

 Navigation

 	
 index

 	
 next |

 	joshbohde-event-notes 0.1 documentation

Welcome to Event Notes’s documentation!

Contents:

	PyCodeConf
	The Future Is Bright

	Embracing The GIL

	What Makes Python AWESOME?

	Backbone.js and Django for a Faster WebUI

	PyPy is your Past, Present, and Future

	Processing Firefox Crash Reports With Python

	The Future of Collaboration in the Python community and beyond

	The State of Packaging & Dependency Management

	Python For Humans

	Python is Only Slow If You Use it Wrong

	Amazing Things In Open Source

	The Prejudgement of Programming Languages

	Cherry-picking for Huge Success

	Breakdancer

	The Many Hats of Building and Launching a Web Startup

	Future of Python and NumPy for array-oriented computing

	Lightning Talks

	PyCon 2012
	Keynote with Stormy Peters

	Paul Graham Keynote

	Graph Processing in Python

	Fast Test, Slow Test

	Stop Writing Classes

	Code Generation in Python: Dismantling Jinja

	Putting Python in PostgreSQL

	pandas: Powerful data analysis tools for Python

	Lightning Talks

	Keynote: David Beazley

	Why PyPy By Example

	Flexing SQLAlchemy’s Relational Power

	Hand Coded Applications with SQLAlchemy

	Advanced Celery

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

PyCodeConf

	The Future Is Bright
	Author

	Intro

	What is Python?

	Who uses Python

	Where is the language

	What’s the Future?

	What should Python be?

	Things Jesse Wants

	What we need

	Interpreters

	Predictions

	Python3

	Community

	Embracing The GIL
	Author

	Intro

	Interest

	Threads are Useful

	In A Nutshell

	An Experiment in Messaging

	Scenario 1

	Scenario 2

	Commentary

	Thoughts

	GUI

	Thread Switching

	What’s Really Happening

	How to Fix

	Experiment

	More Thoughts

	Wrapping Up

	Questions

	What Makes Python AWESOME?
	Author

	Context for Success

	High level qualities

	A bit of Awesomeness

	Indentation

	Iterator protocol

	List Comprehension

	Generators

	Generator Expressions

	Generators that accept Input

	Decorators

	With Statement

	Abstract Base Classes

	Backbone.js and Django for a Faster WebUI
	Author

	Leafy Chat

	Grove

	Chat Systems

	Examples

	Backbone and Grove

	Models

	Collections

	Views

	Templates

	Sync

	Events

	Router

	Questions

	PyPy is your Past, Present, and Future
	Author

	Intro

	Story

	Numpy

	Hotspot Detection

	Current

	Where we’re going

	Architecture

	GIL

	What People Are Doing with Pypy

	What Pypy Needs from the Community

	Processing Firefox Crash Reports With Python
	Author

	Socorro

	Architecture

	Lifetime of a Crash

	Processing

	Backend Processing

	Middleware

	Webapp

	Implementation

	Scaling

	What Can We Do?

	Implementation Scale

	Managing Complexity

	Continous Deployment

	Config Management

	Virtualization

	Upcoming

	Open Source

	The Future of Collaboration in the Python community and beyond
	Author

	Mark Pilgrim is Gone

	What Happened to his Projects?

	PyPI issues

	Repeating History

	Dark Future

	Repercussions

	Not the Future

	Trust Issues

	Solutions

	Future is still dark

	PSF Paid Commmunity Manager

	Repercussions

	Precedents

	Wants

	Call to Action

	Return

	What this isn’t

	Examples Projects

	Results

	Paid Community Manager

	Project Incubations

	The State of Packaging & Dependency Management
	Author

	Packaging

	Your Server

	Github

	PyPI

	Managing Dependencies

	Pinning

	Version Control

	Whats Missing

	Recap

	Questions

	Python For Humans
	Author

	Talk Slides

	Philosphy

	Messing Around

	Problems

	Solution

	HTTP

	Requests

	Litmus Test

	Building

	Subprocesses

	Proposed Solution

	File and System Ops

	Install Python

	XML

	Packaging and Dependencies

	Dates

	Unicode

	Testing

	Installing Dependencies

	Hitchiker’s Guide to Python

	Manifesto

	Python is Only Slow If You Use it Wrong
	Author

	Bup

	sshuttle

	How to Use Python Wrong

	Ways to Make it Fast

	Threads

	Garbage Collection

	Advice: Stay away from GC

	Deterministic Destructors

	HelloMark

	Summary

	Amazing Things In Open Source
	Author

	Overview

	Meritocracy

	Open Comparison

	Call to Action

	Early Decisions

	Ecosystem Patterns

	How to Grow an Ecosystem

	Too Many Options?

	Fragmentation

	3rd Party Packages

	Mentorship

	Diversity of Ideas

	The Prejudgement of Programming Languages
	Author

	Intro

	Testing

	Choose Ruby or Python

	Emprically

	Cherry-picking for Huge Success
	Author

	Preface

	Twitter

	Does Ruby Suck?

	Solution

	Agnostic Code

	Example

	Protocol Example

	Difflib

	Interface Examples

	Mergepoint

	WSGI

	HTTP

	ZeroMQ

	Message Queues

	Data Store

	Redis

	Javascript

	Processes

	Breakdancer
	Author

	Testing

	Breakdancer Overview

	The Many Hats of Building and Launching a Web Startup
	Author

	Overview

	Start Out

	What is Success?

	Background

	Entreprenuer

	Launch as Fast as Possible

	Monetization

	Don’t Be Alone

	Take Shortcuts

	Future of Python and NumPy for array-oriented computing
	Author

	Why Python?

	Conway’s Game of Life

	Numpy/Scipy History

	Numpy

	Scipy

	Zen of Numpy

	Pypy

	Question

	Lightning Talks
	Vagrant

	Testing CSS

	Pyparsing

	Pandas

	DSLs

	stackful

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

The Future Is Bright

Author

Talk by Jesse Noller

	PSF Member

	Pycon Chair

Intro

	Aimed at all communities.

	“Kids are okay”.

What is Python?

	Python = python language + community.

	Includes IronPython, Jython, Pypy.

	Heroku blog post says it really well http://blog.heroku.com/archives/2011/9/28/python_and_django/

Who uses Python

	Everyone.

	Scales up to 100k users, to a script to calculate budget.

	Easy to teach. Fits in head. Scales up well, and scales down.

Where is the language

	~123 accepted PEPs.

	~80 builtin functions

	~285 documented modules.

What’s the Future?

	2.7 is the last release of 2.x

	Py3k

	Proposals for Coroutines, async IO, cofunctions, daemon, asyncIO for subprocess, OS and Exception heirarchy.

What should Python be?

	Should be the Borg, by borrowing the good ideas from other languages.

	Ease of use, simplicity.

	Adopt, but make it Pythonic.

	Must continue to look outside the language

Things Jesse Wants

	Communication (messaging)

	Lightweight processes

	Actors.

	Gevent, libevent,

What we need

	Cleaner, more Pythonic APIs.

	Don’t leak.

	Balance advanced users versus keeping it simple.

	Modernize standard library.

	Python is a conservative language. Doesn’t blaze the path.

	Core language must be able to fit in one’s head.

Interpreters

	
	Pypy

	
	It’s fast. blazingly fast.

	Magic in the RPython.

	
	CPython

	
	It’s the cockroach.

	Simple, uncomplicated C code.

	Battle tested.

Predictions

	Pypy will become the dominant interpreter. CPython won’t die, and it will be reliable.

	PyPy, CPython, Jython, and ironPython are BFFs.

Python3

	Keep Calm, and Carry On.

	Python is over 21 years old.

	5 years is nothing for migrating a community so big.

Community

	Cannot afford to be idle.

	Cannot be hostile, but welcoming.

	Get involved locally.

	Be open to criticism, especially constructive.

	Look through the pile of vitrol, to find the core of truth.

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Embracing The GIL

Author

	David Beazley (@dabeaz)

Intro

	Railed on GIL at PyCon, thought it deserved some Love

	Godwin’s Law of Python

Interest

	Fun hard systems problem

	Likes to break GILs as a hobby

Threads are Useful

	People love to hate on threads...

	Because they are being used.

	They solve tricky problems.

In A Nutshell

	Python code -> VM instructions

	Can’t execute VM instructions concurrently, therefore locking

	Keep things safe
* Ref counts
* Mutable types
* Internal bookkepping
* Thread safety

	All low level.

