

VC3: Virtual Clusters for Community Computing

Quickstart

VC3 User Guide

All users of VC3 should read this portion of the documentation. This
provides examples and documentation around VC3’s assortment of options
and how to specify them on the portal.

	Getting Started with VC3
	Building your first Virtual Cluster

Installation

To write example code for VC3:

python<version> -m pip install vc3

Note

It is very important to install VC3 on the correct version of
Python for your needs. Example Note here. commands within notes.

FAQ and Glossary

	Glossary of Terms Used in VC3 Documentation
	Internal

	External

Contributor Guide

If you are reading VC3’s source code for fun or looking to contribute,
you should check out the github repository [https://github.com/vc3-project].

General Indices

	Index

	Glossary of terms

Getting Started with VC3

Last revised: Tuesday, November 26, 2017

questions/comments: lincolnb@uchicago.edu

|Virtual Clusters for Community Computation|, or |VC3|, is a platform for connecting
clusters, grids, and clouds. VC3 can run overlay systems for a variety of
cluster frameworks to make disparate resources appear as a single “virtual”
resource for collaborative science.

Note

This portion of |VC3|‘s documentation does not cover installation. See
the Installation section for how to install |VC3|.

	Prerequisites

	In order to use VC3, you’ll need an allocation or account with with a supported
target resource. These include, but are not limited to:

	University of Chicago - Research Computing Center

	University of Notre Dame - Center for Research Computing

	Brookhaven National Laboratory - Scientific Data & Computing Center

	Syracuse University - Research Computing

	Texas Advanced Computing Center

	NERSC

	Amazon Web Services

	Open Science Grid

	and more!

Institutions and resources are added frequently - be sure to subscribe to our newsletter and visit https://www.virtualclusters.org!

Building your first Virtual Cluster

	Login or Create Account

	2. Sign in to Globus

	3a. Login with your institutional ID

	3a. Login with your Globus ID

	4. Complete or update your VC3 profile

	5. Connect an Allocation

	6. Defining a Project

	7. Creating a Cluster Template

	8. Resources

	8. Launching a Virtual Cluster

Login or Create Account

When you first visit https://www-dev.virtualclusters.org, you’ll be presented
with a Login link in the top right of the screen. Click “Login” - this will
take you to a Globus (https://globus.org) sign-in site.

[image: ../_images/screenshot_272.png]

2. Sign in to Globus

You will then be asked to sign in with your institutional identity, or your
Globus ID. If you are using the former, simply type in the name of your
institution and click “Continue”. Proceed to Step 3a.

Otherwise, click “Sign in with Globus ID” and proceed to the alternate Step 3b.

[image: ../_images/screenshot_273.png]

3a. Login with your institutional ID

You should be presented with a login page for your institutional ID, with your
institution’s branding. Go ahead and sign-in now. Note that your password is
not sent to the VC3 or Globus web portals. Continue to step 4.

[image: ../_images/screenshot_275.png]

3a. Login with your Globus ID

(_Alternative step - if you do not have an institutional ID supported by Globus_)

<– Globus ID page –>

4. Complete or update your VC3 profile

Once you have signed in, you’ll be asked to update or complete your VC3 profile
with information such as your Institution and any other information we cannot
directly extract from your Globus account. Click “Update Profile” once done.

[image: ../_images/screenshot_276.png]

5. Connect an Allocation

After updating your profile, you can connect an allocation to the VC3 service.
An allocation, in VC3, is defined as combination of a username and resource
target that consumes some type of compute unit - regardless of whether it is
billed as Service Units (many HPC centers), dollars (AWS, GCE), or priority
(HTCondor and other opportunistic systems).

Clicking My Allocations on the left shows all allocations currently
associated with your account. You may select a new one by clicking
Connect Allocation.

[image: ../_images/screenshot_277.png]
You will be able to select a resource target from the drop down menu, and enter
an account name for the resource. This is the same account name that you use to
SSH to the remote system.
.. image:: /image/screenshot_278.png

Once you’ve connected your allocation, the system will validate it.
.. image:: /image/screenshot_279.png

In order to create a virtual cluster, the VC3 software needs to be able to SSH
to the remote resource. If you click your allocation, you should see a section
titled Public Token.

[image: ../_images/screenshot_281.png]
You will need to add this token to your Unix account, in the file
~/.ssh/authorized_keys. You can either edit this file with your favorite
editor (such as nano, vim, or emacs), or use the echo command to append
it to the authorized keys file.

[image: ../_images/screenshot_282.png]
This token allows the VC3 system to SSH into a cluster _as you_ and submit jobs
on your, or your project’s, behalf.

6. Defining a Project

VC3, as a platform for cooperative scientific computing, allows you create
projects to share your allocations and virtual clusters with trusted members of
your group, laboratory, or collaboration. To start a new project, click
“Projects” on the sidebar, then click “+ New Project”.

[image: ../_images/screenshot_283.png]
You may give your project an aribtrary name and choose initial project members.
Once finished, click “Create Project”.

[image: ../_images/screenshot_284.png]
You should be returned to the Projects page, where you will be able to see all
of your projects and memberships.

[image: ../_images/screenshot_285.png]

7. Creating a Cluster Template

VC3 allows users to create “Cluster Templates” that describe the components of
their virtual cluster, including number of head nodes, worker nodes, etc. We
currently support HTCondor and WorkQueue clusters with dynamic worker nodes,
and fixed head nodes.

To define a new template, click the “Cluster Templates” link on the left panel.
You’ll be able to give your cluster a name, select framework, and number of
workers. Click “Define Cluster” to finish creating the template.

[image: ../_images/screenshot_286.png]

8. Resources

The VC3 team curates an ever-expanding list of resources for end-users, with a
focus on Campus Clusters, HPC centers, and Cloud resources. You can find these
resources by clicking the “Resources” link on the left panel.

You can also click an individual resource and see expanded information, such as
batch system type, links to documentation, etc.

8. Launching a Virtual Cluster

Glossary of Terms Used in VC3 Documentation

Internal

	cluster states

	list of each possible state of a cluster throughout its lifecycle:

NEW - Request was just created.
VALIDATED - Request has been validated for basic correctness.
PENDING - Request is valid and is waiting to be instantiated.
GROWING - Cluster is in the process of being instantiated but is not yet usable.
RUNNING - Cluster is ready to use.
SHRINKING - Cluster resources are being removed.
TERMINATING - Cluster is about to be destroyed.
TERMINATED - Cluster no longer exists.

	credible

	Credible is a 3rd-party utility for programmatically generating,
storing, and retrieving security tokens.

	dynamic infrastructure

	Services that are instantiated upon a virtual cluster request, such as
the factory.

	factory

	The scheduler and resource manager for middleware.

	formatter

	A plugin that augments the output of |Flake8| when passed
to flake8 --format.

	info service

	Long-running daemon that interacts with the information database on
behalf of other services.

The VC3 info service serves as both a persistence mechanism for the
overall service, and a message bus between components. Information is
stored and retrieved in the form of JSON-formatted documents, which
thus form a single tree of information entities/nodes. The service
optionally allows access security by enforcing ACLs at each node level.

	PIN

	Personal Identification Number. One-time password for configuring a VC3
resource via vc3-resource-tool

	plugin-manager

	The plugin manager is a 3rd-party small utility for quickly
constructing plugin objects from configuration input.

	request ID

	Unique identifier for a virtual cluster request.

	static infrastructure

	A set of long-running services, such as the Info Service, Master, etc.

	vc3-application

	One of the supported middleware applications to be deployed as an
overlay defining a virtual cluster.

	vc3-builder

	Pilot-like executable that prepares an environment for middleware and
user applications.
The vc3-builder is a pilot-like utility, submitted to resource targets,
which programmatically satisfies all requested dependencies before
handing off control to the middleware layer. Its special feature is the
ability to satisfy dependencies in different ways on different targets,
depending on what it finds, e.g. it can tell if a dep is already
satisfied, can download a pre-built library, or dynamically compile a
dep if needed. Several builders can simultaneously satisfy dependencies
in parallel on a resource (provided a shared filesystem).

	vc3-client

	Package containing the VC3-aware library for creating, listing,
updating, and deleting entities within the infoservice. It also
contains a command line interface to the library.

	vc3-core

	The VC3 component that coordinates activity within the dynamic
infrastructure. One vc3-core exists per virtual cluster Request during
its lifecycle. A vc3-core will typically start a vc3-factory, along
with any central components the cluster will need (e.g. an HTCondor
collector/negotiator/schedd, a WorkQueue catalog, or a Squid server).

	vc3-master

	Package containing the long-running daemon, running on the static
infrastructure, that manages the lifecycle of all virtual cluster Requests.
The vc3-master is a long-running daemon, running on the static
infrastructure, that manages the lifecycle of all virtual cluster
Requests. It polls the infoservice for new Requests, and spawns
vc3-core instances on the dynamic infrastructure to service them.
It also handles the generation and processing of all derived entities
within the infoservice tree.

	vc3-release

	This is a developer package that contains various setup and test
utilities, and artifacts needed to create and use a YUM RPM repository.

	vc3-resource-tool

	The vc3-resource-tool is a utility to be run by end users on resource
targets in order to pair and enable them for usage by the VC3 system.

External

	Allocation

	An Allocation refers to an User and a Resource
Each Allocation must be owned by an User.
Allocations are divisible/fractionable, and can be given to Projects.
Allocations may not be oversubscribed. But unbounded Allocations may be
parents of multiple unbounded SubAllocations.
Bounded Allocations cannot spawn unbounded SubAllocations.
If a Resource grants hard allocation and allows backfill mode, those
are two distinct Allocations (one hard and one unbounded)

	Authentication

	The current mechanism for users to sign-up and create accounts into the
VC3 project is by authenticating themselves with their GlobusID account.

	MFA

	multi-factor authentication

	Project

	a collection of “Allocations”. It has at least 1 “user owner”, and 0 or more non-owner members. The owner is also a member.

	Request

	Entity that encapsulates all information that defines a particular virtual cluster. Creating a new Request triggers creation of the cluster.

	Request templates

	a list of pre-existing forms to be used as base for new cluster requests creation.

	Resource

	Any target on which a vc3-builder will run to provide computing power to a virtual cluster.

	Resource profiles

	a list of pre-existing forms to be used as base for new resource definition.

	Service unit

	Service units are essentially just walltime hours, with minimum charges
based on minimum cores or minimum nodes per job. Much like HEPSPEC, the
SUs can be normalized/converted based on LINPACK benchmarks.
Doc from XSEDE: https://portal.xsede.org/knowledge-base/-/kb/document/bazo

For storage, possibly with multiple allocations per user, examples
are scratch disk vs long term storage.

Exotic devices like GPUs may or may not be accounted for, depending on
the resource.

	Sub-Allocation

	A SubAllocation can be defined in terms of fraction or units (cpuhours?, $dollars, HEPSPEC) or be unbounded.
SubAllocations are children of an Allocation.

	User

	Every User has 0 or more Allocations. Users are owners or members of
one or more projects.
A User in a project can make Request(s) utilizing project member’s Allocations

Index

 A
 | C
 | D
 | F
 | I
 | M
 | P
 | R
 | S
 | U
 | V

A

 	
 	Allocation

 	
 	Authentication

C

 	
 	cluster states

 	
 	credible

D

 	
 	dynamic infrastructure

F

 	
 	factory

 	
 	formatter

I

 	
 	info service

M

 	
 	MFA

P

 	
 	PIN

 	
 	plugin-manager

 	Project

R

 	
 	Request

 	request ID

 	
 	Request templates

 	Resource

 	Resource profiles

S

 	
 	Service unit

 	
 	static infrastructure

 	Sub-Allocation

U

 	
 	User

V

 	
 	vc3-application

 	vc3-builder

 	vc3-client

 	
 	vc3-core

 	vc3-master

 	vc3-release

 	vc3-resource-tool

Read the Docs Sphinx Theme

Contents

	Read the Docs Sphinx Theme
	Installation
	Via package

	Via git or download

	Configuration
	Project-wide configuration

	Page-level configuration

	Changelog
	master

	v0.2.4

	v0.2.3

	v0.2.2

	v0.2.1

	v0.2.0

	v0.1.10-alpha

	v0.1.9

	v0.1.8

	How the Table of Contents builds

	Contributing or modifying the theme
	Set up your environment

	Before you create an issue

	Before you send a Pull Request

	Using this theme locally, then building on Read the Docs?

	TODO

View a working demo [http://docs.readthedocs.org] over on readthedocs.org [http://www.readthedocs.org].

This is a mobile-friendly sphinx [http://www.sphinx-doc.org] theme I made for readthedocs.org [http://www.readthedocs.org].

If you’d like to update the theme,
please make your edits to the SASS files here,
rather than the .css files on checked into the repo.

[image: venv/lib/python2.7/site-packages/sphinx_rtd_theme-0.2.4.dist-info/screen_mobile.png]

Installation

Via package

Download the package or add it to your requirements.txt file:

$ pip install sphinx_rtd_theme

In your conf.py file:

import sphinx_rtd_theme

html_theme = "sphinx_rtd_theme"

html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

You may also specify a canonical url in conf.py to let search engines know
they should give higher ranking to latest version of the docs:

html_theme_options['canonical_url'] = 'http://domain.tld/latest/docs/'

The url points to the root of the documentation. It requires a trailing slash.

Via git or download

Symlink or subtree the sphinx_rtd_theme/sphinx_rtd_theme repository into your documentation at
docs/_themes/sphinx_rtd_theme then add the following two settings to your Sphinx
conf.py file:

html_theme = "sphinx_rtd_theme"
html_theme_path = ["_themes",]

Configuration

You can configure different parts of the theme.

Project-wide configuration

The theme’s project-wide options are defined in the sphinx_rtd_theme/theme.conf
file of this repository, and can be defined in your project’s conf.py via
html_theme_options. For example:

html_theme_options = {
 'collapse_navigation': False,
 'display_version': False,
 'navigation_depth': 3,
}

Page-level configuration

Pages support metadata that changes how the theme renders.
You can currently add the following:

	:github_url: This will force the “Edit on GitHub” to the configured URL

	:bitbucket_url: This will force the “Edit on Bitbucket” to the configured URL

	:gitlab_url: This will force the “Edit on GitLab” to the configured URL

Changelog

master

v0.2.4

	Yet another patch to deal with extra builders outside Spinx, such as the
singlehtml builders from the Read the Docs Sphinx extension

v0.2.3

	Temporarily patch Sphinx issue with singlehtml builder by inspecting the
builder in template.

v0.2.2

	Roll back toctree fix in 0.2.1 (#367). This didn’t fix the issue and
introduced another bug with toctrees display.

v0.2.1

	Add the rel HTML attribute to the footer links which point to
the previous and next pages.

	Fix toctree issue caused by Sphinx singlehtml builder (#367)

v0.2.0

	Adds the comments block after the body block in the template

	Added “Edit on GitLab” support

	Many bug fixes

v0.1.10-alpha

Note

This is a pre-release version

	Removes Sphinx dependency

	Fixes hamburger on mobile display

	Adds a body_begin block to the template

	Add prev_next_buttons_location which can take the value bottom,
top, both , None and will display the “Next” and “Previous”
buttons accordingly

v0.1.9

	Intermittent scrollbar visibility bug fixed. This change introduces a
backwards incompatible change to the theme’s layout HTML. This should only be
a problem for derivative themes that have overridden styling of nav elements
using direct decendant selectors. See #215 [https://github.com/snide/sphinx_rtd_theme/pull/215] for more information.

	Safari overscroll bug fixed

	Version added to the nav header

	Revision id was added to the documentation footer if you are using RTD

	An extra block, extrafooter was added to allow extra content in the
document footer block

	Fixed modernizr URL

	Small display style changes on code blocks, figure captions, and nav elements

v0.1.8

	Start keeping changelog :)

	Support for third and fourth level headers in the sidebar

	Add support for Sphinx 1.3

	Add sidebar headers for :caption: in Sphinx toctree

	Clean up sidebar scrolling behavior so it never scrolls out of view

How the Table of Contents builds

Currently the left menu will build based upon any toctree(s) defined in your index.rst file.
It outputs 2 levels of depth, which should give your visitors a high level of access to your
docs. If no toctrees are set the theme reverts to sphinx’s usual local toctree.

It’s important to note that if you don’t follow the same styling for your rST headers across
your documents, the toctree will misbuild, and the resulting menu might not show the correct
depth when it renders.

Also note that the table of contents is set with includehidden=true. This allows you
to set a hidden toc in your index file with the hidden [http://sphinx-doc.org/markup/toctree.html] property that will allow you
to build a toc without it rendering in your index.

By default, the navigation will “stick” to the screen as you scroll. However if your toc
is vertically too large, it will revert to static positioning. To disable the sticky nav
altogether change the setting in conf.py.

Contributing or modifying the theme

The sphinx_rtd_theme is primarily a sass [http://www.sass-lang.com] project that requires a few other sass libraries. I’m
using bower [http://www.bower.io] to manage these dependencies and sass [http://www.sass-lang.com] to build the css. The good news is
I have a very nice set of grunt [http://www.gruntjs.com] operations that will not only load these dependencies, but watch
for changes, rebuild the sphinx demo docs and build a distributable version of the theme.
The bad news is this means you’ll need to set up your environment similar to that
of a front-end developer (vs. that of a python developer). That means installing node and ruby.

Set up your environment

	Install sphinx [http://www.sphinx-doc.org] into a virtual environment.

pip install sphinx

	Install sass

gem install sass

	Install node, bower and grunt.

// Install node
brew install node

// Install bower and grunt
npm install -g bower grunt-cli

// Now that everything is installed, let's install the theme dependecies.
npm install

Now that our environment is set up, make sure you’re in your virtual environment, go to
this repository in your terminal and run grunt:

grunt

This default task will do the following very cool things that make it worth the trouble.

	It’ll install and update any bower dependencies.

	It’ll run sphinx and build new docs.

	It’ll watch for changes to the sass files and build css from the changes.

	It’ll rebuild the sphinx docs anytime it notices a change to .rst, .html, .js
or .css files.

