

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Blum Archive Specification

This document defines the structure of compiled blum object files output by the
jeff65 compiler.

To propose a change to this document, create a pull request from a branch with a
name beginning with spec-blum-, which contains the edits to this document
relevant to enact the change, and if possible, the necessary alterations to the
reader and/or writer. (If those changes would be high-effort, open a bug once
the PR has been accepted.)

Contents

	Blum Archive Specification

	Conventions

	File Format

	Very Primitive Values

	Basic File Structure

	Primitive Values

	Short String

	Blob Data

	Layouts

	Array Layout

	Table Layout

	Struct Layout

	Union Layout

	Complex Values

	Sy Struct

	Re Struct

	Type Union

	Ph Struct

	Vd Struct

	In Struct

	Rf Struct

	Fn Struct

Conventions

Where literal strings are used, in the context of file data, they represent a
sequence of bytes. Non-ASCII bytes are represented using the escape sequence
\x##, where ## is replaced by a hexadecimal byte value. (This is as in
Python.)

Where bytes are numbered, they are numbered starting from zero, starting from
the byte closest to the beginning of the file. Thus a four-byte datum would have
its bytes numbered 0, 1, 2, and 3, in that order.

Data described as “in-band” refers to data stored inside the structure being
discussed, while data described as “out-of-band” refers to data stored in some
other location indicated by an offset.

A box like this represents a single byte:

0 1
+----+
| |
+----+

The vertical bars will be left out if a multibyte value is being described, but
the numbers and + dividers will be used.

A box like this, with = signs, represents a variable-width field:

0 ... n
+===========+
| |
+===========+

The above diagram describes a field which is n bytes long. If n is negative,
then the absolute value is used; negative length values, where allowed, indicate
that the data in the field is zlib-compressed. Note that the length refers to
the length of the compressed data, not the uncompressed data.

A dotted box indicates that an unknown number of fields have been omitted:

0 ... y ... z
+-- - - - --+== = = = ==+
| | |
+-- - - - --+== = = = ==+

A dotted line of - indicates that the omitted fields are of known size,
while a dotted line of = indicates that the omitted fields are of unknown
size.

File Format

Very Primitive Values

Numbers wider than 1 byte are stored in little-endian (LSB-first) format. This
is for consistency with the 6502 processor, which is itself little-endian on the
occasions that it uses a value wider than 1 byte. Numbers are fixed-width.
Negative numbers, where allowed, are stored in two’s-complement format.

Basic File Structure

All offsets are bytes from the beginning of the file. Offsets and lengths are
unsigned 32-bit integers unless otherwise stated. Offsets must be less than the
length of the file.

All CRC32 values are calculated in a manner consistent with Gzip, Zlib, PKZIP,
etc. The parser is expected to check these values. If they fail to match,
parsing should stop immediately.

Blum archives begin with a 16-byte header section, laid out as follows:

0 1 2 3 4 5 6 7 8
+----+----+----+----+----+----+----+----+
|0x93| 'Blm' |0x0d|0x0a|0x1a|0x0a|
+----+----+----+----+----+----+----+----+

8 9 10 11 12 13 14 15 16 17 18 19 20
+----+----+----+----+----+----+----+----+----+----+----+----+
| Entry 0 offset | Entry 0 Length | Entry 0 CRC32 |
+----+----+----+----+----+----+----+----+----+----+----+----+

The first eight bytes of the header are worth explaining. It is lifted from the
PNG specification, with the first four bytes changed to appropriate values.

	The leading byte \x93 has the high-bit set, to detect transmission
through non-8-bit-clean channels. 1

	Bytes 1 through 3, Blm, indicates that this is a blum archive. A mix of
capital and lowercase letters are used to detect casefolding.

	Bytes 4 and 5, \x0d\x0a, are a DOS line ending. This detects DOS-to-UNIX
conversion.

	Byte 6, \x1a, causes the DOS type command to consider this the end of the
file, to avoid spewing garbage into the user’s terminal.

	Byte 7, \x0a, is a UNIX line ending. This detects UNIX-to-DOS conversion.

Thus, various adulterations of the file may be detected.

The offset indicates the start of the first entry (entry 0) in bytes starting
from the beginning of the file, e.g. if it was 16, then the entry would be
located directly after the header.

Except for the header, all data items may be located anywhere in the file in no
particular order. This allows the writer some flexibility when generating the
file. In addition, the file may contain data which is not accessible by
traversing the entry structures. The parser is expected to ignore this data.