An Experiment in Messaging

	Comes up in a lot of contexts

	Involves IO

	Foundation for working around the GIL

	
	Shows an experiment in messaging using 5 implementations

	
	C + ZeroMQ

	Python + ZeroMQ (C extensions)

	Python + multiprocessing

	Python + blocking sockets

	Python + nonblocking sockets

	Tested on xlarge EC2 instance.

Scenario 1

	Unloaded server

	Expect ~10 seconds (10 seconds of sleep in there)

	All roughly the same (~13 seconds for each)

	Shows a real time example

Scenario 2

	Implement a thread to calculate Fib(200) (Referencing Node.js is a cancer)

	C version is barely affected.

	Python blocking goes to 142 seconds.

	Real time example takes a long time.

Commentary

	This aggression will not stand.

Thoughts

	
	Try Pypy

	
	Test on Pypy (6k seconds)

	fixed in trunk

	
	Try 2.7

	
	Within 2x

GUI

	Uses Idle with threads (esp CPU bound)

	Kills performance to the point of completely unusable

	Can barely type into Idle

Thread Switching

	GIL aquisition based on timeout

	Thread that want the GIL must wait 5ms

	Causes a problem on release

	5ms delays build up

What’s Really Happening

	Before send and recv, acquire GIL

	After release

How to Fix

	Thread priorities

	Was in the original “New GIL” patch

	Should be revisited

Experiment

	Has an experimental python 3.2 with priorities

	Really minimal

	Threads can set their priority

	Performance that is comparable to version without threads.

	Makes GUI completely usable.

	Tried with 1.4k threads.

More Thoughts

	Huge boost in performance with few modifications

	Not the only way to improve the GIL

	Example: Should the GIL release on nonblocking IO?

	Currently releases on every IO

	If you are doing nonblocking IO, you aren’t blocking.

Wrapping Up

	Python programmers should be interested in improving the GIL

	Doesn’t have to be huge, incremental.

	http://www.dabeaz.com/talks/EmbraceGIL

	Code available via version control

Questions

	
	Did you do an academic paper on this?

	
	No, but I think there is room for it.

	The interesting question is if the OS thread library gives enough help to languages with a GIL.

	Could it cooperate to tell the thread that it will be context switched.

	At Pycon, OS kernel hackers came to talk about this.

	Should say “Fixing the GIL is impossible”.

	
	Is priority code production runnable?

	
	No

	Threads cannot quit.

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

What Makes Python AWESOME?

Author

	Raymond Hettinger (@raymondh)

Context for Success

	OS License

	
	Commercial distributions

	
	Sponsor advancements

	
	Zen

	
	Guides the language and community

	
	Community

	
	Killer feature

	
	Repositories (Pypi)

	
	Solved problems are a pip install away.

High level qualities

	
	Ease of learning

	
	Can build a Python programmer in a week and a half

	
	Rapid Dev Cycle

	
	Used in a high frequency trading company

	More important to react to market

	Economy of Expression

	
	Readability and Beauty

	
	Makes it easy to work in, and less tiring

	
	One way to do it

	
	Once you learn an aspect, you can apply it somewhere else

A bit of Awesomeness

	Five minutes to write code to find duplicate files.

	Can throw away.

	
	How long to write in C?

	
	Infinite

	You won’t write it

	Python programmers write things C programmers won’t.

	Just the same as any other scripting language?

Why is Python Awesome?

Indentation

	How we write psuedocode

	Contributes to readability

	Shows an example of indentation in C lying

Iterator protocol

	Lots of stuf is iterable

	Hold the language together

	sets, lists, dicts, files

	shows sorted(set(‘abracadabra’))

	sorted(set(open(filename)))

	Like legos: fit together perfectly

	Shows an analogy between that and Unix pipes.

	Not enough, GOF pattern

List Comprehension

	More flexibile than functional style

Generators

	Easiest way to write an iterator

	Adds one keyword (yield)

	Makes tricky iterators easy

Generator Expressions

	Produce values just-in-time

	sum(x**3 for x in xrange(1000000))

	In Pypy, roughly C speed

	setcomps and dictcomps

Generators that accept Input

	generators support send(), throw(), and close()

	Unique to Python

	Can make Twisted’s inline deferreds using this

	A state machine with callbacks.

	Write code that looks procedural, but uses callbacks

	Monocle (https://github.com/saucelabs/monocle), Twisted inline deferred

	Fantastic improvement of callback code.

Decorators

	Expressive

	Always worked for function

	Initial response: Syntactic sugar

	Community rose up and demanded it from Guido.

	Easy on the eyes

	Shows example using itty (https://github.com/toastdriven/itty) using decorators for routing.

	Ping into another machine using curl to lookup environment variables in 3 lines.

	Web service in 20 lines, made possible by decorators

	Thanks Django!

With Statement

	Clean, elegant

	Profoundly important

	Sandwich analogy

	Subroutines factor out the ‘meat’ of the code

	With statments factor out the ‘bread’ of the code

	Factors out common setup and teardown methods.

Abstract Base Classes

	Uniform definition of what it means to be a sequence, mapping, etc.

	Ability to override isinstance() and issubclass()

	Duck-typing says: “If it says it’s a duck...”

	Mixin capability (DictMixin)

	
	Can provide the base of a class

	
	shows using a list-based set with __iter__, __contains__, and something else

	Mixin provides the rest

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Backbone.js and Django for a Faster WebUI

Author

	Leah Culver (http://twitter.com/leahculver)

	Cofounder of Pownce, one of the first big Django applications.

	Works at Convore (https://convore.com/)

Leafy Chat

	Web frontend for IRC

	Done in Django Dash (2008?)

Grove

	New project

	Internal IRC for your company

	https://grove.io

Chat Systems

	Built a lot of them

	Leafy chat - only used jQuery, lots of javascript

	Using Backbone in Grove

Examples

	Show an example of using jQuery to build UI.

	Embedded HTML in javascript.

Backbone and Grove

	The UI looks the same

	Backbone gives MVC style, in a single file.

	You can roll it yourself, making it easy to get started.

	Not actually MVC, actually Models, Templates, and Views

Models

	Shows Backbone.Model.extend({})

	http://documentcloud.github.com/backbone/#Model

Collections

	Shows Backbone.Collection.extend({})

	http://documentcloud.github.com/backbone/#Collection

Views

	Highlight the Backbone Views on the Grove app page.

	
	Demonstrates Backbone Event binding

	
	Creates the view from the model data

	Bind updating view when the model changes

Templates

	Uses handlebars.js (http://www.handlebarsjs.com/)

	Looks like Django

	Specify templates to a view.

	use include_raw templatetag http://djangosnippets.org/snippets/1684/

Additional Goodies

Sync

	Used to synchronize data on Django server

	Shows request.raw_post_data to get JSON objects.

	https://gist.github.com/1265346

Events

	Can update multiple views for a single model.

	App.trigger(‘messageAdded’, ...)

Router

	Will trigger Events based upon the hash

Questions

	
	Do you feel bad that your Django app is now Javascript?

	
	No, this is how apps are going.

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

PyPy is your Past, Present, and Future

Author

	Alex Gaynor (http://twitter.com/alex_gaynor)

	Still in school, core Django, CPython, and Pypy committer

Intro

	
	There are 2 things faster than C

	
	Neutrinos

	Pypy

Story

	Armin wanted to write a JIT for Python (Psyco)

	Psyco was the written by Armin.

	Kind of messing.

	Generators came along, and not supported

	64-bit computers weren’t supported either

	Started writing Python in Python

	About 2000x slower than CPython

	Somethings in the standard library were in python

	Copied some optimizations over (TimSort)

	Writing JITs sucked.

	Writing a JIT generator for arbitrary languages is much simpler than writing a JIT for Python

	~2-3 years ago Alex got into Pypy

	Beat C in str_cmp ~1 month ago

	http://speed.pypy.org

	Tries to show example of real time video analysis, mplayer broke.

Numpy

	Science likes big datasets, use Numpy

	Numpy is in C

	Numpy likes speed, so does pypy

	Started reimplementing Numpy in Pypy

Hotspot Detection

	Humans are bad at detecting slow downs

	
	Pypy has a JITViewer

	
	http://morepypy.blogspot.com/2011/08/visualization-of-jitted-code.html

	Allows you to view code in levels

	Python, Assembler, etc.

