
Jetconf

Oct 14, 2019

Guides

1 Installation 3

2 Sample jukebox-jetconf backend 5

3 Run Jetconf 7

4 Generating SSL Certificates 9

5 Architecture 13

6 Configuration options 17

7 Backend API 23

8 For Developers 31

9 Release Notes 33

10 Jetconf Backends 35

11 Jetconf Clients 37

12 Indices and tables 39

i

ii

Jetconf

Jetconf is an implementation of the RESTCONF protocol written in Python 3.

Guides 1

https://tools.ietf.org/html/rfc8040

Jetconf

2 Guides

CHAPTER 1

Installation

1.1 Requirements

Jetconf requires Python 3.5 or newer:

$ apt-get install python3
$ apt-get install python3-pip

Other requirements should be installed automatically during installation.

1.2 Stable version - PyPI

Stable version is the most actual package version provided by Python Package Index (PyPI):

$ python3 -m pip install jetconf

1.3 Latest version - GitHub

Latest version is the most actual source code available in the Jetconf GitHub repository. It is the master branch.

To install Jetconf from source:

$ git clone https://github.com/CZ-NIC/jetconf.git
$ cd jetconf
$ pip install -r requirements.txt
$ python3 -m pip install .

3

Jetconf

4 Chapter 1. Installation

CHAPTER 2

Sample jukebox-jetconf backend

jukebox-jetconf is an sample backend project created for Jetconf. It is very useful as template for start develop-
ing a new Jetconf backend.

2.1 Installation

Clone backend project from repository:

$ git clone https://github.com/CZ-NIC/jukebox-jetconf

Install backend package:

$ cd jukebox-jetconf
$ pip install .

Now the backend package should be installed.

2.2 Configuration

In the data directory of Jetconf repository there are some example files.

• jetconf@.service: simple systemd integration

• example-config.yaml: configuration file configured to working with jukebox backend and other files in
data directory

• doc-root: default root directory for Jetconf HTTP server

• ca.pem: example generated self-signed Certification Authority certificate

server certificate:

• server_localhost.crt : example generated Jetconf server certificate

5

https://github.com/CZ-NIC/jetconf

Jetconf

• server_localhost.key: key for server_localhost.crt certificate

client certificates:

• example-client.pem: basic client certificate

• example-client_curl.pem: client certificate for usage with cURL

• example-client_browser.pfx: client certificate in PKCS #12 format for usage with browser

• pfx_passwd: password for example-client_browser.pfx certificate

Warning: Certificates provided with Jetconf are only generated to test or try Jetconf. Never use these certificates
in final application.

Easiest way to run Jetconf with jukebox backend is to clone full Jetconf repository and start working in data directory:

$ git clone https://github.com/CZ-NIC/jetconf.git
$ cd jetconf/data

Paths in example-config.conf must be updated. If backend is installed and paths in configuration file are
configured, Jetconf can be run.

Set up all on your own:

• Configuration options

• Generating SSL Certificates

6 Chapter 2. Sample jukebox-jetconf backend

CHAPTER 3

Run Jetconf

3.1 command line

All logging information will be displayed in terminal:

$ jetconf -c <path_to_config_file.yaml>

3.2 systemd

In data directory there is a simple systemd service file for Jetconf. To allow running Jetconf using systemd, this
file needs to be copied to /etc/systemd/system/:

$ cp jetconf@.service /etc/systemd/system/jetconf@.service

Change the user in /etc/systemd/system/jetconf@.service to yours or create new jetconf user.

Move .yaml config file to /etc/jetconf. It must be named like config-backend_name.yaml. For ex-
ample, configuration file for jukebox backend will be config-jukebox.yaml. It is nice to use Jetconf backend’s
name without jetconf suffix.

$ cp example-config.yaml /etc/jetconf/config-jukebox.yaml

Last, Jetconf service can be started in format jetconf@backend_name.service. For jukebox backend from
above:

$ systemctl start jetconf@jukebox.service

7

Jetconf

8 Chapter 3. Run Jetconf

CHAPTER 4

Generating SSL Certificates

This tutorial explains how to generate self-signed certificates for the Jetconf server and clients using OpenSSL. Exam-
ple certificates can be found in data subdirectory.

Warning: Self-signed certificates are of course not considered trustworthy by web browsers and operating sys-
tems, so they are only suitable for testing.

Two bash scripts to help generate SSL certificates are placed in /utils/cert_gen directory

• gen_server_cert.sh is used once for generating the server certificate.

• gen_client_cert.sh is used repeatedly for creating client certificates.

