Dune Documentation

Jérémie Dimino

Apr 23, 2024

1 Getting Started and Core Concepts

Overview i it e
Quickstart L
Command-Line Interface

1.1
1.2
1.3

2.1
22
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11
2.12
2.13
2.14
2.15

How-to Guides

How to Install Dune

How to Set up Automatic Formatting
How to Generate Opam Files from dune-project

Cross-Compilation

Dealing with Foreign Libraries
Generating Documentation
How to Load Additional Files at Runtime
Instrumentation
JavaScript Compilation With Js_of_ocaml
JavaScript Compilation With Melange
Virtual Libraries & Variants
Writing and Running Tests
How to Bundle Resources
How to Load a Project in a Toplevel
Using Rule Generation

3 Reference Manual

3.1
32
33
34
35
3.6
3.7
3.8
39
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17

duneo
dune-project
dune-workspace
config

Lexical Conventions

Actions L o
Ordered Set Language

Boolean Language
Predicate Language

Library Dependencies
Preprocessing Specification
CramTests
Scopes ...
Variables
Dependency Specification
OCamlFlags
Sandboxing

CONTENTS

308 LockS . . v o e 124
3.19 Diffingand Promotion L e e e e e e e e e e 125
3.20 Package Specification e 126
321 ABASES . . . o o e e e e e e e 128
3.22 Foreign Sources, Archives, and Objects Lo e 131
3.23 Command Line Interface o e 134
324 Dune Libraries oo e e e e 137
325 DuneCache e 139
320 COQ . o v v e e 141
327 Dune RPC e 152
328 Packages e e 153
3.29 Findlib Integration e e e e e e e e e e 154
4 Explanation 157
4.1 How Preprocessing Works oL e 157
42 The OCaml ECOSYSIEM v i i i e 158
4.3 How Dune integrates withopam L e e e 159
44 How Dune Uses Dune to Build Dune 161
4.5 TheDune Mental Model e e e e e e 162
4.6 A Tourof the Dune Codebase e e 165
5 Advanced Topics 173
5.1 Dynamic Loading of Packages with Findlib 173
52 ProfilingDune e 174
5.3 Package Version e e e e e e 174
54 OCaml Syntax v i i e e e e e e e e e e e 174
5.5 Variables for Artifacts e e e e 174
5.6 Buildingan AdHoc .cmxs e 175
6 Miscellaneous 177
6.1 FAQ. e 177
6.2 GoalofDune L e e e e e 181
6.3 Working onthe Dune Codebase e 183
Index 195

Dune Documentation

Dune is a build system for OCaml projects. Using it, you can build executables, libraries, run tests, and much more.

CONTENTS 1

Dune Documentation

2 CONTENTS

CHAPTER
ONE

GETTING STARTED AND CORE CONCEPTS

These documents should be the first ones read by new Dune users. They explain what Dune is, how it works, and how
to use it.

1.1 Overview

1.1.1 Introduction

Dune is a build system for OCaml (with support for Reason and Coq). It is not intended as a completely generic build
system that’s able to build any project in any language. On the contrary, it makes lots of choices in order to encourage
a consistent development style.

This scheme is inspired from the one used inside Jane Street and adapted to the opam world. It has matured over a long
time and is used daily by hundreds of developers, which means that it is highly tested and productive.

When using Dune, you give very little, high-level information to the build system, which in turn takes care of all the
low-level details from the compilation of your libraries, executables, and documentation to the installation, setting up
of tests, and setting up development tools such as Merlin, etc.

In addition to the normal features expected from an OCaml build system, Dune provides a few additional ones that
separate it from the crowd:

* You never need to tell Dune the location of things such as libraries. Dune will discover them automatically. In
particular, this means that when you want to reorganise your project, you need nothing other than to rename your
directories, Dune will do the rest.

» Things always work the same whether your dependencies are local or installed on the system. In particular, this
means that you can insert the source for a project dependency in your working copy, and Dune will start using it
immediately. This makes Dune a great choice for multi-project development.