	Shows demo fo JITViewer

	
	Look into code

	
	“I think that’s too many instructions”

	Optimize code!

	Shows example of sum(x**3 for x in xrange(10000))

	JVM Community has good tooling

	Python could use that too.

Current

	Usually benchmark against C

	Experimenting with using C extensions.

Where we’re going

	
	Many projects are being migrated

	
	Django

	Porting to Python3

Architecture

	Because they use a JIT Generator, can improve constantly

	Speedups in Python3 will improve Python2

GIL

	
	Wrote a blogpost on STM (Software Transactional Memory).

	
	http://morepypy.blogspot.com/2011/08/we-need-software-transactional-memory.html

	Think STM would be slower for single core

	STM for multicore workloads

	GIL for single core.

What People Are Doing with Pypy

	Researchers getting results over lunch, instead of over night.

	Financial company for market analysis

	Engineers at CERN

What Pypy Needs from the Community

	Encourages use of pypy if you are CPU bound

	Requests for slow code, and they’ll use it in benchmarks

	Want to make Python the right tool for the job in more places

	Work on the ecosystem and tools

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Processing Firefox Crash Reports With Python

Author

	Laura Thompson (http://twitter.com/lxt)

	Works on lots of internal tools at Mozilla

Socorro

	Named after an array in New Mexico

	Is today’s browser more or less crashy than yesterday’s?

	If you see the Firefo crash popup, please submit it.

	Shows Mozilla Crash Stats https://crash-stats.mozilla.com/products/Firefox

Architecture

	
	Collector

	
	web.py app behind apache

	Puts on disk

	Store in HBase (crashmover)

	Write to Postgres by monitor

	Webapp and API

	All Python

Lifetime of a Crash

	Raw dump submitted by POST, JSON + minidump

	Stored

	Processed

Processing

	Processing spins off minidumpstackwalk (msdws)

	Tries to regenerate stack

	Processor generates a signature

	Tries avoid things like malloc

	Writes to Postgres, which acts like a large, relational cache.

Backend Processing

	Cron

	
	Calculate aggregates

	
	Top crashers by signature

	URL

	Domain (hates Farmville)

	Process incoming builds

	Match known crashes to mozilla bugs

	Dupe detection

	Match up crash pairs, e.g. plugin containers and browsers

	Generate CSV extracts for engineers for analysis

Middleware

	
	Move data access to REST API

	
	Allow engineers to build apps against the data

	Enable to rewrite app in Django in 2012

Webapp

	
	How to visualize?

	
	Many builds: release channel, nightly, hourly

	
	Reporting in build time

	
	Rebuilding in Django in 2012, because it’s Crufty

	Maybe Flast

	Almost all new Mozilla apps are Django

	Don’t need models, though

Implementation

	Use Python2.6

	Postgres 9.1, some stored procedures

	memcached

	
	Thrift for HBase access

	
	HBase written in Java

	Thought about rewriting Hbase parts on JVM

	Decided not to, Clojure not common, Jython for various reasons

Scaling

	
	Different

	
	Usually scale to millions of users.

	Crash Center has terrabytes of data, ~100 users.

	
	2300 crashes per minute

	
	Going down

	2.5 million per day

	Median size 150k

	Max 20MB

	Reject bigger, since probably not useful since mem dump

	~110TB in HDFS (3x replicatoin)

What Can We Do?

	Compare beta null signature crashes.

	Analyze Flash versions crashes

	Detect duplicate crashes

	Detect explosive crashes

	
	Find “frankeninstalls”

	
	Some Windows updaters don’t work properly

	Keep duplicate but out of version dlls

Implementation Scale

	
	>115 Physical Boxes

	
	About to rollout Elastic Search

	
	8 Devs, sysadmins, qa, hadoop ops, analysts

	
	Hiring

Managing Complexity

	
	Fork

	
	Hard to install

	Use version control VMs

	Found to help with complex dev environments

	Pull requests with bugfix features

	
	Jenkins polls master on github

	
	Runs tests

	Build package

	Push out to dev environment

	builds release branch

	manual push staging

	missed rest of this

Continous Deployment

	Critical

	Build machinery for Continuous Deploy, even if you don’t

	Can deploy at 10 a.m.

	Everyone relaxed

	Deployment is not a big deal

Config Management

	
	Automate configs

	
	Managed through Puppet

Virtualization

	Don’t want to bulid HBase

	Use Vagrant (http://vagrantup.com/)

	Jenkins builds Vagrant VMs

	Puppet configures VMs.

	Tricky to get data

	This + Github increased community activity

Upcoming

	
	ElasticSearch

	
	Lucene, distributed flexible search engine

	Don’t know how to tune

	
	Analytics

	
	Detect explosive crashes

	Detect malware

	
	Better queueing

	
	Sagrada queue

	Mozilla Services - Ben Bangert (https://github.com/bbangert/moz_mq ?)

Open Source

	Almost everything is open

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

The Future of Collaboration in the Python community and beyond

Author

	Daniel Greenfield (http://twitter.com/pydanny)

	Cartwheel Web/ Revsys

	Django Packages (http://djangopackages.com)

	Whitespace Jobs (https://whitespacejobs.org)

	Fiance of Audrey Row

Mark Pilgrim is Gone

	
	He did feedparser, httplib2

	
	aside: httplib2 was actually by Joe Gregorio

	Dive into Python

	Dive into HTML5

	Other things

	We lost a lot with him leaving, sad to see him go.

What Happened to his Projects?

	
	What is the copyright?

	
	A: CC-SA

	
	What about his code?

	
	httplib2 is a big dependency of many projects

	That’s how found out he was gone

	Pypi didn’t host it

	Google Code didn’t host it anymore.

PyPI issues

	Too easy to delete a package
* Dependency checks for that package
* Request a project handoff
* Other projects need to be notified
* RSS feeds

	Human moderation
* Some can be automate
* Burdens PyPI team

Repeating History

	Django-lint

	
	Django-Piston

	
	social factors caused no release in years

	python.org

	
	opencomparison.org

	
	Host djangopackages.com

	How does this get maintained?

Dark Future

	Critical Packages Breakdown

	Python packages vanish

	Build scripts fail

	Replace from caches/backups

Repercussions

	Lose domain knowledge

	Python can’t move forward.

	Social Issues

	3rd Party Community is just as critical as Python core

Not the Future

	It’s today

	Legacy code with legacy packages

	Build scripts fail

	
	Example of NASA issue

	
	caused project to go to ColdFusion

	
	We have lost works of antiquity

	
	Blame is moot

	Stuff we make today is legacy in 5 years

Trust Issues

	This causes a lack of trust in Python

	
	Without trust, we can’t collaborate as well

	
	The disease that will trigger zombie apocolypse

Solutions

	
	Money!

	
	Sponsorships

	Problems getting money

	Applications

	Focus on sprints

	Code quality issue from sprints

	Ongoing maintenance

Future is still dark

	Community Managers

	Ticket triage, etc.

	Needs core/senior developers

	
	They are already busy

	
	Examples pay people to do this

	Volunteers may have life get in the way

	Determining authority

PSF Paid Commmunity Manager

	Proposed solution

	Paid via the PSF

Repercussions

	Fixes some problems

	Mitigate social issues

	Can still lose domain knowledge

Precedents

	Ubuntu

	Fedory

	Twilio

	Github

Wants

	More reasons to trust

	More reasons to contribute

	Keep projects operating

Call to Action

	This is a proposal

	Wants to see PSF project incubation

	
	PSF provides seed funding for OS projects

	
	Should return on investment

	Preferably to Python community

	Needs a viable business model

	PSF is an investor

	Choose from particapants in Django Dash & coding contests

Return

	Gives OS code

	Gives money back to the PSF

What this isn’t

	Covering < $100 for hosting

	Things without a self-supporting business model

Examples Projects

	
	djangolint.com

	
	Little setup requires

	Uses github

	Wants for all Python

	Wants syndication

	
	How does it make money?

	
	Pay to analyze privately?

	Easy linting increases trust

	
	readthedocs.org

	
	Places in the 2010 Django Dash

	Documentation increases trust

	
	Business model?

	
	Pay for private doc hosting would be good.

