

Program Documentation: jldesmear

Desmear 1-D SAXS or SANS data according to the method
of JA Lake as implemented by Pete Jemian.

	version:	2015.0623.1

	date:	Sep 27, 2017

Reference Citation

Use this reference to cite this code in a publication.

PhD Thesis, 1990, Northwestern University,
Evanston, IL, USA, Pete R. Jemian.
http://jemian.org/pjthesis.pdf

Contents:

	Contents

	Indices and tables

Note

These instructions have been very limited but are beginning to get significantly better.
Additional help with the fundamentals of desmearing and its application to
small-angle scattering are available in the Theory chapter of my PhD thesis:
http://jemian.org/pjthesis.pdf

Contents

	Overview

	Input data format

	Command-line program for Jemian/Lake desmearing
	traditional user interface documentation

	Graphical User Interface for Lake/Jemian desmearing
	gui graphical user interface documentation

	Example using test1.smr data set
	Input Commands

	Program output to console

	Data Files

	API: application programmer interface
	Statistics Registers

	Desmearing

	Extrapolations at highest q

	fileio documentation

	fileio_inp documentation

	Desmearing parameters, the Info object

	Forward Smearing

	Plotting on a console

	Utility Routines

	Change History
	Older Development: lake-python (subversion repository trunk)

	Older Production

	License

Indices and tables

	Index

	Module Index

	Search Page

Overview

Desmear 1-D SAXS or SANS data according to the method
of JA Lake as implemented by Pete Jemian.

This program applies the iterative desmearing technique of Lake
to small-angle scattering data. The way that the program works
is that the user selects a file of data (x,y,dy) to be desmeared.
If a file was not chosen, the program will end. Otherwise the
user is then asked to specify the slit-length (in the units of the
x-axis); the x at which to begin fitting the last data points to a
power-law of x, the output file name, and the number of iterations
to be run. Then the data file is opened, the data is read, and the
data file is closed. The program begins iterating and shows an
indicator of progress on the screen in text format.

It is important to only provide smeared data (data that has not
been desmeared, even partially) to this program as you will see.
The iterative desmearing technique should be made to iterate
with the original, smeared data and subsequent trial solutions
of desmeared data.

The integration technique used by this program to smear the data
is the trapezoid-rule where the step-size is chosen by the
spacing of the data points themselves. A linear
interpolation of the data is performed. To avoid truncation
effects, a power-law extrapolation of the intensity
is made for all values beyond the range of available
data. This region is also integrated by the trapezoid
rule. The integration covers the region from l = 0
up to l = lo. (see routine jldesmear.api.smear).
This technique allows the slit-length weighting function
to be changed without regard to the limits of integration
coded into this program.

Input data format

Input data will be provided in an ASCII TEXT file
as three columns (Q, I, dI) separated by white space.
Units must be compatible. (I and dI must have same units)

	Q:	scattering vector (any units)

	I:	measured SAS intensity

	dI:	estimated uncertainties of I (usually standard deviation).
Note that dI MUST be provided and MUST not be zero.

Command-line program for Jemian/Lake desmearing

jldesmear.jl_api.traditional is the main program to run desmearing.
It provides the same command-line interface as its FORTRAN and C predecessors.
The main command-line interface is started with a Python command such as:

import jldesmear.api
jldesmear.jl_api.traditional.command_line_interface()

traditional user interface documentation

Iterative desmearing technique of Lake to small-angle scattering data

Credits

	author:	Pete R. Jemian

	organization:	Late-Nite(tm) Software

	note:	lake.py was derived from lake.c in 2009

	note:	lake.c was derived from the FORTRAN program Lake.FOR

	note:	Lake.FOR 25 May 1991

	see:	P.R.Jemian,; Ph.D. thesis, Northwestern University (1990).

	see:	J.A. Lake; ACTA CRYST 23 (1967) 191-194.

Overview

This program applies the iterative desmearing technique of Lake
to small-angle scattering data. The way that the program works
is that the user selects a file of data (x,y,dy) to be desmeared.
If a file was not chosen, the program will end. Otherwise the
user is then asked to specify the slit-length (in the units of the
x-axis); the x at which to begin fitting the last data points to a
power-law of x, the output file name, and the number of iterations
to be run. Then the data file is opened, the data is read, and the
data file is closed. The program begins iterating and shows an
indicator of progress on the screen in text format.

	caution:	It is important to only provide smeared data (data that has not
been desmeared, even partially) to this program as you will see.
The iterative desmearing technique should be made to iterate
with the original, smeared data and subsequent trial solutions
of desmeared data.

The integration technique used by this program to smear the data
is the trapezoid-rule where the step-size is chosen by the
spacing of the data points themselves. A linear
interpolation of the data is performed. To avoid truncation
effects, a power-law extrapolation of the intensity
is made for all values beyond the range of available
data. This region is also integrated by the trapezoid
rule. The integration covers the region from l = 0
up to l = lo. (see module smear).
This technique allows the slit-length weighting function
to be changed without regard to the limits of integration
coded into this program.

Other deconvolution methods

These authors have presented desmearing/deconvolution methods
that were considered or reviewed in the development of this work.

	O. Glatter.
ACTA CRYST 7 (1974) 147-153.

	W.E. Blass & G.W.Halsey. (1981)
“Deconvolution of Absorption Spectra.”
New York City: Academic Press

	P.A. Jansson.
(1984) “Deconvolution with Applications in Spectroscopy.”
New York City: Academic Press.

	G.W.Halsey & W.E. Blass.
(1984) “Deconvolution Examples” in
“Deconvolution with Applications in Spectroscopy.”
Ed. P.A. Jansson. (see above)

Source Code Documentation

	
jldesmear.jl_api.traditional.GetInf(params)

	Get information about the desmearing parameters.
This is designed to be independent of wavelength
or radiation-type (i.e. neutrons, X rays, etc.)

	Parameters:	params (obj) – Desmearing parameters object

	Returns:	params or None

	
jldesmear.jl_api.traditional.callback(dsm)

	this function is called after every desmearing iteration
from desmear.Desmearing.traditional()

	Parameters:	dsm (obj) – Desmearing object

	Returns:	should desmearing stop?

	Return type:	bool

	
jldesmear.jl_api.traditional.command_line_interface()

	SAS data desmearing, by Pete R. Jemian
Based on the iterative technique of PR Jemian and JA Lake.
P.R.Jemian,; Ph.D. thesis, Northwestern University (1990).
J.A. Lake; ACTA CRYST 23 (1967) 191-194.

Id
Desmear using the same command line interface as the FORTRAN & C predecessors.

	
jldesmear.jl_api.traditional.no_plotting_callback(dsm)

	this function is called after every desmearing iteration
from desmear.Desmearing.traditional()

	Parameters:	dsm (obj) – Desmearing object

	Returns:	should desmearing stop?

