencies

1.8.7 Pinning

• Only deploy specific versions

• pip freeze > requirements.txt

• It’s explicit (see the Zen)

1.8.8 Version Control

• Having a github/bitbucket source is good for dev...

• Not for prod.

• Put tarballs on internal servers.

PyPI is Down ————oG

• pip install –use-mirrors, problem solved

26 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

1.8.9 Whats Missing

• Not as good as Bundler from Ruby community

• Pip upgrade needs to be better

1.8.10 Recap

• Use PyPI

• Explicit versions

• Use mirrors

• Need to use the tools more effectively

1.8.11 Questions

• A frozen requirement may have unfrozen dependencies

• May need to tweak requirements.txt

1.9 Python For Humans

1.9.1 Author

• Kenneth Reitz (http://twitter.com/Kennethreitz)

• Works for Readability

• Works on the Github Reflog

• Used to be part of the Changelog

• Authored Requests, Tablib, Legit, OSX-GCC_installer, Clint, Evnoy, Httpbin

• Makes software for humans

1.9.2 Talk Slides

• https://github.com/kennethreitz/python-for-humans

1.9.3 Philosphy

• What people like about Python

– Simplicity

– Speed to develop

– Pypy

• import this

• The Zen of Python, our manifesto

1.9. Python For Humans 27

http://twitter.com/Kennethreitz
https://github.com/kennethreitz/python-for-humans

josbohde-event-notes Documentation, Release 0.1

• Beautiful is better than ugly

– Syntax

• Explicit is better than implicit

– Compared to Ruby

• If the implemenatation is hard to explain, it’s a bad idea

– Unless you’re pypy

• This talk will focus on there should only be one obvious way to do it.

1.9.4 Messing Around

• Using Github API

• Show’s Ruby code, not beautiful but straightforward

• When trying it in Python we get confused about what library to use

– Python 3 helps this naming issue

• Shows code using urllib2

– Too many actions to just use basic auth

– And there’s more!

– Github API uses 404 instead of 401, need to write our own BasicAuthHandler

– Need to force it to send basic auth, took 3 hours

• This would prevent people from using Python.

1.9.5 Problems

• Unclear on what module to use

• “HTTP should be simple as the print statement”

1.9.6 Solution

• We need pragmatic, elegant tools.

1.9.7 HTTP

• Has methods

• Very simple

• Urrllib2 is very complex, and therefore toxic

1.9.8 Requests

• For humans

• Simple solution for a simple problem

28 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

1.9.9 Litmus Test

• You should not have to refer to the docs everytime you want to do something simple

• API is the most important thing

• Handle the 95% case elegantly

1.9.10 Building

• Requests was very simple at first, but it resonated with people

• Grew to handle more stuff

• 17th most watched project on Github

1.9.11 Subprocesses

• Powerful, effective, second worst API

• Docs lacking

• Follows C API

• Mostly docs that are lacking

1.9.12 Proposed Solution

• Envoy

• Mostly the same API as Requests

• Pipe, read stdout, etc.

• Get it done quickly and effectively

1.9.13 File and System Ops

• Surveyed dev ops

• Shutil, sys, etc. are confusing

• Limits adoption by dev ops guys

1.9.14 Install Python

• Surveying room on installation methods on OSX

• Many chosen

• “What happened to one obvious way to do it?”

1.9. Python For Humans 29

josbohde-event-notes Documentation, Release 0.1

1.9.15 XML

• etree is terrible

• lxml is awesome

• We need to adopt a better standard

1.9.16 Packaging and Dependencies

• pip or easy_install

• setuptools?

• Distribute

– How is it better than setuptools?

• We need simple instructions on how to install, and release packages

1.9.17 Dates

• Some good 3rd parties

• Stdlib not good enough

1.9.18 Unicode

• It’s a simple problem

– Room erupts in “No it’s not!”

• Should be easy

1.9.19 Testing

• Unittests

• Didn’t get the downside

1.9.20 Installing Dependencies

• Asked room about difficulties

• Almost everyone had difficulties

1.9.21 Hitchiker’s Guide to Python

• http://python-guide.org

• Teach the best practices

• “There should be one– and preferably only one –obvious way to do it”

• Brief overview

30 Chapter 1. PyCodeConf

http://python-guide.org

josbohde-event-notes Documentation, Release 0.1

– Idioms

– Freezing Code

– Installing code

• Up for debate, collaboration

• Aimed to be a reference guide, and to lower the barrier of entry

1.9.22 Manifesto

• Simplify APIs

• Document Best Practices

1.10 Python is Only Slow If You Use it Wrong

1.10.1 Author

• Avery Pennarun (http://twitter.com/apenwarr)

• Works at Google

1.10.2 Bup

• Written in Python

• Backup software

• Uses Git as a data store

• 80 megs/second

1.10.3 sshuttle

• VPN that handles wireless speeds

• Also in Python

1.10.4 How to Use Python Wrong

• Tight Inner Loops

• In compiled languages, you have these often

• Really bad in Python

• Line of code in Python is 80-100x slower than C

• Keep it in a higher level

1.10. Python is Only Slow If You Use it Wrong 31

http://twitter.com/apenwarr

josbohde-event-notes Documentation, Release 0.1

1.10.5 Ways to Make it Fast

• Use Regex and C modules

– Word based instead of char based ~5x faster

– Will run it in C

– Most of bup is Python, small bit in C to speed it up

• 100% Pure is not pragmatic

• CPython has a really good C API

– Java doesn’t, it’s super painful

• Python + C is winning so far

– C is for tight inner loops

– Python for the higher level

1.10.6 Threads

• Computation threads are useless, because of GIL

– Sometimes worse than single threaded

• Okay for I/O

– GIL will release for I/O

• fork() works great for both

– Recommend to use it all the time

– No GIL

– Trick is getting info from process to process

– Bup uses this

– No weird locking interactions

• C modules can use threads

– Can release GIL when you get objects

– Run threads

– Get GIL when computations are done

– Can get high performance

• CPU Bound threads in Python is doing it wrong

• Question from audience: Scipy has Weave, which will allow you to inline C code. * Dynamic compilation