Before you create an issue

I don’t have a lot of time to maintain this project due to other responsibilities.
I know there are a lot of Python engineers out there that can’t code sass / css and
are unable to submit pull requests. That said, submitting random style bugs without
at least providing sample documentation that replicates your problem is a good
way for me to ignore your request. RST unfortunately can spit out a lot of things
in a lot of ways. I don’t have time to research your problem for you, but I do
have time to fix the actual styling issue if you can replicate the problem for me.

Before you send a Pull Request

When you’re done with your edits, you can run grunt build to clean out the old
files and rebuild a new distribution, compressing the css and cleaning out
extraneous files. Please do this before you send in a PR.

Using this theme locally, then building on Read the Docs?

Currently if you import sphinx_rtd_theme in your local sphinx build, then pass
that same config to Read the Docs, it will fail, since RTD gets confused. If
you want to run this theme locally and then also have it build on RTD, then
you can add something like this to your config. Thanks to Daniel Oaks for this.

on_rtd is whether we are on readthedocs.org, this line of code grabbed from docs.readthedocs.org
on_rtd = os.environ.get('READTHEDOCS', None) == 'True'

if not on_rtd: # only import and set the theme if we're building docs locally
 import sphinx_rtd_theme
 html_theme = 'sphinx_rtd_theme'
 html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]

otherwise, readthedocs.org uses their theme by default, so no need to specify it

TODO

	Separate some sass variables at the theme level so you can overwrite some basic colors.

Pygments

Pygments is a syntax highlighting package written in Python.

It is a generic syntax highlighter suitable for use in code hosting, forums,
wikis or other applications that need to prettify source code. Highlights
are:

	a wide range of over 300 languages and other text formats is supported

	special attention is paid to details, increasing quality by a fair amount

	support for new languages and formats are added easily

	a number of output formats, presently HTML, LaTeX, RTF, SVG, all image formats that PIL supports and ANSI sequences

	it is usable as a command-line tool and as a library

	copyright:	Copyright 2006-2017 by the Pygments team, see AUTHORS.

	license:	BSD, see LICENSE for details.

 Typing – Type Hints for Python

This is a backport of the standard library typing module to Python
versions older than 3.5.

Typing defines a standard notation for Python function and variable
type annotations. The notation can be used for documenting code in a
concise, standard format, and it has been designed to also be used by
static and runtime type checkers, static analyzers, IDEs and other
tools.

Certifi: Python SSL Certificates

Certifi [http://certifi.io/en/latest/] is a carefully curated collection of Root Certificates for
validating the trustworthiness of SSL certificates while verifying the identity
of TLS hosts. It has been extracted from the Requests [http://docs.python-requests.org/en/latest/] project.

Installation

certifi is available on PyPI. Simply install it with pip:

$ pip install certifi

Usage

To reference the installed certificate authority (CA) bundle, you can use the
built-in function:

>>> import certifi

>>> certifi.where()
'/usr/local/lib/python2.7/site-packages/certifi/cacert.pem'

Enjoy!

1024-bit Root Certificates

Browsers and certificate authorities have concluded that 1024-bit keys are
unacceptably weak for certificates, particularly root certificates. For this
reason, Mozilla has removed any weak (i.e. 1024-bit key) certificate from its
bundle, replacing it with an equivalent strong (i.e. 2048-bit or greater key)
certificate from the same CA. Because Mozilla removed these certificates from
its bundle, certifi removed them as well.

Unfortunately, old versions of OpenSSL (less than 1.0.2) sometimes fail to
validate certificate chains that use the strong roots. For this reason, if you
fail to validate a certificate using the certifi.where() mechanism, you can
intentionally re-add the 1024-bit roots back into your bundle by calling
certifi.old_where() instead. This is not recommended in production: if at
all possible you should upgrade to a newer OpenSSL. However, if you have no
other option, this may work for you.

 A collection of tools for internationalizing Python applications.

pip

The PyPA recommended [https://packaging.python.org/en/latest/current/]
tool for installing Python packages.

	Installation [https://pip.pypa.io/en/stable/installing.html]

	Documentation [https://pip.pypa.io/]

	Changelog [https://pip.pypa.io/en/stable/news.html]

	Github Page [https://github.com/pypa/pip]

	Issue Tracking [https://github.com/pypa/pip/issues]

	User mailing list [http://groups.google.com/group/python-virtualenv]

	Dev mailing list [http://groups.google.com/group/pypa-dev]

	User IRC: #pypa on Freenode.

	Dev IRC: #pypa-dev on Freenode.

[image: https://img.shields.io/pypi/v/pip.svg]
 [https://pypi.python.org/pypi/pip][image: https://img.shields.io/travis/pypa/pip/master.svg]
 [http://travis-ci.org/pypa/pip][image: https://img.shields.io/appveyor/ci/pypa/pip.svg]
 [https://ci.appveyor.com/project/pypa/pip/history][image: https://readthedocs.org/projects/pip/badge/?version=stable]
 [https://pip.pypa.io/en/stable]
Code of Conduct

Everyone interacting in the pip project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].

Jinja2

Jinja2 is a template engine written in pure Python. It provides a
Django [http://www.djangoproject.com/] inspired non-XML syntax but supports inline expressions and
an optional sandboxed [http://en.wikipedia.org/wiki/Sandbox_(computer_security)] environment.

Nutshell

Here a small example of a Jinja template:

{% extends 'base.html' %}
{% block title %}Memberlist{% endblock %}
{% block content %}

 {% for user in users %}
 {{ user.username }}
 {% endfor %}

{% endblock %}

Philosophy

Application logic is for the controller but don’t try to make the life
for the template designer too hard by giving him too few functionality.

For more informations visit the new Jinja2 webpage [http://jinja.pocoo.org/] and documentation [http://jinja.pocoo.org/2/documentation/].

Wheel

A built-package format for Python.

A wheel is a ZIP-format archive with a specially formatted filename
and the .whl extension. It is designed to contain all the files for a
PEP 376 compatible install in a way that is very close to the on-disk
format. Many packages will be properly installed with only the “Unpack”
step (simply extracting the file onto sys.path), and the unpacked archive
preserves enough information to “Spread” (copy data and scripts to their
final locations) at any later time.

The wheel project provides a bdist_wheel command for setuptools
(requires setuptools >= 0.8.0). Wheel files can be installed with a
newer pip from https://github.com/pypa/pip or with wheel’s own command
line utility.

The wheel documentation is at http://wheel.rtfd.org/. The file format
is documented in PEP 427 (http://www.python.org/dev/peps/pep-0427/).

The reference implementation is at https://bitbucket.org/pypa/wheel

Why not egg?

Python’s egg format predates the packaging related standards we have
today, the most important being PEP 376 “Database of Installed Python
Distributions” which specifies the .dist-info directory (instead of
.egg-info) and PEP 426 “Metadata for Python Software Packages 2.0”
which specifies how to express dependencies (instead of requires.txt
in .egg-info).

Wheel implements these things. It also provides a richer file naming
convention that communicates the Python implementation and ABI as well
as simply the language version used in a particular package.

Unlike .egg, wheel will be a fully-documented standard at the binary
level that is truly easy to install even if you do not want to use the
reference implementation.

Code of Conduct

Everyone interacting in the wheel project’s codebases, issue trackers, chat
rooms, and mailing lists is expected to follow the PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].

0.29.0

	Fix compression type of files in archive (Issue #155, Pull Request #62,
thanks Xavier Fernandez)

0.28.0

	Fix file modes in archive (Issue #154)

0.27.0

	Support forcing a platform tag using –plat-name on pure-Python wheels, as
well as nonstandard platform tags on non-pure wheels (Pull Request #60, Issue
#144, thanks Andrés Díaz)

	Add SOABI tags to platform-specific wheels built for Python 2.X (Pull Request
#55, Issue #63, Issue #101)

	Support reproducible wheel files, wheels that can be rebuilt and will hash to
the same values as previous builds (Pull Request #52, Issue #143, thanks
Barry Warsaw)

	Support for changes in keyring >= 8.0 (Pull Request #61, thanks Jason R.
Coombs)

	Use the file context manager when checking if dependency_links.txt is empty,
fixes problems building wheels under PyPy on Windows (Issue #150, thanks
Cosimo Lupo)

	Don’t attempt to (recursively) create a build directory ending with ..
(invalid on all platforms, but code was only executed on Windows) (Issue #91)

	Added the PyPA Code of Conduct (Pull Request #56)

0.26.0

	Fix multiple entrypoint comparison failure on Python 3 (Issue #148)

0.25.0

	Add Python 3.5 to tox configuration

	Deterministic (sorted) metadata

	Fix tagging for Python 3.5 compatibility

	Support py2-none-‘arch’ and py3-none-‘arch’ tags

	Treat data-only wheels as pure

	Write to temporary file and rename when using wheel install –force

0.24.0

	The python tag used for pure-python packages is now .pyN (major version
only). This change actually occurred in 0.23.0 when the –python-tag
option was added, but was not explicitly mentioned in the changelog then.

	wininst2wheel and egg2wheel removed. Use “wheel convert [archive]”
instead.

	Wheel now supports setuptools style conditional requirements via the
extras_require={} syntax. Separate ‘extra’ names from conditions using
the : character. Wheel’s own setup.py does this. (The empty-string
extra is the same as install_requires.) These conditional requirements
should work the same whether the package is installed by wheel or
by setup.py.

0.23.0

	Compatibility tag flags added to the bdist_wheel command

	sdist should include files necessary for tests

	‘wheel convert’ can now also convert unpacked eggs to wheel

	Rename pydist.json to metadata.json to avoid stepping on the PEP

	The –skip-scripts option has been removed, and not generating scripts is now
the default. The option was a temporary approach until installers could
generate scripts themselves. That is now the case with pip 1.5 and later.
Note that using pip 1.4 to install a wheel without scripts will leave the
installation without entry-point wrappers. The “wheel install-scripts”
command can be used to generate the scripts in such cases.

	Thank you contributors

0.22.0

	Include entry_points.txt, scripts a.k.a. commands, in experimental
pydist.json

	Improved test_requires parsing

	Python 2.6 fixes, “wheel version” command courtesy pombredanne

0.21.0

	Pregenerated scripts are the default again.

	“setup.py bdist_wheel –skip-scripts” turns them off.

	setuptools is no longer a listed requirement for the ‘wheel’
package. It is of course still required in order for bdist_wheel
to work.

	“python -m wheel” avoids importing pkg_resources until it’s necessary.

0.20.0

	No longer include console_scripts in wheels. Ordinary scripts (shell files,
standalone Python files) are included as usual.

	Include new command “python -m wheel install-scripts [distribution
[distribution ...]]” to install the console_scripts (setuptools-style
scripts using pkg_resources) for a distribution.

0.19.0

	pymeta.json becomes pydist.json

0.18.0

	Python 3 Unicode improvements

0.17.0

	Support latest PEP-426 “pymeta.json” (json-format metadata)

0.16.0

	Python 2.6 compatibility bugfix (thanks John McFarlane)

	Non-prerelease version number

1.0.0a2

	Bugfix for C-extension tags for CPython 3.3 (using SOABI)

1.0.0a1

	Bugfix for bdist_wininst converter “wheel convert”

	Bugfix for dists where “is pure” is None instead of True or False

1.0.0a0

	Update for version 1.0 of Wheel (PEP accepted).

	Python 3 fix for moving Unicode Description to metadata body

	Include rudimentary API documentation in Sphinx (thanks Kevin Horn)

0.15.0

	Various improvements

0.14.0

	Changed the signature format to better comply with the current JWS spec.
Breaks all existing signatures.

	Include wheel unsign command to remove RECORD.jws from an archive.

	Put the description in the newly allowed payload section of PKG-INFO
(METADATA) files.

0.13.0

	Use distutils instead of sysconfig to get installation paths; can install
headers.

	Improve WheelFile() sort.

	Allow bootstrap installs without any pkg_resources.

0.12.0

	Unit test for wheel.tool.install

0.11.0

	API cleanup

0.10.3

	Scripts fixer fix

0.10.2

	Fix keygen

0.10.1

	Preserve attributes on install.

0.10.0

	Include a copy of pkg_resources. Wheel can now install into a virtualenv
that does not have distribute (though most packages still require
pkg_resources to actually work; wheel install distribute)

	Define a new setup.cfg section [wheel]. universal=1 will
apply the py2.py3-none-any tag for pure python wheels.

0.9.7

	Only import dirspec when needed. dirspec is only needed to find the
configuration for keygen/signing operations.

0.9.6

	requires-dist from setup.cfg overwrites any requirements from setup.py
Care must be taken that the requirements are the same in both cases,
or just always install from wheel.

	drop dirspec requirement on win32

	improved command line utility, adds ‘wheel convert [egg or wininst]’ to
convert legacy binary formats to wheel

0.9.5

	Wheel’s own wheel file can be executed by Python, and can install itself:
python wheel-0.9.5-py27-none-any/wheel install ...

	Use argparse; basic wheel install command should run with only stdlib
dependencies.

	Allow requires_dist in setup.cfg’s [metadata] section. In addition to
dependencies in setup.py, but will only be interpreted when installing
from wheel, not from sdist. Can be qualified with environment markers.

0.9.4

	Fix wheel.signatures in sdist

0.9.3

	Integrated digital signatures support without C extensions.

	Integrated “wheel install” command (single package, no dependency
resolution) including compatibility check.

	Support Python 3.3

	Use Metadata 1.3 (PEP 426)

0.9.2

	Automatic signing if WHEEL_TOOL points to the wheel binary

	Even more Python 3 fixes

0.9.1

	‘wheel sign’ uses the keys generated by ‘wheel keygen’ (instead of generating
a new key at random each time)

	Python 2/3 encoding/decoding fixes

	Run tests on Python 2.6 (without signature verification)

0.9

	Updated digital signatures scheme

	Python 3 support for digital signatures

	Always verify RECORD hashes on extract

	“wheel” command line tool to sign, verify, unpack wheel files

0.8

	none/any draft pep tags update

	improved wininst2wheel script

	doc changes and other improvements

0.7

	sort .dist-info at end of wheel archive

	Windows & Python 3 fixes from Paul Moore

	pep8

	scripts to convert wininst & egg to wheel

0.6

	require distribute >= 0.6.28

	stop using verlib

0.5

	working pretty well

0.4.2

	hyphenated name fix

0.4

	improve test coverage

	improve Windows compatibility

	include tox.ini courtesy of Marc Abramowitz

	draft hmac sha-256 signing function

0.3

	prototype egg2wheel conversion script

0.2

	Python 3 compatibility

0.1

	Initial version

Chardet: The Universal Character Encoding Detector

[image: Build status]
 [https://travis-ci.org/chardet/chardet][image: https://img.shields.io/coveralls/chardet/chardet/stable.svg]
 [https://coveralls.io/r/chardet/chardet][image: Latest version on PyPI]
 [https://warehouse.python.org/project/chardet/][image: License]
	Detects

	
	ASCII, UTF-8, UTF-16 (2 variants), UTF-32 (4 variants)

	Big5, GB2312, EUC-TW, HZ-GB-2312, ISO-2022-CN (Traditional and Simplified Chinese)

	EUC-JP, SHIFT_JIS, CP932, ISO-2022-JP (Japanese)

	EUC-KR, ISO-2022-KR (Korean)

	KOI8-R, MacCyrillic, IBM855, IBM866, ISO-8859-5, windows-1251 (Cyrillic)

	ISO-8859-5, windows-1251 (Bulgarian)

	ISO-8859-1, windows-1252 (Western European languages)

	ISO-8859-7, windows-1253 (Greek)

	ISO-8859-8, windows-1255 (Visual and Logical Hebrew)

	TIS-620 (Thai)

Note

Our ISO-8859-2 and windows-1250 (Hungarian) probers have been temporarily
disabled until we can retrain the models.

Requires Python 2.6, 2.7, or 3.3+.

Installation

Install from PyPI [https://pypi.python.org/pypi/chardet]:

pip install chardet

Documentation

For users, docs are now available at https://chardet.readthedocs.io/.

Command-line Tool

chardet comes with a command-line script which reports on the encodings of one
or more files:

% chardetect somefile someotherfile
somefile: windows-1252 with confidence 0.5
someotherfile: ascii with confidence 1.0

About

This is a continuation of Mark Pilgrim’s excellent chardet. Previously, two
versions needed to be maintained: one that supported python 2.x and one that
supported python 3.x. We’ve recently merged with Ian Cordasco [https://github.com/sigmavirus24]‘s
charade [https://github.com/sigmavirus24/charade] fork, so now we have one
coherent version that works for Python 2.6+.

	maintainer:	Dan Blanchard

 Six is a Python 2 and 3 compatibility library. It provides utility functions
for smoothing over the differences between the Python versions with the goal of
writing Python code that is compatible on both Python versions. See the
documentation for more information on what is provided.

Six supports every Python version since 2.6. It is contained in only one Python
file, so it can be easily copied into your project. (The copyright and license
notice must be retained.)

Online documentation is at https://pythonhosted.org/six/.

Bugs can be reported to https://bitbucket.org/gutworth/six. The code can also
be found there.

For questions about six or porting in general, email the python-porting mailing
list: https://mail.python.org/mailman/listinfo/python-porting

 It includes following language algorithms:

	Danish

	Dutch

	English (Standard, Porter)

	Finnish

	French

	German

	Hungarian

	Italian

	Norwegian

	Portuguese

	Romanian

	Russian

	Spanish

	Swedish

	Turkish

This is a pure Python stemming library. If PyStemmer [http://pypi.python.org/pypi/PyStemmer] is available, this module uses
it to accelerate.

urllib3

[image: Build status on Travis]
 [https://travis-ci.org/shazow/urllib3][image: Build status on AppVeyor]
 [https://ci.appveyor.com/project/shazow/urllib3][image: Documentation Status]
 [https://urllib3.readthedocs.io/en/latest/][image: Coverage Status]
 [https://codecov.io/gh/shazow/urllib3][image: PyPI version]
 [https://pypi.python.org/pypi/urllib3][image: Bountysource]
 [https://www.bountysource.com/trackers/192525-urllib3?utm_source=192525&utm_medium=shield&utm_campaign=TRACKER_BADGE]urllib3 is a powerful, sanity-friendly HTTP client for Python. Much of the
Python ecosystem already uses urllib3 and you should too.
urllib3 brings many critical features that are missing from the Python
standard libraries:

	Thread safety.