	Clients don’t want to host docs.

	
	depot.io

	
	Freeze your python dependencies

	Doesn’t replace PyPI

	Provides additional security

	
	Possible Advantages

	
	Archive legacy packages

	Leave PyPI as the canonical source

	Adds dependablility, trust

	
	PyPI

	
	Pay for a PyPI Appliance?

	Github makes “giant” profits on Enterprise Appliance

	
	djangopackages.com

	
	Just launched pyramid version

	Plone?

	Python?

	http://bit.ly/django-reg

	Compare and contrast packages

	Helped determine a package to use

	Gives metrics

	Metrics give trust

	
	As opencomparison, support more things

	
	Languages

	Syndication

	OAuth

	What’s the business model?

Results

	Don’t have packages vanish.

	Let Python move forward

	Have new social issues.

Paid Community Manager

	Maybe the PSF shouldn’t be involved

	Outside factors?

Project Incubations

	Already exists, just not with PSF

	How much code comes out of these?

	Energy of startup giving back?

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

The State of Packaging & Dependency Management

Author

Craig Kerstiens (http://twitter.com/craigkerstiens)
Works at Heroku

Packaging

	Need to release it

Where To Release

Your Server

	Full flexibility

	People rely on you being up

	Breaks deploys

	Don’t do this, unless you want to provide better uptime than PyPI

Github

	Awesome for dev

	Not for release

	Not mean to packages, but source code

PyPI

	Please release it here

	Complain about it being down

	5 mirrors that are well updated

Managing Dependencies

	
	Use pip

	
	Supports uninstalling

	Lots of small improvements

	Supports version control

	Don’t use this in production

	
	Use virtualenv

	
	Great for sandboxing

	Destroy and recreate it often

	Pin your dependencies

Pinning

	Only deploy specific versions

	pip freeze > requirements.txt

	It’s explicit (see the Zen)

Version Control

	Having a github/bitbucket source is good for dev...

	Not for prod.

	Put tarballs on internal servers.

PyPI is Down
————oG

	pip install –use-mirrors, problem solved

Whats Missing

	Not as good as Bundler from Ruby community

	Pip upgrade needs to be better

Recap

	Use PyPI

	Explicit versions

	Use mirrors

	Need to use the tools more effectively

Questions

	A frozen requirement may have unfrozen dependencies

	May need to tweak requirements.txt

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Python For Humans

Author

	Kenneth Reitz (http://twitter.com/Kennethreitz)

	Works for Readability

	Works on the Github Reflog

	Used to be part of the Changelog

	Authored Requests, Tablib, Legit, OSX-GCC_installer, Clint, Evnoy, Httpbin

	Makes software for humans

Talk Slides

	https://github.com/kennethreitz/python-for-humans

Philosphy

	
	What people like about Python

	
	Simplicity

	Speed to develop

	Pypy

	import this

	The Zen of Python, our manifesto

	
	Beautiful is better than ugly

	
	Syntax

	
	Explicit is better than implicit

	
	Compared to Ruby

	
	If the implemenatation is hard to explain, it’s a bad idea

	
	Unless you’re pypy

	This talk will focus on there should only be one obvious way to do it.

Messing Around

	Using Github API

	Show’s Ruby code, not beautiful but straightforward

	
	When trying it in Python we get confused about what library to use

	
	Python 3 helps this naming issue

	
	Shows code using urllib2

	
	Too many actions to just use basic auth

	And there’s more!

	Github API uses 404 instead of 401, need to write our own BasicAuthHandler

	Need to force it to send basic auth, took 3 hours

	This would prevent people from using Python.

Problems

	Unclear on what module to use

	“HTTP should be simple as the print statement”

Solution

	We need pragmatic, elegant tools.

HTTP

	Has methods

	Very simple

	Urrllib2 is very complex, and therefore toxic

Requests

	For humans

	Simple solution for a simple problem

Litmus Test

	You should not have to refer to the docs everytime you want to do something simple

	API is the most important thing

	Handle the 95% case elegantly

Building

	Requests was very simple at first, but it resonated with people

	Grew to handle more stuff

	17th most watched project on Github

Subprocesses

	Powerful, effective, second worst API

	Docs lacking

	Follows C API

	Mostly docs that are lacking

Proposed Solution

	Envoy

	Mostly the same API as Requests

	Pipe, read stdout, etc.

	Get it done quickly and effectively

File and System Ops

	Surveyed dev ops

	Shutil, sys, etc. are confusing

	Limits adoption by dev ops guys

Install Python

	Surveying room on installation methods on OSX

	Many chosen

	“What happened to one obvious way to do it?”

XML

	etree is terrible

	lxml is awesome

	We need to adopt a better standard

Packaging and Dependencies

	pip or easy_install

	setuptools?

	
	Distribute

	
	How is it better than setuptools?

	We need simple instructions on how to install, and release packages

Dates

	Some good 3rd parties

	Stdlib not good enough

Unicode

	
	It’s a simple problem

	
	Room erupts in “No it’s not!”

	Should be easy

Testing

	Unittests

	Didn’t get the downside

Installing Dependencies

	Asked room about difficulties

	Almost everyone had difficulties

Hitchiker’s Guide to Python

	http://python-guide.org

	Teach the best practices

	“There should be one– and preferably only one –obvious way to do it”

	
	Brief overview

	
	Idioms

	Freezing Code

	Installing code

	Up for debate, collaboration

	Aimed to be a reference guide, and to lower the barrier of entry

Manifesto

	Simplify APIs

	Document Best Practices

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Python is Only Slow If You Use it Wrong

Author

	Avery Pennarun (http://twitter.com/apenwarr)

	Works at Google

Bup

	Written in Python

	Backup software

	Uses Git as a data store

	80 megs/second

sshuttle

	VPN that handles wireless speeds

	Also in Python

How to Use Python Wrong

	Tight Inner Loops

	In compiled languages, you have these often

	Really bad in Python

	Line of code in Python is 80-100x slower than C

	Keep it in a higher level

Ways to Make it Fast

	
	Use Regex and C modules

	
	Word based instead of char based ~5x faster

	Will run it in C

	Most of bup is Python, small bit in C to speed it up

	100% Pure is not pragmatic

	
	CPython has a really good C API

	
	Java doesn’t, it’s super painful

	
	Python + C is winning so far

	
	C is for tight inner loops

	Python for the higher level

Threads

	
	Computation threads are useless, because of GIL

	
	Sometimes worse than single threaded

	
	Okay for I/O

	
	GIL will release for I/O

	
	fork() works great for both

	
	Recommend to use it all the time

	No GIL

	Trick is getting info from process to process

	Bup uses this

	No weird locking interactions

	
	C modules can use threads

	
	Can release GIL when you get objects

	Run threads

	Get GIL when computations are done

	Can get high performance

	CPU Bound threads in Python is doing it wrong

	Question from audience: Scipy has Weave, which will allow you to inline C code.
* Dynamic compilation

	There are workarounds for the GIL

Garbage Collection

	Python is both refcounting and gc

	
	Refcounting

	
	Whenever you use a variable, increase reference count

	Whenever you stop, decrease the reference count

	Terrible, terrible thing with threads

	Need to lock on refcounts

	GIL solves this problem

	
	Shows graphs of programs memory and time

	
	Allocates 10k of space a lot

	Refcounting sematics allow Python lower mem usage than Java

	
	Testing Java

	
	3 different tests

	Shows one where it allocates as much memory as possible

	
	Sometimes Python is Garbage Collected

	
	Mutual referencing objects that have ref count of one

	Backup GC finds this, and collects them

	Shows example on how to do this

	Pretty complicated in order to get across the GC

	Then it relies on sucking up tons of memory, and getting it later

Advice: Stay away from GC

	Break circular references

	
	Most common, trees with reference to parents

	
	Full tree need to be GC’ed

	Better: use the weakref module

Deterministic Destructors

	Win32 example of two writers to a file

	Win32 doesn’t allow two writers

	CPython allows it because it closes the writer because of refcounting

	
	This causes deterministic behavior, unlike ‘real’ gc

	
	In Python you don’t need to manage many resources

	Files, database handles, etc.