• There are workarounds for the GIL

1.10.7 Garbage Collection

• Python is both refcounting and gc

• Refcounting

32 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

– Whenever you use a variable, increase reference count

– Whenever you stop, decrease the reference count

– Terrible, terrible thing with threads

– Need to lock on refcounts

– GIL solves this problem

• Shows graphs of programs memory and time

– Allocates 10k of space a lot

– Refcounting sematics allow Python lower mem usage than Java

• Testing Java

– 3 different tests

– Shows one where it allocates as much memory as possible

• Sometimes Python is Garbage Collected

– Mutual referencing objects that have ref count of one

– Backup GC finds this, and collects them

– Shows example on how to do this

– Pretty complicated in order to get across the GC

– Then it relies on sucking up tons of memory, and getting it later

1.10.8 Advice: Stay away from GC

• Break circular references

• Most common, trees with reference to parents

– Full tree need to be GC’ed

• Better: use the weakref module

1.10.9 Deterministic Destructors

• Win32 example of two writers to a file

• Win32 doesn’t allow two writers

• CPython allows it because it closes the writer because of refcounting

• This causes deterministic behavior, unlike ‘real’ gc

– In Python you don’t need to manage many resources

– Files, database handles, etc.

• Some people are trying to take this away

– Pypy?

– with statement isn’t a desirable alternative

1.10. Python is Only Slow If You Use it Wrong 33

josbohde-event-notes Documentation, Release 0.1

1.10.10 HelloMark

• Fork and exec “Hello World” 20x

• Demonstrates startup times

• Jython takes 15 seconds, slower than C+valgrind

• Shows what you want to write command line tools in

• pyc + CPython files are awesome for this

– Django and Tornado can reload really quickly

• Pypy loses in this regard

1.10.11 Summary

• Love refcounting

• Don’t use tight inner loops in Python

• Don’t need the JIT

• Work on startup time

• benchmarks: https://github.com/apenwarr/avebench

1.11 Amazing Things In Open Source

1.11.1 Author

• Audrey Roy (http://twitter.com/audreyr)

• Python volunteer, Django Packages

1.11.2 Overview

• Community recognizes work you do (meritocracy)

1.11.3 Meritocracy

• People will use your work if it has merit

• Anyone can build or be a leader

– If they put in the work

• Permission isn’t (usually) needed

– We allow experiments

1.11.4 Open Comparison

• Writing Comparison Grids for sub communities

• Compare packages for Django, Pyramid, etc.

34 Chapter 1. PyCodeConf

https://github.com/apenwarr/avebench
http://twitter.com/audreyr

josbohde-event-notes Documentation, Release 0.1

1.11.5 Call to Action

• Build it!

• Be Nice

• Others probaby won’t build it, so you should

1.11.6 Early Decisions

• Django Packages

• Made during Django Dash

• Decided to only manually add packages

• Good decision?

– Doesn’t matter

– 900 packages right now

• Action is better than having something get debated

• Probably better in the hands of the core devs

• Gut instinct is often right

– Can always change it later

1.11.7 Ecosystem Patterns

• Mostly from Django experience

– Django has many 3rd party packages

– Compared to Legos

• Django Core vs. Apps

– Many batteries included

– This approach is good and bad

– Can get stuck with a heavy core

– Promotes “one obvious way”

• Django has well defined patterns for apps

– App structure

– App settings

– Overridable templates

• Reuse encourages innovations as 3rd party packages

• Core is conservative

• Best 3rd party apps get added to core

• Grow fastest when there is a pattern for extensions

– jQuery

1.11. Amazing Things In Open Source 35

josbohde-event-notes Documentation, Release 0.1

– CPAN

• Pyramid

– Smaller core

– Core functionality as add-ons

– Endorsed add-ons

– Potential for rapid growth

– Can deprecate, and allow add-ons to evolve

– Don’t need to wait on core

• Pyramid’s Ecosystem developed over time

– Came from Pylons, Repoze, Turbogears

1.11.8 How to Grow an Ecosystem

• Write “Best Practices” on how to write 3rd party packages

– There is a big gap in this

• Well-defined specs

– Allow others to write upon a base

• Sample code

• Active community

• Mailing list/ IRC

• Docs

• 3rd-Party packages catalog

1.11.9 Too Many Options?

• “There should be one– and preferably only one –obvious way to do it.”

• There can be many web frameworks

• But there is often too much clutter

• Document the differences

• Deprecate bad packages

– Hard to do in some cases

– Recommend replacements

1.11.10 Fragmentation

• Not all web

• Science, games, etc.