Entries are laid out as follows:

0 1 2 3 4 5 6 7 8 9 10 11 12
+----+----+----+----+----+----+----+----+----+----+----+----+
| Data offset | Data Length | Data CRC32 |
+----+----+----+----+----+----+----+----+----+----+----+----+

12 13 14 15 16 17 18 19 20 21 22 23 24
+----+----+----+----+----+----+----+----+----+----+----+----+
| Next entry offset | Next Entry Length | Next entry CRC32 |
+----+----+----+----+----+----+----+----+----+----+----+----+

24 25 26 27 28 ... 28+n
+----+----+----+----+===========+
| Name length | Name data |
+----+----+----+----+===========+

Entries form a linked list, with each entry pointing to the next entry. The last
entry should have its “next entry” fields all set to 0.

The data pointed to by the “data offset” field is union layout data allowing
only an Sy struct. These contain other nested structures; when calculating
the CRC32, these are included. In the future, other entry types may be allowed;
when encountering an unrecognized entry type, the parser should skip it, and
should not attempt to parse the struct.

The “name length” field is a 32-bit signed integer, but negative values are
currently reserved for future use. If the parser encounters a negative value, it
should issue a warning and skip the entry.

Note that entries may include trailing data after the name data field. This is
allowed, and the data must be included in the CRC32 but not otherwise parsed.

Entry order is not important, and two archive files with the same entries in a
different order may be considered equivalent. However, when manipulating archive
files, entry order should be preserved if possible to allow convenient diffing.

	1

	1993 is the year Jurassic Park was released, starring Jeff Goldblum as
Dr. Ian Malcolm.

Primitive Values

As mentioned above in Very Primitive Values, integers are stored in
little-endian two’s-complement format.

Short String

Short strings are stored in-band as a length followed by the string data,
encoded as zero or more UTF-8 bytes (see RFC 3629 [https://tools.ietf.org/html/rfc3629]), as follows:

0 1 2 3 4 ... 4+n
+----+----+----+----+=============+
| Length = n | String data |
+----+----+----+----+=============+

The length field is an signed 4-byte integer, and its value must match the byte
length of the encoded string data. A negative value indicates that the data is
zlib-compressed.

Despite being called “short” strings, rather long strings may be stored in this
structure. It is, however, not recommended. If compression is used, the size of
the decompressed data must not exceed 2 GiB, i.e. the maximum length allowed for
uncompressed data. If the parser encounters a string longer than this, then it
should issue a warning and truncate the string.

Blob Data

Blob data are stored out-of-band, at a file location indicated by a length and
offset field.

0 1 2 3 4 5 6 7 8 9 10 11 12
+---+---+---+---+---+---+---+---+---+---+---+---+
| Offset | Length | CRC32 |
+---+---+---+---+---+---+---+---+---+---+---+---+

The offset is a 32-bit unsigned integer, and the length is a 32-bit signed
integer. The sum of the offset and the length must be less than or equal to the
size in bytes of the archive.

Negative lengths indicate the use of zlib compression. The CRC32 is calculated
based on actual file data, i.e. if the data is compressed, the CRC32 is computed
based off of the compressed data. If compression is used, the size of the
decompressed data must not exceed 2 GiB, i.e. the maximum length allowed for
uncompressed data. If the parser encounters a blob longer than this, then it
should stop parsing the archive with an error.

Layouts

Complex values are structured using one of the layouts below.

Array Layout

An array allows zero or more values of the same type to be stored together. The
sizes of the values may not be known in advance, and may vary.

0 1 2 3 4 ... x ... y ... z
+----+----+----+----+===========+== = = = ==+===========+
| Count = n | Value 0 | ... | Value n-1 |
+----+----+----+----+===========+== = = = ==+===========+

The count field is an unsigned 32-bit integer. The only way to find the end of
the array is to parse through all of the objects.

Arrays may contain objects of any type, including other arrays, struct layout
data, etc.

Table Layout

A table allows zero or more key-value pairs to be stored together, where all
keys are the same type and all values are the same type. The sizes of the values
may not be known in advance, and may vary.

0 1 2 3 4 ... v ... w ... x ... y ... z
+---+---+---+---+=======+===========+= = =+=========+===========+
| Count = n | Key 0 | Value 0 | ... | Key n-1 | Value n-1 |
+---+---+---+---+=======+===========+= = =+=========+===========+

The count field is an unsigned 32-bit integer. The only way to find the end of
the table is to parse through all of the objects.

Table values be objects of any type, including arrays, struct layout data,
etc., while key types are limited to short string and integer.

Tables are ordered, and the parser must preserve the order of the table entries.

Struct Layout

A struct allows zero or more values of different types to be stored together,
structured as a series of key-value pairs. The sizes of the values may not be
known in advance, and may vary.