Their usage is described below.

Installing OpenSSL

To start with, check that OpenSSL is installed. If not, it should be available as a package for your operating system:

$ apt-get install openssl

4.1 Certification Authority

The generated server and client certificates have to be signed by a Certification Authority (CA). For testing purposes,
though, a self-signed CA-like certificate will do.

Warning: For production uses, a trusted CA should always be used.

The easiest, but least secure, way is to use the pre-generated CA-like certificate and private key from the files ca.pem
and ca.key available from the utils/cert_gen directory.

Alternatively, the CA-like certificate and key can be generated using the procedure below.

9

https://www.openssl.org/

Jetconf

4.1.1 Generate your own CA-like certificate

Make or move to your working directory:

$ mkdir my_ca_cert
$ cd my_ca_cert

Generate ca.key. see genrsa:

$ openssl genrsa -out ca.key 2048

Generate ca.pem certificate. see x509:

$ openssl req -x509 -new -nodes -key ca.key -sha256 -days 1024 -out ca.pem

Some parameters of the certificate have to be filled in. They are not terribly important for testing purposes. For
example:

Country Name (2 letter code) [AU]:CZ
State or Province Name (full name) [Some-State]:
Locality Name (eg, city) []:
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Example CA
Organizational Unit Name (eg, section) []:exca.cz
Common Name (e.g. server FQDN or YOUR name) []:mail@exca.cz
Email Address []:mail@exca.cz

4.2 Server Certificate

To generate a new server certificate for JetConf that will be accepted even by the more pedantic web browsers like
Chrome, just run the provided gen_server_cert.sh script.

The script can be used in one of the two following ways.

The command will generate a new server private key along with the certificate:

$./gen_server_cert.sh <out_file_suffix> <domain/ip>

In this case, the name of the private key file passed to the script as the <server_key> argument:

$./gen_server_cert.sh <out_file_suffix> <domain/ip> <server_key>

The script autodetects if the certificate is being issued for a domain name or an IP address <domain/ip>, and sets the
appropriate SAN value.

For example, this command will create a certificate named server_example.crt for example.com domain
with new private key server_example.key:

$./gen_server_cert.sh example example.com

If you want this certificate to be accepted by your web browser, the issuing CA’s certificate needs to be imported to
your browser.

Warning: It is strongly recommended to do not import the provided CA’s certificate ca.pem to your produc-
tion browser, as its private key is publicly known. If you do so, someone could perform a MITM attack to any
connection with an SSL-protected website.

10 Chapter 4. Generating SSL Certificates

https://www.openssl.org/docs/manmaster/man1/genrsa.html
https://www.openssl.org/docs/manmaster/man1/openssl-x509.html

Jetconf

4.3 Client Certificate

The gen_client_cert.sh script is intended for generating client certificates signed by the previously created
CA-like certificate.

The script is used simply as follows:

$./gen_client_cert.sh <email_address>

The issued certificate will use the email address passed in the argument is used as the emailAddress DN and
commonName parameter of the client certificate. Also, the email address identifies the client to the JetConf server by
default.

For example, the command:

$./gen_client_cert.sh joe@example.net

will generate the following files:

• joe@example.net.pem - the client certificate

• joe@example.net.key - the client private key

• joe@example.net_curl.pem - the previous 2 files combined and protected by a password. Some utilities,
such as curl, expect the client certificate in this format.

• joe@example.net.pfx - PKCS#12 format for browsers. The password is the email address, i.e.
joe@example.net in this case.

4.3. Client Certificate 11

https://curl.haxx.se/:

Jetconf

12 Chapter 4. Generating SSL Certificates

CHAPTER 5

Architecture

• Requirements and Restrictions

• Datastore

• Access Control

• Jetconf Server Loop

• Python Modules

Jetconf is an implementation of the RESTCONF protocol for remote management of network devices and services.

YANG 1.1 data modelling language is also fully supported.

Jetconf is written in Python 3 language and available as open source software under the terms of the GNU GPLv3
license.

5.1 Requirements and Restrictions

Jetconf is a compliant RESTCONF implementation supporting all mandatory features.

Although it is written in Python, it should be fast enough to support large configuration databases with moderate rate of
changes. A typical use can may be an authoritative TLD name server in which Jetconf covers both server management
and domain provisioning.

Jetconf supports only the JSON data encoding, i.e. media types with the +json structured syntax suffix, such as
application/yang.data+json.

Jetconf supports only HTTP/2 transport. Entity tags (ETag headers) can be generated for all data resources, whereas
timestamps (Last-Modified headers) are supported for all container-like resources, i.e. not for individual leaf and
leaf-list instances.