	Return type:	bool

	
jldesmear.jl_api.traditional.plot_results(q, E, C)

	plot the results of the desmearing

	Parameters:	
	q (numpy.ndarray) – magnitude of scattering vector

	E (numpy.ndarray) – experimental (smeared) data

	C (numpy.ndarray) – corrected (desmeared) data

Graphical User Interface for Lake/Jemian desmearing

Several classes are defined in the source code.
This class is used to start the GUI:
jldesmear.jl_api.gui.DesmearingGui.
The main GUI program is started with a Python command such as:

from jldesmear.jl_api import gui
gui.main()

gui graphical user interface documentation

Example using test1.smr data set

Input Commands

Start the program from the data directory in the source tree.
We’ll use UNIX shell redirection to get everything in a text file:

cd src/jldesmear/data
python ../api/traditional.py < test1.inp > test1.out

The program will print a header:

<<< SAS data desmearing, by Pete R. Jemian
<<< Based on the iterative technique of JA Lake and PR Jemian.
<<< P.R.Jemian,; Ph.D. thesis, Northwestern University (1990).
<<< J.A. Lake; ACTA CRYST 23 (1967) 191-194.
<<<
<<< Id
<<< desmear using the same FORTRAN & C command line interface
<<<

Then, the program will ask some questions about the input data.
Here, the test data is test1.smr:

<<< What is the input data file name? <''=Quit> <> ==>
>>> test1.smr

Name the (new) file name to write the results. If it exists,
it will be overwritten without further comment.
Here, we choose the name test1.out:

<<< What is the output data file name? <> ==>
>>> test1.out

The slit length is the term l_o and has the same units as X:

<<< What is the slit length (x-axis units)? <1.0> ==>
>>> .08

To complete the smearing integral at highest X, it is necessary
to extrapolate beyond the range of measured data.
Choose the functional form that best represents the data at
highest X. Fit coefficients will be evaluated for each
desmearing iteration over the range X_start <= X <= X_max:

<<< Extrapolation forms to avoid truncation-error.
<<< constant = flat background, I(q) = B
<<< linear = linear, I(q) = b + q * m
<<< powerlaw = power law, I(q) = b * q^m
<<< Porod = Porod law, I(q) = Cp + Bkg / q^4
<<<

Choose the linear form (although constant would work with this data as well):

<<< Which form? <constant> ==>
>>> linear

This is X-start as noted above: .08:

<<< What X to begin evaluating extrapolation (x-axis units)? <1.0> ==>
>>> .08

Accept the solution after 20 iterations this time:

<<< How many iteration(s)? (10000 = infinite) <10000> ==>
>>> 20

This question is largely historical. The fast method
is always the best choice. The others were implementations of either
Jansson or Halsey & Blass. They converge more slowly by far.
That said, you are free to re-determine this for yourself.
Press the [return] key to accept the default suggestion:

<<< Weighting methods for iterative corrections:
<<< Correction = weight * (MeasuredI - SmearedI)
<<< constant: weight = 1.0
<<< fast: weight = CorrectedI / SmearedI
<<< ChiSqr: weight = 2*SQRT(ChiSqr(0) / ChiSqr(i))
<<<
<<< Which method? <fast> ==>
>>>

Program output to console

Now the program starts the work of desmearing. The first step shows
an awful chi-square statistic. This will improve with subsequent iterations.
The plot is standardized residual vs. data point number. There are
========== bars indicated at +1 and -1; these merge together
on the first plot.:

Input file: test1.smr
-/|\ ...
standardized residuals, ChiSqr = 1.29823e+07, iteration=0
x: min=1 step=3.45833 max=250
y: min=-545.836 step=24.8717 max=1.34169

| + |
|==+++++++++++++++++++++++++++|
|+ ++ |
| ++ |
| ++ |
|+ + ++ |
|++ + ++ |
| + ++ |
| +++ ++ |
| +++ + |
| ++ + |
| ++ ++ |
| + + |
| ++ +++ ++ |
| ++ +++++ + |
| ++++++++++++ + |
| + |
| + |
| + |
| + |
| + |
| + |
+

After the next iteration, the chi-squared statistic has improved by an order
of magnitude but the plot still does not different:

standardized residuals, ChiSqr = 1.36804e+06, iteration=1
x: min=1 step=3.45833 max=250
y: min=-206.354 step=9.44611 max=1.46073

| + |
|==+++++++++++++++++++++++++|
|+ ++ |
| ++ |
|+ + |
| + + + |
| +++ ++ |
| +++++ ++ |
| +++ ++ |
| ++ +++++ ++ |
| ++ +++++++ ++ |
| +++++++++++ + |
| + + |
| + |
| + |
| ++ |
| + |
| + |
| + |
| + |
| + |
| + |
+

Skipping forward a few iterations, we see some real progress:

standardized residuals, ChiSqr = 566.385, iteration=5
x: min=1 step=3.45833 max=250
y: min=-3.97891 step=0.499962 max=7.02024

| + |
| + |
| |
| |
| |
| |
| |
| + + + |
| + + +++ |
| + ++++ |
|+ + ++++ + |
|++ + ++ |
| + + ++ ++ + |
|=======+===+=+=++=++=+==============+=============+===+===+======+====== |
| + ++ +++ + ++ +++++++ + + + ++ + ++++++++++++++++|
|+ +++ + + ++ +++++ + ++++++++++ + + ++++ + ++++++++++++++++ |
|+ + + ++ + + ++ + + + + ++ +++ +++++ ++ + |
|========+===================++=====+==========+=+++=====+=============== |
| + + +++ |
| + |
| + + |
| ++ |
++

After about 10 iterations or so, it seems convergence has been achieved.
The chi-squared statistic has dropped and the plot looks more
randomly-arranged about 0.:

standardized residuals, ChiSqr = 103.479, iteration=11
x: min=1 step=3.45833 max=250
y: min=-2.89125 step=0.349475 max=4.7972

| + |
| + |
| |
| |
| |
| + |
| + |
| |
| |
| |
|+ |
|=+====+=== |
| + ++ + + + + + + + |
| + + + + ++ ++ + + ++ ++ +++ ++ + + |
|+ +++ ++++++++++++ ++ +++++ ++++++++++++++ ++++ ++++ +++++++++++++++++|
| + ++ +++ ++ ++++ +++++++++ ++ ++++++++ +++++ ++ ++ ++ + ++++ |
|++ + + + + ++ + + + + |
|====++=+== |
|+ + |
| |
| + |
| |
+

Finally, after 20 iterations (numbered 0 .. 19):

standardized residuals, ChiSqr = 46.9362, iteration=19
x: min=1 step=3.45833 max=250
y: min=-2.94353 step=0.264922 max=2.88475

| + |
| |
| + |
| |
| + |
| + |
| |
|+ |
|==+=== |
| + ++ |
| + + ++ + + + ++ + + + ++++ +++ ++ +|
| + +++ ++++++ ++ + ++ ++++++++++++++++++++++++++++++++++ +++++++++++++ |
| ++ + ++++++ ++++ + +++++++++ + ++ ++++++++++++++++ +++++ + ++ + ++ ++ |
|++ + + ++ + + |
|+ + |
|======+=== |
| + ++ |
| |
| |
| |
| |
| |
+