0 1 2 3 4 ... x ... y y+1 y+2 ... z
+-----+-----+---+---+=========+-- - = ==+----+----+===========+
| Count = n | Key 0 | Value 0 | ... | Key n-1 | Value n-1 |
+-----+-----+---+---+=========+-- - = ==+----+----+===========+

The count field is an unsigned 16-bit integer. Each key is a 2-byte value, where
each byte is a lowercase alphanumeric ASCII character. The type of the values,
and therefore how they must be parsed, are determined by a combination of the
struct type and the key.

The only way to find the end of the struct is to parse through all of the
objects. The value fields of a struct may contain objects of any type, including
other structs.

Note that the type code is not part of the struct layout; it is only used as
part of union layout.

Values with unrecognized keys are to be ignored. This allows keys to be added in
the future while keeping backwards-compatibility. If a key is repeated, then the
value provided later in the file should be used.

Structs are unordered. Two structs with the same key-value pairs in a different
order are considered equivalent. However, software which manipulates archives
should preserve the order of the key-value pairs if possible.

Union Layout

A union allows a single value in struct layout to be stored with a type
indicator. The size of the value is determined by its type.

0 1 2 ... z
+----+----+===========+
| Type | Value |
+----+----+===========+

The type field is a 2-byte value, where the first byte is an uppercase
alphabetical ASCII character and the second byte is a lowercase alphanumeric
ASCII character. The type of the value, and therefore how it must be parsed, is
determined by the type code.

The only way to find the end of the union is to parse through the object. The
value field must be in struct layout of the given type.

Complex Values

Sy Struct

A struct layout value of type Sy represents a symbol which may be re-used
in other units.

	Key

	Type

	Description

	sc

	Short String

	The section the symbol should be linked into.

	ty

	Type Union

	The type of the symbol.

	re

	Table of unsigned 16-bit
integer and Re struct

	The relocations required to link the symbol.

	da

	Blob Data

	The data associated with the symbol.

The blob in the da field may not be larger than 64 KiB.

Re Struct

A struct layout value of type Re represents a relocation, i.e. a symbolic
representation of a memory location which must be resolved by the linker.

	Key

	Type

	Description

	sy

	Short String

	The name of the symbol to link against.

	ic

	16-bit signed integer

	The value by which to increment the named
address.

	by

	One of ‘w’, ‘h’, or ‘l’

	The address segment (full, high part, low part).

Type Union

A union layout value containing one of the following:

	Ph struct

	Vd struct

	In struct

	Rf struct

	Fn struct

Ph Struct

A struct layout value of type Ph represents an instance of the “phantom”
type. It has no fields, so it always serializes as four zero bytes.

Vd Struct

A struct layout value of type Vd represents an instance of the “void”
type. It has no fields, so it always serializes as four zero bytes.

In Struct

A struct layout value of type In represents an instance of one of the
integer types.

	Key

	Type

	Description

	wd

	1-byte unsigned integer

	The width, in bytes, of the type.

	sg

	One of 0x00 or 0x01

	0x01 if the type is signed, 0x00 otherwise.

Rf Struct

A struct layout value of type Rf represents an instance of a reference type.

	Key

	Type

	Description

	tg

	Type Union

	The type of the reference target.

Fn Struct

A struct layout value of type Fn represents an instance of a function type.

	Key

	Type

	Description

	rt

	Type Union

	The return type.

	as

	Array of Type Union

	The types of the arguments.

Gold-syntax Specification

This document defines the syntax and semantics of gold-syntax units for the
jeff65 compiler.

To propose a change to this document, create a pull request from a branch with a
name beginning with spec-gold-, which contains the edits to this document
relevant to enact the change, and if possible, the necessary alterations to the
parser and/or lexer. (If those changes would be high-effort, open a bug once the
PR has been accepted.)

Contents

	Gold-syntax Specification

	Syntax

	Language Elements

	Binding Statements

	use

	constant

	let

	fun

	isr

	Control Flow Statements

	return

	if

	while

	for

	break

	continue

	Type Expressions

	Primitive Types

	Array Types

	Pointer and Slice Types

	Value Expressions

Syntax

Gold-syntax files consist of printable ASCII characters, which are divided into
the following groups:

	whitespace, any of SPACE, TAB, LINE FEED, or CARRIAGE RETURN

	special delimiters, any of () [] { } : ; . , " \ @ &

	alphanumeric characters, any of A-Za-z0-9. Note that the underscore is not
included (though it is allowed in identifiers, but discouraged).

	punctuation, any of ! $ % ' * + - / < = > ? ^ _ ` | ~ (i.e. the remaining
ASCII characters).