13

https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc7950
https://www.gnu.org/licenses/gpl.html
https://tools.ietf.org/html/rfc8040
https://tools.ietf.org/html/rfc7540

Jetconf

5.2 Datastore

Jetconf uses YANGSON library, which is responsible for storage, validation and manipulation with YANG data. This
library utilizes an in-memory persistent structure called “Zipper” where the YANG data are kept in.

Jetconf also provides an option to serialize data into .json file on each commit, which ensures that all configuration
data will be persistent among server startups.

Additionally, the datastore can have an access control module associated with it. If so, every read/write operation will
be verified with this ACM.

5.3 Access Control

The current version of Jetconf implements NACM access control system, which enables to specify fine-grained access
permissions to particular data resources.

The NACM data can only be edited by privileged users in startup Configuration options.

5.4 Jetconf Server Loop

1. The client opens a secure TLS connection.

2. The client is authenticated via a client certificate. The certificate of the CA that issued the client certificate
needs to be specified in the configuration file. The e-mail or commonName field obtained from the client certifi-
cate is henceforth used as the username, in particular for access control. If the client cannot be authenticated,
for example because his certificate has expired or because it was not issued by correct CA, the connection is
terminated.

3. The server waits for an incoming client request.

4. A received request is parsed and handed over to the appropriate component. If the media type specified is
not supported (in particular, is not +json), 415 Unsupported Media Type is sent, If the message is
otherwise invalid, 400 Bad Request is sent.

5. The NACM data are queried to determine which groups the user is a member of.

6. Depending on the type of the request (read, write or RPC operation invocation) and the Request-URI, the
required permissions are determined, and the NACM database is checked to verify that the user possess all of
them. If not, 403 Forbidden is sent.

7. If the request is an RPC operation, it is invoked and an appropriate reply or error message generated.

8. If the request is a read operation, the corresponding data are retrieved from the datastore and formatted into a
reply, or an error status code is returned.

9. If the request is a write operation, the changes are applied using a persistent structure API (so that the original
unmodified configuration remains available). The new configuration is passed to the YANGSON library for
validation. If the validation succeeds, the new configuration is written to non-volatile memory, and passed to
server instrumentation that applies the necessary changes. An appropriate response or error code is generated
and sent.

10. After finishing one of the steps 7, 8 or 9, the server returns to step 3.

14 Chapter 5. Architecture

https://github.com/CZ-NIC/yangson
https://tools.ietf.org/html/rfc8341
https://tools.ietf.org/html/rfc8341

Jetconf

5.5 Python Modules

• rest_server: a module providing the HTTP/2 and user authentication functionality for REST operations,

• http_handlers: handlers connecting HTTP requests to datastore operations,

• data: datastore implementation,

• nacm: basic NACM implementation,

• config: a module for reading and parsing the config file,

• helpers: static helper classes shared across modules,

• op_internal: implementation of Jetconf internal RPCs,

• errors: definition of exceptions used in Jetconf.

5.5. Python Modules 15

Jetconf

16 Chapter 5. Architecture

CHAPTER 6

Configuration options

• Common sections

– GLOBAL

– HTTP_SERVER

– NACM

• Application-specific sections

Jetconf configuration is set as .conf text file in YAML format loaded by Jetconf on startup. Jetconf configuration
has two types sections, common sections and application-specific sections.

6.1 Common sections

Common sections are configuring core Jetconf settings available in any running same version of Jetconf. It do not
depend on the Jeconf backend package.

6.1.1 GLOBAL

Example

GLOBAL:
TIMEZONE: "Europe/Prague"
LOGFILE: "-"
PIDFILE: "/tmp/jetconf.pid"
PERSISTENT_CHANGES: true
LOG_LEVEL: "info"
LOG_DBG_MODULES: ["usr_conf_data_handlers", "data"]

(continues on next page)

17

Jetconf

(continued from previous page)

YANG_LIB_DIR: "yang-data/"
DATA_JSON_FILE: "data.json"
VALIDATE_TRANSACTIONS: true
CLIENT_CN: false
BACKEND_PACKAGE: "jetconf_jukebox"

Options

TIMEZONE:

Default: "GMT"

A timezone of the Jetconf server. This is necessary because all timestamps returned in HTTP response headers need
to be returned in GMT.

LOGFILE:

Default: "-"

A location of Jetconf’s log file. This can be either a path on the filesystem or a -. If configured as a -, Jetconf server
will run in foreground and all logging information will be written to stdout (suitable for testing).