The result is accepted and the data are saved to the output file:

Saving data in file: test1.out
SAS log-log plot, final, S=input, D=desmeared
x: min=-7.898 step=0.0889226 max=-1.49558
y: min=3.0786 step=0.637599 max=17.1058

|D |
|DDDDDD |
|D DDDDDDDD |
| DDDDD |
| DDD |
| DDD |
| DDD |
| DD |
|SSSSS DDD |
| SSSSSSS DD |
| SSSSS DDD |
| SSSS DD |
| SSSS DDD |
| SSS DD |
| SSS DDD |
| SSS DDD |
| SSS DDD |
| SSSS DDD |
| SSS DD |
| SSSS DDDD |
| SSSSS DDDD |
| SSSSSDDDDDDDDDD D DD DDDDDD |
D DDDDDSSDDDDDDDDDDDDDD

Data Files

Command Input File (test1.inp)

test1.smr
test1.dsm
0.08
linear
0.08
20
fast

Input Data File (test1.smr)

Too big for the documentation.
test1.smr

Output Data File (test1.dsm)

Too big for the documentation.
test1.dsm

Complete Program Output (test1.out)

Too big for the documentation.
test1.out

API: application programmer interface

	Statistics Registers
	Source code documentation

	Desmearing
	Source Code Documentation

	Extrapolations at highest q
	Extrapolation: Constant

	Extrapolation: Linear

	Extrapolation: Porod Law

	Extrapolation: Power Law

	fileio documentation

	fileio_inp documentation

	Desmearing parameters, the Info object

	Forward Smearing
	Source Code Documentation

	Plotting on a console
	Source code documentation

	Utility Routines

Statistics Registers

Implement a set of statistics registers in the style of a pocket calculator.

The available routines are:

def Clear(): clear the stats registers
def Show(): print the contents of the stats registers
def Add(x, y): add an X,Y pair
def Subtract(x, y): remove an X,Y pair
def AddWeighted(x, y, z): add an X,Y pair with weight Z
def SubtractWeighted(x, y, z): remove an X,Y pair with weight Z
def Mean(): arithmetic mean of X & Y
def StdDev(): standard deviation on X & Y
def StdErr(): standard error on X & Y
def LinearRegression(): linear regression
def LinearRegressionVariance(): est. errors of slope & intercept
def LinearRegressionCorrelation(): the regression coefficient
def CorrelationCoefficient(): relation of errors in slope & intercept

	see:	http://stattrek.com/AP-Statistics-1/Regression.aspx?Tutorial=Stat

pocket calculator Statistical Registers, Pete Jemian, 2003-Apr-18

Source code documentation

	
class jldesmear.jl_api.StatsReg.StatsRegClass

	pocket calculator Statistical Registers class

	
Add(x, y)

	add an X,Y pair to the statistics registers

	Parameters:	
	x (float) – value to accumulate

	y (float) – value to accumulate

	
AddWeighted(x, y, z)

	add a weighted X,Y+/Z trio to the statistics registers

	Parameters:	
	x (float) – value to accumulate

	y (float) – value to accumulate

	z (float) – variance (weight = 1/z^2) of y

	
Clear()

	clear the statistics registers:
\(N=w=\sum{x}=\sum{x^2}=\sum{y}=\sum{y^2}=\sum{xy}=0\)

	
CorrelationCoefficient()

	relation of errors in slope and intercept

	Returns:	correlation coefficient

	Return type:	float

	
LinearEval(x)

	Evaluate a linear fit at the given value: \(y = a + b x\)

	Parameters:	x (float) – independent value, x

	Returns:	y

	Return type:	float

	
LinearRegression()

	For (x,y) data pairs added to the registers,
fit and find (a,b) that satisfy:

\[y = a + b x\]

	Returns:	(a, b) for fit of y=a+b*x

	Return type:	(float, float)

	
LinearRegressionCorrelation()

	the regression coefficient

	Returns:	(corr_a, corr_b) – is this correct?

	Return type:	(float, float)

	See:	http://stattrek.com/AP-Statistics-1/Correlation.aspx?Tutorial=Stat
Look at “Product-moment correlation coefficient”

	
LinearRegressionVariance()

	est. errors of slope & intercept

	Returns:	(var_a, var_b) – is this correct?

	Return type:	(float, float)

	
Mean()

	arithmetic mean of X & Y

\[(1 / N) \sum_i^N x_i\]

	Returns:	mean X and Y values

	Return type:	float

	
Show()

	contents of the statistics registers

	
StdDev()

	standard deviation on X & Y

	Returns:	standard deviation of mean X and Y values

	Return type:	(float, float)

	
StdErr()

	standard error on X & Y

	Returns:	standard error of mean X and Y values

	Return type:	(float, float)

	
Subtract(x, y)

	remove an X,Y pair from the statistics registers

	Parameters:	
	x (float) – value to remove

	y (float) – value to remove

	
SubtractWeighted(x, y, z)

	remove a weighted X,Y+/-Z trio from the statistics registers

	Parameters:	
	x (float) – value to remove

	y (float) – value to remove

	z (float) – variance (weight = 1/z^2) of y

	
determinant()

	compute and return the determinant of the square matrices:

| sum_w sum_x | | sum_w sum_y |
| sum_x sum_(x^2) | | sum_y sum_(y^2) |

	Returns:	determinants of x and y summation matrices

	Return type:	(float, float)

Desmearing

Desmear the 1-D SAS data (q, I, dI) by method of Lake & Jemian.

Desmear SAS data

To desmear, apply the method of Jemian/Lake to 1-D SAS data (q, I, dI).

Source Code Documentation

	
class jldesmear.jl_api.desmear.Desmearing(q, I, dI, params)

	desmear the 1-D SAS data (q, I, dI) by method of Jemian/Lake

\[I_0 \approx \lim_{i \rightarrow \infty} I_{i+1} = I_i \times \left({ \tilde I_0 \div \tilde I_i}\right)\]

To start Lake’s method, assume that the 0-th approximation
of the corrected intensity is the measured intensity.

	Parameters:	
	q (numpy.ndarray) – magnitude of scattering vector

	I (numpy.ndarray) – SAS data I(q) +/- dI(q)

	dI (numpy.ndarray) – estimated uncertainties of I(q)

	params (obj) – Info object with desmearing parameters

Note

This equation shows the iterative feedback based
on the fast method (as described by Lake).
Alternative feedback methods are available
(see SetLakeWeighting()).
It is suggested to always use the fast method.