	Connection pooling.

	Client-side SSL/TLS verification.

	File uploads with multipart encoding.

	Helpers for retrying requests and dealing with HTTP redirects.

	Support for gzip and deflate encoding.

	Proxy support for HTTP and SOCKS.

	100% test coverage.

urllib3 is powerful and easy to use:

>>> import urllib3
>>> http = urllib3.PoolManager()
>>> r = http.request('GET', 'http://httpbin.org/robots.txt')
>>> r.status
200
>>> r.data
'User-agent: *\nDisallow: /deny\n'

Installing

urllib3 can be installed with pip [https://pip.pypa.io]:

$ pip install urllib3

Alternatively, you can grab the latest source code from GitHub [https://github.com/shazow/urllib3]:

$ git clone git://github.com/shazow/urllib3.git
$ python setup.py install

Documentation

urllib3 has usage and reference documentation at urllib3.readthedocs.io [https://urllib3.readthedocs.io].

Contributing

urllib3 happily accepts contributions. Please see our
contributing documentation [https://urllib3.readthedocs.io/en/latest/contributing.html]
for some tips on getting started.

Maintainers

	@lukasa [https://github.com/lukasa] (Cory Benfield)

	@sigmavirus24 [https://github.com/sigmavirus24] (Ian Cordasco)

	@shazow [https://github.com/shazow] (Andrey Petrov)

👋

Sponsorship

If your company benefits from this library, please consider sponsoring its
development [https://urllib3.readthedocs.io/en/latest/contributing.html#sponsorship].

Changes

1.22 (2017-07-20)

	Fixed missing brackets in HTTP CONNECT when connecting to IPv6 address via
IPv6 proxy. (Issue #1222)

	Made the connection pool retry on SSLError. The original SSLError
is available on MaxRetryError.reason. (Issue #1112)

	Drain and release connection before recursing on retry/redirect. Fixes
deadlocks with a blocking connectionpool. (Issue #1167)

	Fixed compatibility for cookiejar. (Issue #1229)

	pyopenssl: Use vendored version of six. (Issue #1231)

1.21.1 (2017-05-02)

	Fixed SecureTransport issue that would cause long delays in response body
delivery. (Pull #1154)

	Fixed regression in 1.21 that threw exceptions when users passed the
socket_options flag to the PoolManager. (Issue #1165)

	Fixed regression in 1.21 that threw exceptions when users passed the
assert_hostname or assert_fingerprint flag to the PoolManager.
(Pull #1157)

1.21 (2017-04-25)

	Improved performance of certain selector system calls on Python 3.5 and
later. (Pull #1095)

	Resolved issue where the PyOpenSSL backend would not wrap SysCallError
exceptions appropriately when sending data. (Pull #1125)

	Selectors now detects a monkey-patched select module after import for modules
that patch the select module like eventlet, greenlet. (Pull #1128)

	Reduced memory consumption when streaming zlib-compressed responses
(as opposed to raw deflate streams). (Pull #1129)

	Connection pools now use the entire request context when constructing the
pool key. (Pull #1016)

	PoolManager.connection_from_* methods now accept a new keyword argument,
pool_kwargs, which are merged with the existing connection_pool_kw.
(Pull #1016)

	Add retry counter for status_forcelist. (Issue #1147)

	Added contrib module for using SecureTransport on macOS:
urllib3.contrib.securetransport. (Pull #1122)

	urllib3 now only normalizes the case of http:// and https:// schemes:
for schemes it does not recognise, it assumes they are case-sensitive and
leaves them unchanged.
(Issue #1080)

1.20 (2017-01-19)

	Added support for waiting for I/O using selectors other than select,
improving urllib3’s behaviour with large numbers of concurrent connections.
(Pull #1001)

	Updated the date for the system clock check. (Issue #1005)

	ConnectionPools now correctly consider hostnames to be case-insensitive.
(Issue #1032)

	Outdated versions of PyOpenSSL now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Pull #1063)

	Outdated versions of cryptography now cause the PyOpenSSL contrib module
to fail when it is injected, rather than at first use. (Issue #1044)

	Automatically attempt to rewind a file-like body object when a request is
retried or redirected. (Pull #1039)

	Fix some bugs that occur when modules incautiously patch the queue module.
(Pull #1061)

	Prevent retries from occuring on read timeouts for which the request method
was not in the method whitelist. (Issue #1059)

	Changed the PyOpenSSL contrib module to lazily load idna to avoid
unnecessarily bloating the memory of programs that don’t need it. (Pull
#1076)

	Add support for IPv6 literals with zone identifiers. (Pull #1013)

	Added support for socks5h:// and socks4a:// schemes when working with SOCKS
proxies, and controlled remote DNS appropriately. (Issue #1035)

1.19.1 (2016-11-16)

	Fixed AppEngine import that didn’t function on Python 3.5. (Pull #1025)

1.19 (2016-11-03)

	urllib3 now respects Retry-After headers on 413, 429, and 503 responses when
using the default retry logic. (Pull #955)

	Remove markers from setup.py to assist ancient setuptools versions. (Issue
#986)

	Disallow superscripts and other integerish things in URL ports. (Issue #989)

	Allow urllib3’s HTTPResponse.stream() method to continue to work with
non-httplib underlying FPs. (Pull #990)

	Empty filenames in multipart headers are now emitted as such, rather than
being supressed. (Issue #1015)

	Prefer user-supplied Host headers on chunked uploads. (Issue #1009)

1.18.1 (2016-10-27)

	CVE-2016-9015. Users who are using urllib3 version 1.17 or 1.18 along with
PyOpenSSL injection and OpenSSL 1.1.0 must upgrade to this version. This
release fixes a vulnerability whereby urllib3 in the above configuration
would silently fail to validate TLS certificates due to erroneously setting
invalid flags in OpenSSL’s SSL_CTX_set_verify function. These erroneous
flags do not cause a problem in OpenSSL versions before 1.1.0, which
interprets the presence of any flag as requesting certificate validation.

There is no PR for this patch, as it was prepared for simultaneous disclosure
and release. The master branch received the same fix in PR #1010.

1.18 (2016-09-26)

	Fixed incorrect message for IncompleteRead exception. (PR #973)

	Accept iPAddress subject alternative name fields in TLS certificates.
(Issue #258)

	Fixed consistency of HTTPResponse.closed between Python 2 and 3.
(Issue #977)

	Fixed handling of wildcard certificates when using PyOpenSSL. (Issue #979)

1.17 (2016-09-06)

	Accept SSLContext objects for use in SSL/TLS negotiation. (Issue #835)

	ConnectionPool debug log now includes scheme, host, and port. (Issue #897)

	Substantially refactored documentation. (Issue #887)

	Used URLFetch default timeout on AppEngine, rather than hardcoding our own.
(Issue #858)

	Normalize the scheme and host in the URL parser (Issue #833)

	HTTPResponse contains the last Retry object, which now also
contains retries history. (Issue #848)

	Timeout can no longer be set as boolean, and must be greater than zero.
(PR #924)

	Removed pyasn1 and ndg-httpsclient from dependencies used for PyOpenSSL. We
now use cryptography and idna, both of which are already dependencies of
PyOpenSSL. (PR #930)

	Fixed infinite loop in stream when amt=None. (Issue #928)

	Try to use the operating system’s certificates when we are using an
SSLContext. (PR #941)

	Updated cipher suite list to allow ChaCha20+Poly1305. AES-GCM is preferred to
ChaCha20, but ChaCha20 is then preferred to everything else. (PR #947)

	Updated cipher suite list to remove 3DES-based cipher suites. (PR #958)

	Removed the cipher suite fallback to allow HIGH ciphers. (PR #958)

	Implemented length_remaining to determine remaining content
to be read. (PR #949)

	Implemented enforce_content_length to enable exceptions when
incomplete data chunks are received. (PR #949)

	Dropped connection start, dropped connection reset, redirect, forced retry,
and new HTTPS connection log levels to DEBUG, from INFO. (PR #967)

1.16 (2016-06-11)

	Disable IPv6 DNS when IPv6 connections are not possible. (Issue #840)

	Provide key_fn_by_scheme pool keying mechanism that can be
overridden. (Issue #830)

	Normalize scheme and host to lowercase for pool keys, and include
source_address. (Issue #830)

	Cleaner exception chain in Python 3 for _make_request.
(Issue #861)

	Fixed installing urllib3[socks] extra. (Issue #864)

	Fixed signature of ConnectionPool.close so it can actually safely be
called by subclasses. (Issue #873)

	Retain release_conn state across retries. (Issues #651, #866)

	Add customizable HTTPConnectionPool.ResponseCls, which defaults to
HTTPResponse but can be replaced with a subclass. (Issue #879)

1.15.1 (2016-04-11)

	Fix packaging to include backports module. (Issue #841)

1.15 (2016-04-06)

	Added Retry(raise_on_status=False). (Issue #720)

	Always use setuptools, no more distutils fallback. (Issue #785)

	Dropped support for Python 3.2. (Issue #786)

	Chunked transfer encoding when requesting with chunked=True.
(Issue #790)

	Fixed regression with IPv6 port parsing. (Issue #801)

	Append SNIMissingWarning messages to allow users to specify it in
the PYTHONWARNINGS environment variable. (Issue #816)

	Handle unicode headers in Py2. (Issue #818)

	Log certificate when there is a hostname mismatch. (Issue #820)

	Preserve order of request/response headers. (Issue #821)

1.14 (2015-12-29)

	contrib: SOCKS proxy support! (Issue #762)

	Fixed AppEngine handling of transfer-encoding header and bug
in Timeout defaults checking. (Issue #763)

1.13.1 (2015-12-18)

	Fixed regression in IPv6 + SSL for match_hostname. (Issue #761)

1.13 (2015-12-14)

	Fixed pip install urllib3[secure] on modern pip. (Issue #706)

	pyopenssl: Fixed SSL3_WRITE_PENDING error. (Issue #717)

	pyopenssl: Support for TLSv1.1 and TLSv1.2. (Issue #696)

	Close connections more defensively on exception. (Issue #734)

	Adjusted read_chunked to handle gzipped, chunk-encoded bodies without
repeatedly flushing the decoder, to function better on Jython. (Issue #743)

	Accept ca_cert_dir for SSL-related PoolManager configuration. (Issue #758)

1.12 (2015-09-03)

	Rely on six for importing httplib to work around
conflicts with other Python 3 shims. (Issue #688)

	Add support for directories of certificate authorities, as supported by
OpenSSL. (Issue #701)

	New exception: NewConnectionError, raised when we fail to establish
a new connection, usually ECONNREFUSED socket error.

1.11 (2015-07-21)

	When ca_certs is given, cert_reqs defaults to
'CERT_REQUIRED'. (Issue #650)

	pip install urllib3[secure] will install Certifi and
PyOpenSSL as dependencies. (Issue #678)

	Made HTTPHeaderDict usable as a headers input value
(Issues #632, #679)

	Added urllib3.contrib.appengine [https://urllib3.readthedocs.io/en/latest/contrib.html#google-app-engine]
which has an AppEngineManager for using URLFetch in a
Google AppEngine environment. (Issue #664)

	Dev: Added test suite for AppEngine. (Issue #631)

	Fix performance regression when using PyOpenSSL. (Issue #626)

	Passing incorrect scheme (e.g. foo://) will raise
ValueError instead of AssertionError (backwards
compatible for now, but please migrate). (Issue #640)

	Fix pools not getting replenished when an error occurs during a
request using release_conn=False. (Issue #644)

	Fix pool-default headers not applying for url-encoded requests
like GET. (Issue #657)

	log.warning in Python 3 when headers are skipped due to parsing
errors. (Issue #642)

	Close and discard connections if an error occurs during read.
(Issue #660)

	Fix host parsing for IPv6 proxies. (Issue #668)

	Separate warning type SubjectAltNameWarning, now issued once
per host. (Issue #671)

	Fix httplib.IncompleteRead not getting converted to
ProtocolError when using HTTPResponse.stream()
(Issue #674)

1.10.4 (2015-05-03)

	Migrate tests to Tornado 4. (Issue #594)

	Append default warning configuration rather than overwrite.
(Issue #603)

	Fix streaming decoding regression. (Issue #595)

	Fix chunked requests losing state across keep-alive connections.
(Issue #599)

	Fix hanging when chunked HEAD response has no body. (Issue #605)

1.10.3 (2015-04-21)

	Emit InsecurePlatformWarning when SSLContext object is missing.
(Issue #558)

	Fix regression of duplicate header keys being discarded.
(Issue #563)

	Response.stream() returns a generator for chunked responses.
(Issue #560)

	Set upper-bound timeout when waiting for a socket in PyOpenSSL.
(Issue #585)

	Work on platforms without ssl module for plain HTTP requests.
(Issue #587)

	Stop relying on the stdlib’s default cipher list. (Issue #588)

1.10.2 (2015-02-25)

	Fix file descriptor leakage on retries. (Issue #548)

	Removed RC4 from default cipher list. (Issue #551)

	Header performance improvements. (Issue #544)

	Fix PoolManager not obeying redirect retry settings. (Issue #553)

1.10.1 (2015-02-10)

	Pools can be used as context managers. (Issue #545)

	Don’t re-use connections which experienced an SSLError. (Issue #529)

	Don’t fail when gzip decoding an empty stream. (Issue #535)

	Add sha256 support for fingerprint verification. (Issue #540)

	Fixed handling of header values containing commas. (Issue #533)

1.10 (2014-12-14)

	Disabled SSLv3. (Issue #473)

	Add Url.url property to return the composed url string. (Issue #394)

	Fixed PyOpenSSL + gevent WantWriteError. (Issue #412)

	MaxRetryError.reason will always be an exception, not string.
(Issue #481)

	Fixed SSL-related timeouts not being detected as timeouts. (Issue #492)

	Py3: Use ssl.create_default_context() when available. (Issue #473)

	Emit InsecureRequestWarning for every insecure HTTPS request.
(Issue #496)

	Emit SecurityWarning when certificate has no subjectAltName.
(Issue #499)

	Close and discard sockets which experienced SSL-related errors.
(Issue #501)

	Handle body param in .request(...). (Issue #513)

	Respect timeout with HTTPS proxy. (Issue #505)

	PyOpenSSL: Handle ZeroReturnError exception. (Issue #520)

1.9.1 (2014-09-13)

	Apply socket arguments before binding. (Issue #427)

	More careful checks if fp-like object is closed. (Issue #435)

	Fixed packaging issues of some development-related files not
getting included. (Issue #440)

	Allow performing only fingerprint verification. (Issue #444)

	Emit SecurityWarning if system clock is waaay off. (Issue #445)

	Fixed PyOpenSSL compatibility with PyPy. (Issue #450)

	Fixed BrokenPipeError and ConnectionError handling in Py3.
(Issue #443)

1.9 (2014-07-04)

	Shuffled around development-related files. If you’re maintaining a distro
package of urllib3, you may need to tweak things. (Issue #415)

	Unverified HTTPS requests will trigger a warning on the first request. See
our new security documentation [https://urllib3.readthedocs.io/en/latest/security.html] for details.
(Issue #426)

	New retry logic and urllib3.util.retry.Retry configuration object.
(Issue #326)

	All raised exceptions should now wrapped in a
urllib3.exceptions.HTTPException-extending exception. (Issue #326)

	All errors during a retry-enabled request should be wrapped in
urllib3.exceptions.MaxRetryError, including timeout-related exceptions
which were previously exempt. Underlying error is accessible from the
.reason propery. (Issue #326)

	urllib3.exceptions.ConnectionError renamed to
urllib3.exceptions.ProtocolError. (Issue #326)

	Errors during response read (such as IncompleteRead) are now wrapped in
urllib3.exceptions.ProtocolError. (Issue #418)

	Requesting an empty host will raise urllib3.exceptions.LocationValueError.
(Issue #417)

	Catch read timeouts over SSL connections as
urllib3.exceptions.ReadTimeoutError. (Issue #419)

	Apply socket arguments before connecting. (Issue #427)

1.8.3 (2014-06-23)

	Fix TLS verification when using a proxy in Python 3.4.1. (Issue #385)

	Add disable_cache option to urllib3.util.make_headers. (Issue #393)

	Wrap socket.timeout exception with
urllib3.exceptions.ReadTimeoutError. (Issue #399)

	Fixed proxy-related bug where connections were being reused incorrectly.
(Issues #366, #369)

	Added socket_options keyword parameter which allows to define
setsockopt configuration of new sockets. (Issue #397)

	Removed HTTPConnection.tcp_nodelay in favor of
HTTPConnection.default_socket_options. (Issue #397)

	Fixed TypeError bug in Python 2.6.4. (Issue #411)

1.8.2 (2014-04-17)

	Fix urllib3.util not being included in the package.

1.8.1 (2014-04-17)

	Fix AppEngine bug of HTTPS requests going out as HTTP. (Issue #356)

	Don’t install dummyserver into site-packages as it’s only needed
for the test suite. (Issue #362)

	Added support for specifying source_address. (Issue #352)

1.8 (2014-03-04)

	Improved url parsing in urllib3.util.parse_url (properly parse ‘@’ in
username, and blank ports like ‘hostname:’).

	New urllib3.connection module which contains all the HTTPConnection
objects.