	
	Some people are trying to take this away

	
	Pypy?

	with statement isn’t a desirable alternative

HelloMark

	Fork and exec “Hello World” 20x

	Demonstrates startup times

	Jython takes 15 seconds, slower than C+valgrind

	Shows what you want to write command line tools in

	
	pyc + CPython files are awesome for this

	
	Django and Tornado can reload really quickly

	Pypy loses in this regard

Summary

	Love refcounting

	Don’t use tight inner loops in Python

	Don’t need the JIT

	Work on startup time

	benchmarks: https://github.com/apenwarr/avebench

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Amazing Things In Open Source

Author

	Audrey Roy (http://twitter.com/audreyr)

	Python volunteer, Django Packages

Overview

	Community recognizes work you do (meritocracy)

Meritocracy

	People will use your work if it has merit

	
	Anyone can build or be a leader

	
	If they put in the work

	
	Permission isn’t (usually) needed

	
	We allow experiments

Open Comparison

	Writing Comparison Grids for sub communities

	Compare packages for Django, Pyramid, etc.

Call to Action

	Build it!

	Be Nice

	Others probaby won’t build it, so you should

Early Decisions

	Django Packages

	Made during Django Dash

	Decided to only manually add packages

	
	Good decision?

	
	Doesn’t matter

	900 packages right now

	Action is better than having something get debated

	Probably better in the hands of the core devs

	
	Gut instinct is often right

	
	Can always change it later

Ecosystem Patterns

	
	Mostly from Django experience

	
	Django has many 3rd party packages

	Compared to Legos

	
	Django Core vs. Apps

	
	Many batteries included

	This approach is good and bad

	Can get stuck with a heavy core

	Promotes “one obvious way”

	
	Django has well defined patterns for apps

	
	App structure

	App settings

	Overridable templates

	Reuse encourages innovations as 3rd party packages

	Core is conservative

	Best 3rd party apps get added to core

	
	Grow fastest when there is a pattern for extensions

	
	jQuery

	CPAN

	
	Pyramid

	
	Smaller core

	Core functionality as add-ons

	Endorsed add-ons

	Potential for rapid growth

	Can deprecate, and allow add-ons to evolve

	Don’t need to wait on core

	
	Pyramid’s Ecosystem developed over time

	
	Came from Pylons, Repoze, Turbogears

How to Grow an Ecosystem

	
	Write “Best Practices” on how to write 3rd party packages

	
	There is a big gap in this

	
	Well-defined specs

	
	Allow others to write upon a base

	Sample code

	Active community

	Mailing list/ IRC

	Docs

	3rd-Party packages catalog

Too Many Options?

	“There should be one– and preferably only one –obvious way to do it.”

	There can be many web frameworks

	But there is often too much clutter

	Document the differences

	
	Deprecate bad packages

	
	Hard to do in some cases

	Recommend replacements

Fragmentation

	Not all web

	Science, games, etc.

	
	Can’t have too many interest groups

	
	Diversity of ideas

3rd Party Packages

	Best: Do one thing well

	
	Usability

	
	Good docs

	Easy to install

	
	Reliability

	
	Tests

	Help

	Antipatterns are viral

	
	Snippets is the biggest anti-pattern

	
	Copy and paste code

	Don’t over-engineer though

	
	Don’t make the “kitchen-sink” package

	
	Utility functions

	Unrelated problems

	More visible in HTML/CSS world

	
	Do Be Pythoic

	
	Elegance

	Ease of use

	Explicitness

	Simplicity is why we use Python

Mentorship

	Provide positive encouragement

	Put yourself out there

Diversity of Ideas

	Differ from country to country

	Other types of diversity

	PyLadies vs. SoCal Python Interest Group

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

The Prejudgement of Programming Languages

Author

	Gary Bernhardt (http://twitter.com/garybernhardt)

Intro

	10 Years of Failures and Bad Ideas

	Pre-2001: Ignorant of Software

	~2001: C is the best thing, Java sucks

	~2003: Learned Lisp

	Designed a “more modern” C

	Had curly braces, static types, but basically Python

	~2006 Built BitBacker in ~98% Python

	Arc: C -> Lisp -> Python

	~2009: Ruby and Python 50/50

	Tweet about frustration of integrating libraries in Ruby + Javascript

	Frustrated by Python’s lack of blocks

	Shows a conversation between _why and Ryan

	“Ruby isn’t serious”

	Frustrated with programming

	q2 2010: Writing Tests

	
	Show TDD using Ruby

	
	Crazy Vim action

Testing

	Claim: RSpec is confusing

	Never had this problem

	Python based on SUnit from 1994

	Thought Django views are not as advanced as Rails

	Ruby is the serious one?

	“A Python programmer rejects a new idea without considering its value. A Ruby programmer accepts a new idea without considering its value.”

Choose Ruby or Python

	Ruby community more willing to pay

	Move to that full time

	
	Shows examples of ugliness in Ruby

	
	@foo ||= bar

	realization, it’s how you do memoization

	Maybe Ruby is well designed?

	Generators, Comprehensions, Decorators, and Context Managers are easy to implement with blocks

	Which language is complicated?

Emprically

	Realized back to ignorance

	Judged languages before he should

	Ruby’s community is serious about testing

	Rare opportunity to work with both

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Cherry-picking for Huge Success

Author

	Armin Ronacher (http://twitter.com/mitsuhiko)

	Part of the Pocoo Team

	Notable work: Flask, Jinja2, Werkzueg

Preface

	Framework/Language fights are boring. Just use the best tool for the job.

Twitter

	2006: Rails, XML API

	Now: JS Frontend, Erlang/Java

Does Ruby Suck?

	No, and neither does Python

	Both are great for prototyping

	Application changes over time

	Will rewrite

Solution

	Build small applications

	Combine into a larger one

	Builds foundation to experiment
* Move dbs, etc.

	
	Crossing language boundaries

	
	Rewrite

	Use a different library

	Implement a service

Agnostic Code

	Example of depending on Django too much

	
	Instead of importing from Django, pass it in

	
	Class instance, parameter

	Make it specific, but not more

Example

	Drop down to WSGI

	Usually too specific, if you only need just the url

Protocol Example

	Compared to Python iterables

	Flask views return wsgi apps

	Can dispatch to a Django application, for example

Difflib

	Compares any iterable that is hashable and comparable

	Overly specific would be strings, though that’s the main use case

	Real world use to diff HTML docs

	Plugin Genshi to difflib to accomplish this

Interface Examples

	
	Serializers

	
	Missed examples

Mergepoint

	To build apps we need merge points for smaller apps

WSGI

	Used with most Python web frameworks

	Often not enough

	Provides a framework independent environment

	Middleware can be useful mergepoints, though overused

	Cannot consume form data in WSGI, inject uniform html, etc.

	
	Libraries that help with this

	
	Werkzeug

	WebOb

	Paste

	Can write short helpers to dispatch from e.g. Django to WSGI

HTTP

	Language independent

	Cacheable

	Harder to work with, complex

	Can do proxying, nginx

	Caching layers for scalability

	Problem: Need to keep them running

	Language independent library

	cUrl

ZeroMQ

	More modern TCP Socket

	Language independent

	
	Different topologies

	
	push/pull

	pub/sub

	Easier than HTTP

	No caching

	Non gracefully dies

	No broker infrastructure

Message Queues

	Similar to ZeroMQ

	In reality, a different problem

	Can run tasks outside request/response

	Different codes, languages to run code

	Accessor Library: Celery

	Don’t assume code to be nonblocking

	Greatly simplifies testing

	
	Redis queues are a good start

	
	~20 lines of code to build your own

Data Store

	Using the same db for different apps

	Works well as long as everyone plays nice

Redis

	Remote datastructures

	Shows bash example of a queue worker

Javascript

	It’s awesome

	Geeks hate it

	ugly, can be abused

	Use Coffeescript

	Decouples frontend by using different services

	Examples: xbox.com, Battlefield 3 game lobby

	Can efficiently transform the DOM

	Backbone.js

	Testing sucks for others

Processes

	Daemons can be annoying to run

	Processes can have different privileges

	Tune individual processes

	Upgrade parts to python3

	ZeroMQ/HTTP to operate together

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Breakdancer

Author

	Dustin Sallings (http://twitter.com/dlsspy)

	Memcached contributor

Testing

	Few constructs not mentioned in the past day

	Someone submitted a bug

	“I have tests”

	Straightforward bug that wasn’t tested

	All the individual items work, but sequences can fail.

	Testing all sequences is a large number of combinations

Breakdancer Overview

	Conditions, Actions, Effects

	Driver to run things

	Shows how add command can be decomposed into conditions

	All Conditions, Actions, and Effects are composable

	Driver holds the boilerplate

	Python makes boilerplate minimal

	itertools makes combinations simple.