PIDFILE:

Default: "/tmp/jetconf.pid"

A location of Jetconf’s process ID file.

PERSISTENT_CHANGES:

Default: true

This option specifies if the changes commited to datastore will also be synchronized to the filesystem (JSON file
defined by the DATA_JSON_FILE option). It should be set to true in most cases, but can be turned off for i.e. testing
purposes. If turned off, the Jetconf datastore will contain exactly the same initial data at every startup.

LOG_LEVEL:

Default: "info"

Defines the Jetconf’s log verbosity. Possible values are: debug, info, warning and error.

LOG_DBG_MODULES:

Default: [*]

When LOG_LEVEL is set to debug, this options defines list of Python modules which will write out debugging
information. This is useful to prevent flooding the log with debugging messages from irrelevant modules. I.e. when
debugging "usr_conf_data_handlers" module, you may not be interested with debug information from the
"nacm". Can be set to wildcard *.

YANG_LIB_DIR:

Default: "yang-data/"

Specifies the location of YANG library. This is the directory containing *.yang files, it must also contain the
"yang-library-data.json" file with configuration and description of all present YANG modules.

18 Chapter 6. Configuration options

Jetconf

DATA_JSON_FILE:

Default: "data.json"

A path to JSON file containing the datastore data. This file will be loaded at Jetconf startup. If
PERSISTENT_CHANGES option is set to true, all changes made to the datastore will be also stored to this file.

VALIDATE_TRANSACTIONS:

Default: true

This option defines if the datastore data should be validated according to YANG data model after a transaction is
commited. It should be set to true except for testing and debugging purposes.

CLIENT_CN:

Default: false

If enabled, Jetconf will use commonName to identify users. By default Jetconf is using emailAddress to identify
users.

BACKEND_PACKAGE:

Default: "jetconf_jukebox"

This option selects the package with backend bindings that Jetconf will use. An exact name of the Python package has
to be specified here, and also the package has to be installed in Python’s environment.

6.1.2 HTTP_SERVER

Example

HTTP_SERVER:
DOC_ROOT: "doc-root"
DOC_DEFAULT_NAME: "index.html"
API_ROOT: "/restconf"
API_ROOT_STAGING: "/restconf_staging"
SERVER_NAME: "jetconf-h2"
UPLOAD_SIZE_LIMIT: 1
LISTEN_LOCALHOST_ONLY: false
PORT: 8443
DISABLE_SSL: false
SERVER_SSL_CERT: "server.crt"
SERVER_SSL_PRIVKEY: "server.key"
CA_CERT: "ca.pem"
DBG_DISABLE_CERTS: false

Options

DOC_ROOT:

Default: "doc-root"

A root directory where regular files will be placed. All HTTP GET requests outside API_ROOT are considered as
requests for regular files on filesystem.

6.1. Common sections 19

Jetconf

DOC_DEFAULT_NAME:

Default: "index.html"

A default filename in DOC_ROOT and its subdirectories.

API_ROOT:

Default: "/restconf"

Defines the base URI of RESTCONF data. All requests for resources inside API_ROOT will be considered as
RESTCONF requests. It is usually not needed to change this value. Example: "/restconf" -> https://
localhost/restconf/ns:some_resouce

API_ROOT_STAGING:

Default: /restconf_staging

Same as above, except this is for staging data (data edited by user, but not commited yet).

SERVER_NAME:

Default: "jetconf-h2"

A value returned in "Server: " header of HTTP response.

UPLOAD_SIZE_LIMIT:

Default: 1

A maximum size of incoming data in PUT or POST body (in megabytes), which the server can handle.

LISTEN_LOCALHOST_ONLY:

Default: false

If set to true, the Jetconf HTTP server will only accept incoming connections from localhost.

PORT:

Default: 8443

The TCP port of Jetconf server.

DISABLE_SSL:

Default: false

If enabled, the user authentication system based on client certificates will be turned off and user data will be parsed
from HTTP headers. For instance, this change allows you to run Jetconf behind a load balancer where the TLS
connection is terminated and http request is forwarded to Jetconf server with relevant headers. Can be combined with
DBG_DISABLE_CERT.

SERVER_SSL_CERT:

Default: "server.crt"

The location of server SSL certificate in PEM format.

20 Chapter 6. Configuration options

Jetconf

SERVER_SSL_PRIVKEY:

Default: "server.key"

The location of server SSL private key in PEM format.

CA_CERT:

Default: "ca.pem"

The location of certification authority certificate, which is used for issuing client certificates.