• Can’t have too many interest groups

36 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

– Diversity of ideas

1.11.11 3rd Party Packages

• Best: Do one thing well

• Usability

– Good docs

– Easy to install

• Reliability

– Tests

– Help

• Antipatterns are viral

• Snippets is the biggest anti-pattern

– Copy and paste code

• Don’t over-engineer though

• Don’t make the “kitchen-sink” package

– Utility functions

– Unrelated problems

– More visible in HTML/CSS world

• Do Be Pythoic

– Elegance

– Ease of use

– Explicitness

– Simplicity is why we use Python

1.11.12 Mentorship

• Provide positive encouragement

• Put yourself out there

1.11.13 Diversity of Ideas

• Differ from country to country

• Other types of diversity

• PyLadies vs. SoCal Python Interest Group

1.11. Amazing Things In Open Source 37

josbohde-event-notes Documentation, Release 0.1

1.12 The Prejudgement of Programming Languages

1.12.1 Author

• Gary Bernhardt (http://twitter.com/garybernhardt)

1.12.2 Intro

• 10 Years of Failures and Bad Ideas

• Pre-2001: Ignorant of Software

• ~2001: C is the best thing, Java sucks

• ~2003: Learned Lisp

• Designed a “more modern” C

• Had curly braces, static types, but basically Python

• ~2006 Built BitBacker in ~98% Python

• Arc: C -> Lisp -> Python

• ~2009: Ruby and Python 50/50

• Tweet about frustration of integrating libraries in Ruby + Javascript

• Frustrated by Python’s lack of blocks

• Shows a conversation between _why and Ryan

• “Ruby isn’t serious”

• Frustrated with programming

• q2 2010: Writing Tests

• Show TDD using Ruby

– Crazy Vim action

1.12.3 Testing

• Claim: RSpec is confusing

• Never had this problem

• Python based on SUnit from 1994

• Thought Django views are not as advanced as Rails

• Ruby is the serious one?

• “A Python programmer rejects a new idea without considering its value. A Ruby programmer accepts a new
idea without considering its value.”

38 Chapter 1. PyCodeConf

http://twitter.com/garybernhardt

josbohde-event-notes Documentation, Release 0.1

1.12.4 Choose Ruby or Python

• Ruby community more willing to pay

• Move to that full time

• Shows examples of ugliness in Ruby

– @foo ||= bar

– realization, it’s how you do memoization

• Maybe Ruby is well designed?

• Generators, Comprehensions, Decorators, and Context Managers are easy to implement with blocks

• Which language is complicated?

1.12.5 Emprically

• Realized back to ignorance

• Judged languages before he should

• Ruby’s community is serious about testing

• Rare opportunity to work with both

1.13 Cherry-picking for Huge Success

1.13.1 Author

• Armin Ronacher (http://twitter.com/mitsuhiko)

• Part of the Pocoo Team

• Notable work: Flask, Jinja2, Werkzueg

1.13.2 Preface

• Framework/Language fights are boring. Just use the best tool for the job.

1.13.3 Twitter

• 2006: Rails, XML API

• Now: JS Frontend, Erlang/Java

1.13.4 Does Ruby Suck?

• No, and neither does Python

• Both are great for prototyping

• Application changes over time

• Will rewrite

1.13. Cherry-picking for Huge Success 39

http://twitter.com/mitsuhiko

josbohde-event-notes Documentation, Release 0.1

1.13.5 Solution

• Build small applications

• Combine into a larger one

• Builds foundation to experiment * Move dbs, etc.

• Crossing language boundaries

– Rewrite

– Use a different library

– Implement a service

1.13.6 Agnostic Code

• Example of depending on Django too much

• Instead of importing from Django, pass it in

– Class instance, parameter

– Make it specific, but not more

1.13.7 Example

• Drop down to WSGI

• Usually too specific, if you only need just the url

1.13.8 Protocol Example

• Compared to Python iterables

• Flask views return wsgi apps

• Can dispatch to a Django application, for example

1.13.9 Difflib

• Compares any iterable that is hashable and comparable

• Overly specific would be strings, though that’s the main use case

• Real world use to diff HTML docs

• Plugin Genshi to difflib to accomplish this

1.13.10 Interface Examples

• Serializers

– Missed examples

40 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

1.13.11 Mergepoint

• To build apps we need merge points for smaller apps

1.13.12 WSGI

• Used with most Python web frameworks

• Often not enough

• Provides a framework independent environment

• Middleware can be useful mergepoints, though overused

• Cannot consume form data in WSGI, inject uniform html, etc.

• Libraries that help with this

– Werkzeug

– WebOb

– Paste

• Can write short helpers to dispatch from e.g. Django to WSGI

1.13.13 HTTP

• Language independent

• Cacheable

• Harder to work with, complex

• Can do proxying, nginx

• Caching layers for scalability

• Problem: Need to keep them running

• Language independent library

• cUrl

1.13.14 ZeroMQ

• More modern TCP Socket

• Language independent

• Different topologies

– push/pull

– pub/sub

• Easier than HTTP

• No caching

• Non gracefully dies

• No broker infrastructure

1.13. Cherry-picking for Huge Success 41

josbohde-event-notes Documentation, Release 0.1

1.13.15 Message Queues

• Similar to ZeroMQ

• In reality, a different problem

• Can run tasks outside request/response

• Different codes, languages to run code

• Accessor Library: Celery

• Don’t assume code to be nonblocking

• Greatly simplifies testing

• Redis queues are a good start

– ~20 lines of code to build your own

1.13.16 Data Store

• Using the same db for different apps

• Works well as long as everyone plays nice

1.13.17 Redis

• Remote datastructures

• Shows bash example of a queue worker

1.13.18 Javascript

• It’s awesome

• Geeks hate it

• ugly, can be abused

• Use Coffeescript

• Decouples frontend by using different services

• Examples: xbox.com, Battlefield 3 game lobby

• Can efficiently transform the DOM

• Backbone.js

• Testing sucks for others

1.13.19 Processes

• Daemons can be annoying to run

• Processes can have different privileges

• Tune individual processes

• Upgrade parts to python3

42 Chapter 1. PyCodeConf

josbohde-event-notes Documentation, Release 0.1

• ZeroMQ/HTTP to operate together

1.14 Breakdancer

1.14.1 Author

• Dustin Sallings (http://twitter.com/dlsspy)

• Memcached contributor

1.14.2 Testing

• Few constructs not mentioned in the past day

• Someone submitted a bug

• “I have tests”

• Straightforward bug that wasn’t tested

• All the individual items work, but sequences can fail.