	
SetExtrap(extrapolation_object=None)

	

	Parameters:	extrapolation_object (obj) – class used for extrapolation function

	
SetLakeWeighting(LakeWeighting='fast')

	

	Parameters:	LakeWeighting (str) – one of constant, ChiSqr, or fast

	Constant:	weight = 1.0

	ChiSqr:	weight = CorrectedI / SmearedI

	Fast:	weight = 2*SQRT(ChiSqr(0) / ChiSqr(i))

	
SetQuiet(suppress_output=True)

	if True, then no printed output from this routine

	
first_step()

	the first step

calculate the standardized residuals (\(z =\) self.z)

\[z = (\hat{y} - y) \sigma\]

where y = S, yHat = I, and sigma = dI

calculate the chi-squared statistic (\(\chi^2 =\) self.ChiSqr)

\[\chi^2 = \sum z^2\]

	
iterate_and_callback()

	Compute one iteration of the Lake algorithm
and then call the supplied callback method.
Use this method to run a desmearing operation in another thread.

	
iteration()

	Compute one iteration of the Lake algorithm.

No need to call the callback routine,
the caller can take care of that directly.

	
traditional()

	the traditional LAKE code algorithm

This method is called from the class constructor.
If this method is called directly, it has the effect
of clearing any desmearing progress and resetting
back to start. This technique is used here if
the list of ChiSqr results is not empty.

Extrapolations at highest q

	Extrapolation: Constant

	Extrapolation: Linear

	Extrapolation: Porod Law

	Extrapolation: Power Law

superclass of functions for extrapolation of SAS data past available range

	
class jldesmear.jl_api.extrapolation.Extrapolation

	superclass of functions for extrapolation of SAS data past available range

The general case to (forward) slit-smear small-angle scattering involves
integration at \(q\) values past any measurable range.

\[\int_{-\infty}^{\infty} P_l(q_l) I(q,q_l) dq_l.\]

Due to symmetry, the integral is usually folded around zero,thus becoming

\[2 \int_0^{\infty} P_l(q_l) I(q,q_l) dq_l.\]

Even when the upper limit is reduced due to finite slit dimension (the
so-called slit-length, \(l_0\)),

\[2 l_0^{-1} \int_0^{\l_0} I(\sqrt{q^2+q_l^2}) dq_l,\]

it is still necessary to evaluate \(I(\sqrt{q^2+q_l^2})\) beyond
the last measured data point, just to evaluate the integral.

An extrapolation function is used to describe the \(I(q)\) beyond the measured data.
In the most trivial case, zero would be returned. Since this simplification
is known to introduce truncation errors, a model form for the last few
available data points is assumed. Fitting coefficients are determined from
the final data points (in the method fit()) and are used
subsequently to generate the extrapolation at a specific \(q\) value
(in the method calc()).

Examples:

See the subclasses for examples implementations of extrapolations.

	extrap_constant

	extrap_linear

	extrap_powerlaw

	extrap_Porod

Example Linear Extrapolation:

Here is an example linear extrapolation class:

import extrapolation

class Extrapolation(extrapolation.Extrapolation):
 name = 'linear' # unique identifier for users

 def __init__(self): # initialize whatever is needed internally
 self.coefficients = {'B': 0, 'm': 0}

 def __str__(self):
 form = "linear: I(q) = " + str(self.coefficients['B'])
 form += " + q*(" + str(self.coefficients['m']) + ")"
 return form

 def calc(self, q): # evaluate at given q
 return self.coefficients['B'] + self.coefficients['m'] * q

 def fit_result(self, reg): # evaluate fitting parameters with regression object
 (constant, slope) = reg.LinearRegression()
 self.coefficients = dict(B=constant, m=slope)

Basics:

Create an Extrapolation class which is a subclass of extrapolation.Extrapolation.

The basic methods to override are

	__str__() : string representation

	calc() : determines \(I(q)\) from q and self.coefficients dictionary

	fit_result() : assigns fit coefficients to self.coefficients dictionary

By default, the base class Extrapolation uses the jldesmear.api.StatsReg
module to accumulate data and evaluate fitted parameters.
Override any or all of these methods to define your own handling:

	fit()

	fit_setup()

	fit_loop()

	fit_add()

	fit_result()

	calc()

	show()

	format_coefficient()

See the source code of Extrapolation for an example.

documentation from source code:

	
GetCoefficients()

	return the function coefficients

	
SetCoefficients(coefficients)

	define the function coefficients

	Parameters:	coefficients (dict) – named terms used in evaluating the extrapolation

	
calc(q)

	evaluate the extrapolation function at the given q

	Note:	must override in subclass

	Parameters:	q (float) – magnitude of scattering vector

	Returns:	value of extrapolation function at q

	Return type:	float

	
fit(q, I, dI)

	fit the function coefficients to the data

	Note:	might override in subclass

	Parameters:	
	q (float) – magnitude of scattering vector

	I (float) – intensity or cross-section

	dI (float) – estimated uncertainty of intensity or cross-section

	
fit_add(reg, x, y, z)

	Add a data point to the statistics registers.
Called from fit_loop().

	Note:	might override in subclass

	Parameters:	
	reg (StatsRegClass object) – statistics registers (created in fit())

	x (float) – independent axis

	y (float) – dependent axis

	z (float) – estimated uncertainty of y

	
fit_loop(reg, x, y, z)

	Add a dataset to the statistics registers
for use in curve fitting. Called from fit().

	Note:	might override in subclass

	Parameters:	
	reg (StatsRegClass object) – statistics registers (created in fit())

	x (numpy.ndarray) – independent axis

	y (numpy.ndarray) – dependent axis

	z (numpy.ndarray) – estimated uncertainties of y

	
fit_result(reg)

	Determine the results of the fit and store them
as the set of coefficients in the self.coefficients
dictionary. Called from fit().

Example:

def fit_result(self, reg):
 (constant, slope) = reg.LinearRegression()
 self.coefficients['B'] = constant
 self.coefficients['m'] = slope

	Note:	must override in subclass otherwise fit_result() will raise an exception

	Parameters:	reg (StatsRegClass object) – statistics registers (created in fit())

	
fit_setup()

	Create a set of statistics registers to evaluate
the coefficients of the curve fit. Called from fit().

	Note:	might override in subclass

	Returns:	statistics registers

	Return type:	StatsRegClass object

	
format_coefficient(key, value)

	Format a specific coefficient.
Called from show().

	Note:	might override in subclass

	Parameters:	
	key (str) – name of coefficient (must exist in self.coefficients dictionary)

	value (usually float) – usually value of self.coefficients[key]

	
show()

	print the function and fit coefficients

	Note:	might override in subclass

	
jldesmear.jl_api.extrapolation.discover_extrapolations()

	return a dictionary of the available extrapolations

Extrapolation functions must be in a file named
extrap_KEY.py
where KEY is the key name of the extrapolation function.
The file is placed in the source code tree in the same directory
as the module: extrapolation.

The calc() method should be capable of handling
q as a numpy.ndarray or as a float.

The file must contain:

	Extrapolation: a subclass of Extrapolation

Extrapolation: Constant

Extrapolate as: I(q) = B

	
class jldesmear.jl_api.extrap_constant.Extrapolation

	I(q) = B

	
calc(q)

	
\[I(q) = B\]

	Parameters:	q (float) – magnitude of scattering vector

	Returns:	value of extrapolation function at q

	Return type:	float

	
fit_result(reg)

	Determine the results of the fit and store them
as the set of coefficients in the self.coefficients
dictionary. Called from fit().