	Several urllib3.util.Timeout-related fixes. Also changed constructor
signature to a more sensible order. [Backwards incompatible]
(Issues #252, #262, #263)

	Use backports.ssl_match_hostname if it’s installed. (Issue #274)

	Added .tell() method to urllib3.response.HTTPResponse which
returns the number of bytes read so far. (Issue #277)

	Support for platforms without threading. (Issue #289)

	Expand default-port comparison in HTTPConnectionPool.is_same_host
to allow a pool with no specified port to be considered equal to to an
HTTP/HTTPS url with port 80/443 explicitly provided. (Issue #305)

	Improved default SSL/TLS settings to avoid vulnerabilities.
(Issue #309)

	Fixed urllib3.poolmanager.ProxyManager not retrying on connect errors.
(Issue #310)

	Disable Nagle’s Algorithm on the socket for non-proxies. A subset of requests
will send the entire HTTP request ~200 milliseconds faster; however, some of
the resulting TCP packets will be smaller. (Issue #254)

	Increased maximum number of SubjectAltNames in urllib3.contrib.pyopenssl
from the default 64 to 1024 in a single certificate. (Issue #318)

	Headers are now passed and stored as a custom
urllib3.collections_.HTTPHeaderDict object rather than a plain dict.
(Issue #329, #333)

	Headers no longer lose their case on Python 3. (Issue #236)

	urllib3.contrib.pyopenssl now uses the operating system’s default CA
certificates on inject. (Issue #332)

	Requests with retries=False will immediately raise any exceptions without
wrapping them in MaxRetryError. (Issue #348)

	Fixed open socket leak with SSL-related failures. (Issue #344, #348)

1.7.1 (2013-09-25)

	Added granular timeout support with new urllib3.util.Timeout class.
(Issue #231)

	Fixed Python 3.4 support. (Issue #238)

1.7 (2013-08-14)

	More exceptions are now pickle-able, with tests. (Issue #174)

	Fixed redirecting with relative URLs in Location header. (Issue #178)

	Support for relative urls in Location: ... header. (Issue #179)

	urllib3.response.HTTPResponse now inherits from io.IOBase for bonus
file-like functionality. (Issue #187)

	Passing assert_hostname=False when creating a HTTPSConnectionPool will
skip hostname verification for SSL connections. (Issue #194)

	New method urllib3.response.HTTPResponse.stream(...) which acts as a
generator wrapped around .read(...). (Issue #198)

	IPv6 url parsing enforces brackets around the hostname. (Issue #199)

	Fixed thread race condition in
urllib3.poolmanager.PoolManager.connection_from_host(...) (Issue #204)

	ProxyManager requests now include non-default port in Host: ...
header. (Issue #217)

	Added HTTPS proxy support in ProxyManager. (Issue #170 #139)

	New RequestField object can be passed to the fields=... param which
can specify headers. (Issue #220)

	Raise urllib3.exceptions.ProxyError when connecting to proxy fails.
(Issue #221)

	Use international headers when posting file names. (Issue #119)

	Improved IPv6 support. (Issue #203)

1.6 (2013-04-25)

	Contrib: Optional SNI support for Py2 using PyOpenSSL. (Issue #156)

	ProxyManager automatically adds Host: ... header if not given.

	Improved SSL-related code. cert_req now optionally takes a string like
“REQUIRED” or “NONE”. Same with ssl_version takes strings like “SSLv23”
The string values reflect the suffix of the respective constant variable.
(Issue #130)

	Vendored socksipy now based on Anorov’s fork which handles unexpectedly
closed proxy connections and larger read buffers. (Issue #135)

	Ensure the connection is closed if no data is received, fixes connection leak
on some platforms. (Issue #133)

	Added SNI support for SSL/TLS connections on Py32+. (Issue #89)

	Tests fixed to be compatible with Py26 again. (Issue #125)

	Added ability to choose SSL version by passing an ssl.PROTOCOL_* constant
to the ssl_version parameter of HTTPSConnectionPool. (Issue #109)

	Allow an explicit content type to be specified when encoding file fields.
(Issue #126)

	Exceptions are now pickleable, with tests. (Issue #101)

	Fixed default headers not getting passed in some cases. (Issue #99)

	Treat “content-encoding” header value as case-insensitive, per RFC 2616
Section 3.5. (Issue #110)

	“Connection Refused” SocketErrors will get retried rather than raised.
(Issue #92)

	Updated vendored six, no longer overrides the global six module
namespace. (Issue #113)

	urllib3.exceptions.MaxRetryError contains a reason property holding
the exception that prompted the final retry. If reason is None then it
was due to a redirect. (Issue #92, #114)

	Fixed PoolManager.urlopen() from not redirecting more than once.
(Issue #149)

	Don’t assume Content-Type: text/plain for multi-part encoding parameters
that are not files. (Issue #111)

	Pass strict param down to httplib.HTTPConnection. (Issue #122)

	Added mechanism to verify SSL certificates by fingerprint (md5, sha1) or
against an arbitrary hostname (when connecting by IP or for misconfigured
servers). (Issue #140)

	Streaming decompression support. (Issue #159)

1.5 (2012-08-02)

	Added urllib3.add_stderr_logger() for quickly enabling STDERR debug
logging in urllib3.

	Native full URL parsing (including auth, path, query, fragment) available in
urllib3.util.parse_url(url).

	Built-in redirect will switch method to ‘GET’ if status code is 303.
(Issue #11)

	urllib3.PoolManager strips the scheme and host before sending the request
uri. (Issue #8)

	New urllib3.exceptions.DecodeError exception for when automatic decoding,
based on the Content-Type header, fails.

	Fixed bug with pool depletion and leaking connections (Issue #76). Added
explicit connection closing on pool eviction. Added
urllib3.PoolManager.clear().

	99% -> 100% unit test coverage.

1.4 (2012-06-16)

	Minor AppEngine-related fixes.

	Switched from mimetools.choose_boundary to uuid.uuid4().

	Improved url parsing. (Issue #73)

	IPv6 url support. (Issue #72)

1.3 (2012-03-25)

	Removed pre-1.0 deprecated API.

	Refactored helpers into a urllib3.util submodule.

	Fixed multipart encoding to support list-of-tuples for keys with multiple
values. (Issue #48)

	Fixed multiple Set-Cookie headers in response not getting merged properly in
Python 3. (Issue #53)

	AppEngine support with Py27. (Issue #61)

	Minor encode_multipart_formdata fixes related to Python 3 strings vs
bytes.

1.2.2 (2012-02-06)

	Fixed packaging bug of not shipping test-requirements.txt. (Issue #47)

1.2.1 (2012-02-05)

	Fixed another bug related to when ssl module is not available. (Issue #41)

	Location parsing errors now raise urllib3.exceptions.LocationParseError
which inherits from ValueError.

1.2 (2012-01-29)

	Added Python 3 support (tested on 3.2.2)

	Dropped Python 2.5 support (tested on 2.6.7, 2.7.2)

	Use select.poll instead of select.select for platforms that support
it.

	Use Queue.LifoQueue instead of Queue.Queue for more aggressive
connection reusing. Configurable by overriding ConnectionPool.QueueCls.

	Fixed ImportError during install when ssl module is not available.
(Issue #41)

	Fixed PoolManager redirects between schemes (such as HTTP -> HTTPS) not
completing properly. (Issue #28, uncovered by Issue #10 in v1.1)

	Ported dummyserver to use tornado instead of webob +
eventlet. Removed extraneous unsupported dummyserver testing backends.
Added socket-level tests.

	More tests. Achievement Unlocked: 99% Coverage.

1.1 (2012-01-07)

	Refactored dummyserver to its own root namespace module (used for
testing).

	Added hostname verification for VerifiedHTTPSConnection by vendoring in
Py32’s ssl_match_hostname. (Issue #25)

	Fixed cross-host HTTP redirects when using PoolManager. (Issue #10)

	Fixed decode_content being ignored when set through urlopen. (Issue
#27)

	Fixed timeout-related bugs. (Issues #17, #23)

1.0.2 (2011-11-04)

	Fixed typo in VerifiedHTTPSConnection which would only present as a bug if
you’re using the object manually. (Thanks pyos)

	Made RecentlyUsedContainer (and consequently PoolManager) more thread-safe by
wrapping the access log in a mutex. (Thanks @christer)

	Made RecentlyUsedContainer more dict-like (corrected __delitem__ and
__getitem__ behaviour), with tests. Shouldn’t affect core urllib3 code.

1.0.1 (2011-10-10)

	Fixed a bug where the same connection would get returned into the pool twice,
causing extraneous “HttpConnectionPool is full” log warnings.

1.0 (2011-10-08)

	Added PoolManager with LRU expiration of connections (tested and
documented).

	Added ProxyManager (needs tests, docs, and confirmation that it works
with HTTPS proxies).

	Added optional partial-read support for responses when
preload_content=False. You can now make requests and just read the headers
without loading the content.

	Made response decoding optional (default on, same as before).

	Added optional explicit boundary string for encode_multipart_formdata.

	Convenience request methods are now inherited from RequestMethods. Old
helpers like get_url and post_url should be abandoned in favour of
the new request(method, url, ...).

	Refactored code to be even more decoupled, reusable, and extendable.

	License header added to .py files.

	Embiggened the documentation: Lots of Sphinx-friendly docstrings in the code
and docs in docs/ and on urllib3.readthedocs.org.

	Embettered all the things!

	Started writing this file.

0.4.1 (2011-07-17)

	Minor bug fixes, code cleanup.

0.4 (2011-03-01)

	Better unicode support.

	Added VerifiedHTTPSConnection.

	Added NTLMConnectionPool in contrib.

	Minor improvements.

0.3.1 (2010-07-13)

	Added assert_host_name optional parameter. Now compatible with proxies.

0.3 (2009-12-10)

	Added HTTPS support.

	Minor bug fixes.

	Refactored, broken backwards compatibility with 0.2.

	API to be treated as stable from this version forward.

0.2 (2008-11-17)

	Added unit tests.

	Bug fixes.

0.1 (2008-11-16)

	First release.

Internationalized Domain Names in Applications (IDNA)

Support for the Internationalised Domain Names in Applications
(IDNA) protocol as specified in RFC 5891 [http://tools.ietf.org/html/rfc5891].
This is the latest version of the protocol and is sometimes referred to as
“IDNA 2008”.

This library also provides support for Unicode Technical Standard 46,
Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/].

This acts as a suitable replacement for the “encodings.idna” module that
comes with the Python standard library, but only supports the
old, deprecated IDNA specification (RFC 3490 [http://tools.ietf.org/html/rfc3490]).

Basic functions are simply executed:

Python 3
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト

Python 2
>>> import idna
>>> idna.encode(u'ドメイン.テスト')
'xn--eckwd4c7c.xn--zckzah'
>>> print idna.decode('xn--eckwd4c7c.xn--zckzah')
ドメイン.テスト

Packages

The latest tagged release version is published in the PyPI repository:

[image: https://badge.fury.io/py/idna.svg]
 [http://badge.fury.io/py/idna]

Installation

To install this library, you can use pip:

$ pip install idna

Alternatively, you can install the package using the bundled setup script:

$ python setup.py install

This library works with Python 2.6 or later, and Python 3.3 or later.

Usage

For typical usage, the encode and decode functions will take a domain
name argument and perform a conversion to A-labels or U-labels respectively.

Python 3
>>> import idna
>>> idna.encode('ドメイン.テスト')
b'xn--eckwd4c7c.xn--zckzah'
>>> print(idna.decode('xn--eckwd4c7c.xn--zckzah'))
ドメイン.テスト

You may use the codec encoding and decoding methods using the
idna.codec module:

Python 2
>>> import idna.codec
>>> print u'домена.испытание'.encode('idna')
xn--80ahd1agd.xn--80akhbyknj4f
>>> print 'xn--80ahd1agd.xn--80akhbyknj4f'.decode('idna')
домена.испытание

Conversions can be applied at a per-label basis using the ulabel or alabel
functions if necessary:

Python 2
>>> idna.alabel(u'测试')
'xn--0zwm56d'

Compatibility Mapping (UTS #46)

As described in RFC 5895 [http://tools.ietf.org/html/rfc5895], the IDNA
specification no longer normalizes input from different potential ways a user
may input a domain name. This functionality, known as a “mapping”, is now
considered by the specification to be a local user-interface issue distinct
from IDNA conversion functionality.

This library provides one such mapping, that was developed by the Unicode
Consortium. Known as Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/],
it provides for both a regular mapping for typical applications, as well as
a transitional mapping to help migrate from older IDNA 2003 applications.

For example, “Königsgäßchen” is not a permissible label as LATIN CAPITAL
LETTER K is not allowed (nor are capital letters in general). UTS 46 will
convert this into lower case prior to applying the IDNA conversion.

Python 3
>>> import idna
>>> idna.encode(u'Königsgäßchen')
...
idna.core.InvalidCodepoint: Codepoint U+004B at position 1 of 'Königsgäßchen' not allowed
>>> idna.encode('Königsgäßchen', uts46=True)
b'xn--knigsgchen-b4a3dun'
>>> print(idna.decode('xn--knigsgchen-b4a3dun'))
königsgäßchen

Transitional processing provides conversions to help transition from the older
2003 standard to the current standard. For example, in the original IDNA
specification, the LATIN SMALL LETTER SHARP S (ß) was converted into two
LATIN SMALL LETTER S (ss), whereas in the current IDNA specification this
conversion is not performed.

Python 2
>>> idna.encode(u'Königsgäßchen', uts46=True, transitional=True)
'xn--knigsgsschen-lcb0w'

Implementors should use transitional processing with caution, only in rare
cases where conversion from legacy labels to current labels must be performed
(i.e. IDNA implementations that pre-date 2008). For typical applications
that just need to convert labels, transitional processing is unlikely to be
beneficial and could produce unexpected incompatible results.

encodings.idna Compatibility

Function calls from the Python built-in encodings.idna module are
mapped to their IDNA 2008 equivalents using the idna.compat module.
Simply substitute the import clause in your code to refer to the
new module name.

Exceptions

All errors raised during the conversion following the specification should
raise an exception derived from the idna.IDNAError base class.

More specific exceptions that may be generated as idna.IDNABidiError
when the error reflects an illegal combination of left-to-right and right-to-left
characters in a label; idna.InvalidCodepoint when a specific codepoint is
an illegal character in an IDN label (i.e. INVALID); and idna.InvalidCodepointContext
when the codepoint is illegal based on its positional context (i.e. it is CONTEXTO
or CONTEXTJ but the contextual requirements are not satisfied.)

Building and Diagnostics

The IDNA and UTS 46 functionality relies upon pre-calculated lookup tables for
performance. These tables are derived from computing against eligibility criteria
in the respective standards. These tables are computed using the command-line
script tools/idna-data.

This tool will fetch relevant tables from the Unicode Consortium and perform the
required calculations to identify eligibility. It has three main modes:

	idna-data make-libdata. Generates idnadata.py and uts46data.py,
the pre-calculated lookup tables using for IDNA and UTS 46 conversions. Implementors
who wish to track this library against a different Unicode version may use this tool
to manually generate a different version of the idnadata.py and uts46data.py
files.

	idna-data make-table. Generate a table of the IDNA disposition
(e.g. PVALID, CONTEXTJ, CONTEXTO) in the format found in Appendix B.1 of RFC
5892 and the pre-computed tables published by IANA [http://iana.org/].

	idna-data U+0061. Prints debugging output on the various properties
associated with an individual Unicode codepoint (in this case, U+0061), that are
used to assess the IDNA and UTS 46 status of a codepoint. This is helpful in debugging
or analysis.

The tool accepts a number of arguments, described using idna-data -h. Most notably,
the --version argument allows the specification of the version of Unicode to use
in computing the table data. For example, idna-data --version 9.0.0 make-libdata
will generate library data against Unicode 9.0.0.

Note that this script requires Python 3, but all generated library data will work
in Python 2.6+.

Testing

The library has a test suite based on each rule of the IDNA specification, as
well as tests that are provided as part of the Unicode Technical Standard 46,
Unicode IDNA Compatibility Processing [http://unicode.org/reports/tr46/].

The tests are run automatically on each commit at Travis CI:

[image: https://travis-ci.org/kjd/idna.svg?branch=master]
 [https://travis-ci.org/kjd/idna]

 [image: https://readthedocs.org/projects/setuptools/badge/?version=latest]
 [https://setuptools.readthedocs.io]See the Installation Instructions [https://packaging.python.org/installing/] in the Python Packaging
User’s Guide for instructions on installing, upgrading, and uninstalling
Setuptools.

The project is maintained at GitHub [https://github.com/pypa/setuptools].

Questions and comments should be directed to the distutils-sig
mailing list [http://mail.python.org/pipermail/distutils-sig/].
Bug reports and especially tested patches may be
submitted directly to the bug tracker [https://github.com/pypa/setuptools/issues].

Code of Conduct

Everyone interacting in the setuptools project’s codebases, issue trackers,
chat rooms, and mailing lists is expected to follow the
PyPA Code of Conduct [https://www.pypa.io/en/latest/code-of-conduct/].

 Docutils is a modular system for processing documentation
into useful formats, such as HTML, XML, and LaTeX. For
input Docutils supports reStructuredText, an easy-to-read,
what-you-see-is-what-you-get plaintext markup syntax.

What is Alabaster?

Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx [http://sphinx-doc.org] documentation system. It is Python 2+3 compatible.

It began as a third-party theme, and is still maintained separately, but as of
Sphinx 1.3, Alabaster is an install-time dependency of Sphinx and is selected
as the default theme.

Live examples of this theme can be seen on this project’s own website [http://alabaster.readthedocs.io], paramiko.org [http://paramiko.org],
fabfile.org [http://fabfile.org] and pyinvoke.org [http://pyinvoke.org].

For more documentation, please see http://alabaster.readthedocs.io.

Note

You can install the development version via pip install -e
git+https://github.com/bitprophet/alabaster/#egg=alabaster.

 Sphinx is a tool that makes it easy to create intelligent and beautiful
documentation for Python projects (or other documents consisting of multiple
reStructuredText sources), written by Georg Brandl. It was originally created
for the new Python documentation, and has excellent facilities for Python
project documentation, but C/C++ is supported as well, and more languages are
planned.

Sphinx uses reStructuredText as its markup language, and many of its strengths
come from the power and straightforwardness of reStructuredText and its parsing
and translating suite, the Docutils.

Among its features are the following:

	Output formats: HTML (including derivative formats such as HTML Help, Epub
and Qt Help), plain text, manual pages and LaTeX or direct PDF output
using rst2pdf

	Extensive cross-references: semantic markup and automatic links
for functions, classes, glossary terms and similar pieces of information

	Hierarchical structure: easy definition of a document tree, with automatic
links to siblings, parents and children

	Automatic indices: general index as well as a module index

	Code handling: automatic highlighting using the Pygments highlighter

	Flexible HTML output using the Jinja 2 templating engine

	Various extensions are available, e.g. for automatic testing of snippets
and inclusion of appropriately formatted docstrings

	Setuptools integration

 sphinxcontrib-webuspport provides a Python API to easily integrate Sphinx
documentation into your Web application.