• Testing all sequences is a large number of combinations

1.14.3 Breakdancer Overview

• Conditions, Actions, Effects

• Driver to run things

• Shows how add command can be decomposed into conditions

• All Conditions, Actions, and Effects are composable

• Driver holds the boilerplate

• Python makes boilerplate minimal

• itertools makes combinations simple.

• Generate test case combinations automatically

• Do preconditions, postconditions.

1.15 The Many Hats of Building and Launching a Web Startup

1.15.1 Author

• Tracy Osborn (http://twitter.com/limedaring)

• Founder of WeddingLovely.com

• Considers herself a designer

1.14. Breakdancer 43

http://twitter.com/dlsspy
http://twitter.com/limedaring

josbohde-event-notes Documentation, Release 0.1

1.15.2 Overview

• Quit job as designer

• Failed to found co-founder

• Learned Python

1.15.3 Start Out

• Have good runway

– 1 year+

• Health and relationships

• Quit your job

1.15.4 What is Success?

• Don’t want to build Google

• Just build something that makes you some money

• Take a step back

• Love your job

• Concentrate on small successes

1.15.5 Background

• Knew HTML

• Hated CS courses

• Got a job at a startup

• Got bored

• Started freelancing

1.15.6 Entreprenuer

• No cofounder is better than a bad cofounder

• Applied to YC

• Things didn’t go well

• Used Learn Python the Hard Way (http://learnpythonthehardway.org/)

• Used Django

• Six weeks later, launched

44 Chapter 1. PyCodeConf

http://learnpythonthehardway.org/

josbohde-event-notes Documentation, Release 0.1

1.15.7 Launch as Fast as Possible

• You need customers

• It helps morale

• Allows you to iterate

• “Good enough”

• You can add features later

• Work on the hard parts first

• For her, programming part was hard

• It was okay to launch with bad code.

• Violates DRY.

• Got picked up by Swiss Miss with MVP

1.15.8 Monetization

• Have a plan.

• Don’t think about it later or rely on funding

1.15.9 Don’t Be Alone

• Surround yourself in a community

• Find people who are smarter than you to help you out

• No NDAs

• Inhibits advice

• People stealing your ideas is a good thing

• Use Twitter/HN to talk

• Attend Hacker Events, SuperHappyDevHouse, PyLadies

1.15.10 Take Shortcuts

• Django ecosystem is awesome

• Doesn’t know databases at all, South makes it easy

• Dotcloud makes servers easy

• Themeforest for design

• Design for Non Designers

• You can always iterate later

• Launchrock.com

1.15. The Many Hats of Building and Launching a Web Startup 45

josbohde-event-notes Documentation, Release 0.1

1.16 Future of Python and NumPy for array-oriented computing

1.16.1 Author

• Travis Oliphant (http://twitter.com/teoliphant)

• Made NumPy

1.16.2 Why Python?

• Fits your brain

• Doesn’t get in your way

• Software engineering is more about neuroscience than code.

• Fibonacci is just an Unstable Infinite Impulse Response linear filter

• Shows numpy example, which is fast, but wraps hardware integer

• Wants to make Python faster than C, as in a GPU or FPGA

1.16.3 Conway’s Game of Life

• Interesting excercies

• Shows an example of it

• Array oriented

• APL

– Grandfather of most array oriented languages

– J,K,Matlab are descendents

– Numpy is a descendent

– Unicode glyphs

• Game of Life is one line in APL

• Array-oriented programming deals with arrays as a block

• Shows numpy example

1.16.4 Numpy/Scipy History

• Numeric around ~1994

• More features for array oriented computing

– a[0,1], a[::2]

– Ellipsis object

– Complex numbers

• Syntax matters

• Aside: We need more numpy/scipy and core collaboration

46 Chapter 1. PyCodeConf

http://twitter.com/teoliphant

josbohde-event-notes Documentation, Release 0.1

• Derivative Calculations in 1997

• Came from MATLAB, but it wasn’t memory efficient enough

• Iterative update loop made Python nice

• 1999 Scipy emerges

• Python was better language than MATLAB, but lacked scientific libraries

• Community Effort

– Mostly from academics

• Numpy emerged from Numeric in 2005

1.16.5 Numpy

• Data types

– Collections of objects

– Arrays

• Statistics functions

• Arbitrary Arrays

– Column oriented calculations

1.16.6 Scipy

• Stats

• Data fitting

• Interpolation

• Brownian Motion

1.16.7 Zen of Numpy

• http://technicaldiscovery.blogspot.com/2010/11/zen-of-numpy.html

1.16.8 Pypy

• Let’s not chase C, let’s chase Fortran 90.

• Example where Fortran 90 is 7 times faster than Numpy and Pypy

1.16.9 Question

• Coolest thing seen with NumPy?

– Implant surgery planning tool

– CT Scans, 3d vis

1.16. Future of Python and NumPy for array-oriented computing 47

http://technicaldiscovery.blogspot.com/2010/11/zen-of-numpy.html

josbohde-event-notes Documentation, Release 0.1

1.17 Lightning Talks

1.17.1 Vagrant

• Vagrant loves Python

• Building and distributing VMs

• Gives isolation, repeatability, and verification

• Move dev to virtual machines

• Move production ops scripts to setup environment

• Vagrant command line, to manage life cycle

• Designers can use it too

• http://vagrantup.com

1.17.2 Testing CSS

• Needle

• Takes screen shots

• Checks them

• Looks like normal unit tests

• uses css selectors

• Extension to nose, with selenium

• https://github.com/bfirsh/needle

1.17.3 Pyparsing

• Time trial using Pypy

• Search for integers in a string of random alphas and numbers

• Pypy ~10x faster

• Verilog parser (~16k lines)