	Generate test case combinations automatically

	Do preconditions, postconditions.

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

The Many Hats of Building and Launching a Web Startup

Author

	Tracy Osborn (http://twitter.com/limedaring)

	Founder of WeddingLovely.com

	Considers herself a designer

Overview

	Quit job as designer

	Failed to found co-founder

	Learned Python

Start Out

	
	Have good runway

	
	1 year+

	Health and relationships

	Quit your job

What is Success?

	Don’t want to build Google

	Just build something that makes you some money

	Take a step back

	Love your job

	Concentrate on small successes

Background

	Knew HTML

	Hated CS courses

	Got a job at a startup

	Got bored

	Started freelancing

Entreprenuer

	No cofounder is better than a bad cofounder

	Applied to YC

	Things didn’t go well

	Used Learn Python the Hard Way (http://learnpythonthehardway.org/)

	Used Django

	Six weeks later, launched

Launch as Fast as Possible

	You need customers

	It helps morale

	Allows you to iterate

	“Good enough”

	You can add features later

	Work on the hard parts first

	For her, programming part was hard

	It was okay to launch with bad code.

	Violates DRY.

	Got picked up by Swiss Miss with MVP

Monetization

	Have a plan.

	Don’t think about it later or rely on funding

Don’t Be Alone

	Surround yourself in a community

	Find people who are smarter than you to help you out

	No NDAs

	Inhibits advice

	People stealing your ideas is a good thing

	Use Twitter/HN to talk

	Attend Hacker Events, SuperHappyDevHouse, PyLadies

Take Shortcuts

	Django ecosystem is awesome

	Doesn’t know databases at all, South makes it easy

	Dotcloud makes servers easy

	Themeforest for design

	Design for Non Designers

	You can always iterate later

	Launchrock.com

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Future of Python and NumPy for array-oriented computing

Author

	Travis Oliphant (http://twitter.com/teoliphant)

	Made NumPy

Why Python?

	Fits your brain

	Doesn’t get in your way

	Software engineering is more about neuroscience than code.

	Fibonacci is just an Unstable Infinite Impulse Response linear filter

	Shows numpy example, which is fast, but wraps hardware integer

	Wants to make Python faster than C, as in a GPU or FPGA

Conway’s Game of Life

	Interesting excercies

	Shows an example of it

	Array oriented

	
	APL

	
	Grandfather of most array oriented languages

	J,K,Matlab are descendents

	Numpy is a descendent

	Unicode glyphs

	Game of Life is one line in APL

	Array-oriented programming deals with arrays as a block

	Shows numpy example

Numpy/Scipy History

	Numeric around ~1994

	
	More features for array oriented computing

	
	a[0,1], a[::2]

	Ellipsis object

	Complex numbers

	Syntax matters

	Aside: We need more numpy/scipy and core collaboration

	Derivative Calculations in 1997

	Came from MATLAB, but it wasn’t memory efficient enough

	Iterative update loop made Python nice

	1999 Scipy emerges

	Python was better language than MATLAB, but lacked scientific libraries

	
	Community Effort

	
	Mostly from academics

	Numpy emerged from Numeric in 2005

Numpy

	
	Data types

	
	Collections of objects

	Arrays

	Statistics functions

	
	Arbitrary Arrays

	
	Column oriented calculations

Scipy

	Stats

	Data fitting

	Interpolation

	Brownian Motion

Zen of Numpy

	http://technicaldiscovery.blogspot.com/2010/11/zen-of-numpy.html

Pypy

	Let’s not chase C, let’s chase Fortran 90.

	Example where Fortran 90 is 7 times faster than Numpy and Pypy

Question

	
	Coolest thing seen with NumPy?

	
	Implant surgery planning tool

	CT Scans, 3d vis

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCodeConf

Lightning Talks

Vagrant

	Vagrant loves Python

	Building and distributing VMs

	Gives isolation, repeatability, and verification

	Move dev to virtual machines

	Move production ops scripts to setup environment

	Vagrant command line, to manage life cycle

	Designers can use it too

	http://vagrantup.com

Testing CSS

	Needle

	Takes screen shots

	Checks them

	Looks like normal unit tests

	uses css selectors

	Extension to nose, with selenium

	https://github.com/bfirsh/needle

Pyparsing

	Time trial using Pypy

	Search for integers in a string of random alphas and numbers

	Pypy ~10x faster

	Verilog parser (~16k lines)

	Cpython (500 lines/sec)

	Pypy (1131 lines/sec)

Pandas

	@wesmckinn

	Agile Tooling for Small Data

	First need to small the small data problem before big data

	DBs, Flat files, time series, mean you may want it

	indexed data structures for relation data

	Fast manipulation tool

	Data alignment

	Join merge

	group by

	Reshaping/pivot

	In memory and fast

	Meant for quant finance application backbone

	~26k loc

	In productions since 2008

	Data Analysis is dominated by thing like SAS

	Lots of people want to expand in these areas

	Operations to naturally select portions of data

	Can plot data

	Would love collaborators

DSLs

	Peter Wang (@pwang)

	Crazy crazy ideas

	Would like Python to ignore some syntax where we can do whatever the hell we want

	It might be awesome

	Calling it extern

	Just syntactic sugar

	Hacking import hooks to make it work

	.pydsl file

	uses pyparsing under the hood to transform the dsl

	Aimed at scientists

	People want it: weave, numexpr

	Everyone needs it

	Let’s Python assimilate into existing systems

stackful

	@erikrose

	This is a hack

	Wish things weren’t global

	Dynamic variables like in Perl

	Perl has local variables which leaks onto things it calls

	stackful implemented as with statement

	Thread safe

	Implementation is funny

	No hook in Python for reference

	Just override every single magic method in Python

	Should be able to be used

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

PyCon 2012

	Keynote with Stormy Peters
	Author

	Web

	Growing a Community

	Open Web

	Paul Graham Keynote
	Author

	Silicon Valley

	Next Google

	Replace Email

	Replace Universities

	Kill Hollywood

	A New Apple

	Bring Back Moore’s Law

	Ongoing Diagnosis

	Tactical Advice

	Graph Processing in Python
	Author

	Graphs

	Python-Dev

	Fast Test, Slow Test
	Author

	Suites

	Stop Writing Classes
	Author

	When Should I refactor

	Evolution of an API

	Version II

	Version III

	Namespaces

	stdlib

	Classes

	Game of Life

	Code Generation in Python: Dismantling Jinja
	Author

	Why?

	Security

	Performance

	Eval 101

	Jinja

	Scoping

	Code Generation

	Tale of Two Pieces of Code

	jsonjinja

	Q&A

	Putting Python in PostgreSQL
	Author

	Why

	Installing

	Setting up the database

	Writing your first function

	Debugging

	Problems

	When

	Triggers

	Redis

	What can you do?

	Ideas

	Q&A

	pandas: Powerful data analysis tools for Python
	Author

	Pandas

	Data Wrangling

	Testing

	Demos

	Table

	Lightning Talks
	Numba

	I has a money

	Brain Hacking

	Python 3 on Pypi

	Python on IBooks

	Keynote: David Beazley
	Author

	Let’s Talk About (something diabolical)

	Thinking about Tinkering

	Why PyPy By Example
	Authors

	What is PyPy

	Edge Detection

	Tracebin

	Numpy

	Garbage Collection

	Transactional Memory

	Sprints

	Flexing SQLAlchemy’s Relational Power
	Author

	Denormalization

	Normalization

	SQL

	Storage is Slow

	How to make it fast?

	The O Error

	Hand Coded Applications with SQLAlchemy
	Author

	What’s a Database

	Relational Database

	How Talk to DB

	ORM

	Hand-Coded

	Polymorphic Association

	SQLAlchemy’s Response

	Advanced Celery
	Author

	Overview

	Chords

	Blocking

	Routing

	Cyme

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Keynote with Stormy Peters

Author

	Stormy Peters

Web

	We should make people aware of how their info is being used

Growing a Community

	As companies get involved we wonder about the direction of the community

	Reach out to new people, because it can be intimidating

	When you meet someone, you have 3 seconds to make an impression
* Based on your hair
* And then shoes

	When you respond to a bug report, or mailing list post, this is their first impression
* Make it a good one

	Python groups are great for this outreach

	Study says learning something new is worth a 20% raise
* old job needs 20% more money vs. new job with new tech

	Some like to be famous (cue chuckles)

	Some get involved because they are paid to

	Some for ideals of free and available

	Stay because of the community

	Community is better when you can measure the impact of members

Open Web

	Believes in an open web
* Shows phone that boots to Gecko
* Someone in Mongolia wrote about how excited they were for access to books
* Could send html books instead of text messages

	People made huge sacrifices to make ease of use with open and free software
* Stay up all night to get a modem working

	Free != open
* Just because it’s free, doesn’t mean it has the ideals of open software

	We haven’t defined what it means to have an open web service

	I want you to host my data, but what kind of access do I need to make it open?