	Note:	must override in subclass otherwise fit_result() will throw an exception

	Parameters:	reg (StatsRegClass object) – statistics registers (created in fit())

Extrapolation: Linear

Extrapolate as: I(q) = B + m * q

	
class jldesmear.jl_api.extrap_linear.Extrapolation

	I(q) = B + m*q

	
calc(q)

	
\[I(q) = B + m q\]

	Parameters:	q (float) – magnitude of scattering vector

	Returns:	value of extrapolation function at q

	Return type:	float

	
fit_result(reg)

	Determine the results of the fit and store them
as the set of coefficients in the self.coefficients
dictionary. Called from fit().

	Note:	must override in subclass otherwise fit_result() will throw an exception

	Parameters:	reg (StatsRegClass object) – statistics registers (created in fit())

Extrapolation: Porod Law

Extrapolate as: I(q) = B + Cp / q^4

	
class jldesmear.jl_api.extrap_Porod.Extrapolation

	I(q) = B + Cp / q^4

	
calc(q)

	
\[I(q) = B + C_p / q^4\]

	Parameters:	q (float) – magnitude of scattering vector

	Returns:	value of extrapolation function at q

	Return type:	float

	
fit_add(reg, x, y, z)

	Add a data point to the statistics registers.
Called from fit_loop().

	Note:	might override in subclass

	Parameters:	
	reg (obj) – statistics registers (created in
fit()), instance of StatsRegClass

	x (float) – independent axis

	y (float) – dependent axis

	z (float) – estimated uncertainty of y

	
fit_result(reg)

	Determine the results of the fit and store them
as the set of coefficients in the self.coefficients
dictionary. Called from fit().

	Note:	must override in subclass otherwise fit_result() will throw an exception

	Parameters:	reg (obj) – statistics registers (created in fit()), instance of StatsRegClass

Extrapolation: Power Law

Extrapolate as: I(q) = A * q^p

	
class jldesmear.jl_api.extrap_powerlaw.Extrapolation

	I(q) = A * q^p

	
calc(q)

	
\[I(q) = A \ q^p\]

	Parameters:	q (float) – magnitude of scattering vector

	Returns:	value of extrapolation function at q

	Return type:	float

	
fit_add(reg, x, y, z)

	Add a data point to the statistics registers.
Called from fit_loop().

	Note:	might override in subclass

	Parameters:	
	reg (StatsRegClass object) – statistics registers (created in fit())

	x (float) – independent axis

	y (float) – dependent axis

	z (float) – estimated uncertainty of y

	
fit_result(reg)

	Determine the results of the fit and store them
as the set of coefficients in the self.coefficients
dictionary. Called from fit().

	Note:	must override in subclass otherwise fit_result() will throw an exception

	Parameters:	reg (StatsRegClass object) – statistics registers (created in fit())

fileio documentation

superclass of modules supporting different file formats

	
class jldesmear.jl_api.fileio.FileIO

	superclass of file format support

	
jldesmear.jl_api.fileio.discover_support()

	return a dictionary of the available file formats

Support modules must be in a file in
the jl_api directory package in the source tree
and begin with the prefix fileio_.

fileio_inp documentation

fileio support for .inp file: traditional command-line input format

	
class jldesmear.jl_api.fileio_inp.CommandInput

	command input file format

This file format was created to pipe the inputs
directly to the interactive command-line
FORTRAN program. There were two benefits:

	desmearing parameters were documented in a file

	the answer to each question was automatically provided

contents:

SMR_filename (absolute path or relative to directory of .inp file)
DSM_filename
slitlength
extrapolation_method
sFinal
number_iterations
feedback_method

The file names (SMR and DSM) are given as either
absolute or relative to the directory of the
.inp file. The data are stored in three-column ASCII,
with whitespace separators with the columns Q I dI.
Individual data points may be commented out by placing
a # character at the start of that line of text.
This format is known to some as QRS.

The slitlength and sFinal are given as floating point
numbers in the same units as \(q\). It is expected
that sFinal < qMax by at least a few data points.

Example test1.inp file:

test1.smr
test1.dsm
0.08
linear
0.08
20
fast

	
read(filename)

	read desmearing parameters from a command input file

	Parameters:	filename (str) – full path to the command input file

	Returns:	instance of jldesmear.api.info.Info

	
read_SMR(filename=None)

	Open a file with 3-column smeared SAS data

	
save(filename)

	write desmearing parameters to a command input file

	
save_DSM(filename, dsm)

	Save the desmeared data to a 3-column ASCII file

Desmearing parameters, the Info object

desmearing parameters:

infile = "" # input data file
outfile = "" # output data file
slitlength = 1.0 # slit length (l_o) as defined by Lake
sFinal = 1.0 # fit extrapolation constants for q>=sFinal
NumItr = INFINITE_ITERATIONS # number of desmearing iterations
extrapname = "constant" # model final data as a constant
LakeWeighting = "fast" # shows the fastest convergence most times
extrap = None # extrapolation function object
quiet = False # suppress output from desmearing operations
callback = None # function object to call after each desmearing iteration

	
class jldesmear.jl_api.info.Info

	parameters used by the desmearing methods

	
moreIterationsOk(iteration_count)

	

	Returns:	is it OK to take more iterations?

	Return type:	bool

Forward Smearing

Some instruments designed to measure small-angle scattering
have intrinsic slit-smearing of the in their design. One
such example is the Bonse-Hart design which uses single
crystals to collimate the beam incident on the sample as well
as to collimate the scattered beam beam that will reach the
detector.

[image: fig.smearing]
Slit smearing geometry of the Bonse-Hart design.

Source Code Documentation

Forward smearing

Smear (q, I, dI) data given to the routine Smear()
using the slit-length weighting function Plengt().
The integration used below goes only over the slit length
(does not include either slit width or wavelength broadening).

For now, Plengt() describes a rectangular slit
and the integration extends up to the length of the slit.
This could be changed if desired.

To complete the smearing for the last data points, extrapolation
is necessary from the given data. The functional form may be
only one of those provided (others could be added).

For q values in between given data points, interpolation is
used. Log interpolation is tried first. If this fails due
to a ValueError Exception, linear interpolation is used.

Source Code Documentation

	
jldesmear.jl_api.smear.Plengt(l, slitlength)

	Slit-length weighting function, P_l(l)

\[\int_{-\infty}^{\infty} P_l(l) dl = 1\]

It is defined for a rectangular slit of length 2*slitlength
(\(2l_o\))
and probability 1/(2*slitlength) (\(1/2l_o\)).
It is zero elsewhere.:

 P(l)
/--------------------|--------------------\
| | |
| | |
| ***************************** | 1/2l_o
*	*
*	*
*	*
*******-------------|-------------*******/ 0
 -l_o 0 l_o

	Note:	integral(P(l) dl) = 1.0

	Note:	If you change this to a different functional form ...
It is not necessary to change the limit of the integration
if the functional form here is changed. You may, however,
need more parameters.