• Cpython (500 lines/sec)

• Pypy (1131 lines/sec)

1.17.4 Pandas

• @wesmckinn

• Agile Tooling for Small Data

• First need to small the small data problem before big data

• DBs, Flat files, time series, mean you may want it

• indexed data structures for relation data

48 Chapter 1. PyCodeConf

http://vagrantup.com
https://github.com/bfirsh/needle

josbohde-event-notes Documentation, Release 0.1

• Fast manipulation tool

• Data alignment

• Join merge

• group by

• Reshaping/pivot

• In memory and fast

• Meant for quant finance application backbone

• ~26k loc

• In productions since 2008

• Data Analysis is dominated by thing like SAS

• Lots of people want to expand in these areas

• Operations to naturally select portions of data

• Can plot data

• Would love collaborators

1.17.5 DSLs

• Peter Wang (@pwang)

• Crazy crazy ideas

• Would like Python to ignore some syntax where we can do whatever the hell we want

• It might be awesome

• Calling it extern

• Just syntactic sugar

• Hacking import hooks to make it work

• .pydsl file

• uses pyparsing under the hood to transform the dsl

• Aimed at scientists

• People want it: weave, numexpr

• Everyone needs it

• Let’s Python assimilate into existing systems

1.17.6 stackful

• @erikrose

• This is a hack

• Wish things weren’t global

• Dynamic variables like in Perl

• Perl has local variables which leaks onto things it calls

1.17. Lightning Talks 49

josbohde-event-notes Documentation, Release 0.1

• stackful implemented as with statement

• Thread safe

• Implementation is funny

• No hook in Python for reference

• Just override every single magic method in Python

• Should be able to be used

50 Chapter 1. PyCodeConf

CHAPTER 2

PyCon 2012

2.1 Keynote with Stormy Peters

2.1.1 Author

• Stormy Peters

2.1.2 Web

• We should make people aware of how their info is being used

2.1.3 Growing a Community

• As companies get involved we wonder about the direction of the community

• Reach out to new people, because it can be intimidating

• When you meet someone, you have 3 seconds to make an impression * Based on your hair * And then shoes

• When you respond to a bug report, or mailing list post, this is their first impression * Make it a good one

• Python groups are great for this outreach

• Study says learning something new is worth a 20% raise * old job needs 20% more money vs. new job with
new tech

• Some like to be famous (cue chuckles)

• Some get involved because they are paid to

• Some for ideals of free and available

• Stay because of the community

• Community is better when you can measure the impact of members

2.1.4 Open Web

• Believes in an open web * Shows phone that boots to Gecko * Someone in Mongolia wrote about how excited
they were for access to books * Could send html books instead of text messages

51

josbohde-event-notes Documentation, Release 0.1

• People made huge sacrifices to make ease of use with open and free software * Stay up all night to get a modem
working

• Free != open * Just because it’s free, doesn’t mean it has the ideals of open software

• We haven’t defined what it means to have an open web service

• I want you to host my data, but what kind of access do I need to make it open?

• You may create a web service that puts you into a position you don’t want to * Give users tools along the way
so that they don’t feeel disempowered

• We need to help change the world so we get fewer phone calls

• Things to help this (Mozilla examples) * Do not track movement * Browserid (now Persona)

• Backup is important, as well as delete

• “Are you sober enough to publish this picture?”

2.2 Paul Graham Keynote

2.2.1 Author

• Paul Graham

• YCombinator

2.2.2 Silicon Valley

• The center of SV moves around the peopl who make the next generation of stuff * So, this room is right now

• The frightening-ness of big startup ideas

• List of 7 gigantic startup ideas

• Scary, maybe I should do that recipe site instead

•

2.2.3 Next Google

• Start next Google

• Microsoft lost their way when they got into the search business

• Google has been getting into the social network business

• Nostalgic for the right answer from google * Seems based on Scientologist: “What’s true is what’s true for you”

• Find tiny idea that turns big idea * Dinosaur egg

• Search engine for top 10k hackers

• Make the search engine the one you want

• Don’t worry about something that constrains you in the long term

52 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

2.2.4 Replace Email

• Any big idea has a bunch of people nibbling around it

• Not designed to be used the way it is now * Bell labs “Want to go to lunch?”

• Now a shitty todo list

• Tweaking the inbox is not enough

• Todo list protocol insteayd of messaging protocol

• Sending emails to yourself

• Want to know what they want you to do

• When does it need to be done?

• Whenever powerful people are in pain, that is the way to make lots of money

• Gmail has gotten painfully slow

• People will pay for faster email

2.2.5 Replace Universities

• claps

• Last couple of decades, universities seem to have gone down the wrong path

• Expensive country clubs

2.2.6 Kill Hollywood

• Hollywood was slow to embrace the internet

• Internet beat cable

• Bolted an iMac to the wall, found it better than a TV

• TV seemed like it was designed by the same people who designed the thermostat

• How do you deliver drama via the internet?