	You may create a web service that puts you into a position you don’t want to
* Give users tools along the way so that they don’t feeel disempowered

	We need to help change the world so we get fewer phone calls

	Things to help this (Mozilla examples)
* Do not track movement
* Browserid (now Persona)

	Backup is important, as well as delete

	“Are you sober enough to publish this picture?”

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Paul Graham Keynote

Author

	Paul Graham

	YCombinator

Silicon Valley

	The center of SV moves around the peopl who make the next generation of stuff
* So, this room is right now

	The frightening-ness of big startup ideas

	List of 7 gigantic startup ideas

	Scary, maybe I should do that recipe site instead

	

Next Google

	Start next Google

	Microsoft lost their way when they got into the search business

	Google has been getting into the social network business

	Nostalgic for the right answer from google
* Seems based on Scientologist: “What’s true is what’s true for you”

	Find tiny idea that turns big idea
* Dinosaur egg

	Search engine for top 10k hackers

	Make the search engine the one you want

	Don’t worry about something that constrains you in the long term

Replace Email

	Any big idea has a bunch of people nibbling around it

	Not designed to be used the way it is now
* Bell labs “Want to go to lunch?”

	Now a shitty todo list

	Tweaking the inbox is not enough

	Todo list protocol insteayd of messaging protocol

	Sending emails to yourself

	Want to know what they want you to do

	When does it need to be done?

	Whenever powerful people are in pain, that is the way to make lots of money

	Gmail has gotten painfully slow

	People will pay for faster email

Replace Universities

	claps

	Last couple of decades, universities seem to have gone down the wrong path

	Expensive country clubs

Kill Hollywood

	Hollywood was slow to embrace the internet

	Internet beat cable

	Bolted an iMac to the wall, found it better than a TV

	TV seemed like it was designed by the same people who designed the thermostat

	How do you deliver drama via the internet?

	You kind of want to know what you’re going to get with a show

A New Apple

	If Apple won’t make the next iPad, who will?
* Empirically, it’s none of the incumbents

	It will be a startup
* Not crazy, Apple did it

	Steve Jobs showed us what one person can do

	“Steve Jobs unrolled the future like a carpet”

	The next CEO might not live up to Steve Jobs, but doesn’t need to
* Just needs to be better than HP, Samsung, Motorola

Bring Back Moore’s Law

	Circuits are going to get twice as dense, not twice as fast

	Hardware would just solve software’s problems

	Need to rewrite it to be parallel

	It would be really great by making a lot of CPUs look like one

	The most ambitious is to do it automatically via a compiler
* “Sufficiently smart compiler”

	If not impossible, expected value is really high

	Less ambitious is to start from the bottom
* Build programs out of more parallizable lego blocks
* Programmer still does a lot of the work

	Middle ground is a semi automatic weapon
* Looks like a sufficiently smart compiles, but there are humans in there

	Make a market place, let people do it
* Maybe make bots that will do it

Ongoing Diagnosis

	Imagine the ways we will seem backwards to people in the future

	Seem barbaric to wait for symptoms to be diagnosed

	Bill Clinton had to wait for arteries to be 90% blocked to find out

	Launch fast and iterate may not work for medical.
* Work on pigs first
* Sausage company on the side

	The medical profession will be an obstacle to this

	Doctors are alarmed to look for problems that aren’t there

	If you start testing people all the time, you may get a lot of terrifying false alarms

	Think this is an artifact of current limitations

	Going against medical tradition

Tactical Advice

	For big problems, don’t make a frontal attack

	“Are we there yet?”, Haters

	Notice that you replaced email when it’s done

	Start with small things, let them get big
* Facebook

	Maybe big ambitions are a bad thing
* The bigger they are, more likely to be wrong
* Don’t identify, just think there is something out there
* When the opportunity comes to move, move there

	Blurry vision may be better

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Graph Processing in Python

Author

	Van Lindberg

Graphs

	Uoniversal datatype

	Probably not the best fit if you don’t have a relationship

Python-Dev

	“Who talks to whom?”

	Nodes are people

	Edges are “responded to on Python-dev”

	Centrality
* Intuitively, the more central, tend to connect others
* Dict to map person to how central they are
* There’s a fairly tight knit community, with smallers around the edge
* Antoine Pitrou was the most likely to respond

	Topics

	Nodes are people and topics

	Edges are “commented on”

	Filter out too-common topics

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Fast Test, Slow Test

Author

	Gary Bernhardt

Suites

	Prevent Regression
* Weakest, doesn’t change how you build

	Prevent Fear
* Being able to change things minute to minute, and have test verify
* Where speed comes in

	Prevent Bad Design
* Holy Grail of Testing

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Stop Writing Classes

Author

	Jack Diederich

When Should I refactor

	When there are two methods, and one is __init__

	When you write functions around classes

Evolution of an API

	MuffinHash replaces a dict

	Was two lines, and obfuscated the code

	1 package, 20 modules

Version II

	Easy to read

	Two methods, __init__ and call

Version III

	stdlib parts, 6 lines

	1 function

Namespaces

	Preven collisions

	Not taxonomies

	Otherwise extra things to type, remember

	Anytime you make a class, ask “What am I using it for?”

	Reuse stdlib exceptions

	Don’t complicate the names of your exceptions

stdlib

	200k sloc

	avg 10 files per package

	165 exceptions

Classes

	great for containers

	heapq doesn’t use a class

	Probably should be a class, since functions looke like methods
* first param is data

Game of Life

	Cell and Board classes

	Board has two methods

	Refactor to dictionary and function

	Well, cell can be refactored to the key of the dict

	Two functions and a dict

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Code Generation in Python: Dismantling Jinja

Author

	Armin Ronacher

Why?

	Isn’t it evil?

	A security problem?

	Bad for performance?

	Not if you do it right.

Security

	Code Injection

	
	Pollute namespace

	
	Change local variables

	Can evaluate code in different namespace

Performance

	Alternative: Write an interpreter

	Too slow

	Not suitable

Eval 101

	Compile function to make code objects

	evan can work on a namespace

	Using ast module, can alter underlying structure

	Can use ast to add in line numbers to nodes

	Don’t pass strings to eval/exec, but use code objects

	Explicit compliation and namespaces, to fix problems

Jinja

	Jinja and Django have C inspired scoping rules

	
	Pipeline

	
	Lexer

	Parser

	Identifier analyzer

	Code generator

	Python source

	Bytecode

	Runtime

	Only runtime is necessary

Scoping

	Context objects are dict-alike

	Slow

	Resolve in context ahead of time

Code Generation

	Low level

	Target byte-code

	High level

	AST generation

	Bytecode doesn’t work on appengine, and is implementation specific

	Would be nice to map jinja to bytecode

	Ast is limited, easier to debug, and doesn’t segfault

Tale of Two Pieces of Code

	scope in a function is faster than global scope

	lookup via index instead of name

	local dictionary isn’t generally used

	semantics can be mapped to fast execution environment

	Jinja context is data source

	Django context is data store

	You cannot modify context in Jinja

jsonjinja

	Semantics of jinja, in javascript

	https://github.com/mitsuhiko/jsonjinja

Q&A

	If you had the chance to redo would you use ast?
* Yes, there are utility libraries that help this

	ctypes for line numbers?
* put special line number variables, monkey patch traceback
* works in everything tested, including pypy
* Some problems on some architectures.

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Putting Python in PostgreSQL

Author

	Frank Wiles

Why

	Usually you want pl/pgsql

	Sometimes you want a scripting, with libraries, etc.