	Parameters:	
	l (float) – lookup value

	slitlength (float) – slit length, l_o, as indicated above

	Returns:	P_l(l)

	Return type:	float

	
jldesmear.jl_api.smear.Smear(q, C, dC, extrapname, sFinal, slitlength, quiet=False, weighted_transition=True)

	Smear the data of C(q) into S(q) using the slit-length
weighting function Plengt() and an extrapolation
of the data to avoid truncation errors. Assume that
Plengt() goes to zero for l > l_o (the slit length).

Also assume that the slit length function is symmetrical
about l = zero.

\[S(q) = 2 \int_0^{l_o} P_l(l) \ C(\sqrt{q^2+l^2}) \ dl\]

This routine is written so that if Plengt() is changed
(for example) to a Gaussian, that no further modification
is necessary to the integration procedure. That is,
this routine will integrate the data out to “slitlength” (l_o).

	Parameters:	
	q (numpy.ndarray) – magnitude of scattering vector

	C (numpy.ndarray) – unsmeared data is C(q) +/- dC(q)

	dC (numpy.ndarray) – estimated uncertainties of C

	extrapname (str) – one of constant | linear | powerlaw | Porod

	sFinal (float) – fit extrapolation to I(q) for q >= sFinal

	slitlength (float) – l_o, same units as q

	quiet (bool) – if True, then no printed output from this routine

	weighted_transition (bool) – if True, make a weighted transition between sFinal <= q < qMax

	Returns:	tuple of (S, extrap)

	Return type:	(numpy.ndarray, object)

	Variables:	S (numpy.ndarray) – smeared version of C

	
jldesmear.jl_api.smear.get_Ic(qNow, sFinal, qMax, x, interp, extrap, weighted_transition=True)

	return the corrected intensity based on circular symmetry

	
jldesmear.jl_api.smear.prepare_extrapolation(q, C, dC, extrapname, sFinal)

	Pick the extrapolation function for smearing

	Parameters:	
	q (numpy.ndarray) – magnitude of scattering vector

	C (numpy.ndarray) – array (list) such that data is C(q) +/- dC(q)

	dC (numpy.ndarray) – estimated uncertainties of C

	extrapname (str) – one of constant, linear, powerlaw, or Porod

	sFinal (float) – fit extrapolation to I(q) for q >= sFinal

	Returns:	function object of selected extrapolation

	Return type:	object

Plotting on a console

Make charts on a text console using character graphics

Generate graphical output on a text console.
These routines predate modern GUI environments.
While the output may look rough, they work just about anywhere.

Here is how the code may be called:

>>> fn = toolbox.GetTest1DataFilename('.smr')
>>> x, y, dy = toolbox.GetDat(fn)
>>> print("Data plot: " + fn)
>>> Screen().xyplot(x, y)

Example, given C(q) and S(q):

KratkyPlot = textplots.Screen()
title = "\nKratky plot, I * q^2 vs q: S=smeared"
q2C = q*q*(C - B)
q2S = q*q*(S - B)
KratkyPlot.SetTitle(title)
KratkyPlot.addtrace(lnq, q2S, "S")
KratkyPlot.printplot()
title = "\nKratky plot, I * q^2 vs q: C=input, S=smeared"
KratkyPlot.SetTitle(title)
KratkyPlot.addtrace(lnq, q2C, "C")
KratkyPlot.printplot()

with the right data, produces plots of \(q^2 C(q)\) and \(q^2 S(q)\):

Kratky plot, I * q^2 vs q: C=input, S=smeared
x: min=-7.898 step=0.0889226 max=-1.49558
y: min=-0.107876 step=0.199276 max=4.2762

| C |
| CCCCCC |
| CCC CCC |
| CC CC |
| CC CC |
| CC C |
| C C |
| C C |
| CC CC |
|CC C |
| C |
|C CC |
| C |
| C |
| C |
| C |
| CC |
| C |
| CC |
| CC |
| CCC |
| CCCCCC CCCC |
SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

Source code documentation

	
class jldesmear.jl_api.textplots.Screen(MaxRow=25, MaxCol=75, Symbol='O')

	plotting canvas

	
SetTitle(title)

	define a plot title

	Parameters:	title (str) – the title of the plot

	
addtrace(x, y, symbol='O')

	add the (x,y) trace to the plot with the given symbol

	Parameters:	
	x – array (list) of abcissae

	y – array (list) of ordinates

	symbol – plotting character

	
make_buffer(rows=None, cols=None)

	prepare a screen buffer

	
paintbuffer()

	plot the traces on the screen buffer
data scaling functions are offset by +1 for plot frame

	
printplot()

	plot to stdout

	
residualsplot(z, title=None)

	convenience to plot z vs point number

	Parameters:	z (numpy.ndarray) – ordinates (standardized residuals)

	
xyplot(x, y, title=None)

	convenience to plot y(x)

	Parameters:	
	x (numpy.ndarray) – abcissae

	y (numpy.ndarray) – ordinates

Utility Routines

General mathematical toolbox routines

The routines that follow are part of my general
mathematical “toolbox”. Some of them are taken
(with reference) from book(s) but most, I have
developed on my own. They are modular in construction
so that they may be improved, as needed.

	
jldesmear.jl_api.toolbox.AskDouble(question, answer)

	request a double from the command line

	Parameters:	
	question (str) – string to pose

	answer (double) – default answer

	Returns:	final answer

	Return type:	double

	
jldesmear.jl_api.toolbox.AskInt(question, answer)

	request an integer from the command line

	Parameters:	
	question (str) – string to pose

	answer (int) – default answer

	Returns:	final answer

	Return type:	int

	
jldesmear.jl_api.toolbox.AskQuestion(question, answer)

	request a string, float, or int from the command line

	Parameters:	
	question (str) – string to pose

	answer (string | float | int) – default answer

	Returns:	final answer

	Return type:	str | float | int

	
jldesmear.jl_api.toolbox.AskString(question, answer)

	request a string from the command line

	Parameters:	
	question (str) – string to pose

	answer (str) – default answer

	Returns:	final answer

	Return type:	str

	
jldesmear.jl_api.toolbox.AskYesOrNo(question, answer)

	one of two choices seems simple

	Parameters:	
	question (str) – string to pose

	answer (str) – default answer

	Returns:	y | n

	Return type:	str

	
jldesmear.jl_api.toolbox.GetDat(infile)

	read three-column data from a wss (white-space-separated) file

Data appear as Q I dI with one data point per line.
A “#” may be used to comment out any line.

	Parameters:	infile (string) – name of input data file

	Returns:	x, y, dy

	Return type:	(numpy.ndarray, numpy.ndarray, numpy.ndarray)

	
jldesmear.jl_api.toolbox.GetTest1DataFilename(ext='.smr')

	find the test1 data in the package

	
jldesmear.jl_api.toolbox.Iswap(a, b)

	

	Returns:	(tuple) of (b, a)

	
jldesmear.jl_api.toolbox.SavDat(outfile, x, y, dy)

	save three column ASCII data in tab-separated file

	Parameters:	
	outfile (str) – name of output file

	x (numpy.ndarray) – column 1 data array

	y (numpy.ndarray) – column 2 data array

	dy (numpy.ndarray) – column 3 data array

	
jldesmear.jl_api.toolbox.Spinner(i, quiet=False)

	Spins a stick to indicate program is still working.
Call this routine frequently during long operations to show progress.