DBG_DISABLE_CERTS:

Default: false

If enabled, the user authentication system based on client certificates will be turned off and every incoming connection
will default to “test-user” username. This should never be turned on in real environment, it is only intended for
testing and benchmarking purposes (no HTTP/2 benchmarking tools support client certificates at this moment). Can
be combined with DISABLE_SSL.

6.1.3 NACM

Example

NACM:
ENABLED: true
ALLOWED_USERS: ["superuser@example.com", "admin@example.com"]

Options

ENABLED:

Default: true

If set to false, NACM rules will not be applied.

ALLOWED_USERS:

Default: []

A list of superusers allowed to edit NACM data. By default no superuser is specified.

6.2 Application-specific sections

Application-specific sections are configuring additional Jetconf settings available in specific implementation Jetconf.
Depends on Jeconf backend package. Typically it configures Jetconf backend settings, that have to be defined by
backend developer.

For instance, configuration required by knot-jetconf backend package.

KNOT:
SOCKET: "/tmp/knot.sock"

6.2. Application-specific sections 21

https://github.com/CZ-NIC/knot-jetconf

Jetconf

SOCKET:

Default: "/tmp/knot.sock"

A path to KnotDNS control socket.

22 Chapter 6. Configuration options

CHAPTER 7

Backend API

• Backend package architecture

• Handler inheritance

• usr_init

• usr_datastore

• usr_conf_data_handlers

• usr_state_data_handlers

• usr_op_handlers

• us_action_handlers

As there can be various use-case scenarios for Jetconf, bindings to a user application are not part of Jetconf server
itself, but instead they are implemented in a separate package, so called “Jetconf backend”.

The basic idea of Jetconf’s backend architecture is that every node of the YANG schema (i.e. container, list, leaf-list)
can have a custom handler object assigned to it. When a specific event affecting this node occurs , like configuration
data being rewritten or RESCONF operation is called, an appropriate member function of this node handler is invoked.

As there are some major differences between YANG configuration data, state data and RPCs, the architecture of
corresponding node handlers in Jetconf also has to follow these differences.

7.1 Backend package architecture

Every backend package for Jetconf server has to provide implementation of following modules.

• usr_conf_data_handlers (Handlers for configuration data)

• usr_state_data_handlers (Handlers for state data)

• usr_op_handlers (Handlers for RESTCONF operations - RPCs)

23

Jetconf

• us_action_handlers (Handlers for RESTCONF actions - operation on node)

• usr_datastore (Datastore initialization and save/load functions can be customized here)

• usr_init (Jetconf initialization)

In addition to this, backend package can also contain any other resources if necessary. When you consider writing a
custom backend, looking at the very basic demo package jukebox-jetconf is a good way to start.

7.2 Handler inheritance

Because some data models can be quite large, it would be difficult to manually assign handler objects to all schema
nodes. Because of this, for configuration and state data handlers, Jetconf offers a feature called Handler inheritance.

If a node without its own handler is edited, Jetconf finds a nearest parent node which has the handler assigned and
then it calls its replace or replace_item method. It’s up to backend developer’s decision where to place handler
objects, a more fine-grained placement will usually mean better performance (less data rewriting), at the cost of more
work.

7.3 usr_init

Useful for code that has to be executed on the startup or on the end of Jetconf backend.

def jc_startup():

execute code on startup

def jc_end():

execute code on end

7.4 usr_datastore

Basic usr_datastore module without any customization.

from jetconf.data import JsonDatastore

class UserDatastore(JsonDatastore):
pass

Customizing load() and save() functions

from jetconf.data import JsonDatastore

class UserDatastore(JsonDatastore):

def load(self):

load method can be customized here

def save(self):

(continues on next page)

24 Chapter 7. Backend API

https://github.com/CZ-NIC/jukebox-jetconf

Jetconf

(continued from previous page)

save method can be customized here

7.5 usr_conf_data_handlers

The main purpose of configuration data handlers is to project all changes performed on a particular data node, like
creation, modification or deletion, to the user application.

A configuration node handler is implemented by creating a custom class which inherits from either
ConfDataObjectHandler or ConfDataListHandler base class depending on the type of YANG node. The
former must be used when implementing a handler for Container or Leaf data nodes, while the latter is used for
list-like types, specifically List and Leaf-List.