• You kind of want to know what you’re going to get with a show

2.2.7 A New Apple

• If Apple won’t make the next iPad, who will? * Empirically, it’s none of the incumbents

• It will be a startup * Not crazy, Apple did it

• Steve Jobs showed us what one person can do

• “Steve Jobs unrolled the future like a carpet”

• The next CEO might not live up to Steve Jobs, but doesn’t need to * Just needs to be better than HP, Samsung,
Motorola

2.2. Paul Graham Keynote 53

josbohde-event-notes Documentation, Release 0.1

2.2.8 Bring Back Moore’s Law

• Circuits are going to get twice as dense, not twice as fast

• Hardware would just solve software’s problems

• Need to rewrite it to be parallel

• It would be really great by making a lot of CPUs look like one

• The most ambitious is to do it automatically via a compiler * “Sufficiently smart compiler”

• If not impossible, expected value is really high

• Less ambitious is to start from the bottom * Build programs out of more parallizable lego blocks * Programmer
still does a lot of the work

• Middle ground is a semi automatic weapon * Looks like a sufficiently smart compiles, but there are humans in
there

• Make a market place, let people do it * Maybe make bots that will do it

2.2.9 Ongoing Diagnosis

• Imagine the ways we will seem backwards to people in the future

• Seem barbaric to wait for symptoms to be diagnosed

• Bill Clinton had to wait for arteries to be 90% blocked to find out

• Launch fast and iterate may not work for medical. * Work on pigs first * Sausage company on the side

• The medical profession will be an obstacle to this

• Doctors are alarmed to look for problems that aren’t there

• If you start testing people all the time, you may get a lot of terrifying false alarms

• Think this is an artifact of current limitations

• Going against medical tradition

2.2.10 Tactical Advice

• For big problems, don’t make a frontal attack

• “Are we there yet?”, Haters

• Notice that you replaced email when it’s done

• Start with small things, let them get big * Facebook

• Maybe big ambitions are a bad thing * The bigger they are, more likely to be wrong * Don’t identify, just think
there is something out there * When the opportunity comes to move, move there

• Blurry vision may be better

54 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

2.3 Graph Processing in Python

2.3.1 Author

• Van Lindberg

2.3.2 Graphs

• Uoniversal datatype

• Probably not the best fit if you don’t have a relationship

2.3.3 Python-Dev

• “Who talks to whom?”

• Nodes are people

• Edges are “responded to on Python-dev”

• Centrality * Intuitively, the more central, tend to connect others * Dict to map person to how central they are
* There’s a fairly tight knit community, with smallers around the edge * Antoine Pitrou was the most likely to
respond

• Topics

• Nodes are people and topics

• Edges are “commented on”

• Filter out too-common topics

2.4 Fast Test, Slow Test

2.4.1 Author

• Gary Bernhardt

2.4.2 Suites

• Prevent Regression * Weakest, doesn’t change how you build

• Prevent Fear * Being able to change things minute to minute, and have test verify * Where speed comes in

• Prevent Bad Design * Holy Grail of Testing

2.5 Stop Writing Classes

2.5.1 Author

• Jack Diederich

2.3. Graph Processing in Python 55

josbohde-event-notes Documentation, Release 0.1

2.5.2 When Should I refactor

• When there are two methods, and one is __init__

• When you write functions around classes

2.5.3 Evolution of an API

• MuffinHash replaces a dict

• Was two lines, and obfuscated the code

• 1 package, 20 modules

2.5.4 Version II

• Easy to read

• Two methods, __init__ and call

2.5.5 Version III

• stdlib parts, 6 lines

• 1 function

2.5.6 Namespaces

• Preven collisions

• Not taxonomies

• Otherwise extra things to type, remember

• Anytime you make a class, ask “What am I using it for?”

• Reuse stdlib exceptions

• Don’t complicate the names of your exceptions

2.5.7 stdlib

• 200k sloc

• avg 10 files per package

• 165 exceptions

2.5.8 Classes

• great for containers

• heapq doesn’t use a class

• Probably should be a class, since functions looke like methods * first param is data

56 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

2.5.9 Game of Life

• Cell and Board classes

• Board has two methods

• Refactor to dictionary and function

• Well, cell can be refactored to the key of the dict

• Two functions and a dict

2.6 Code Generation in Python: Dismantling Jinja

2.6.1 Author

• Armin Ronacher

2.6.2 Why?

• Isn’t it evil?

• A security problem?

• Bad for performance?

• Not if you do it right.

2.6.3 Security

• Code Injection

• Pollute namespace

– Change local variables

– Can evaluate code in different namespace

2.6.4 Performance

• Alternative: Write an interpreter

• Too slow

• Not suitable

2.6.5 Eval 101

• Compile function to make code objects

• evan can work on a namespace

• Using ast module, can alter underlying structure

• Can use ast to add in line numbers to nodes

2.6. Code Generation in Python: Dismantling Jinja 57

josbohde-event-notes Documentation, Release 0.1

• Don’t pass strings to eval/exec, but use code objects

• Explicit compliation and namespaces, to fix problems

2.6.6 Jinja

• Jinja and Django have C inspired scoping rules

• Pipeline

– Lexer

– Parser

– Identifier analyzer

– Code generator

– Python source

– Bytecode

– Runtime

• Only runtime is necessary

2.6.7 Scoping

• Context objects are dict-alike

• Slow

• Resolve in context ahead of time

2.6.8 Code Generation

• Low level

• Target byte-code

• High level

• AST generation

• Bytecode doesn’t work on appengine, and is implementation specific

• Would be nice to map jinja to bytecode

• Ast is limited, easier to debug, and doesn’t segfault

2.6.9 Tale of Two Pieces of Code

• scope in a function is faster than global scope

• lookup via index instead of name

• local dictionary isn’t generally used

• semantics can be mapped to fast execution environment

• Jinja context is data source

58 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

• Django context is data store

• You cannot modify context in Jinja

2.6.10 jsonjinja

• Semantics of jinja, in javascript

• https://github.com/mitsuhiko/jsonjinja

2.6.11 Q&A

• If you had the chance to redo would you use ast? * Yes, there are utility libraries that help this

• ctypes for line numbers? * put special line number variables, monkey patch traceback * works in everything
tested, including pypy * Some problems on some architectures.

2.7 Putting Python in PostgreSQL

2.7.1 Author

• Frank Wiles

2.7.2 Why

• Usually you want pl/pgsql

• Sometimes you want a scripting, with libraries, etc.