* Cross-platform: as long as your code is portable, Dune will be able to cross-compile it. Read more in the Cross-
Compilation section.

* Release directly from any revision: Dune needs no setup stage. To release your project, simply point to a specific
Git tag (named revision). Of course, you can add some release steps if you’d like, but it isn’t necessary. For more
information, please refer to dune-release.

The first section below defines some terms used in this manual. The second section specifies the Dune metadata format,
and the third one describes how to use the dune command.

https://github.com/tarides/dune-release

Dune Documentation

1.1.2 Terminology

root
The top-most directory in a GitHub repo, workspace, and project, differentiated by variables such as
%{workspace_root} and %{project_root}. Dune builds things from this directory. It knows how to build
targets that are descendants of the root. Anything outside of the tree starting from the root is considered part of
the installed world. Refer to Finding the Root to learn how the workspace root is determined.

workspace
The subtree starting from each root. It can contain any number of projects that will be built simultaneously by
Dune, and it must contain a dune-workspace file.

project
A collection of source files that must include a dune-project file. It may also contain one or more packages. A
project consists in a hierarchy of directories. Every directory (at the root, or a subdirectory) can contain a dune
file that contains instructions to build files in that directory. Projects can be shared between different applications.

package
A set of libraries and executables that opam builds and installs as one.

installed world
Anything outside of the workspace. Dune doesn’t know how to build things in the installed world.

installation
The action of copying build artifacts or other files from the <root>/_build directory to the installed world.

scope
Defined by any directory that contains at least one <package>.opam file. Typically, every project defines a
single scope that is a subtree starting from this directory. Moreover, scopes are separate from your project’s
dependencies. The scope also determines where private items are visible. Private items include libraries or
binaries that will not be installed. See Scopes for more details.

build context
A specific configuration written in a dune-workspace file, which has a corresponding subdirectory in the <root>/
_build directory. It contains all the workspace’s build artifacts. Without this specific configuration from the
user, there is always a default build context that corresponds to the executed Dune environment.

build context root
The root of a build context named foo is <root>/_build/<foo>.

build target
Specified on the command line, e.g., dune build <target_path.exe>. All targets that Dune knows how to
build live in the _build directory.

alias
A build target that doesn’t produce any file and has configurable dependencies. Targets starting with @ on the
command line are interpreted as aliases (e.g., dune build @src/runtest). Aliases are per-directory. See
Aliases.

environment
Determines the default values of various parameters, such as the compilation flags. In Dune, each directory has
an environment attached to it. Inside a scope, each directory inherits the environment from its parent. At the root
of every scope, a default environment is used. At any point, the environment can be altered using an env stanza.

build profile
A global setting that influences various defaults. It can be set from the command line using --profile
<profile> or from dune-workspace files. The following profiles are standard:

e release which is the profile used for opam releases

* dev which is the default profile when none is set explicitly, it has stricter warnings than the release one

4 Chapter 1. Getting Started and Core Concepts

Dune Documentation

dialect
An alternative frontend to OCaml (such as ReasonML). It is described by a pair of file extensions, one corre-
sponding to interfaces and one to implementations. It can use the standard OCaml syntax, or it can specify an
action to convert from a custom syntax to a binary OCaml abstract syntax tree. It can also specify a custom
formatter.

placeholder substitution
A build step in which placeholders such as %%VERSION%% in source files are replaced by concrete values such as
1.2.3. It is performed by dune subst for development versions and dune-release for releases.

1.1.3 Project Layout
A typical Dune project will have a dune-project and one or more <package>. opam files at the root as well as dune
files wherever interesting things are: libraries, executables, tests, documents to install, etc.

We recommended organising your project to have exactly one library per directory. You can have several executables
in the same directory, as long as they share the same build configuration. If you’d like to have multiple executables
with different configurations in the same directory, you will have to make an explicit module list for every executable
using modules.