7.5.1 ConfDataObjectHandler:

Attributes:

self.ds # type: jetconf.data.BaseDatastore
Can be used for accessing the datastore content from handler

→˓functions

self.schema_path # type: str
Contains the YANG schema path to which this handler object is

→˓registered (as string)

self.schema_node # type: yangson.schemanode.SchemaNode
Contains the YANG schema path to which this handler object is

→˓registered (parsed)

Arguments:

ii: # type: yangson.instance.InstanceRoute
Contains parsed instance identifier of the data node. Useful for

→˓determining list keys if this data node is a child of some list node.
ch: # type: jetconf.data.DataChange

Can be used for accessing additional edit information, like HTTP input
→˓data if needed

Handlers derived from this base class has to implement the following interface:

from jetconf.handler_base import ConfDataObjectHandler
from yangson.instance import InstanceRoute
from jetconf.data import BaseDatastore, DataChange

class MyConfDataHandler(ConfDataObjectHandler):
def create(self, ii: InstanceRoute, ch: DataChange):

Called when a new node is created

def replace(self, ii: InstanceRoute, ch: DataChange):

Called when the node is being rewritten by new data

(continues on next page)

7.5. usr_conf_data_handlers 25

Jetconf

(continued from previous page)

def delete(self, ii: InstanceRoute, ch: DataChange):

Called when the node is deleted

7.5.2 ConfDataListHandler:

Attributes:

self.ds # type: jetconf.data.BaseDatastore
Can be used for accessing the datastore content from handler

→˓functions

self.schema_path # type: str
Contains the YANG schema path to which this handler object is

→˓registered (as string)

self.schema_node # type: yangson.schemanode.SchemaNode
Contains the YANG schema path to which this handler object is

→˓registered (parsed)

Arguments:

ii: # type: yangson.instance.InstanceRoute
Contains parsed instance identifier of the data node. Useful for

→˓determining list keys if this data node is a child of some list node.

ch: # type: jetconf.data.DataChange
Can be used for accessing additional edit information, like HTTP input data

→˓if needed

Handlers derived from this base class has to implement the following interface:

from jetconf.handler_base import ConfDataListHandler
from yangson.instance import InstanceRoute
from jetconf.data import BaseDatastore, DataChange

class MyConfDataHandler(ConfDataListHandler):
def create_item(self, ii: InstanceRoute, ch: DataChange):

Called when a new item is added to the list or leaf-list

def replace_item(self, ii: InstanceRoute, ch: DataChange):

Called when specific list item is being rewritten

def delete_item(self, ii: InstanceRoute, ch: DataChange):

Called when an item is being deleted from the list

26 Chapter 7. Backend API

Jetconf

7.5.3 Handler registration

Assignation of handler objects to the specific data nodes is done via registering them in jetconf.handler_list.
CONF_DATA_HANDLES handler list. Every usr_conf_data_handlers backend module must implement the
global function register_conf_handlers, where the instantiation and registration of handler objects is done.
This function is called on Jetconf startup after datastore initialization and has the following signature.

def register_conf_handlers(ds: BaseDatastore):

ds.handlers.conf.register(MyConfHandler(ds, "/ns:schema-path/to-desired-node"))

7.6 usr_state_data_handlers

YANG state data, in contrast to the configuration data, represents more of a current state of the backend application.
This means that they are not actually stored in Jetconf’s datastore, but instead they has to be generated on the go.
Generation of state data is the purpose of state data handlers.

A state data handler has to acquire actual state data from backend application and generate data content of the node
where it’s assigned. The output data are formatted in Python’s representation of JSON (using lists, dicts etc.) and their
structure must be compliant with the standardized JSON encoding of YANG data (RFC7951).

A state node handler is implemented by creating a custom class which inherits from either
StateDataContainerHandler or StateDataListHandler, depending on the YANG node type.
This is similar to he configuration data handlers.

7.6.1 StateDataContainerHandler

Attributes:

self.ds # type: jetconf.data.BaseDatastore
Can be used for accessing the datastore content from handler

→˓functions

self.data_model # type: yangson.datamodel.DataModel
Reference to the current data model object

self.sch_pth # type: str
YANG schema path to which this handler object is registered (as

→˓string)

self.schema_node # type: yangson.schemanode.DataNode
Reference to the Yangson schema node object

from yangson.instance import InstanceRoute
from jetconf.handler_base import StateDataContainerHandler
from jetconf.data import BaseDatastore

class MyStateDataHandler(StateDataContainerHandler):
def generate_node(self, node_ii: InstanceRoute, username: str, staging: bool)

This method has to generate content of the state data node

return generated_content

7.6. usr_state_data_handlers 27

https://tools.ietf.org/html/rfc7951

Jetconf

7.6.2 StateDataListHandler

Attributes:

self.ds # type: jetconf.data.BaseDatastore
Can be used for accessing the datastore content from handler