MarkupSafe

Implements a unicode subclass that supports HTML strings:

>>> from markupsafe import Markup, escape
>>> escape("<script>alert(document.cookie);</script>")
Markup(u'<script>alert(document.cookie);</script>')
>>> tmpl = Markup("%s")
>>> tmpl % "Peter > Lustig"
Markup(u'Peter > Lustig')

If you want to make an object unicode that is not yet unicode
but don’t want to lose the taint information, you can use the
soft_unicode function. (On Python 3 you can also use soft_str which
is a different name for the same function).

>>> from markupsafe import soft_unicode
>>> soft_unicode(42)
u'42'
>>> soft_unicode(Markup('foo'))
Markup(u'foo')

HTML Representations

Objects can customize their HTML markup equivalent by overriding
the __html__ function:

>>> class Foo(object):
... def __html__(self):
... return 'Nice'
...
>>> escape(Foo())
Markup(u'Nice')
>>> Markup(Foo())
Markup(u'Nice')

Silent Escapes

Since MarkupSafe 0.10 there is now also a separate escape function
called escape_silent that returns an empty string for None for
consistency with other systems that return empty strings for None
when escaping (for instance Pylons’ webhelpers).

If you also want to use this for the escape method of the Markup
object, you can create your own subclass that does that:

from markupsafe import Markup, escape_silent as escape

class SilentMarkup(Markup):
 __slots__ = ()

 @classmethod
 def escape(cls, s):
 return cls(escape(s))

New-Style String Formatting

Starting with MarkupSafe 0.21 new style string formats from Python 2.6 and
3.x are now fully supported. Previously the escape behavior of those
functions was spotty at best. The new implementations operates under the
following algorithm:

	if an object has an __html_format__ method it is called as
replacement for __format__ with the format specifier. It either
has to return a string or markup object.

	if an object has an __html__ method it is called.

	otherwise the default format system of Python kicks in and the result
is HTML escaped.

Here is how you can implement your own formatting:

class User(object):

 def __init__(self, id, username):
 self.id = id
 self.username = username

 def __html_format__(self, format_spec):
 if format_spec == 'link':
 return Markup('{1}').format(
 self.id,
 self.__html__(),
)
 elif format_spec:
 raise ValueError('Invalid format spec')
 return self.__html__()

 def __html__(self):
 return Markup('{0}').format(self.username)

And to format that user:

>>> user = User(1, 'foo')
>>> Markup('<p>User: {0:link}').format(user)
Markup(u'<p>User: foo')

Markupsafe supports Python 2.6, 2.7 and Python 3.3 and higher.

 It parses image files’ header and return image size.

	PNG

	JPEG

	JPEG2000

	GIF

This is a pure Python library.

Requests: HTTP for Humans

[image: https://img.shields.io/pypi/v/requests.svg]
 [https://pypi.python.org/pypi/requests][image: https://img.shields.io/pypi/l/requests.svg]
 [https://pypi.python.org/pypi/requests][image: https://img.shields.io/pypi/pyversions/requests.svg]
 [https://pypi.python.org/pypi/requests][image: codecov.io]
 [https://codecov.io/github/requests/requests][image: https://img.shields.io/github/contributors/requests/requests.svg]
 [https://github.com/requests/requests/graphs/contributors][image: https://img.shields.io/badge/Say%20Thanks-!-1EAEDB.svg]
 [https://saythanks.io/to/kennethreitz]Requests is the only Non-GMO HTTP library for Python, safe for human
consumption.

Warning: Recreational use of the Python standard library for HTTP may result in dangerous side-effects,
including: security vulnerabilities, verbose code, reinventing the wheel,
constantly reading documentation, depression, headaches, or even death.

Behold, the power of Requests:

>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
>>> r.status_code
200
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
>>> r.text
u'{"type":"User"...'
>>> r.json()
{u'disk_usage': 368627, u'private_gists': 484, ...}

See the similar code, sans Requests [https://gist.github.com/973705].

[image: https://raw.githubusercontent.com/requests/requests/master/docs/_static/requests-logo-small.png]
 [http://docs.python-requests.org/]Requests allows you to send organic, grass-fed HTTP/1.1 requests, without the
need for manual labor. There’s no need to manually add query strings to your
URLs, or to form-encode your POST data. Keep-alive and HTTP connection pooling
are 100% automatic, thanks to urllib3 [https://github.com/shazow/urllib3].

Besides, all the cool kids are doing it. Requests is one of the most
downloaded Python packages of all time, pulling in over 11,000,000 downloads
every month. You don’t want to be left out!

Feature Support

Requests is ready for today’s web.

	International Domains and URLs

	Keep-Alive & Connection Pooling

	Sessions with Cookie Persistence

	Browser-style SSL Verification

	Basic/Digest Authentication

	Elegant Key/Value Cookies

	Automatic Decompression

	Automatic Content Decoding

	Unicode Response Bodies

	Multipart File Uploads

	HTTP(S) Proxy Support

	Connection Timeouts

	Streaming Downloads

	.netrc Support

	Chunked Requests

Requests officially supports Python 2.6–2.7 & 3.3–3.7, and runs great on PyPy.

Installation

To install Requests, simply:

$ pip install requests
✨🍰✨

Satisfaction guaranteed.

Documentation

Fantastic documentation is available at http://docs.python-requests.org/, for a limited time only.

How to Contribute

	Check for open issues or open a fresh issue to start a discussion around a feature idea or a bug. There is a Contributor Friendly [https://github.com/requests/requests/issues?direction=desc&labels=Contributor+Friendly&page=1&sort=updated&state=open] tag for issues that should be ideal for people who are not very familiar with the codebase yet.

	Fork the repository [http://github.com/requests/requests] on GitHub to start making your changes to the master branch (or branch off of it).

	Write a test which shows that the bug was fixed or that the feature works as expected.

	Send a pull request and bug the maintainer until it gets merged and published. :) Make sure to add yourself to AUTHORS [https://github.com/requests/requests/blob/master/AUTHORS.rst].

Release History

2.18.4 (2017-08-15)

Improvements

	Error messages for invalid headers now include the header name for easier debugging

Dependencies

	We now support idna v2.6.

2.18.3 (2017-08-02)

Improvements

	Running $ python -m requests.help now includes the installed version of idna.

Bugfixes

	Fixed issue where Requests would raise ConnectionError instead of
SSLError when encountering SSL problems when using urllib3 v1.22.

2.18.2 (2017-07-25)

Bugfixes

	requests.help no longer fails on Python 2.6 due to the absence of
ssl.OPENSSL_VERSION_NUMBER.

Dependencies

	We now support urllib3 v1.22.

2.18.1 (2017-06-14)

Bugfixes

	Fix an error in the packaging whereby the *.whl contained incorrect data that
regressed the fix in v2.17.3.

2.18.0 (2017-06-14)

Improvements

	Response is now a context manager, so can be used directly in a with statement
without first having to be wrapped by contextlib.closing().

Bugfixes

	Resolve installation failure if multiprocessing is not available

	Resolve tests crash if multiprocessing is not able to determine the number of CPU cores

	Resolve error swallowing in utils set_environ generator

2.17.3 (2017-05-29)

Improvements

	Improved packages namespace identity support, for monkeypatching libraries.

2.17.2 (2017-05-29)

Improvements

	Improved packages namespace identity support, for monkeypatching libraries.

2.17.1 (2017-05-29)

Improvements

	Improved packages namespace identity support, for monkeypatching libraries.

2.17.0 (2017-05-29)

Improvements

	Removal of the 301 redirect cache. This improves thread-safety.

2.16.5 (2017-05-28)

	Improvements to $ python -m requests.help.

2.16.4 (2017-05-27)

	Introduction of the $ python -m requests.help command, for debugging with maintainers!

2.16.3 (2017-05-27)

	Further restored the requests.packages namespace for compatibility reasons.

2.16.2 (2017-05-27)

	Further restored the requests.packages namespace for compatibility reasons.

No code modification (noted below) should be neccessary any longer.

2.16.1 (2017-05-27)

	Restored the requests.packages namespace for compatibility reasons.

	Bugfix for urllib3 version parsing.

Note: code that was written to import against the requests.packages
namespace previously will have to import code that rests at this module-level
now.

For example:

from requests.packages.urllib3.poolmanager import PoolManager

Will need to be re-written to be:

from requests.packages import urllib3
urllib3.poolmanager.PoolManager

Or, even better:

from urllib3.poolmanager import PoolManager

2.16.0 (2017-05-26)

	Unvendor ALL the things!

2.15.1 (2017-05-26)

	Everyone makes mistakes.

2.15.0 (2017-05-26)

Improvements

	Introduction of the Response.next property, for getting the next
PreparedResponse from a redirect chain (when allow_redirects=False).

	Internal refactoring of __version__ module.

Bugfixes

	Restored once-optional parameter for requests.utils.get_environ_proxies().

2.14.2 (2017-05-10)

Bugfixes

	Changed a less-than to an equal-to and an or in the dependency markers to
widen compatibility with older setuptools releases.

2.14.1 (2017-05-09)

Bugfixes

	Changed the dependency markers to widen compatibility with older pip
releases.

2.14.0 (2017-05-09)

Improvements

	It is now possible to pass no_proxy as a key to the proxies
dictionary to provide handling similar to the NO_PROXY environment
variable.

	When users provide invalid paths to certificate bundle files or directories
Requests now raises IOError, rather than failing at the time of the HTTPS
request with a fairly inscrutable certificate validation error.

	The behavior of SessionRedirectMixin was slightly altered.
resolve_redirects will now detect a redirect by calling
get_redirect_target(response) instead of directly
querying Response.is_redirect and Response.headers['location'].
Advanced users will be able to process malformed redirects more easily.

	Changed the internal calculation of elapsed request time to have higher
resolution on Windows.

	Added win_inet_pton as conditional dependency for the [socks] extra
on Windows with Python 2.7.

	Changed the proxy bypass implementation on Windows: the proxy bypass
check doesn’t use forward and reverse DNS requests anymore

	URLs with schemes that begin with http but are not http or https
no longer have their host parts forced to lowercase.

Bugfixes

	Much improved handling of non-ASCII Location header values in redirects.
Fewer UnicodeDecodeErrors are encountered on Python 2, and Python 3 now
correctly understands that Latin-1 is unlikely to be the correct encoding.

	If an attempt to seek file to find out its length fails, we now
appropriately handle that by aborting our content-length calculations.

	Restricted HTTPDigestAuth to only respond to auth challenges made on 4XX
responses, rather than to all auth challenges.

	Fixed some code that was firing DeprecationWarning on Python 3.6.

	The dismayed person emoticon (/o\\) no longer has a big head. I’m sure
this is what you were all worrying about most.

Miscellaneous

	Updated bundled urllib3 to v1.21.1.

	Updated bundled chardet to v3.0.2.

	Updated bundled idna to v2.5.

	Updated bundled certifi to 2017.4.17.

2.13.0 (2017-01-24)

Features

	Only load the idna library when we’ve determined we need it. This will
save some memory for users.

Miscellaneous

	Updated bundled urllib3 to 1.20.

	Updated bundled idna to 2.2.

2.12.5 (2017-01-18)

Bugfixes

	Fixed an issue with JSON encoding detection, specifically detecting
big-endian UTF-32 with BOM.

2.12.4 (2016-12-14)

Bugfixes

	Fixed regression from 2.12.2 where non-string types were rejected in the
basic auth parameters. While support for this behaviour has been readded,
the behaviour is deprecated and will be removed in the future.

2.12.3 (2016-12-01)

Bugfixes

	Fixed regression from v2.12.1 for URLs with schemes that begin with “http”.
These URLs have historically been processed as though they were HTTP-schemed
URLs, and so have had parameters added. This was removed in v2.12.2 in an
overzealous attempt to resolve problems with IDNA-encoding those URLs. This
change was reverted: the other fixes for IDNA-encoding have been judged to
be sufficient to return to the behaviour Requests had before v2.12.0.

2.12.2 (2016-11-30)

Bugfixes

	Fixed several issues with IDNA-encoding URLs that are technically invalid but
which are widely accepted. Requests will now attempt to IDNA-encode a URL if
it can but, if it fails, and the host contains only ASCII characters, it will
be passed through optimistically. This will allow users to opt-in to using
IDNA2003 themselves if they want to, and will also allow technically invalid
but still common hostnames.

	Fixed an issue where URLs with leading whitespace would raise
InvalidSchema errors.

	Fixed an issue where some URLs without the HTTP or HTTPS schemes would still
have HTTP URL preparation applied to them.

	Fixed an issue where Unicode strings could not be used in basic auth.

	Fixed an issue encountered by some Requests plugins where constructing a
Response object would cause Response.content to raise an
AttributeError.

2.12.1 (2016-11-16)

Bugfixes

	Updated setuptools ‘security’ extra for the new PyOpenSSL backend in urllib3.

Miscellaneous

	Updated bundled urllib3 to 1.19.1.

2.12.0 (2016-11-15)

Improvements

	Updated support for internationalized domain names from IDNA2003 to IDNA2008.
This updated support is required for several forms of IDNs and is mandatory
for .de domains.

	Much improved heuristics for guessing content lengths: Requests will no
longer read an entire StringIO into memory.

	Much improved logic for recalculating Content-Length headers for
PreparedRequest objects.

	Improved tolerance for file-like objects that have no tell method but
do have a seek method.

	Anything that is a subclass of Mapping is now treated like a dictionary
by the data= keyword argument.

	Requests now tolerates empty passwords in proxy credentials, rather than
stripping the credentials.

	If a request is made with a file-like object as the body and that request is
redirected with a 307 or 308 status code, Requests will now attempt to
rewind the body object so it can be replayed.

Bugfixes

	When calling response.close, the call to close will be propagated
through to non-urllib3 backends.

	Fixed issue where the ALL_PROXY environment variable would be preferred
over scheme-specific variables like HTTP_PROXY.

	Fixed issue where non-UTF8 reason phrases got severely mangled by falling
back to decoding using ISO 8859-1 instead.

	Fixed a bug where Requests would not correctly correlate cookies set when
using custom Host headers if those Host headers did not use the native
string type for the platform.

Miscellaneous

	Updated bundled urllib3 to 1.19.

	Updated bundled certifi certs to 2016.09.26.

2.11.1 (2016-08-17)

Bugfixes

	Fixed a bug when using iter_content with decode_unicode=True for
streamed bodies would raise AttributeError. This bug was introduced in
2.11.

	Strip Content-Type and Transfer-Encoding headers from the header block when
following a redirect that transforms the verb from POST/PUT to GET.

2.11.0 (2016-08-08)

Improvements

	Added support for the ALL_PROXY environment variable.

	Reject header values that contain leading whitespace or newline characters to
reduce risk of header smuggling.

Bugfixes

	Fixed occasional TypeError when attempting to decode a JSON response that
occurred in an error case. Now correctly returns a ValueError.

	Requests would incorrectly ignore a non-CIDR IP address in the NO_PROXY
environment variables: Requests now treats it as a specific IP.

	Fixed a bug when sending JSON data that could cause us to encounter obscure
OpenSSL errors in certain network conditions (yes, really).

	Added type checks to ensure that iter_content only accepts integers and
None for chunk sizes.

	Fixed issue where responses whose body had not been fully consumed would have
the underlying connection closed but not returned to the connection pool,
which could cause Requests to hang in situations where the HTTPAdapter
had been configured to use a blocking connection pool.

Miscellaneous

	Updated bundled urllib3 to 1.16.

	Some previous releases accidentally accepted non-strings as acceptable header values. This release does not.

2.10.0 (2016-04-29)

New Features

	SOCKS Proxy Support! (requires PySocks; $ pip install requests[socks])

Miscellaneous

	Updated bundled urllib3 to 1.15.1.

2.9.2 (2016-04-29)

Improvements

	Change built-in CaseInsensitiveDict (used for headers) to use OrderedDict
as its underlying datastore.

Bugfixes

	Don’t use redirect_cache if allow_redirects=False

	When passed objects that throw exceptions from tell(), send them via
chunked transfer encoding instead of failing.

	Raise a ProxyError for proxy related connection issues.

2.9.1 (2015-12-21)

Bugfixes

	Resolve regression introduced in 2.9.0 that made it impossible to send binary
strings as bodies in Python 3.

	Fixed errors when calculating cookie expiration dates in certain locales.

Miscellaneous

	Updated bundled urllib3 to 1.13.1.

2.9.0 (2015-12-15)

Minor Improvements (Backwards compatible)

	The verify keyword argument now supports being passed a path to a
directory of CA certificates, not just a single-file bundle.

	Warnings are now emitted when sending files opened in text mode.

	Added the 511 Network Authentication Required status code to the status code
registry.

Bugfixes

	For file-like objects that are not seeked to the very beginning, we now
send the content length for the number of bytes we will actually read, rather
than the total size of the file, allowing partial file uploads.

	When uploading file-like objects, if they are empty or have no obvious
content length we set Transfer-Encoding: chunked rather than
Content-Length: 0.

	We correctly receive the response in buffered mode when uploading chunked
bodies.

	We now handle being passed a query string as a bytestring on Python 3, by
decoding it as UTF-8.

	Sessions are now closed in all cases (exceptional and not) when using the
functional API rather than leaking and waiting for the garbage collector to
clean them up.

	Correctly handle digest auth headers with a malformed qop directive that
contains no token, by treating it the same as if no qop directive was
provided at all.

	Minor performance improvements when removing specific cookies by name.

Miscellaneous

	Updated urllib3 to 1.13.

2.8.1 (2015-10-13)

Bugfixes

	Update certificate bundle to match certifi 2015.9.6.2’s weak certificate
bundle.

	Fix a bug in 2.8.0 where requests would raise ConnectTimeout instead of
ConnectionError

	When using the PreparedRequest flow, requests will now correctly respect the
json parameter. Broken in 2.8.0.

	When using the PreparedRequest flow, requests will now correctly handle a
Unicode-string method name on Python 2. Broken in 2.8.0.

2.8.0 (2015-10-05)

Minor Improvements (Backwards Compatible)

	Requests now supports per-host proxies. This allows the proxies
dictionary to have entries of the form
{'<scheme>://<hostname>': '<proxy>'}. Host-specific proxies will be used
in preference to the previously-supported scheme-specific ones, but the
previous syntax will continue to work.