	Parameters:	
	i (int) – selector (increment this in the calling routine)

	quiet (bool) – optional switch to turn off the spinner

	
jldesmear.jl_api.toolbox.find_first_index(x, target)

	find i such that x[i] >= target and x[i-1] < target

	Parameters:	
	x (ndarray) – array to search

	target (float) – value to bracket

	Returns:	index of array x or None

	Return type:	int

	
jldesmear.jl_api.toolbox.isDataLine(line)

	test if a given line of text is not blank or commented out

	Parameters:	line (string) – line of text from an input file (usually)

	Returns:	True | False

	Return type:	bool

	
jldesmear.jl_api.toolbox.strtrim(txt)

	cut out any white space from the string
(compatibility method for legacy code only)

Change History

	2015.0623.1:	publish documentation at http://jldesmear.readthedocs.org

	2015.0623.0:	removed scipy.interpolate requirement, added desmear graphic to documentation

	2015.0530.1:	removed support for PySide and traits, refactored Python imports

	2014.03.14:	cleaned up extrapolation plugin recognition

	2014.03.13:	refactored extrapolations to be easier to recognize and improved import

Older Development: lake-python (subversion repository trunk)

Changes:

	2013-12:	and previous noted blow [1]

	refactored api.desmear into a class: api.desmear.Desmearing
	allows iterating one at a time

	computes ChiSqr data after iteration

	keeps record of all ChiSqr values

	added single iteration method to api.desmear

	added single and N desmearing iteration controls to GUI

	update plots in the GUI after each iteration by running desmear calculation in a separate thread

	provided ChiSqr v iteration plot (log-lin)

	[2000] auto-discover all extrapolation functions

	[2000] renamed packages and modules to reduce overuse of “lake”

	[2000] moved content off first page of documentation

	[2002] start to refactor all GUI code from Enthought Traits to PySide (or PyQt4)

	[2005] add package installation support

	[2006] release test data with package

	[2006] rebrand package as JLdesmear (Jemian/Lake desmearing code)

	[2009] start to use numpy.ndarray() instead of [float]

TODO:

	add capability for GUI to write desmeared data to a file

	read data from CanSAS XML

	read data from HDF5/NeXus

Older Production

This documents tagged releases.

2011-08-25: lake-python-2011-08

Initial release:

	python code fully operable

	command line interface
	uses same paradigm as original FORTRAN code

	Q&A in a console session, then desmear

	tested on Windows, Macintosh, and Linux

	only uses standard Python libraries, no NumPy or SciPy

	All test data copied from legacy C and FORTRAN projects

	Documentation
	as good or better than FORTRAN manual

	could improve still with content from thesis

	graphical user interface
	provisional, demo only

	uses Enthought’s Traits and Chaco

	does not write desmeared data to a file

	[1]	subversion changesets are noted in square brackets
such as [2002] is change set 2002

License

Copyright (c) 1990-2015, Pete R. Jemian

All Rights Reserved

jldesmear

Pete R. Jemian <prjemian AT gmail DOT com>

OPEN SOURCE LICENSE

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimer. Software changes,
 modifications, or derivative works, should be noted with comments and
 the author and organization's name.

2. Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimer in the documentation
 and/or other materials provided with the distribution.

3. Neither the name of Pete R. Jemian
 nor the names of its contributors may be used to endorse or promote
 products derived from this software without specific prior written
 permission.

4. The software and the end-user documentation included with the
 redistribution, if any, must include the following acknowledgment:

 "This product includes software produced by Pete R. Jemian."

**

DISCLAIMER

THE SOFTWARE IS SUPPLIED "AS IS" WITHOUT WARRANTY OF ANY KIND.

Neither Pete R. Jemian, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, data, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights.

**

 Python Module Index

 j

 		 	

 		
 j	

 	[image: -]
 	
 jldesmear	

 	
 	
 jldesmear.jl_api.desmear	
 desmear the 1-D SAS data (q, I, dI) by method of Lake & Jemian

 	
 	
 jldesmear.jl_api.extrap_constant	
 Extrapolate as: I(q) = B

 	
 	
 jldesmear.jl_api.extrap_linear	
 Extrapolate as: I(q) = B + m * q

 	
 	
 jldesmear.jl_api.extrap_Porod	
 Extrapolate as: I(q) = B + Cp / q^4

 	
 	
 jldesmear.jl_api.extrap_powerlaw	
 Extrapolate as: I(q) = A * q^p

 	
 	
 jldesmear.jl_api.extrapolation	
 superclass of functions for extrapolation of SAS data past available range

 	
 	
 jldesmear.jl_api.fileio	
 superclass of modules supporting different file formats

 	
 	
 jldesmear.jl_api.fileio_inp	
 support traditional command-line input format

 	
 	
 jldesmear.jl_api.info	
 parameters used by the desmearing methods

 	
 	
 jldesmear.jl_api.smear	
 :mod:`~jldesmear.jl_api.smear` is used by :mod:`~jldesmear.jl_api.desmear` to forward smear a test case.

 	
 	
 jldesmear.jl_api.StatsReg	
 set of statistics registers in the style of a pocket calculator

 	
 	
 jldesmear.jl_api.textplots	
 make ASCII plots on a text only screen

 	
 	
 jldesmear.jl_api.toolbox	
 suite of utility routines

 	
 	
 jldesmear.jl_api.traditional	
 command-line program to run desmearing

Index

 A
 | C
 | D
 | E
 | F
 | G
 | I
 | J
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | X

A

 	
 	Add() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	addtrace() (jldesmear.jl_api.textplots.Screen method)

 	AddWeighted() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	AskDouble() (in module jldesmear.jl_api.toolbox)

 	
 	AskInt() (in module jldesmear.jl_api.toolbox)

 	AskQuestion() (in module jldesmear.jl_api.toolbox)

 	AskString() (in module jldesmear.jl_api.toolbox)

 	AskYesOrNo() (in module jldesmear.jl_api.toolbox)

C

 	
 	calc() (jldesmear.jl_api.extrap_constant.Extrapolation method)

 	(jldesmear.jl_api.extrap_Porod.Extrapolation method)

 	(jldesmear.jl_api.extrap_linear.Extrapolation method)

 	(jldesmear.jl_api.extrap_powerlaw.Extrapolation method)

 	(jldesmear.jl_api.extrapolation.Extrapolation method)

 	
 	callback() (in module jldesmear.jl_api.traditional)

 	Clear() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	command_line_interface() (in module jldesmear.jl_api.traditional)

 	CommandInput (class in jldesmear.jl_api.fileio_inp)

 	CorrelationCoefficient() (jldesmear.jl_api.StatsReg.StatsRegClass method)