→˓functions

self.data_model # type: yangson.datamodel.DataModel
Reference to the current data model object

self.sch_pth # type: str
YANG schema path to which this handler object is registered (as

→˓string)

self.schema_node # type: yangson.schemanode.DataNode
Reference to the Yangson schema node object

Methods:

from yangson.instance import InstanceRoute
from jetconf.helpers import JsonNodeT
from jetconf.handler_base import StateDataListHandler
from jetconf.data import BaseDatastore

class MyStateDataHandler(StateDataListHandler):
def generate_list(self, node_ii: InstanceRoute, username: str, staging: bool) ->

→˓JsonNodeT:

This method has to generate entire list

return generated_content

def generate_list(self, node_ii: InstanceRoute, username: str, staging: bool) ->
→˓JsonNodeT:

Generates only one specific item of the list. The list key(s) of the item
→˓which needs to be generated can be resolved by processing the instance identifier
→˓passed in 'node_ii' argument.

return generated_content

7.6.3 Handler registration

Assignation of state data handler objects to the specific data nodes is done via registering them in
jetconf.handler_list.STATE_DATA_HANDLERS handler list. This is similar to the configura-
tion data. Every usr_state_data_handlers backend module must implement the global function
register_state_handlers, where the instantiation and registration of handler objects is done. This function
is called on Jetconf startup after datastore initialization and has the following signature:

def register_state_handlers(ds: BaseDatastore):

ds.handlers.state.register(MyStateDataHandler(ds, "/ns:schema-path/to/state/node
→˓"))

28 Chapter 7. Backend API

Jetconf

7.7 usr_op_handlers

Handlers for RESTCONF operations.

Arguments:

input_args: # type: JSON
Operation input arguments with structure defined by YANG model

username: # type: jetconf.data.BaseDatastore
Name of the user who invoked the operation

An operation handlers are implemented by adding a custom method to the class OpHandlersContainer. Finally,
this class is instantiated and its methods are assigned to specific operation names.

from yangson.instance import InstanceRoute
from jetconf.helpers import JsonNodeT
from jetconf.data import BaseDatastore

class OpHandlersContainer:
def __init__(self, ds: BaseDatastore):

self.ds = ds

def my_op_handler(self, input_args: JsonNodeT, username: str) -> JsonNodeT:

RPC operation Body

Operation output data as defined by YANG data model
output is not mandatory
return output_data

7.7.1 Handler registration

Every usr_op_handlers backend module must implement the global function register_op_handlers,
where the class OpHandlersContainer is instantiated and its methods are tied to individual operations. This
function with following signature is called on Jetconf startup after datastore initialization.

def register_op_handlers(ds: BaseDatastore):

op_handlers_obj = OpHandlersContainer(ds)
ds.handlers.op.register(op_handlers_obj.my_op_handler, "ns:operation")

7.8 us_action_handlers

Handlers for RESTCONF actions.

Arguments:

ii: # type: yangson.instance.InstanceRoute
Contains parsed instance identifier of the data node. Useful for determining

→˓list keys if this data node is a child of some list node.

input_args: # type: JSON

(continues on next page)

7.7. usr_op_handlers 29

Jetconf

(continued from previous page)

Operation input arguments with structure defined by YANG model

username: # type: jetconf.data.BaseDatastore
Name of the user who invoked the operation

An action handlers are implemented by adding a custom method to the class ActionHandlersContainer. Fi-
nally, this class is instantiated and its methods are assigned to specific action names and node path.

from yangson.instance import InstanceRoute
from jetconf.helpers import JsonNodeT
from jetconf.data import BaseDatastore

class ActionHandlersContainer:
def __init__(self, ds: BaseDatastore):

self.ds = ds

def my_action_handler(self, ii: InstanceRoute, input_args: JsonNodeT, username:
→˓str) -> JsonNodeT:

Action Body

Action output data as defined by YANG data model
output is not mandatory
return output_data

7.8.1 Handler registration

Every usr_action_handlers backend module must implement the global function
register_action_handlers, where the class ActionHandlersContainer is instantiated and its
methods are tied to individual actions. This function with following signature is called on Jetconf startup after
datastore initialization.

def register_action_handlers(ds: BaseDatastore):
act_handlers_obj = ActionHandlersContainer(ds)
ds.handlers.action.register(act_handlers_obj.my_action_handler, "/ns:schema-path/

→˓to/action/node")

30 Chapter 7. Backend API

CHAPTER 8

For Developers

• Development Environment

• Run from source

Warning: It is highly recommended to set up a virtual environment for Jetconf development. The following
procedure uses the venv module for this purpose (it is included in the standard Python library since version 3.3).