Installing

	Aptitude: postgresql-plpython

	homebrew

Setting up the database

	createlang plpythonu <databasename>

	Check with SELECT * FROM pg_language

	Python is untrusted

	Can set this up in templates

Writing your first function

	CREATE OR REPLACE FUNCTION

Debugging

	plpy.notice, debug, error, and fatal

	Will access the log file directly

	Can use logging

Problems

	Pain to maintain and debug

	Can confuse the dba

	Not free, cached

When

	Rolling up/aggregating data
* Remove network, sql parsing to keep runtime low

	Enforce new constraints that aren’t in SQL

	Protect data integrity

Triggers

	CREATE TRIGGER...

	Throw a Python exception

	The TD variable has a lot of stuff in it

Redis

	Can use system libraries

	Update Redis unread count automatically

What can you do?

	Executing other sql, create materialized views

	plpy namespace has execute

Ideas

	Lots of them

	Celery tasks, caches, backups, apis, zeromq

	Emails, inserts into another system, send an sms

Q&A

	Limit the runtime of the procedure?
* Don’t think so

	Test Python Code?
* Fake it outside

	Automatically cache?
* Have to say it’s immutable

	How easy is it to specify a python binary?
* Can specify per Postgres cluster

	Run postgres queries inside query, infinite loop?
* Will time out eventually?
* Not yet, will be in 9.2

	Interpreter external or internal?
* Didn’t hear

	Timeout kill trigger?
* Could have connection timeout in code

	PGSQL v. Python was a magnitude difference
* Not surprisingly

	Pypy or Jython?
* Probably not
* Not yet

	Table functions?
* Haven’t done much with that, mostly just materialized views

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

pandas: Powerful data analysis tools for Python

Author

	Wes McKinney

	Recovering mathematician

	3 years quant

	Building Lambda Foundry

	writing “Python for Data Analysis”
* coming out later this year

Pandas

	pandas.pydata.org

	rich relational data on numpy

	high performance tools

	consistent api

Data Wrangling

	Simplify the tools on processing the data

	Don’t transfer from R to Python

Testing

	>98% coverage

	Battle tested

Demos

	iPython transformed development

	Good outside of science

Table

	DataFrame is the core structure

	Axis indexing allows rich data alignment

	Alignment free programming
* Often does munging for you

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Lightning Talks

Numba

	Travis Oliphant

	Python compiler

	
	For numpy and C extensions

	
	Pypy not good enough

	Dynamic compilation

	
	Scipy needs a python compiler

	
	Allows higher level SciPy

	Numba

	Replaces byte-code with type inference

	Uses LLVM

	Dothoes codegen

	Uses C function pointers

	LLVM works with everything

	Uses a decorator to compile

	High bandwidth communication to llvm

	Python for high level, LLVM for low level

	DSLs based upon these

	https://github.com/numba/numba

I has a money

	Chad Whittaker

	Mint stores passwords in cleartext.

	ihasamoney.com

	Personal finance for geeks

	j/k to navigate, no mouse

Brain Hacking

	Talks are bad (but not here)

	Code for brain

	No spec for the brain

	Tell a story

	Implausible story better than plausible story

	Make them care
* Babies are better than code

	Show puzzles not solutions
* If you show the solution, they won’t care

	Have to practice in order to get good

Python 3 on Pypi

	Brett Cannon

	“Pie-pee-eye”

	54-58% of the top projects support py3k

	Some are under dev, like Django

	The goal was 5 years

	3 years was the stretch

	Update your metadata, e.g. “Programming Language :: Python :: 3.2”

	Public shame

	pyporting guide

	added u’’ prefix to make it easier

Python on IBooks

	Luke Gotzling

	Can run interpreter in an ebook

	Embed an interpreter in javascript in an html widget

	4.8 mg overhead

	Runs on vanilla ipads

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Keynote: David Beazley

Author

	David Beazley

Let’s Talk About (something diabolical)

	Let’s talk about Pypy

	Python implemented in Python

	Quite a bit faster because of magic

	Mandlebrot runs 34x faster

	Which one can you adjust with a pocketknife?

Thinking about Tinkering

	CPython has patches, extensions, ideas

	Talking about GIL, etc, wouldn’t be possible without tinkering

	iPython notebook is an examples of this

	Is it just “evil geniuses”?

	Can you tinker with PyPy?

	Can I teach myself to tinker with it using just resources available, part-time?

	Building PyPy is challenging

	Takes hours, > 4gbs of memory, might break C compiler

	RPython is a restricted subset of the language, but can run as valid Python

	RPython is defined by the translation toolchain

	If you love Python, you will hate RPython

	Uses type inference

	Lists need to be of a single type

	Pypy uses the bytecode interpreter and an abstract runtime to compile to C code

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Why PyPy By Example

Authors

	Maciej Fijalkowski

	Alex Gaynor

	Armin Rigo

What is PyPy

	Can’t convince that they are not crazy

	Python in Python

	No longer speed of interpreter, speed of running program

	Measuring memory is important

Edge Detection

	Use dynamic objects with __get__ overridden to act like a list

	Do edge detection on a web cam in real time

	Implemented in Python

	In cPython, ~7 seconds per frame

Tracebin

	Successor to JITViewer

	Expose performance information without understanding how PyPy works

Numpy

	Believe easier to add numpy to JIT than a JIT to numpy

	Some good initial results, but not complete

Garbage Collection

	Don’t have to call free

	History of talk for Pascal

	Everywhere now

Transactional Memory

	How do we use multiple cores?
* Semaphores, events, etc.

	Multicore usage

	Two times the execution time
* Where we were with GC years ago

	Hard work

Sprints

	Come sprint on PyPy

	We’ll help with getting projects working on PyPy

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Flexing SQLAlchemy’s Relational Power

Author

	Brandon Rhodes

Denormalization

	Quick to render, hard to update
* e.g. IMDB updating an actor where it’s stored with movies

Normalization

	Only store data once

	Easier update

	Need to pull data from multiple places

SQL

	Need to model relationships through intermediary table

	
	No composite data types

	
	If you see fields like actor_1, actor_2, etc. something is wrong

Storage is Slow

	Indexes let us jump to right part faster

	Keeping records sorted on disk is slow

	Indexes make this faster

How to make it fast?

	Ask one question

	Use explain and indexes

	Domain knowledge can tell us how we can optimize a query
* Postgres has an analyzer that does this well

The O Error

	misconception: An ORM just deals with objects, and hides the relational

	You need to know relational

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Hand Coded Applications with SQLAlchemy

Author

	Michael Bayer

What’s a Database

	We can put data in and get it out

	Can do queries that allow us to find records with attributes

Relational Database

	Can create derived tables with suqueries

	Set operations

	ACID

How Talk to DB

	DBAPI

	Abstraction layers

ORM

	Maps to relations

	Can map to multiple relations

	Can map object heirarchies to tables

	How abstract should these be?
* Should document stores work?

	Relational features are under/misused which causes the mismatch

	Best to not hide, but to automate

	Explicit decisions and automation is “hand-coded”

Hand-Coded

	Make decisions about everything

	Automate these decisions for ease

	Opposite of “wizards”, “plugins”, and APIs that make implementation decisions

	Can still use libraries and frameworks

Polymorphic Association

	Map multiple classes to something using GenericReferences

	Does magic for us

	Sometimes called GenericForeignKey

	This breaks the C in ACID
* Can generate FK that doesn’t point to anything

	Implicit design decisions
* Magic tables
* source code stored as data, which is coupling
* Application layer responsible for consistency

SQLAlchemy’s Response

	Declarative Base
* Composable patterns

	HasOwner, and PortfolioAssets defaults

	Define convention for polymorphic association

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	joshbohde-event-notes 0.1 documentation

 	PyCon 2012

Advanced Celery

Author

	Ask Solem

	Work at VMware, on RabbitMQ team

Overview

	Flexible and Reliable message queue system

	Granularity: the less computation, the more fine grained the task is
* Can reuse connections, etc

	Chunking
* Grouping fine-grained tasks to reuse resources

Chords

	Sync primitive

	Known as a barier

	Callback the body with the results of the headers

	Native support in Redis, with good enough fallbacks for others

	demo of parallel summariazation using chords

	Can use this to implement MapReduce

Blocking

	Is bad

	Timeouts

Routing

	Smart routing

	CPU based routers would be nice

Cyme

	https://github.com/celery/cyme

	A distributed Celery instance manager

	HTTP based API

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	joshbohde-event-notes 0.1 documentation

Index

 Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		joshbohde-event-notes 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Josh Bohde.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