Gold-syntax tokens are delimited by whitespace, which is discarded, and the
special delimiters, which are considered single tokens. Note that new line
characters are not treated specially. Also note that comments are treated
specially by the parser; see below.

A token beginning with a digit in 0-9 is assumed to be a numeric value. A
valid numeric value must be one of the following:

	A sequence of characters in 0-9, such as 1, 42, or 094,
denotes a decimal (base-10) integer. Note that numbers beginning with a 0
are considered to be decimal, not octal.

	The characters 0x or 0X (a digit zero followed by an uppercase or
lowercase letter ‘X’) followed by a sequence of characters in 0-9A-Fa-f,
such as 0x1, 0xa9, or 0xbeef, denotes a hexadecimal (base-16)
integer.

	The characters 0o or 0O (a digit zero followed by an uppercase or
lowercase letter ‘O’) followed by a sequence of characters in 0-7, such
as 0o644, denotes an octal (base-8) integer. Note that numbers beginning
with a 0 (zero) followed by digits are considered to be decimal, not
octal.

	The characters 0b or 0B (a digit zero followed by an uppercase or
lowercase letter ‘B’) followed by a sequence of characters in 0 1, such
as 0b11010001, denotes a binary (base-2) integer.

A token beginning with a digit in 0-9 and not conforming to one of the above
rules is an error.

A token beginning with a letter in A-Za-z is assumed to be an identifier.
The restriction to a letter applies only to the first character; identifiers may
contain any printable ASCII character which does not delimit a token. For
example, foo-bar? is considered a valid identifier.

A token beginning with a punctuation character continues until the first
non-punctuation character, at which point it will end, regardless of whether a
whitespace character, comment, or special delimiter has been encountered.
Therefore -1 becomes two tokens.

Attention

The above rules imply that the string 1+2 is considered a
single, invalid, numeric token, and the string x-2 is
considered an identifier. Make sure to put spaces around your
operators!

Language Elements

A Gold-syntax unit consists of a series of top-level statements.

Binding Statements

The following statements introduce bindings of names. They are all allowed at
the top level of the file, and a subset are allowed inside executable code
blocks.

Top-level bindings are visible throughout the program. Block-level bindings are
visible until the end of the scope in which they are introduced. Introducing a
block-level binding with the same name as another binding, even in the same
scope, will result in the previous binding being shadowed until the new binding
goes out of scope, at which time the previous binding will be restored.

It is an error to introduce a new top-level binding with the same name as
another top-level binding.

use

Top-level usage:

use <identifier>

Locates a unit named with the given identifier, and makes its exported symbols
available in the current unit in a namespace bound to the same name as the unit.
If the unit cannot be located, a compilation error will be raised.

The binding introduced by a use statement is not exported from the unit.

Units have names derived from the name of the file they are defined in, and thus
the allowed names for units may be further restricted by what characters are
allowed in filenames on your system. For maximum portability, stick to
alphanumeric characters and the character - (hyphen minus) in your unit
names.

constant

Top-level / block-level usage:

constant <identifier> : <type> = <known-expression>

Binds a name to a value known at compile time which does not allocate memory in
the program image. The value will be inlined at usage sites. Top-level constant
bindings are exported from the unit as symbols, and may be referenced in other
units.

The restriction to values which do not allocate memory means that arrays and
strings cannot be declared as constant-bindings. It is possible to declare
pointers and slices as constants through the use of certain functions exported
from the built-in mem unit.

let

Top-level usage

let [mut] <identifier> : <type> = <known-expression>

Binds a name to a value known at compile time. Always allocates memory in the
program image. Top-level let-bindings are exported from the unit as symbols
which may be referenced in other units.

Block-level usage:

let [mut] <identifier> : <type> = <expression>
let stash <identifier> : <type> = <known-expression>

Binds a name to a value. In the first form, memory is allocated statically (i.e.
memory is reserved, but the value is not included in the program image), and the
value is computed and stored when the statement is executed. In the second form,
memory is allocated in the program image with the initial value stored.

By default, let-bindings are immutable, though they may be shadowed by
re-binding. If the mut or stash storage classes are applied, then the
binding becomes mutable, and the value may be changed.

fun

Top-level usage:

fun <identifier>([<identifier> : <type> [, ...]]) [-> <type-expression>]
 [...]
endfun

Binds a name to a function with zero or more arguments and an optional return
type. Introduces a new scope, and statements inside are considered block-level
statements.

A function with a return type must terminate by executing a return
statement.

Note that the type of the binding introduced is a function type. Function types
may only be used to call the function or get a pointer to its address using the
& operator.

isr

Top-level usage:

isr <identifier>
 [...]
endisr

Binds a name to an interrupt service routine. Introduces a new scope, and
statements inside are considered block-level statements.