1.1.4 History
Dune started as jbuilder in late 2016. When its 1.0.0 version was released in 2018, the name has been changed to

dune. It used to be configured with jbuild and jbuild-workspace files with a slightly different syntax. After a
transition period, this syntax is not supported anymore.

1.2 Quickstart

This document gives simple usage examples of Dune. You can also look at examples for complete examples of projects
using Dune with CRAM stanzas.

To try these examples, you will need to have Dune installed. See How fo Install Dune.

1.2.1 Initializing Projects

The following subsections illustrate basic usage of the dune init proj subcommand. For more documentation, see
Initializing Components and the inline help available from dune init --help.

Initializing an Executable

To initialize a project that will build an executable program, run the following (replacing project_name with the name
of your project):

$ dune init proj project_name

This creates a project directory that includes the following contents:

project_name/

dune-project
test

(continues on next page)

1.2. Quickstart 5

https://github.com/tarides/dune-release
https://github.com/ocaml/dune/tree/master/example
https://ocaml.org/p/craml/1.0.0

Dune Documentation

(continued from previous page)

dune
test_project_name.ml

— 1lib

L— dune

— bin

dune
main.ml

L— project_name.opam

Now,

enter your project’s directory:

$ cd project_name

Then, you can build your project with:

$ dune build

You can run your tests with:

$ dune test

You can run your program with:

$ dune exec project_name

This simple project will print “Hello World” in your shell.

The following itemization of the generated content isn’t necessary to review at this point. But whenever you are ready,
it will provide jump-off points from which you can dive deeper into Dune’s capabilities:

The dune-project file specifies metadata about the project, including its name, packaging data (including de-
pendencies), and information about the authors and maintainers. Open this in your editor to fill in the placeholder
values. See dune-project for details.

The test directory contains a skeleton for your project’s tests. Add to the tests by editing test/
test_project_name.ml. See Writing and Running Tests for details on testing.

The 1ib directory will hold the library you write to provide your executable’s core functionality. Add modules to
your library by creating new .ml files in this directory. See library for details on specifying libraries manually.

The bin directory holds a skeleton for the executable program. Within the modules in this directory, you can
access the modules in your 1ib under the namespace project_name.Mod, where project_name is replaced
with the name of your project and Mod corresponds to the name of the file in the 1ib directory. You can run
the executable with dune exec project_name. See Building a Hello World Program From Scratch for an
example of specifying an executable manually and executable for details.

The project_name.opam file will be freshly generated from the dune-project file whenever you build your
project. You shouldn’t need to worry about this, but you can see How Dune integrates with opam for details.

The dune files in each directory specify the component to be built with the files in that directory. For details on
dune files, see dune.

Chapter 1. Getting Started and Core Concepts

Dune Documentation

Initializing a Library

To initialize a project for an OCaml library, run the following (replacing project_name with the name of your project):

$ dune init proj --kind=1lib project_name

This creates a project directory that includes the following contents:

project_name/
— dune-project
— 1ib
L— dune
— test
dune
test_project_name.ml
L project_name.opam

Now, enter your project’s directory:

$ cd project_name

Then, you can build your project with:

$ dune build

You can run your tests with:

$ dune test

All of the subcomponents generated are the same as those described in Initializing an Executable, with the following
exceptions:

 There is no bin directory generated.

* The dune file in the 1ib directory specifies that the library should be public. See library for details.
1.2.2 Building a Hello World Program From Scratch
Create a new directory within a Dune project (Initializing an Executable). Since OCaml is a compiled language, first

create a dune file in Nano, Vim, or your preferred text editor. Declare the hello_world executable by including the
following stanza (shown below). Name this initial file dune and save it.

(executable
(name hello_world))

Create a second file containing the following code and name it hello_world.ml (including the .ml extension). It will
implement the executable stanza in the dune file when built.

print_endline "Hello, world!"

