

Welcome to JLaTo’s documentation

JLaTo [http://jlato.io/] is a Java Language Tools library.

User Documentation

	Getting Started
	Parsing

	Printing

	Abstract Syntax Tree Manipulation

	Using patterns to match, filter and search

Design Documentation

	State Classes
	General Contract

Getting Started

Parsing

Basics

You first have to create a Parser object:

final Parser parser = new Parser();

Then, parsing is just a matter of calling the parse(...) method with the appropriate reader, file or input-stream and
encoding.

final File sourceFile = new File("<path-to-java-source-file>.java");
final CompilationUnit cu = parser.parse(sourceFile, "UTF-8");

Customization

A Parser can be instantiated with a ParserConfiguration object. Through this configuration object, you can enable
whitespace preservation.

final Parser parser = new Parser(
 ParserConfiguration.Default.preserveWhitespaces(true));

The Parser class also provides a finer-grain parse(...) method that accepts a ParseContext object. For instance,
you can parse an expression:

final String exprString = "x -> x + x";
final Expr expr = parser.parse(ParseContext.Expression, exprString);

Printing

Basics

You have to create a Printer object and call its print(...) method:

final CompilationUnit cu = // ...
PrintWriter writer = new PrintWriter(new FileWriter("out.java"));
Printer printer = new Printer();
printer.print(cu, writer);

The Printer class also propose static helper methods:

String formatted = Printer.printToString(tree);

Please refer to the JavaDoc of Printer for more variants of the static helper methods.

Customization

A Printer can be instantiated with an additional boolean flag to enable formatting of existing nodes and a
FormattingSetting object to customize rendering:

// ...
Printer printer = new Printer(true, FormattingSettings.Default.withIndentation(" "));
printer.print(cu, writer);

Two base settings are provided (FormattingSettings.Default and FormattingSettings.JavaParser). Please refer to the
JavaDoc of FormattingSettings for further customization.

Abstract Syntax Tree Manipulation

Every abstract syntax tree objects derive from the base Tree class and obey the same common design rules.

For each property prop of a Tree subclass is provided an accessor prop() and a mutator withProp(...) (or
isProp() and setProp(...) for boolean properties). For instance, the ImportDecl class provide the following
accessors and mutators for its properties:

public QualifiedName name();
public ImportDecl withName(QualifiedName name);
public boolean isStatic();
public ImportDecl setStatic(boolean isStatic);
public boolean isOnDemand();
public ImportDecl setOnDemand(boolean isOnDemand);

Thus you can modify an ImportDecl in the following way:

final ImportDecl decl = new ImportDecl(QualifiedName.of("org.jlato.tree"), false, true);
Assert.assertEquals("import org.jlato.tree.*;", Printer.printToString(decl));

final ImportDecl newDecl = decl.withName(new QualifiedName(decl.name(), new Name("Tree")))
 .setOnDemand(false);
Assert.assertEquals("import org.jlato.tree.Tree;", Printer.printToString(newDecl));

Once you modified a tree node, you can go back to its parent tree or up to the root by calling the parent() or
root() methods. Those will accordingly recreate the intermediate immutable tree nodes:

final CompilationUnit cu = // ...

final ImportDecl anImportDecl = cu.imports().get(0);

final ImportDecl newImportDecl = anImportDecl.withName(QualifiedName.of("com.acme.MyClass"))
 .setStatic(false)
 .setOnDemand(false);

final CompilationUnit newCU = (CompilationUnit) newImportDecl.root();
Assert.assertEquals("import com.acme.MyClass;", Printer.printToString(newCU.imports().get(0)));

Using patterns to match, filter and search

Every abstract syntax tree objects derive from the TreeCombinators interface which provides combinators to search,
match and rewrite sub-trees. For instance, you can rewrite all names of a compilation unit and add a “42” suffix to
those:

final CompilationUnit cu = // ...

final CompilationUnit rewrote = cu.forAll(
 new Matcher<Name>() {
 @Override
 public Substitution match(Object o, Substitution s) {
 return o instanceof Node && ((Node) o).kind() == Kind.Name ? s : null;
 }
 }, new MatchVisitor<Name>() {
 @Override
 public Name visit(Name name, Substitution s) {
 return name.withId(name.id() + "42");
 }
 });

In the previous example we implemented manually the implementations of Matcher. Fortunately, JLaTo provides
quasi-quotations to do the exact same thing with Java code quote. For instance, one can rewrite all names:

final CompilationUnit cu = // ...

final CompilationUnit rewrote = cu.forAll(Quotes.names(),
 new MatchVisitor<Name>() {
 @Override
 public Name visit(Name name, Substitution s) {
 return name.withId(name.id() + "42");
 }
 });

or only all parameter names:

final CompilationUnit cu = // ...

final CompilationUnit rewrote = cu.forAll(
 Quotes.param("$t $n").or(Quotes.param("$t... $n")),
 new MatchVisitor<FormalParameter>() {
 @Override
 public FormalParameter visit(FormalParameter p, Substitution s) {
 return p.withId(p.id().withName(name(p.id().name().id() + "42")));
 }
 });

or only all public abstract classes:

final CompilationUnit cu = // ...

final CompilationUnit rewrote = cu.forAll(
 Quotes.typeDecl("public abstract class $t { ..$_ }"),
 new MatchVisitor<TypeDecl>() {
 @Override
 public TypeDecl visit(TypeDecl t, Substitution s) {
 ClassDecl c = (ClassDecl) t;
 return c.withName(c.name().withId(c.name().id() + "42"));
 }
 });

Look at the TreeCombinators interface for more information on the other methods to match, filter and search.

State Classes

The so-called State classes are the bottom-up-constructed classes of the abstract syntax tree that back up the
top-down-constructed Tree facade classes. They all inherit the STreeState interface and are wrapped inside STree
instances which convey additional data for these nodes such as lexical information, semantic attributes, and user data.

They obey the following general contract:

General Contract

State objects contain child STree instances and additional primitive (or String) data.

In a fully operational state, State objects can’t carry null values neither for their child trees nor for their data.
Optional child trees must be wrapped into option trees (STree<SNodeOptionState>), lists of children trees must be
wrapped into list trees (STree<SNodeListState>) and alternative child trees must be wrapped into either trees
(STree<SNodeEitherState>).

State objects can thus be either pending initialization or fully initialized.

Pending Initialization State

When first instantiated, a State object may have null values for its non-compound child trees (those that are not
options, lists or either trees). Their equals(...) and hashCode() methods may be called while pending initialization
and, thus, must be null-proofed for those fields.

The compound child trees (those that are options, lists or either trees) must be fully initialized at construction time.
The State constructor must then include individual nullity tests and instantiate new STree<SNodeOptionState>,
STree<SNodeListState> or STree<SNodeEitherState> accordingly.

Fully Initialized State

The following actions will blindly query the State objects and therefore consider them to be fully initialized:

	Tree traversals

	Pattern matching and building

	Rendering with the help of the corresponding shape

The State objects must ensure non-nullity of their non-compound child trees as their first validation action in their
STreeState.validate() implementation.

Index

 nav.xhtml

 Table of Contents

 		Welcome to JLaTo's documentation

 		Getting Started

 		Parsing

 		Basics

 		Customization

 		Printing

 		Basics

 		Customization

 		Abstract Syntax Tree Manipulation

 		Using patterns to match, filter and search

 		State Classes

 		General Contract

 		Pending Initialization State

 		Fully Initialized State

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