	Response.raise_for_status now prints the URL that failed as part of the
exception message.

	requests.utils.get_netrc_auth now takes an raise_errors kwarg,
defaulting to False. When True, errors parsing .netrc files cause
exceptions to be thrown.

	Change to bundled projects import logic to make it easier to unbundle
requests downstream.

	Changed the default User-Agent string to avoid leaking data on Linux: now
contains only the requests version.

Bugfixes

	The json parameter to post() and friends will now only be used if
neither data nor files are present, consistent with the
documentation.

	We now ignore empty fields in the NO_PROXY environment variable.

	Fixed problem where httplib.BadStatusLine would get raised if combining
stream=True with contextlib.closing.

	Prevented bugs where we would attempt to return the same connection back to
the connection pool twice when sending a Chunked body.

	Miscellaneous minor internal changes.

	Digest Auth support is now thread safe.

Updates

	Updated urllib3 to 1.12.

2.7.0 (2015-05-03)

This is the first release that follows our new release process. For more, see
our documentation [http://docs.python-requests.org/en/latest/community/release-process/].

Bugfixes

	Updated urllib3 to 1.10.4, resolving several bugs involving chunked transfer
encoding and response framing.

2.6.2 (2015-04-23)

Bugfixes

	Fix regression where compressed data that was sent as chunked data was not
properly decompressed. (#2561)

2.6.1 (2015-04-22)

Bugfixes

	Remove VendorAlias import machinery introduced in v2.5.2.

	Simplify the PreparedRequest.prepare API: We no longer require the user to
pass an empty list to the hooks keyword argument. (c.f. #2552)

	Resolve redirects now receives and forwards all of the original arguments to
the adapter. (#2503)

	Handle UnicodeDecodeErrors when trying to deal with a unicode URL that
cannot be encoded in ASCII. (#2540)

	Populate the parsed path of the URI field when performing Digest
Authentication. (#2426)

	Copy a PreparedRequest’s CookieJar more reliably when it is not an instance
of RequestsCookieJar. (#2527)

2.6.0 (2015-03-14)

Bugfixes

	CVE-2015-2296: Fix handling of cookies on redirect. Previously a cookie
without a host value set would use the hostname for the redirected URL
exposing requests users to session fixation attacks and potentially cookie
stealing. This was disclosed privately by Matthew Daley of
BugFuzz [https://bugfuzz.com]. This affects all versions of requests from
v2.1.0 to v2.5.3 (inclusive on both ends).

	Fix error when requests is an install_requires dependency and python
setup.py test is run. (#2462)

	Fix error when urllib3 is unbundled and requests continues to use the
vendored import location.

	Include fixes to urllib3‘s header handling.

	Requests’ handling of unvendored dependencies is now more restrictive.

Features and Improvements

	Support bytearrays when passed as parameters in the files argument.
(#2468)

	Avoid data duplication when creating a request with str, bytes, or
bytearray input to the files argument.

2.5.3 (2015-02-24)

Bugfixes

	Revert changes to our vendored certificate bundle. For more context see
(#2455, #2456, and http://bugs.python.org/issue23476)

2.5.2 (2015-02-23)

Features and Improvements

	Add sha256 fingerprint support. (shazow/urllib3#540 [https://github.com/shazow/urllib3/pull/540])

	Improve the performance of headers. (shazow/urllib3#544 [https://github.com/shazow/urllib3/pull/544])

Bugfixes

	Copy pip’s import machinery. When downstream redistributors remove
requests.packages.urllib3 the import machinery will continue to let those
same symbols work. Example usage in requests’ documentation and 3rd-party
libraries relying on the vendored copies of urllib3 will work without having
to fallback to the system urllib3.

	Attempt to quote parts of the URL on redirect if unquoting and then quoting
fails. (#2356)

	Fix filename type check for multipart form-data uploads. (#2411)

	Properly handle the case where a server issuing digest authentication
challenges provides both auth and auth-int qop-values. (#2408)

	Fix a socket leak. (shazow/urllib3#549 [https://github.com/shazow/urllib3/pull/549])

	Fix multiple Set-Cookie headers properly. (shazow/urllib3#534 [https://github.com/shazow/urllib3/pull/534])

	Disable the built-in hostname verification. (shazow/urllib3#526 [https://github.com/shazow/urllib3/pull/526])

	Fix the behaviour of decoding an exhausted stream. (shazow/urllib3#535 [https://github.com/shazow/urllib3/pull/535])

Security

	Pulled in an updated cacert.pem.

	Drop RC4 from the default cipher list. (shazow/urllib3#551 [https://github.com/shazow/urllib3/pull/551])

2.5.1 (2014-12-23)

Behavioural Changes

	Only catch HTTPErrors in raise_for_status (#2382)

Bugfixes

	Handle LocationParseError from urllib3 (#2344)

	Handle file-like object filenames that are not strings (#2379)

	Unbreak HTTPDigestAuth handler. Allow new nonces to be negotiated (#2389)

2.5.0 (2014-12-01)

Improvements

	Allow usage of urllib3’s Retry object with HTTPAdapters (#2216)

	The iter_lines method on a response now accepts a delimiter with which
to split the content (#2295)

Behavioural Changes

	Add deprecation warnings to functions in requests.utils that will be removed
in 3.0 (#2309)

	Sessions used by the functional API are always closed (#2326)

	Restrict requests to HTTP/1.1 and HTTP/1.0 (stop accepting HTTP/0.9) (#2323)

Bugfixes

	Only parse the URL once (#2353)

	Allow Content-Length header to always be overridden (#2332)

	Properly handle files in HTTPDigestAuth (#2333)

	Cap redirect_cache size to prevent memory abuse (#2299)

	Fix HTTPDigestAuth handling of redirects after authenticating successfully
(#2253)

	Fix crash with custom method parameter to Session.request (#2317)

	Fix how Link headers are parsed using the regular expression library (#2271)

Documentation

	Add more references for interlinking (#2348)

	Update CSS for theme (#2290)

	Update width of buttons and sidebar (#2289)

	Replace references of Gittip with Gratipay (#2282)

	Add link to changelog in sidebar (#2273)

2.4.3 (2014-10-06)

Bugfixes

	Unicode URL improvements for Python 2.

	Re-order JSON param for backwards compat.

	Automatically defrag authentication schemes from host/pass URIs. (#2249 [https://github.com/requests/requests/issues/2249])

2.4.2 (2014-10-05)

Improvements

	FINALLY! Add json parameter for uploads! (#2258 [https://github.com/requests/requests/pull/2258])

	Support for bytestring URLs on Python 3.x (#2238 [https://github.com/requests/requests/pull/2238])

Bugfixes

	Avoid getting stuck in a loop (#2244 [https://github.com/requests/requests/pull/2244])

	Multiple calls to iter* fail with unhelpful error. (#2240 [https://github.com/requests/requests/issues/2240], #2241 [https://github.com/requests/requests/issues/2241])

Documentation

	Correct redirection introduction (#2245 [https://github.com/requests/requests/pull/2245/])

	Added example of how to send multiple files in one request. (#2227 [https://github.com/requests/requests/pull/2227/])

	Clarify how to pass a custom set of CAs (#2248 [https://github.com/requests/requests/pull/2248/])

2.4.1 (2014-09-09)

	Now has a “security” package extras set, $ pip install requests[security]

	Requests will now use Certifi if it is available.

	Capture and re-raise urllib3 ProtocolError

	Bugfix for responses that attempt to redirect to themselves forever (wtf?).

2.4.0 (2014-08-29)

Behavioral Changes

	Connection: keep-alive header is now sent automatically.

Improvements

	Support for connect timeouts! Timeout now accepts a tuple (connect, read) which is used to set individual connect and read timeouts.

	Allow copying of PreparedRequests without headers/cookies.

	Updated bundled urllib3 version.

	Refactored settings loading from environment – new Session.merge_environment_settings.

	Handle socket errors in iter_content.

2.3.0 (2014-05-16)

API Changes

	New Response property is_redirect, which is true when the
library could have processed this response as a redirection (whether
or not it actually did).

	The timeout parameter now affects requests with both stream=True and
stream=False equally.

	The change in v2.0.0 to mandate explicit proxy schemes has been reverted.
Proxy schemes now default to http://.

	The CaseInsensitiveDict used for HTTP headers now behaves like a normal
dictionary when references as string or viewed in the interpreter.

Bugfixes

	No longer expose Authorization or Proxy-Authorization headers on redirect.
Fix CVE-2014-1829 and CVE-2014-1830 respectively.

	Authorization is re-evaluated each redirect.

	On redirect, pass url as native strings.

	Fall-back to autodetected encoding for JSON when Unicode detection fails.

	Headers set to None on the Session are now correctly not sent.

	Correctly honor decode_unicode even if it wasn’t used earlier in the same
response.

	Stop advertising compress as a supported Content-Encoding.

	The Response.history parameter is now always a list.

	Many, many urllib3 bugfixes.

2.2.1 (2014-01-23)

Bugfixes

	Fixes incorrect parsing of proxy credentials that contain a literal or encoded ‘#’ character.

	Assorted urllib3 fixes.

2.2.0 (2014-01-09)

API Changes

	New exception: ContentDecodingError. Raised instead of urllib3
DecodeError exceptions.

Bugfixes

	Avoid many many exceptions from the buggy implementation of proxy_bypass on OS X in Python 2.6.

	Avoid crashing when attempting to get authentication credentials from ~/.netrc when running as a user without a home directory.

	Use the correct pool size for pools of connections to proxies.

	Fix iteration of CookieJar objects.

	Ensure that cookies are persisted over redirect.

	Switch back to using chardet, since it has merged with charade.

2.1.0 (2013-12-05)

	Updated CA Bundle, of course.

	Cookies set on individual Requests through a Session (e.g. via Session.get()) are no longer persisted to the Session.

	Clean up connections when we hit problems during chunked upload, rather than leaking them.

	Return connections to the pool when a chunked upload is successful, rather than leaking it.

	Match the HTTPbis recommendation for HTTP 301 redirects.

	Prevent hanging when using streaming uploads and Digest Auth when a 401 is received.

	Values of headers set by Requests are now always the native string type.

	Fix previously broken SNI support.

	Fix accessing HTTP proxies using proxy authentication.

	Unencode HTTP Basic usernames and passwords extracted from URLs.

	Support for IP address ranges for no_proxy environment variable

	Parse headers correctly when users override the default Host: header.

	Avoid munging the URL in case of case-sensitive servers.

	Looser URL handling for non-HTTP/HTTPS urls.

	Accept unicode methods in Python 2.6 and 2.7.

	More resilient cookie handling.

	Make Response objects pickleable.

	Actually added MD5-sess to Digest Auth instead of pretending to like last time.

	Updated internal urllib3.

	Fixed @Lukasa’s lack of taste.

2.0.1 (2013-10-24)

	Updated included CA Bundle with new mistrusts and automated process for the future

	Added MD5-sess to Digest Auth

	Accept per-file headers in multipart file POST messages.

	Fixed: Don’t send the full URL on CONNECT messages.

	Fixed: Correctly lowercase a redirect scheme.

	Fixed: Cookies not persisted when set via functional API.

	Fixed: Translate urllib3 ProxyError into a requests ProxyError derived from ConnectionError.

	Updated internal urllib3 and chardet.

2.0.0 (2013-09-24)

API Changes:

	Keys in the Headers dictionary are now native strings on all Python versions,
i.e. bytestrings on Python 2, unicode on Python 3.

	Proxy URLs now must have an explicit scheme. A MissingSchema exception
will be raised if they don’t.

	Timeouts now apply to read time if Stream=False.

	RequestException is now a subclass of IOError, not RuntimeError.

	Added new method to PreparedRequest objects: PreparedRequest.copy().

	Added new method to Session objects: Session.update_request(). This
method updates a Request object with the data (e.g. cookies) stored on
the Session.

	Added new method to Session objects: Session.prepare_request(). This
method updates and prepares a Request object, and returns the
corresponding PreparedRequest object.

	Added new method to HTTPAdapter objects: HTTPAdapter.proxy_headers().
This should not be called directly, but improves the subclass interface.

	httplib.IncompleteRead exceptions caused by incorrect chunked encoding
will now raise a Requests ChunkedEncodingError instead.

	Invalid percent-escape sequences now cause a Requests InvalidURL
exception to be raised.

	HTTP 208 no longer uses reason phrase "im_used". Correctly uses
"already_reported".

	HTTP 226 reason added ("im_used").

Bugfixes:

	Vastly improved proxy support, including the CONNECT verb. Special thanks to
the many contributors who worked towards this improvement.

	Cookies are now properly managed when 401 authentication responses are
received.

	Chunked encoding fixes.

	Support for mixed case schemes.

	Better handling of streaming downloads.

	Retrieve environment proxies from more locations.

	Minor cookies fixes.

	Improved redirect behaviour.

	Improved streaming behaviour, particularly for compressed data.

	Miscellaneous small Python 3 text encoding bugs.

	.netrc no longer overrides explicit auth.

	Cookies set by hooks are now correctly persisted on Sessions.

	Fix problem with cookies that specify port numbers in their host field.

	BytesIO can be used to perform streaming uploads.

	More generous parsing of the no_proxy environment variable.

	Non-string objects can be passed in data values alongside files.

1.2.3 (2013-05-25)

	Simple packaging fix

1.2.2 (2013-05-23)

	Simple packaging fix

1.2.1 (2013-05-20)

	301 and 302 redirects now change the verb to GET for all verbs, not just
POST, improving browser compatibility.

	Python 3.3.2 compatibility

	Always percent-encode location headers

	Fix connection adapter matching to be most-specific first

	new argument to the default connection adapter for passing a block argument

	prevent a KeyError when there’s no link headers

1.2.0 (2013-03-31)

	Fixed cookies on sessions and on requests

	Significantly change how hooks are dispatched - hooks now receive all the
arguments specified by the user when making a request so hooks can make a
secondary request with the same parameters. This is especially necessary for
authentication handler authors

	certifi support was removed

	Fixed bug where using OAuth 1 with body signature_type sent no data

	Major proxy work thanks to @Lukasa including parsing of proxy authentication
from the proxy url

	Fix DigestAuth handling too many 401s

	Update vendored urllib3 to include SSL bug fixes

	Allow keyword arguments to be passed to json.loads() via the
Response.json() method

	Don’t send Content-Length header by default on GET or HEAD
requests

	Add elapsed attribute to Response objects to time how long a request
took.

	Fix RequestsCookieJar

	Sessions and Adapters are now picklable, i.e., can be used with the
multiprocessing library

	Update charade to version 1.0.3

The change in how hooks are dispatched will likely cause a great deal of
issues.

1.1.0 (2013-01-10)

	CHUNKED REQUESTS

	Support for iterable response bodies

	Assume servers persist redirect params

	Allow explicit content types to be specified for file data

	Make merge_kwargs case-insensitive when looking up keys

1.0.3 (2012-12-18)

	Fix file upload encoding bug

	Fix cookie behavior

1.0.2 (2012-12-17)

	Proxy fix for HTTPAdapter.

1.0.1 (2012-12-17)

	Cert verification exception bug.

	Proxy fix for HTTPAdapter.

1.0.0 (2012-12-17)

	Massive Refactor and Simplification

	Switch to Apache 2.0 license

	Swappable Connection Adapters

	Mountable Connection Adapters

	Mutable ProcessedRequest chain

	/s/prefetch/stream

	Removal of all configuration

	Standard library logging

	Make Response.json() callable, not property.

	Usage of new charade project, which provides python 2 and 3 simultaneous chardet.

	Removal of all hooks except ‘response’

	Removal of all authentication helpers (OAuth, Kerberos)

This is not a backwards compatible change.

0.14.2 (2012-10-27)

	Improved mime-compatible JSON handling

	Proxy fixes

	Path hack fixes

	Case-Insensitive Content-Encoding headers

	Support for CJK parameters in form posts

0.14.1 (2012-10-01)

	Python 3.3 Compatibility

	Simply default accept-encoding

	Bugfixes

0.14.0 (2012-09-02)

	No more iter_content errors if already downloaded.

0.13.9 (2012-08-25)

	Fix for OAuth + POSTs

	Remove exception eating from dispatch_hook

	General bugfixes

0.13.8 (2012-08-21)

	Incredible Link header support :)

0.13.7 (2012-08-19)

	Support for (key, value) lists everywhere.

	Digest Authentication improvements.

	Ensure proxy exclusions work properly.

	Clearer UnicodeError exceptions.

	Automatic casting of URLs to strings (fURL and such)

	Bugfixes.

0.13.6 (2012-08-06)

	Long awaited fix for hanging connections!

0.13.5 (2012-07-27)

	Packaging fix

0.13.4 (2012-07-27)

	GSSAPI/Kerberos authentication!

	App Engine 2.7 Fixes!

	Fix leaking connections (from urllib3 update)

	OAuthlib path hack fix

	OAuthlib URL parameters fix.

0.13.3 (2012-07-12)

	Use simplejson if available.

	Do not hide SSLErrors behind Timeouts.

	Fixed param handling with urls containing fragments.

	Significantly improved information in User Agent.

	client certificates are ignored when verify=False

0.13.2 (2012-06-28)

	Zero dependencies (once again)!

	New: Response.reason

	Sign querystring parameters in OAuth 1.0

	Client certificates no longer ignored when verify=False

	Add openSUSE certificate support

0.13.1 (2012-06-07)

	Allow passing a file or file-like object as data.

	Allow hooks to return responses that indicate errors.

	Fix Response.text and Response.json for body-less responses.

0.13.0 (2012-05-29)

	Removal of Requests.async in favor of grequests [https://github.com/kennethreitz/grequests]

	Allow disabling of cookie persistence.

	New implementation of safe_mode

	cookies.get now supports default argument

	Session cookies not saved when Session.request is called with return_response=False

	Env: no_proxy support.

	RequestsCookieJar improvements.

	Various bug fixes.

0.12.1 (2012-05-08)

	New Response.json property.

	Ability to add string file uploads.

	Fix out-of-range issue with iter_lines.

	Fix iter_content default size.

	Fix POST redirects containing files.

0.12.0 (2012-05-02)

	EXPERIMENTAL OAUTH SUPPORT!

	Proper CookieJar-backed cookies interface with awesome dict-like interface.