Next, build your new program in a shell using this command:

$ dune build hello_world.exe

1.2. Quickstart 7

Dune Documentation

This will create a directory called _build and build the program: _build/default/hello_world.exe. Note that
native code executables will have the . exe extension on all platforms (including non-Windows systems).

Finally, run it with the following command to see that it worked. In fact, the executable can both be built and run in a
single step:

$ dune exec -- ./hello_world.exe

Voila! This should print “Hello, world!” in the command line.

1.2.3 Building a Hello World Program Using Lwt

Lwt is a concurrent library in OCaml.

In a directory of your choice, write this dune file:

(executable
(name hello_world)
(libraries lwt.unix))

This hello_world.ml file:

Lwt_main.run (Lwt_io.printf "Hello, world!\n")

And build it with:

$ dune build hello_world.exe

The executable will be built as _build/default/hello_world.exe

1.2.4 Building a Hello World Program Using Core and Jane Street PPXs

Write this dune file:

(executable

(name hello_world)
(libraries core)

(preprocess (pps ppx_jane)))

This hello_world.ml file:

open Core

let O =
Sexp.to_string_hum [%sexp ([3;4;5] : int list)]
[> print_endline

And build it with:

$ dune build hello_world.exe

The executable will be built as _build/default/hello_world.exe

8 Chapter 1. Getting Started and Core Concepts

Dune Documentation

1.2.5 Defining a Library Using Lwt and ocaml-re

Write this dune file:

(library

(name mylib)
(public_name mylib)
(libraries re 1lwt))

The library will be composed of all the modules in the same directory. Outside of the library, module Foo will be
accessible as Mylib.Foo, unless you write an explicit mylib.ml file.

You can then use this library in any other directory by adding mylib to the (1ibraries ...) field.

1.2.6 Building a Hello World Program in Bytecode

In a directory of your choice, write this dune file:

;; This declares the hello_world executable implemented by hello_world.ml
;; to be build as native (.exe) or bytecode (.bc) version.

(executable

(name hello_world)

(modes byte exe))

This hello_world.ml file:

print_endline "Hello, world!"

And build it with:

$ dune build hello_world.bc

The executable will be built as _build/default/hello_world.bc. The executable can be built and run in a single
step with dune exec ./hello_world.bc. This bytecode version allows the usage of ocamldebug.

1.2.7 Setting the OCaml Compilation Flags Globally

Write this dune file at the root of your project:

(env
(dev
(flags (:standard -w +42)))
(release
(ocamlopt_flags (:standard -03))))

dev and release correspond to build profiles. The build profile can be selected from the command line with --profile
foo or from a dune-workspace file by writing:

(profile foo)

1.2. Quickstart 9

Dune Documentation

1.2.8 Using Cppo

Add this field to your library or executable stanzas:

(preprocess (action (run %{bin:cppo} -V OCAML:%{ocaml_version} %{input-file})))

Additionally, if you want to include a config.h file, you need to declare the dependency to this file via:

(preprocessor_deps config.h)

Using the .cppo.ml Style Like the ocamlbuild Plugin

Write this in your dune file:

(rule

(targets foo.ml)

(deps (:first-dep foo.cppo.ml) <other files that foo.ml includes>)
(action (run %{bin:cppo} %{first-dep} -o %{targets})))

1.2.9 Defining a Library with C Stubs

Assuming you have a file called mystubs. c, that you need to pass -I/blah/include to compile it and -1blah at
link time, write this dune file:

(library
(name mylib)
(public_name mylib)
(libraries re lwt)

(foreign_stubs

(language c)

(names mystubs)

(flags -I/blah/include))
(c_library_flags (-1blah)))

1.2.10 Defining a Library with C Stubs using pkg-config

Same context as before, but using pkg-config to query the compilation and link flags. Write this dune file:

(library
(name mylib)
(public_name mylib)
(libraries re lwt)