2.7.3 Installing

• Aptitude: postgresql-plpython

• homebrew

2.7.4 Setting up the database

• createlang plpythonu <databasename>

• Check with SELECT * FROM pg_language

• Python is untrusted

• Can set this up in templates

2.7.5 Writing your first function

• CREATE OR REPLACE FUNCTION

2.7. Putting Python in PostgreSQL 59

https://github.com/mitsuhiko/jsonjinja

josbohde-event-notes Documentation, Release 0.1

2.7.6 Debugging

• plpy.notice, debug, error, and fatal

• Will access the log file directly

• Can use logging

2.7.7 Problems

• Pain to maintain and debug

• Can confuse the dba

• Not free, cached

2.7.8 When

• Rolling up/aggregating data * Remove network, sql parsing to keep runtime low

• Enforce new constraints that aren’t in SQL

• Protect data integrity

2.7.9 Triggers

• CREATE TRIGGER...

• Throw a Python exception

• The TD variable has a lot of stuff in it

2.7.10 Redis

• Can use system libraries

• Update Redis unread count automatically

2.7.11 What can you do?

• Executing other sql, create materialized views

• plpy namespace has execute

2.7.12 Ideas

• Lots of them

• Celery tasks, caches, backups, apis, zeromq

• Emails, inserts into another system, send an sms

60 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

2.7.13 Q&A

• Limit the runtime of the procedure? * Don’t think so

• Test Python Code? * Fake it outside

• Automatically cache? * Have to say it’s immutable

• How easy is it to specify a python binary? * Can specify per Postgres cluster

• Run postgres queries inside query, infinite loop? * Will time out eventually? * Not yet, will be in 9.2

• Interpreter external or internal? * Didn’t hear

• Timeout kill trigger? * Could have connection timeout in code

• PGSQL v. Python was a magnitude difference * Not surprisingly

• Pypy or Jython? * Probably not * Not yet

• Table functions? * Haven’t done much with that, mostly just materialized views

2.8 pandas: Powerful data analysis tools for Python

2.8.1 Author

• Wes McKinney

• Recovering mathematician

• 3 years quant

• Building Lambda Foundry

• writing “Python for Data Analysis” * coming out later this year

2.8.2 Pandas

• pandas.pydata.org

• rich relational data on numpy

• high performance tools

• consistent api

2.8.3 Data Wrangling

• Simplify the tools on processing the data

• Don’t transfer from R to Python

2.8.4 Testing

• >98% coverage

• Battle tested

2.8. pandas: Powerful data analysis tools for Python 61

josbohde-event-notes Documentation, Release 0.1

2.8.5 Demos

• iPython transformed development

• Good outside of science

2.8.6 Table

• DataFrame is the core structure

• Axis indexing allows rich data alignment

• Alignment free programming * Often does munging for you

2.9 Lightning Talks

2.9.1 Numba

• Travis Oliphant

• Python compiler

• For numpy and C extensions

– Pypy not good enough

• Dynamic compilation

• Scipy needs a python compiler

– Allows higher level SciPy

• Numba

• Replaces byte-code with type inference

• Uses LLVM

• Dothoes codegen

• Uses C function pointers

• LLVM works with everything

• Uses a decorator to compile

• High bandwidth communication to llvm

• Python for high level, LLVM for low level

• DSLs based upon these

• https://github.com/numba/numba

2.9.2 I has a money

• Chad Whittaker

• Mint stores passwords in cleartext.

• ihasamoney.com

62 Chapter 2. PyCon 2012

https://github.com/numba/numba

josbohde-event-notes Documentation, Release 0.1

• Personal finance for geeks

• j/k to navigate, no mouse

2.9.3 Brain Hacking

• Talks are bad (but not here)

• Code for brain

• No spec for the brain

• Tell a story

• Implausible story better than plausible story

• Make them care * Babies are better than code

• Show puzzles not solutions * If you show the solution, they won’t care

• Have to practice in order to get good

2.9.4 Python 3 on Pypi

• Brett Cannon

• “Pie-pee-eye”

• 54-58% of the top projects support py3k

• Some are under dev, like Django

• The goal was 5 years

• 3 years was the stretch

• Update your metadata, e.g. “Programming Language :: Python :: 3.2”

• Public shame

• pyporting guide

• added u” prefix to make it easier

2.9.5 Python on IBooks

• Luke Gotzling

• Can run interpreter in an ebook

• Embed an interpreter in javascript in an html widget

• 4.8 mg overhead

• Runs on vanilla ipads

2.9. Lightning Talks 63

josbohde-event-notes Documentation, Release 0.1

2.10 Keynote: David Beazley

2.10.1 Author

• David Beazley

2.10.2 Let’s Talk About (something diabolical)

• Let’s talk about Pypy

• Python implemented in Python

• Quite a bit faster because of magic

• Mandlebrot runs 34x faster

• Which one can you adjust with a pocketknife?

2.10.3 Thinking about Tinkering

• CPython has patches, extensions, ideas

• Talking about GIL, etc, wouldn’t be possible without tinkering

• iPython notebook is an examples of this

• Is it just “evil geniuses”?

• Can you tinker with PyPy?

• Can I teach myself to tinker with it using just resources available, part-time?