	Speed fix for non-iterated content chunks.

	Move pre_request to a more usable place.

	New pre_send hook.

	Lazily encode data, params, files.

	Load system Certificate Bundle if certify isn’t available.

	Cleanups, fixes.

0.11.2 (2012-04-22)

	Attempt to use the OS’s certificate bundle if certifi isn’t available.

	Infinite digest auth redirect fix.

	Multi-part file upload improvements.

	Fix decoding of invalid %encodings in URLs.

	If there is no content in a response don’t throw an error the second time that content is attempted to be read.

	Upload data on redirects.

0.11.1 (2012-03-30)

	POST redirects now break RFC to do what browsers do: Follow up with a GET.

	New strict_mode configuration to disable new redirect behavior.

0.11.0 (2012-03-14)

	Private SSL Certificate support

	Remove select.poll from Gevent monkeypatching

	Remove redundant generator for chunked transfer encoding

	Fix: Response.ok raises Timeout Exception in safe_mode

0.10.8 (2012-03-09)

	Generate chunked ValueError fix

	Proxy configuration by environment variables

	Simplification of iter_lines.

	New trust_env configuration for disabling system/environment hints.

	Suppress cookie errors.

0.10.7 (2012-03-07)

	encode_uri = False

0.10.6 (2012-02-25)

	Allow ‘=’ in cookies.

0.10.5 (2012-02-25)

	Response body with 0 content-length fix.

	New async.imap.

	Don’t fail on netrc.

0.10.4 (2012-02-20)

	Honor netrc.

0.10.3 (2012-02-20)

	HEAD requests don’t follow redirects anymore.

	raise_for_status() doesn’t raise for 3xx anymore.

	Make Session objects picklable.

	ValueError for invalid schema URLs.

0.10.2 (2012-01-15)

	Vastly improved URL quoting.

	Additional allowed cookie key values.

	Attempted fix for “Too many open files” Error

	Replace unicode errors on first pass, no need for second pass.

	Append ‘/’ to bare-domain urls before query insertion.

	Exceptions now inherit from RuntimeError.

	Binary uploads + auth fix.

	Bugfixes.

0.10.1 (2012-01-23)

	PYTHON 3 SUPPORT!

	Dropped 2.5 Support. (Backwards Incompatible)

0.10.0 (2012-01-21)

	Response.content is now bytes-only. (Backwards Incompatible)

	New Response.text is unicode-only.

	If no Response.encoding is specified and chardet is available, Response.text will guess an encoding.

	Default to ISO-8859-1 (Western) encoding for “text” subtypes.

	Removal of decode_unicode. (Backwards Incompatible)

	New multiple-hooks system.

	New Response.register_hook for registering hooks within the pipeline.

	Response.url is now Unicode.

0.9.3 (2012-01-18)

	SSL verify=False bugfix (apparent on windows machines).

0.9.2 (2012-01-18)

	Asynchronous async.send method.

	Support for proper chunk streams with boundaries.

	session argument for Session classes.

	Print entire hook tracebacks, not just exception instance.

	Fix response.iter_lines from pending next line.

	Fix but in HTTP-digest auth w/ URI having query strings.

	Fix in Event Hooks section.

	Urllib3 update.

0.9.1 (2012-01-06)

	danger_mode for automatic Response.raise_for_status()

	Response.iter_lines refactor

0.9.0 (2011-12-28)

	verify ssl is default.

0.8.9 (2011-12-28)

	Packaging fix.

0.8.8 (2011-12-28)

	SSL CERT VERIFICATION!

	Release of Cerifi: Mozilla’s cert list.

	New ‘verify’ argument for SSL requests.

	Urllib3 update.

0.8.7 (2011-12-24)

	iter_lines last-line truncation fix

	Force safe_mode for async requests

	Handle safe_mode exceptions more consistently

	Fix iteration on null responses in safe_mode

0.8.6 (2011-12-18)

	Socket timeout fixes.

	Proxy Authorization support.

0.8.5 (2011-12-14)

	Response.iter_lines!

0.8.4 (2011-12-11)

	Prefetch bugfix.

	Added license to installed version.

0.8.3 (2011-11-27)

	Converted auth system to use simpler callable objects.

	New session parameter to API methods.

	Display full URL while logging.

0.8.2 (2011-11-19)

	New Unicode decoding system, based on over-ridable Response.encoding.

	Proper URL slash-quote handling.

	Cookies with [,], and _ allowed.

0.8.1 (2011-11-15)

	URL Request path fix

	Proxy fix.

	Timeouts fix.

0.8.0 (2011-11-13)

	Keep-alive support!

	Complete removal of Urllib2

	Complete removal of Poster

	Complete removal of CookieJars

	New ConnectionError raising

	Safe_mode for error catching

	prefetch parameter for request methods

	OPTION method

	Async pool size throttling

	File uploads send real names

	Vendored in urllib3

0.7.6 (2011-11-07)

	Digest authentication bugfix (attach query data to path)

0.7.5 (2011-11-04)

	Response.content = None if there was an invalid response.

	Redirection auth handling.

0.7.4 (2011-10-26)

	Session Hooks fix.

0.7.3 (2011-10-23)

	Digest Auth fix.

0.7.2 (2011-10-23)

	PATCH Fix.

0.7.1 (2011-10-23)

	Move away from urllib2 authentication handling.

	Fully Remove AuthManager, AuthObject, &c.

	New tuple-based auth system with handler callbacks.

0.7.0 (2011-10-22)

	Sessions are now the primary interface.

	Deprecated InvalidMethodException.

	PATCH fix.

	New config system (no more global settings).

0.6.6 (2011-10-19)

	Session parameter bugfix (params merging).

0.6.5 (2011-10-18)

	Offline (fast) test suite.

	Session dictionary argument merging.

0.6.4 (2011-10-13)

	Automatic decoding of unicode, based on HTTP Headers.

	New decode_unicode setting.

	Removal of r.read/close methods.

	New r.faw interface for advanced response usage.*

	Automatic expansion of parameterized headers.

0.6.3 (2011-10-13)

	Beautiful requests.async module, for making async requests w/ gevent.

0.6.2 (2011-10-09)

	GET/HEAD obeys allow_redirects=False.

0.6.1 (2011-08-20)

	Enhanced status codes experience \o/

	Set a maximum number of redirects (settings.max_redirects)

	Full Unicode URL support

	Support for protocol-less redirects.

	Allow for arbitrary request types.

	Bugfixes

0.6.0 (2011-08-17)

	New callback hook system

	New persistent sessions object and context manager

	Transparent Dict-cookie handling

	Status code reference object

	Removed Response.cached

	Added Response.request

	All args are kwargs

	Relative redirect support

	HTTPError handling improvements

	Improved https testing

	Bugfixes

0.5.1 (2011-07-23)

	International Domain Name Support!

	Access headers without fetching entire body (read())

	Use lists as dicts for parameters

	Add Forced Basic Authentication

	Forced Basic is default authentication type

	python-requests.org default User-Agent header

	CaseInsensitiveDict lower-case caching

	Response.history bugfix

0.5.0 (2011-06-21)

	PATCH Support

	Support for Proxies

	HTTPBin Test Suite

	Redirect Fixes

	settings.verbose stream writing

	Querystrings for all methods

	URLErrors (Connection Refused, Timeout, Invalid URLs) are treated as explicitly raised
r.requests.get('hwe://blah'); r.raise_for_status()

0.4.1 (2011-05-22)

	Improved Redirection Handling

	New ‘allow_redirects’ param for following non-GET/HEAD Redirects

	Settings module refactoring

0.4.0 (2011-05-15)

	Response.history: list of redirected responses

	Case-Insensitive Header Dictionaries!

	Unicode URLs

0.3.4 (2011-05-14)

	Urllib2 HTTPAuthentication Recursion fix (Basic/Digest)

	Internal Refactor

	Bytes data upload Bugfix

0.3.3 (2011-05-12)

	Request timeouts

	Unicode url-encoded data

	Settings context manager and module

0.3.2 (2011-04-15)

	Automatic Decompression of GZip Encoded Content

	AutoAuth Support for Tupled HTTP Auth

0.3.1 (2011-04-01)

	Cookie Changes

	Response.read()

	Poster fix

0.3.0 (2011-02-25)

	Automatic Authentication API Change

	Smarter Query URL Parameterization

	Allow file uploads and POST data together

	
	New Authentication Manager System

	
	Simpler Basic HTTP System

	Supports all build-in urllib2 Auths

	Allows for custom Auth Handlers

0.2.4 (2011-02-19)

	Python 2.5 Support

	PyPy-c v1.4 Support

	Auto-Authentication tests

	Improved Request object constructor

0.2.3 (2011-02-15)

	
	New HTTPHandling Methods

	
	Response.__nonzero__ (false if bad HTTP Status)

	Response.ok (True if expected HTTP Status)

	Response.error (Logged HTTPError if bad HTTP Status)

	Response.raise_for_status() (Raises stored HTTPError)

0.2.2 (2011-02-14)

	Still handles request in the event of an HTTPError. (Issue #2)

	Eventlet and Gevent Monkeypatch support.

	Cookie Support (Issue #1)

0.2.1 (2011-02-14)

	Added file attribute to POST and PUT requests for multipart-encode file uploads.

	Added Request.url attribute for context and redirects

0.2.0 (2011-02-14)

	Birth!

0.0.1 (2011-02-13)

	Frustration

	Conception

 {{ fullname | escape | underline}}

 {{ fullname | escape | underline}}

 {{ fullname | escape | underline}}

pytz - World Timezone Definitions for Python

	Author:	Stuart Bishop <stuart@stuartbishop.net>

Introduction

pytz brings the Olson tz database into Python. This library allows
accurate and cross platform timezone calculations using Python 2.4
or higher. It also solves the issue of ambiguous times at the end
of daylight saving time, which you can read more about in the Python
Library Reference (datetime.tzinfo).

Almost all of the Olson timezones are supported.

Note

This library differs from the documented Python API for
tzinfo implementations; if you want to create local wallclock
times you need to use the localize() method documented in this
document. In addition, if you perform date arithmetic on local
times that cross DST boundaries, the result may be in an incorrect
timezone (ie. subtract 1 minute from 2002-10-27 1:00 EST and you get
2002-10-27 0:59 EST instead of the correct 2002-10-27 1:59 EDT). A
normalize() method is provided to correct this. Unfortunately these
issues cannot be resolved without modifying the Python datetime
implementation (see PEP-431).

Installation

This package can either be installed from a .egg file using setuptools,
or from the tarball using the standard Python distutils.

If you are installing from a tarball, run the following command as an
administrative user:

python setup.py install

If you are installing using setuptools, you don’t even need to download
anything as the latest version will be downloaded for you
from the Python package index:

easy_install --upgrade pytz

If you already have the .egg file, you can use that too:

easy_install pytz-2008g-py2.6.egg

Example & Usage

Localized times and date arithmetic

>>> from datetime import datetime, timedelta
>>> from pytz import timezone
>>> import pytz
>>> utc = pytz.utc
>>> utc.zone
'UTC'
>>> eastern = timezone('US/Eastern')
>>> eastern.zone
'US/Eastern'
>>> amsterdam = timezone('Europe/Amsterdam')
>>> fmt = '%Y-%m-%d %H:%M:%S %Z%z'

This library only supports two ways of building a localized time. The
first is to use the localize() method provided by the pytz library.
This is used to localize a naive datetime (datetime with no timezone
information):

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 6, 0, 0))
>>> print(loc_dt.strftime(fmt))
2002-10-27 06:00:00 EST-0500

The second way of building a localized time is by converting an existing
localized time using the standard astimezone() method:

>>> ams_dt = loc_dt.astimezone(amsterdam)
>>> ams_dt.strftime(fmt)
'2002-10-27 12:00:00 CET+0100'

Unfortunately using the tzinfo argument of the standard datetime
constructors ‘’does not work’’ with pytz for many timezones.

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=amsterdam).strftime(fmt)
'2002-10-27 12:00:00 LMT+0020'

It is safe for timezones without daylight saving transitions though, such
as UTC:

>>> datetime(2002, 10, 27, 12, 0, 0, tzinfo=pytz.utc).strftime(fmt)
'2002-10-27 12:00:00 UTC+0000'

The preferred way of dealing with times is to always work in UTC,
converting to localtime only when generating output to be read
by humans.

>>> utc_dt = datetime(2002, 10, 27, 6, 0, 0, tzinfo=utc)
>>> loc_dt = utc_dt.astimezone(eastern)
>>> loc_dt.strftime(fmt)
'2002-10-27 01:00:00 EST-0500'

This library also allows you to do date arithmetic using local
times, although it is more complicated than working in UTC as you
need to use the normalize() method to handle daylight saving time
and other timezone transitions. In this example, loc_dt is set
to the instant when daylight saving time ends in the US/Eastern
timezone.

>>> before = loc_dt - timedelta(minutes=10)
>>> before.strftime(fmt)
'2002-10-27 00:50:00 EST-0500'
>>> eastern.normalize(before).strftime(fmt)
'2002-10-27 01:50:00 EDT-0400'
>>> after = eastern.normalize(before + timedelta(minutes=20))
>>> after.strftime(fmt)
'2002-10-27 01:10:00 EST-0500'

Creating local times is also tricky, and the reason why working with
local times is not recommended. Unfortunately, you cannot just pass
a tzinfo argument when constructing a datetime (see the next
section for more details)

>>> dt = datetime(2002, 10, 27, 1, 30, 0)
>>> dt1 = eastern.localize(dt, is_dst=True)
>>> dt1.strftime(fmt)
'2002-10-27 01:30:00 EDT-0400'
>>> dt2 = eastern.localize(dt, is_dst=False)
>>> dt2.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

Converting between timezones is more easily done, using the
standard astimezone method.

>>> utc_dt = utc.localize(datetime.utcfromtimestamp(1143408899))
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = utc_dt.astimezone(au_tz)
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> utc_dt == utc_dt2
True

You can take shortcuts when dealing with the UTC side of timezone
conversions. normalize() and localize() are not really
necessary when there are no daylight saving time transitions to
deal with.

>>> utc_dt = datetime.utcfromtimestamp(1143408899).replace(tzinfo=utc)
>>> utc_dt.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'
>>> au_tz = timezone('Australia/Sydney')
>>> au_dt = au_tz.normalize(utc_dt.astimezone(au_tz))
>>> au_dt.strftime(fmt)
'2006-03-27 08:34:59 AEDT+1100'
>>> utc_dt2 = au_dt.astimezone(utc)
>>> utc_dt2.strftime(fmt)
'2006-03-26 21:34:59 UTC+0000'

tzinfo API

The tzinfo instances returned by the timezone() function have
been extended to cope with ambiguous times by adding an is_dst
parameter to the utcoffset(), dst() && tzname() methods.

>>> tz = timezone('America/St_Johns')

>>> normal = datetime(2009, 9, 1)
>>> ambiguous = datetime(2009, 10, 31, 23, 30)

The is_dst parameter is ignored for most timestamps. It is only used
during DST transition ambiguous periods to resolve that ambiguity.

>>> tz.utcoffset(normal, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=True)
'NDT'

>>> tz.utcoffset(ambiguous, is_dst=True)
datetime.timedelta(-1, 77400)
>>> tz.dst(ambiguous, is_dst=True)
datetime.timedelta(0, 3600)
>>> tz.tzname(ambiguous, is_dst=True)
'NDT'

>>> tz.utcoffset(normal, is_dst=False)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal, is_dst=False)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal, is_dst=False)
'NDT'

>>> tz.utcoffset(ambiguous, is_dst=False)
datetime.timedelta(-1, 73800)
>>> tz.dst(ambiguous, is_dst=False)
datetime.timedelta(0)
>>> tz.tzname(ambiguous, is_dst=False)
'NST'

If is_dst is not specified, ambiguous timestamps will raise
an pytz.exceptions.AmbiguousTimeError exception.

>>> tz.utcoffset(normal)
datetime.timedelta(-1, 77400)
>>> tz.dst(normal)
datetime.timedelta(0, 3600)
>>> tz.tzname(normal)
'NDT'

>>> import pytz.exceptions
>>> try:
... tz.utcoffset(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.dst(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00
>>> try:
... tz.tzname(ambiguous)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % ambiguous)
pytz.exceptions.AmbiguousTimeError: 2009-10-31 23:30:00

Problems with Localtime

The major problem we have to deal with is that certain datetimes
may occur twice in a year. For example, in the US/Eastern timezone
on the last Sunday morning in October, the following sequence
happens:

	01:00 EDT occurs

	1 hour later, instead of 2:00am the clock is turned back 1 hour
and 01:00 happens again (this time 01:00 EST)

In fact, every instant between 01:00 and 02:00 occurs twice. This means
that if you try and create a time in the ‘US/Eastern’ timezone
the standard datetime syntax, there is no way to specify if you meant
before of after the end-of-daylight-saving-time transition. Using the
pytz custom syntax, the best you can do is make an educated guess:

>>> loc_dt = eastern.localize(datetime(2002, 10, 27, 1, 30, 00))
>>> loc_dt.strftime(fmt)
'2002-10-27 01:30:00 EST-0500'

As you can see, the system has chosen one for you and there is a 50%
chance of it being out by one hour. For some applications, this does
not matter. However, if you are trying to schedule meetings with people
in different timezones or analyze log files it is not acceptable.

The best and simplest solution is to stick with using UTC. The pytz
package encourages using UTC for internal timezone representation by
including a special UTC implementation based on the standard Python
reference implementation in the Python documentation.

The UTC timezone unpickles to be the same instance, and pickles to a
smaller size than other pytz tzinfo instances. The UTC implementation
can be obtained as pytz.utc, pytz.UTC, or pytz.timezone(‘UTC’).

>>> import pickle, pytz
>>> dt = datetime(2005, 3, 1, 14, 13, 21, tzinfo=utc)
>>> naive = dt.replace(tzinfo=None)
>>> p = pickle.dumps(dt, 1)
>>> naive_p = pickle.dumps(naive, 1)
>>> len(p) - len(naive_p)
17
>>> new = pickle.loads(p)
>>> new == dt
True
>>> new is dt
False
>>> new.tzinfo is dt.tzinfo
True
>>> pytz.utc is pytz.UTC is pytz.timezone('UTC')
True

Note that some other timezones are commonly thought of as the same (GMT,
Greenwich, Universal, etc.). The definition of UTC is distinct from these
other timezones, and they are not equivalent. For this reason, they will
not compare the same in Python.