8.1 Development Environment

1. Install the latest stable Python3 version.

2. Clone the Jetconf project in a directory of your choice:

$ git clone https://github.com/CZ-NIC/jetconf.git

3. Create the virtual environment:

$ python3 -m venv jetconf

4. Activate the virtual environment:

$ cd jetconf
$ source bin/activate

5. Install required standard packages inside the virtual environment:

$ make install-deps

31

Jetconf

If you are prompted to upgrade pip, you can do that, too.

When you are inside the virtual environment, the shell prompt should change to something like:

(jetconf) $

To leave the virtual environment, just do:

$ deactivate

Tip: The virtual environment can be entered anytime later by executing step 4. The steps preceding it need to be
performed just once.

The setup described above has a few consequences that have to be kept in mind:

• Any project files that need to go to bin (executable Python scripts),‘‘include‘‘ or lib have to be added as
exceptions to .gitignore, for example:

!bin/jetconf

• After adding a new Python module dependency, it is necessary to run:

$ make deps

and commit the new content of requirements.txt.

8.2 Run from source

For development purposes, Jetconf can also be started directly from git repository with run.py script:

$./run.py -c <path_to_config_file.yaml>

32 Chapter 8. For Developers

CHAPTER 9

Release Notes

• 0.3.6

9.1 0.3.6

9.1.1 Added

• Root Resource Discovery: https://tools.ietf.org/html/rfc8040#section-3.1

• DISABLE_SSL and CLIENT_CN options: https://github.com/CZ-NIC/jetconf/pull/8

• RESTCONF actions: https://tools.ietf.org/html/rfc8040#section-3.6

• simple systemd unit: https://github.com/CZ-NIC/jetconf/blob/master/data/jetconf%40.service

33

https://tools.ietf.org/html/rfc8040#section-3.1
https://github.com/CZ-NIC/jetconf/pull/8
https://tools.ietf.org/html/rfc8040#section-3.6
https://github.com/CZ-NIC/jetconf/blob/master/data/jetconf%40.service

Jetconf

34 Chapter 9. Release Notes

CHAPTER 10

Jetconf Backends

• jukebox-jetconf

• knot-jetconf

35

https://github.com/CZ-NIC/jukebox-jetconf
https://github.com/CZ-NIC/knot-jetconf

Jetconf

36 Chapter 10. Jetconf Backends

CHAPTER 11

Jetconf Clients

Useful links:

• Generating SSL Certificates

• Configuration options

11.1 cURL

• cURL

• cURL GitHub

A Swiss-knife tool for HTTP/2.

11.1.1 View data in a terminal with cURL

User’s certificate with _curl suffix in .pem format is needed.

After this command you should get some data from Jetconf server in json. Do not forget to set
<path_to_pem_cert> and <jetconf server ip address>:

$ curl --http2 -k --cert-type PEM -E <path_to_pem_cert> -X GET https://<jetconf_
→˓server_ip_address>:8443/restconf/data

If DISABLE_SSL and CLIENT_CN are both set to true, the following command can be used. <username> is
sent in HTTP header:

$ curl --http2-prior-knowledge -H "X-SSL-Client-CN: <username>" -X GET http://
→˓<jetconf_server_ip_address>:8443/restconf/data

37

https://curl.haxx.se/:
https://github.com/curl/curl

Jetconf

11.2 Jetscreen

• Jetscreen Page

• Jetscreen Source

A prototype of an interactive graphical Jetconf client written in Angular 2. Works only with the JetConf implementa-
tion.

11.2.1 View data with Jetscreen

User’s certificate in .pfx format must be imported to the browser.

1. Open public Jetscreen Page

2. Enter your Jetconf server URL and press enter or click the Reset button. You may be prompted to select a user
certificate.

3. Top-level data containers should then appear.

38 Chapter 11. Jetconf Clients

https://jetconf.pages.labs.nic.cz/jetscreen
https://gitlab.labs.nic.cz/jetconf/jetscreen
https://jetconf.pages.labs.nic.cz/jetscreen

CHAPTER 12

Indices and tables

• genindex

• modindex

• search

39

	Installation
	Sample jukebox-jetconf backend
	Run Jetconf
	Generating SSL Certificates
	Architecture
	Configuration options
	Backend API
	For Developers
	Release Notes
	Jetconf Backends
	Jetconf Clients
	Indices and tables