• Building PyPy is challenging

• Takes hours, > 4gbs of memory, might break C compiler

• RPython is a restricted subset of the language, but can run as valid Python

• RPython is defined by the translation toolchain

• If you love Python, you will hate RPython

• Uses type inference

• Lists need to be of a single type

• Pypy uses the bytecode interpreter and an abstract runtime to compile to C code

2.11 Why PyPy By Example

2.11.1 Authors

• Maciej Fijalkowski

• Alex Gaynor

• Armin Rigo

64 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

2.11.2 What is PyPy

• Can’t convince that they are not crazy

• Python in Python

• No longer speed of interpreter, speed of running program

• Measuring memory is important

2.11.3 Edge Detection

• Use dynamic objects with __get__ overridden to act like a list

• Do edge detection on a web cam in real time

• Implemented in Python

• In cPython, ~7 seconds per frame

2.11.4 Tracebin

• Successor to JITViewer

• Expose performance information without understanding how PyPy works

2.11.5 Numpy

• Believe easier to add numpy to JIT than a JIT to numpy

• Some good initial results, but not complete

2.11.6 Garbage Collection

• Don’t have to call free

• History of talk for Pascal

• Everywhere now

2.11.7 Transactional Memory

• How do we use multiple cores? * Semaphores, events, etc.

• Multicore usage

• Two times the execution time * Where we were with GC years ago

• Hard work

2.11.8 Sprints

• Come sprint on PyPy

• We’ll help with getting projects working on PyPy

2.11. Why PyPy By Example 65

josbohde-event-notes Documentation, Release 0.1

2.12 Flexing SQLAlchemy’s Relational Power

2.12.1 Author

• Brandon Rhodes

2.12.2 Denormalization

• Quick to render, hard to update * e.g. IMDB updating an actor where it’s stored with movies

2.12.3 Normalization

• Only store data once

• Easier update

• Need to pull data from multiple places

2.12.4 SQL

• Need to model relationships through intermediary table

• No composite data types

– If you see fields like actor_1, actor_2, etc. something is wrong

2.12.5 Storage is Slow

• Indexes let us jump to right part faster

• Keeping records sorted on disk is slow

• Indexes make this faster

2.12.6 How to make it fast?

• Ask one question

• Use explain and indexes

• Domain knowledge can tell us how we can optimize a query * Postgres has an analyzer that does this well

2.12.7 The O Error

• misconception: An ORM just deals with objects, and hides the relational

• You need to know relational

66 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

2.13 Hand Coded Applications with SQLAlchemy

2.13.1 Author

• Michael Bayer

2.13.2 What’s a Database

• We can put data in and get it out

• Can do queries that allow us to find records with attributes

2.13.3 Relational Database

• Can create derived tables with suqueries

• Set operations

• ACID

2.13.4 How Talk to DB

• DBAPI

• Abstraction layers

2.13.5 ORM

• Maps to relations

• Can map to multiple relations

• Can map object heirarchies to tables

• How abstract should these be? * Should document stores work?

• Relational features are under/misused which causes the mismatch

• Best to not hide, but to automate

• Explicit decisions and automation is “hand-coded”

2.13.6 Hand-Coded

• Make decisions about everything

• Automate these decisions for ease

• Opposite of “wizards”, “plugins”, and APIs that make implementation decisions

• Can still use libraries and frameworks

2.13. Hand Coded Applications with SQLAlchemy 67

josbohde-event-notes Documentation, Release 0.1

2.13.7 Polymorphic Association

• Map multiple classes to something using GenericReferences

• Does magic for us

• Sometimes called GenericForeignKey

• This breaks the C in ACID * Can generate FK that doesn’t point to anything

• Implicit design decisions * Magic tables * source code stored as data, which is coupling * Application layer
responsible for consistency

2.13.8 SQLAlchemy’s Response

• Declarative Base * Composable patterns

• HasOwner, and PortfolioAssets defaults

• Define convention for polymorphic association

2.14 Advanced Celery

2.14.1 Author

• Ask Solem

• Work at VMware, on RabbitMQ team

2.14.2 Overview

• Flexible and Reliable message queue system

• Granularity: the less computation, the more fine grained the task is * Can reuse connections, etc

• Chunking * Grouping fine-grained tasks to reuse resources

2.14.3 Chords

• Sync primitive

• Known as a barier

• Callback the body with the results of the headers

• Native support in Redis, with good enough fallbacks for others

• demo of parallel summariazation using chords

• Can use this to implement MapReduce

2.14.4 Blocking

• Is bad

• Timeouts

68 Chapter 2. PyCon 2012

josbohde-event-notes Documentation, Release 0.1

2.14.5 Routing

• Smart routing

• CPU based routers would be nice

2.14.6 Cyme

• https://github.com/celery/cyme

• A distributed Celery instance manager

• HTTP based API

2.14. Advanced Celery 69

https://github.com/celery/cyme

josbohde-event-notes Documentation, Release 0.1

70 Chapter 2. PyCon 2012

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

71

	PyCodeConf
	The Future Is Bright
	Embracing The GIL
	What Makes Python AWESOME?
	Backbone.js and Django for a Faster WebUI
	PyPy is your Past, Present, and Future
	Processing Firefox Crash Reports With Python
	The Future of Collaboration in the Python community and beyond
	The State of Packaging & Dependency Management
	Python For Humans
	Python is Only Slow If You Use it Wrong
	Amazing Things In Open Source
	The Prejudgement of Programming Languages
	Cherry-picking for Huge Success
	Breakdancer
	The Many Hats of Building and Launching a Web Startup
	Future of Python and NumPy for array-oriented computing
	Lightning Talks

	PyCon 2012
	Keynote with Stormy Peters
	Paul Graham Keynote
	Graph Processing in Python
	Fast Test, Slow Test
	Stop Writing Classes
	Code Generation in Python: Dismantling Jinja
	Putting Python in PostgreSQL
	pandas: Powerful data analysis tools for Python
	Lightning Talks
	Keynote: David Beazley
	Why PyPy By Example
	Flexing SQLAlchemy's Relational Power
	Hand Coded Applications with SQLAlchemy
	Advanced Celery

	Indices and tables