>>> utc == pytz.timezone('GMT')
False

See the section What is UTC, below.

If you insist on working with local times, this library provides a
facility for constructing them unambiguously:

>>> loc_dt = datetime(2002, 10, 27, 1, 30, 00)
>>> est_dt = eastern.localize(loc_dt, is_dst=True)
>>> edt_dt = eastern.localize(loc_dt, is_dst=False)
>>> print(est_dt.strftime(fmt) + ' / ' + edt_dt.strftime(fmt))
2002-10-27 01:30:00 EDT-0400 / 2002-10-27 01:30:00 EST-0500

If you pass None as the is_dst flag to localize(), pytz will refuse to
guess and raise exceptions if you try to build ambiguous or non-existent
times.

For example, 1:30am on 27th Oct 2002 happened twice in the US/Eastern
timezone when the clocks where put back at the end of Daylight Saving
Time:

>>> dt = datetime(2002, 10, 27, 1, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.AmbiguousTimeError:
... print('pytz.exceptions.AmbiguousTimeError: %s' % dt)
pytz.exceptions.AmbiguousTimeError: 2002-10-27 01:30:00

Similarly, 2:30am on 7th April 2002 never happened at all in the
US/Eastern timezone, as the clocks where put forward at 2:00am skipping
the entire hour:

>>> dt = datetime(2002, 4, 7, 2, 30, 00)
>>> try:
... eastern.localize(dt, is_dst=None)
... except pytz.exceptions.NonExistentTimeError:
... print('pytz.exceptions.NonExistentTimeError: %s' % dt)
pytz.exceptions.NonExistentTimeError: 2002-04-07 02:30:00

Both of these exceptions share a common base class to make error handling
easier:

>>> isinstance(pytz.AmbiguousTimeError(), pytz.InvalidTimeError)
True
>>> isinstance(pytz.NonExistentTimeError(), pytz.InvalidTimeError)
True

A special case is where countries change their timezone definitions
with no daylight savings time switch. For example, in 1915 Warsaw
switched from Warsaw time to Central European time with no daylight savings
transition. So at the stroke of midnight on August 5th 1915 the clocks
were wound back 24 minutes creating an ambiguous time period that cannot
be specified without referring to the timezone abbreviation or the
actual UTC offset. In this case midnight happened twice, neither time
during a daylight saving time period. pytz handles this transition by
treating the ambiguous period before the switch as daylight savings
time, and the ambiguous period after as standard time.

>>> warsaw = pytz.timezone('Europe/Warsaw')
>>> amb_dt1 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=True)
>>> amb_dt1.strftime(fmt)
'1915-08-04 23:59:59 WMT+0124'
>>> amb_dt2 = warsaw.localize(datetime(1915, 8, 4, 23, 59, 59), is_dst=False)
>>> amb_dt2.strftime(fmt)
'1915-08-04 23:59:59 CET+0100'
>>> switch_dt = warsaw.localize(datetime(1915, 8, 5, 00, 00, 00), is_dst=False)
>>> switch_dt.strftime(fmt)
'1915-08-05 00:00:00 CET+0100'
>>> str(switch_dt - amb_dt1)
'0:24:01'
>>> str(switch_dt - amb_dt2)
'0:00:01'

The best way of creating a time during an ambiguous time period is
by converting from another timezone such as UTC:

>>> utc_dt = datetime(1915, 8, 4, 22, 36, tzinfo=pytz.utc)
>>> utc_dt.astimezone(warsaw).strftime(fmt)
'1915-08-04 23:36:00 CET+0100'

The standard Python way of handling all these ambiguities is not to
handle them, such as demonstrated in this example using the US/Eastern
timezone definition from the Python documentation (Note that this
implementation only works for dates between 1987 and 2006 - it is
included for tests only!):

>>> from pytz.reference import Eastern # pytz.reference only for tests
>>> dt = datetime(2002, 10, 27, 0, 30, tzinfo=Eastern)
>>> str(dt)
'2002-10-27 00:30:00-04:00'
>>> str(dt + timedelta(hours=1))
'2002-10-27 01:30:00-05:00'
>>> str(dt + timedelta(hours=2))
'2002-10-27 02:30:00-05:00'
>>> str(dt + timedelta(hours=3))
'2002-10-27 03:30:00-05:00'

Notice the first two results? At first glance you might think they are
correct, but taking the UTC offset into account you find that they are
actually two hours appart instead of the 1 hour we asked for.

>>> from pytz.reference import UTC # pytz.reference only for tests
>>> str(dt.astimezone(UTC))
'2002-10-27 04:30:00+00:00'
>>> str((dt + timedelta(hours=1)).astimezone(UTC))
'2002-10-27 06:30:00+00:00'

Country Information

A mechanism is provided to access the timezones commonly in use
for a particular country, looked up using the ISO 3166 country code.
It returns a list of strings that can be used to retrieve the relevant
tzinfo instance using pytz.timezone():

>>> print(' '.join(pytz.country_timezones['nz']))
Pacific/Auckland Pacific/Chatham

The Olson database comes with a ISO 3166 country code to English country
name mapping that pytz exposes as a dictionary:

>>> print(pytz.country_names['nz'])
New Zealand

What is UTC

‘UTC’ is Coordinated Universal Time [https://en.wikipedia.org/wiki/Coordinated_Universal_Time]. It is a successor to, but distinct
from, Greenwich Mean Time (GMT) and the various definitions of Universal
Time. UTC is now the worldwide standard for regulating clocks and time
measurement.

All other timezones are defined relative to UTC, and include offsets like
UTC+0800 - hours to add or subtract from UTC to derive the local time. No
daylight saving time occurs in UTC, making it a useful timezone to perform
date arithmetic without worrying about the confusion and ambiguities caused
by daylight saving time transitions, your country changing its timezone, or
mobile computers that roam through multiple timezones.

Helpers

There are two lists of timezones provided.

all_timezones is the exhaustive list of the timezone names that can
be used.

>>> from pytz import all_timezones
>>> len(all_timezones) >= 500
True
>>> 'Etc/Greenwich' in all_timezones
True

common_timezones is a list of useful, current timezones. It doesn’t
contain deprecated zones or historical zones, except for a few I’ve
deemed in common usage, such as US/Eastern (open a bug report if you
think other timezones are deserving of being included here). It is also
a sequence of strings.

>>> from pytz import common_timezones
>>> len(common_timezones) < len(all_timezones)
True
>>> 'Etc/Greenwich' in common_timezones
False
>>> 'Australia/Melbourne' in common_timezones
True
>>> 'US/Eastern' in common_timezones
True
>>> 'Canada/Eastern' in common_timezones
True
>>> 'US/Pacific-New' in all_timezones
True
>>> 'US/Pacific-New' in common_timezones
False

Both common_timezones and all_timezones are alphabetically
sorted:

>>> common_timezones_dupe = common_timezones[:]
>>> common_timezones_dupe.sort()
>>> common_timezones == common_timezones_dupe
True
>>> all_timezones_dupe = all_timezones[:]
>>> all_timezones_dupe.sort()
>>> all_timezones == all_timezones_dupe
True

all_timezones and common_timezones are also available as sets.

>>> from pytz import all_timezones_set, common_timezones_set
>>> 'US/Eastern' in all_timezones_set
True
>>> 'US/Eastern' in common_timezones_set
True
>>> 'Australia/Victoria' in common_timezones_set
False

You can also retrieve lists of timezones used by particular countries
using the country_timezones() function. It requires an ISO-3166
two letter country code.

>>> from pytz import country_timezones
>>> print(' '.join(country_timezones('ch')))
Europe/Zurich
>>> print(' '.join(country_timezones('CH')))
Europe/Zurich

Internationalization - i18n/l10n

Pytz is an interface to the IANA database, which uses ASCII names. The Unicode Consortium’s Unicode Locales (CLDR) [http://cldr.unicode.org]
project provides translations. Thomas Khyn’s
l18n [https://pypi.python.org/pypi/l18n] package can be used to access
these translations from Python.

License

MIT license.

This code is also available as part of Zope 3 under the Zope Public
License, Version 2.1 (ZPL).

I’m happy to relicense this code if necessary for inclusion in other
open source projects.

Latest Versions

This package will be updated after releases of the Olson timezone
database. The latest version can be downloaded from the Python Package
Index [http://pypi.python.org/pypi/pytz/]. The code that is used
to generate this distribution is hosted on launchpad.net and available
using git:

git clone https://git.launchpad.net/pytz

A mirror on github is also available at https://github.com/stub42/pytz

Announcements of new releases are made on
Launchpad [https://launchpad.net/pytz], and the
Atom feed [http://feeds.launchpad.net/pytz/announcements.atom]
hosted there.

Bugs, Feature Requests & Patches

Bugs can be reported using Launchpad [https://bugs.launchpad.net/pytz].

Issues & Limitations

	Offsets from UTC are rounded to the nearest whole minute, so timezones
such as Europe/Amsterdam pre 1937 will be up to 30 seconds out. This
is a limitation of the Python datetime library.

	If you think a timezone definition is incorrect, I probably can’t fix
it. pytz is a direct translation of the Olson timezone database, and
changes to the timezone definitions need to be made to this source.
If you find errors they should be reported to the time zone mailing
list, linked from http://www.iana.org/time-zones.

Further Reading

More info than you want to know about timezones:
http://www.twinsun.com/tz/tz-link.htm

Contact

Stuart Bishop <stuart@stuartbishop.net>

 _images/screenshot_283.png
© 00 vcaProjects x
& > C @ Secure| htps//www-dev.virtualclusters.org/project #

/‘\

\I|
'\

N

Projects
& MY ALLOCATIONS Alist of your current projects
+ Project
RO cLusTERTEMPLATES
& eroseers
Project Profiles
- .

Members Allocations

VIRTUAL CLUSTERS

ﬁ VC3 DASHBOARD

_images/screenshot_272.png
8

Virtual Clusters for Commun' X

& C @ Securs| https//www-dev.irtualclusters.org i

Virtual Clusters for Community Computation

ABOUT VC3 SIGN UP

VC3 automates deployment of middleware

to acccess diverse computing resources for
collaborative science teams

_images/screenshot_276.png
©® 0 voauUserProfie: bryant x

& C @ Secure| https//www-dev.virtualclusters.org/profile

/‘\
\I|

'\
N

Profile: Lincoln Bryant

8

FIRST NAME REGISTER ALLOCATION: [Connect Allocatio

CLUSTER TEMPLATES

LAST NAME

-

EMAIL

lincolnb@uchicago.edu

INSTITUTION/DEPARTMENT

Update Profile

PROJECTS

VIRTUAL CLUSTERS

ﬁ VC3 DASHBOARD

_images/screenshot_282.png
[17:56] ~ § ssh lincolnb@miduay-loginl.rcc.uchicago. edu
Lincolnb@midway-loginl. rcc.uchicago.edu's password
Last login: Mon Sep 11 17:54:17 2017 from 10.150.44.1

Welcome to Midway
Research Computing Center
University of Chicago
http://rcc.uchicago. edu

For the RCC Manual see the documentation site at
http://docs. rec.uchicago. edu

To check your allocation balance for the current period use this command
accounts balance

Questions and issues should be sent to help@rcc.uchicago.edu or 773-795-2667

Processes that use large amounts of memory or CPU on the login nodes may be
killed without warning. Please use compute nodes to run these programs

[lincolnb@midway-loginl ~1§ echo "ssh-rea AAAAB3NZaClyc2EAAAADAQABAAACAQCOUV7dfaaFe
tpQIKI8y61qx228Tqu/dWk 3HIBWL X /vey7 tqdCYFbGLP IShRGH rXHAO FA TSR 1pGVINVPG /SEAUpRCE4QVQ+
/31mZaw3+hZX/HRttreCdSy1vM3qqcTC 16 FVDB r/ Jy INImSOTMbL GkyMdFBHE /PUZA3MOGX4F17 tOFoM30k
2hJX5uDQey /6LLgKOGEOKMY r3uwdCY5585PAZKK 17 LDabaRMAWYE 3MNYSqy SN8MONk 2XPUT rIAal 1 faGCax
VF33TPTb+Cx31sC]2 12 t00b060Z 3KREEGAKMSNS F4tTnnv/55B3CZNVCE Sp6 I rZe7s toVaFKUUBMNNXTXRS
d3u/MLE/48gP fbCVPmHb rFb1bcHBS 18 SVBN2KD 21 F4XI FNMp3 FqSR 1 SMAThWEEPB 3xm7 KimpNJnWI gCERWOB
0AVOgKXUWSUIRWAZ 1N IV+GP t3ZeKu1 TEMGBMXBTOS1EFKDY rpag LhzdVupVhg OBYmOAY kvAxZW7Bg 9y GE+x
ge/3imQYWze5 5 1+qnv JhSycH3x8RpPd1zjaqqScNhGneqzDetinlzZ /168BuNCBa7 JLLITKVgKy 1 3aAsM1/
HyVAESRW Y F1G0T tIXUN+HZD tnSKGWASX2FCNLdIKD1Sp1X1aH57T2Han1gbQ VahRy J9xm3pP 1E7KIolev

3sNvuuZeQ== lbryant.uchicago-midway" »> ~/.ssh/authorized keys
[lincolnb@midway-loginl ~1§ logout

_images/screenshot_275.png
€ Web Login Service

& C @ Secure|htips

HE UNIVERSI

® CHICAGO

CiLogon

Sign In

Login to CILogon
ClLogon facilitates secure access to CyberInfrastructure (CI).

eNetto /|
ucHaDID:
Hospital Employee?

assword:
Forgot your password?

Logn

Signing in allows you to access multiple University of Chicago web
applications while entering your CNetID and password only once. To
end your session, simply close your browser.

Questions? Contact the IT Services Service Desk by phone at 2-5800
(773-702-5800), via email at itservices@uchicago.edu, or get walk-in
help at the TECHB@R on the first floor of Regenstein Library during
reference desk hours http://hours.lib.uchicago.edu/.

Alumni account holders may contact alumnitechsupport@uchicago.edu
or call 1-877-292-3945 between 9 AM and 3 PM CST with any
questions.

Authentication powered by Shibboleth™

_images/screenshot_277.png
©® 0 V03 Alocations x

& > C @ Secure| https://www-dev.virtualclusters.org/allocation P

/‘\
S
\,

Allocations

A resource allocation is used to assign the available quantity of computing time and

MY ALLOCATIONS
storage resources to a specific project

CLUSTER TEMPLATES Connect Allocation

PROJECTS

RESOURCES Allocation Profiles

Name. State Resource
VIRTUAL CLUSTERS

Ibryant.nersc-cori @ validated Nersc-cori

ﬁ VC3 DASHBOARD

_images/screenshot_285.png
© 00 vcaProjects x
& C @ Secure| https//www-dev.irtualclusters.org/project #

Sl
A

U

Your project

Projects
CLUSTER TEMPLATES
Alist of your current projects
PROJECTS +New Project
RESOURCES
VIRTUAL CLUSTERS Project Profiles

Name Members Allocations
@R vespasHBoARD

atlas-simulation Ibryant No Current Allocations

_images/screenshot_284.png
©® 0 vcacrmeanewproject x

& C @ Secure| https//www-dev.virtualclusters.org/new

/‘\
\I|
e B\
’d

& waocamions Create a New Project

A project contains all the allocations and resource requests

RO cLusTERTEMPLATES
from your research

E RO Project Name
atlas-simulation
S resoukces

Project Members

VIRTUAL CLUSTERS Ibryant

ﬁ VC3 DASHBOARD

_images/screenshot_286.png
© ®© V03 New Cluster Tempiates x

& C @ Secure| httpsy//www-dev.virtualclusters.org/cluster/new %

/‘\
\I|

'\
N

& wrausocations Define New Cluster
Template
(TSI A VTS Cluster Template Name

lincoln-condor

PROJECTS
Cluster Framework
RESOURCES
HTCondor
VIRTUAL CLUSTERS Number of Workers: 64

ﬁ VC3 DASHBOARD

nav.xhtml

 Table of Contents

 		VC3: Virtual Clusters for Community Computing

 		Getting Started with VC3

 		Building your first Virtual Cluster

 		Login or Create Account

 		2. Sign in to Globus

 		3a. Login with your institutional ID

 		3a. Login with your Globus ID

 		4. Complete or update your VC3 profile

 		5. Connect an Allocation

 		6. Defining a Project

 		7. Creating a Cluster Template

 		8. Resources

 		8. Launching a Virtual Cluster

 		Glossary of Terms Used in VC3 Documentation

 		Internal

 		External

_images/screenshot_273.png
Log in to use AuthCallBack2

Use your existing organizational login

.., university, national lab, facility, project
Look-up your organization...

Didnt find your organization? Then use Globus ID to sign in. (What's this?)

G Signin with Google @ signin with ORCID iD

Globus Account Log In

_images/screenshot_281.png
8

© ®© Vo3 Alocation Profie: bryar

< C & Secure | htips://www-dev.virtualclusters.org/allocation/Ibryant.uchicago-midway P
I\'>' Owner
Ibryant

& wascarons

CLUSTER TEMPLATES

Resource

Uchicago-midway

PROJECTS
Account Name on Resource:

&5 «

RESOURCES
lincolnb

VIRTUAL CLUSTERS

Public Token

@ veaoastsonro
Paste this SSH public key into your ~/.ssh/authorized_keys file on the
remote resource

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAACAQCouV7dfaaF6tpQjki8y
GJqx2z01qu/dWk3H1BWLx/vey7tqdCYFbG1PJshhGMrXHAorAfs
RIpGV1NVPG/SE4UpnC84QVQ+/3ImZqw9+hZX/HRttr0CdSylvM
3qqcTCl6fVDBr/JyJNImsOTMbLGkvMdFBHB/PUZA3MOGx4f17
tQFoM3QkzhJX5wDQey/6LLGKOG50Kwyr3wdCV5585PAZKkr71
DabghM4WYE3MmNYsaySN8MQnk2XPUTrlAa1ifaGCIXV33TP

Copy to Clipboard

Home News Community ves,

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