Note that the type of the binding introduced is an ISR type. ISR types may only
be used to get a pointer to its address using the & operator.

Control Flow Statements

Control flow statements may only be used in block-level contexts. Additional
restrictions may apply to individual statements, depending on context.
Gold-syntax programs are executed statement-by-statement unless a control-flow
statement is encountered.

return

Usage:

return [<expression>]

Terminates execution of the current function, returning control to the caller,
and possibly returning a value. This will cause any currently-executing loops to
terminate.

If the current function does not have a return type, then the expression is
disallowed; if the current function does have a return type, then the expression
is required, and must have a type assignable to the return type of the function.

May also be used inside an ISR, in which case the expression is always
disallowed.

if

Usage:

if <expression> then
 [...]
[elseif <expression> then
 [...]]
[elseif...]
[else
 [...]]
end

Causes at most one of the blocks provided to execute. Expressions are tested in
order, and the first expression to evaluate to true causes the corresponding
block to be executed. If none of the expressions evalute to true, the block
beginning with else is executed, if present. Once an expression which
evaluates to true is executed, the rest of the expressions will not be
evaluated.

Each branch introduces a new scope.

while

Usage:

while <expression> do
 [...]
end

Introduces a loop which executes the provided block zero or more times. The
block is executed repeatedly until the expression evaluates to false, or the
loop is terminated.

The provided block introduces a new scope.

for

Usage:

for <identifier> : <type> in <expression> do
 [...]
end

Evaluates the given expression once, which must be of type array or slice, then
introduces a loop which executes the provided block once for each element of the
value of the expression, with the provided identifier bound to the value of the
element.

The provided block introduces a new scope.

break

Usage:

break

Terminates the innermost loop currently executing. It is an error to have a
break statement outside of a loop.

continue

Usage:

continue

Terminates the currently-executing block, but does not terminate the loop,
instead causing it to move to the next iteration if any remain. It is an error
to have a continue statement outside of a loop.

Type Expressions

Primitive Types

Primitive types are provided for signed and unsigned integers for 8-bit, 16-bit,
24-bit, and 32-bit integers. They are written as follows:

u8 u16 u24 u32
i8 i16 i24 i32

(Types beginning with u are unsigned.) Primitive types are as wide as the
number of bits divided by eight.

Array Types

Array types are written as:

[<base>; <start> to <end>] /* first form */
[<base>; <end>] /* second form */

where <base> is another type, <start> and <end> are the lower and
upper bounds, respectively, where the lower bound is inclusive and upper bound
is exclusive. In the second form, <start> is implied to be 0.

The width of an array type is the width of <base> multiplied by the
difference between <end> and <start>. (For example, [u8; 3 to 7] is
four bytes wide.)

Pointer and Slice Types

Pointer types are constructed by prefixing a non-array type with a &, for
example, &u8 is a pointer to an 8-bit unsigned type. Pointers are always two
bytes wide.

Slice types take the form of &[<base>]. Slices have a built-in length, and
are always four bytes wide. Taking a pointer to an array produces a slice.

Value Expressions

Expressions are written infix, similar to ‘C’. Operations are resolved in the
following order.

(<expr>)

Parenthesised expressions are resolved from innermost out. Whitespace is allowed
but not required around parentheses.

<expr>[<expr>]

Indexes into an array. The expression on the left must resolve to an array or
slice type, and the expression on the right must resolve to a u8 or u16.

<fun>([<expr>[, ...]])

Calls a function. <fun> must be an expression which evaluates to a function
or function pointer. Expressions are evaluated and passed as arguments, and the
function expression resolves to the return value of the function.

&<expr>
@<expr>

Takes a pointer to a value, and dereferences a pointer, respectively.

bitnot <expr>
<expr> bitand <expr>
<expr> bitor <expr>
<expr> bitxor <expr>

Bitwise operations are provided for unsigned types. For dyadic operations, both
sides must be the same width.

<expr> << <known-expr>
<expr> >> <known-expr>

Left-shift and right-shift operations, respectively. The right-hand side must be
known at compile-time.

<expr> * <expr>
<expr> / <expr>

Multiplication and division of integer types.

<expr> + <expr>
<expr> - <expr>

Addition and subtraction of integer types.

<expr> == <expr>
<expr> != <expr>
<expr> <= <expr>
<expr> >= <expr>
<expr> < <expr>
<expr> > <expr>

Comparison operators. Evaluates to a boolean value.

<expr> = <expr>

Assignment operator. The left-hand side must be a bare name, a dereference, or
an index expression.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