D

 	
 	Desmearing (class in jldesmear.jl_api.desmear)

 	determinant() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	
 	discover_extrapolations() (in module jldesmear.jl_api.extrapolation)

 	discover_support() (in module jldesmear.jl_api.fileio)

E

 	
 	Extrapolation (class in jldesmear.jl_api.extrap_constant)

 	(class in jldesmear.jl_api.extrap_Porod)

 	(class in jldesmear.jl_api.extrap_linear)

 	(class in jldesmear.jl_api.extrap_powerlaw)

 	(class in jldesmear.jl_api.extrapolation)

F

 	
 	FileIO (class in jldesmear.jl_api.fileio)

 	find_first_index() (in module jldesmear.jl_api.toolbox)

 	first_step() (jldesmear.jl_api.desmear.Desmearing method)

 	fit() (jldesmear.jl_api.extrapolation.Extrapolation method)

 	fit_add() (jldesmear.jl_api.extrap_Porod.Extrapolation method)

 	(jldesmear.jl_api.extrap_powerlaw.Extrapolation method)

 	(jldesmear.jl_api.extrapolation.Extrapolation method)

 	
 	fit_loop() (jldesmear.jl_api.extrapolation.Extrapolation method)

 	fit_result() (jldesmear.jl_api.extrap_constant.Extrapolation method)

 	(jldesmear.jl_api.extrap_Porod.Extrapolation method)

 	(jldesmear.jl_api.extrap_linear.Extrapolation method)

 	(jldesmear.jl_api.extrap_powerlaw.Extrapolation method)

 	(jldesmear.jl_api.extrapolation.Extrapolation method)

 	fit_setup() (jldesmear.jl_api.extrapolation.Extrapolation method)

 	format_coefficient() (jldesmear.jl_api.extrapolation.Extrapolation method)

G

 	
 	get_Ic() (in module jldesmear.jl_api.smear)

 	GetCoefficients() (jldesmear.jl_api.extrapolation.Extrapolation method)

 	
 	GetDat() (in module jldesmear.jl_api.toolbox)

 	GetInf() (in module jldesmear.jl_api.traditional)

 	GetTest1DataFilename() (in module jldesmear.jl_api.toolbox)

I

 	
 	Info (class in jldesmear.jl_api.info)

 	isDataLine() (in module jldesmear.jl_api.toolbox)

 	
 	Iswap() (in module jldesmear.jl_api.toolbox)

 	iterate_and_callback() (jldesmear.jl_api.desmear.Desmearing method)

 	iteration() (jldesmear.jl_api.desmear.Desmearing method)

J

 	
 	jldesmear.jl_api.desmear (module)

 	jldesmear.jl_api.extrap_constant (module)

 	jldesmear.jl_api.extrap_linear (module)

 	jldesmear.jl_api.extrap_Porod (module)

 	jldesmear.jl_api.extrap_powerlaw (module)

 	jldesmear.jl_api.extrapolation (module)

 	jldesmear.jl_api.fileio (module)

 	
 	jldesmear.jl_api.fileio_inp (module)

 	jldesmear.jl_api.info (module)

 	jldesmear.jl_api.smear (module)

 	jldesmear.jl_api.StatsReg (module)

 	jldesmear.jl_api.textplots (module)

 	jldesmear.jl_api.toolbox (module)

 	jldesmear.jl_api.traditional (module)

L

 	
 	LinearEval() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	LinearRegression() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	
 	LinearRegressionCorrelation() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	LinearRegressionVariance() (jldesmear.jl_api.StatsReg.StatsRegClass method)

M

 	
 	make_buffer() (jldesmear.jl_api.textplots.Screen method)

 	
 	Mean() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	moreIterationsOk() (jldesmear.jl_api.info.Info method)

N

 	
 	no_plotting_callback() (in module jldesmear.jl_api.traditional)

P

 	
 	paintbuffer() (jldesmear.jl_api.textplots.Screen method)

 	Plengt() (in module jldesmear.jl_api.smear)

 	
 	plot_results() (in module jldesmear.jl_api.traditional)

 	prepare_extrapolation() (in module jldesmear.jl_api.smear)

 	printplot() (jldesmear.jl_api.textplots.Screen method)

Q

 	
 	QRS

R

 	
 	read() (jldesmear.jl_api.fileio_inp.CommandInput method)

 	
 	read_SMR() (jldesmear.jl_api.fileio_inp.CommandInput method)

 	residualsplot() (jldesmear.jl_api.textplots.Screen method)

S

 	
 	SavDat() (in module jldesmear.jl_api.toolbox)

 	save() (jldesmear.jl_api.fileio_inp.CommandInput method)

 	save_DSM() (jldesmear.jl_api.fileio_inp.CommandInput method)

 	Screen (class in jldesmear.jl_api.textplots)

 	SetCoefficients() (jldesmear.jl_api.extrapolation.Extrapolation method)

 	SetExtrap() (jldesmear.jl_api.desmear.Desmearing method)

 	SetLakeWeighting() (jldesmear.jl_api.desmear.Desmearing method)

 	SetQuiet() (jldesmear.jl_api.desmear.Desmearing method)

 	SetTitle() (jldesmear.jl_api.textplots.Screen method)

 	
 	show() (jldesmear.jl_api.extrapolation.Extrapolation method)

 	Show() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	Smear() (in module jldesmear.jl_api.smear)

 	Spinner() (in module jldesmear.jl_api.toolbox)

 	StatsRegClass (class in jldesmear.jl_api.StatsReg)

 	StdDev() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	StdErr() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	strtrim() (in module jldesmear.jl_api.toolbox)

 	Subtract() (jldesmear.jl_api.StatsReg.StatsRegClass method)

 	SubtractWeighted() (jldesmear.jl_api.StatsReg.StatsRegClass method)

T

 	
 	traditional() (jldesmear.jl_api.desmear.Desmearing method)

X

 	
 	xyplot() (jldesmear.jl_api.textplots.Screen method)

 _static/down-pressed.png

_static/ajax-loader.gif

_static/up.png

_static/comment.png

_static/plus.png

_static/down.png

_static/comment-close.png

_static/file.png

nav.xhtml

 Table of Contents

 		Program Documentation: jldesmear

 		Contents

 		Overview

 		Input data format

 		Command-line program for Jemian/Lake desmearing

 		traditional user interface documentation

 		Graphical User Interface for Lake/Jemian desmearing

 		gui graphical user interface documentation

 		Example using test1.smr data set

 		Input Commands

 		Program output to console

 		Data Files

 		API: application programmer interface

 		Statistics Registers

 		Desmearing

 		Extrapolations at highest q

 		fileio documentation

 		fileio_inp documentation

 		Desmearing parameters, the Info object

 		Forward Smearing

 		Plotting on a console

 		Utility Routines

 		Change History

 		Older Development: lake-python (subversion repository trunk)

 		Older Production

 		License

 		Indices and tables

_static/comment-bright.png

_static/minus.png

_static/up-pressed.png

_images/smearing.png