(foreign_stubs
(language c)
(names mystubs)
(flags (:include c_flags.sexp)))
(c_library_flags (:include c_library_flags.sexp)))

(rule
(targets c_flags.sexp c_library_flags.sexp)
(action (run ./config/discover.exe)))

10 Chapter 1. Getting Started and Core Concepts

Dune Documentation

Then create a config subdirectory and write this dune file:

(executable
(name discover)
(libraries dune-configurator))

as well as this discover.ml file:

module C = Configurator.V1

let O =
C.main ~name:'"foo" (fun c ->
let default : C.Pkg_config.package_conf =
{ libs = ["-1lgst-editing-services-1.0"]
; cflags = []
}
in
let conf =
match C.Pkg_config.get c with
| None -> default
| Some pc ->
match (C.Pkg_config.query pc ~package:'gst-editing-services-1.0") with
| None -> default
| Some deps -> deps
in

C.Flags.write_sexp "c_flags.sexp" conf.cflags;
C.Flags.write_sexp "c_library_flags.sexp" conf.libs)

1.2.11 Using a Custom Code Generator

To generate a file foo.ml using a program from another directory:

(rule
(targets foo.ml)
(deps (:gen ../generator/gen.exe))

(action (run %{gen} -o %{targets})))

1.2.12 Defining Tests

Write this in your dune file:

(test (name my_test_program))

And run the tests with:

$ dune runtest

It will run the test program (the main module is my_test_program.ml) and error if it exits with a nonzero code.

In addition, ifamy_test_program. expected file exists, it will be compared to the standard output of the test program
and the differences will be displayed. It is possible to replace the . expected file with the last output using:

1.2. Quickstart 11

Dune Documentation

$ dune promote

1.2.13 Building a Custom Toplevel

A toplevel is simply an executable calling Topmain.main () and linked with the compiler libraries and -1inkall.
Moreover, currently toplevels can only be built in bytecode.

As a result, write this in your dune file:

(executable

(name mytoplevel)

(libraries compiler-libs.toplevel mylib)
(link_flags (-linkall))

(modes byte))

And write this in mytoplevel .ml:

let O = exit (Topmain.main ())

1.3 Command-Line Interface

This section describes using dune from the shell.

1.3.1 Initializing Components

NOTE: The dune init command is still under development and subject to change.

Dune’s init subcommand provides limited support for generating Dune file stanzas and folder structures to define
components. The dune init command can be used to quickly add new projects, libraries, tests, and executables
without having to manually create Dune files in a text editor, or it can be composed to programmatically generate parts
of a multi-component project.

Initializing a Project

You can run the following command to initialize a new Dune project that uses the base and cmdliner libraries and
supports inline tests:

$ dune init proj myproj --libs base,cmdliner --inline-tests --ppx ppx_inline_test

This creates a new directory called myproj, including subdirectories and dune files for library, executable, and test
components. Each component’s dune file will also include the declarations required for the given dependencies.

This is the quickest way to get a basic dune project up and building.

12 Chapter 1. Getting Started and Core Concepts

Dune Documentation

Initializing an Executable

To add a new executable to a dune file in the current directory (creating the file if necessary), run

$ dune init exe myexe --libs base,containers,notty --ppx ppx_deriving

This will add the following stanza to the dune file:

(executable

(name main)

(libraries base containers notty)
(preprocess
(pps ppx_deriving)))

Initializing a Library

Run the following command to create a new directory src, initialized as a library:

$ dune init 1lib mylib src --libs core --inline-tests --public

This will ensure the file . /src/dune contains the below stanza (creating the file and directory, if necessary):

(library
(public_name mylib)
(inline_tests)
(name mylib)
(libraries core)
(preprocess
(pps ppx_inline_tests)))

Initializing Components in a Specified Directory

All init subcommands take an optional PATH argument, which should be a path to a directory. When supplied, the
component will be created in the specified directory. E.g., to initialize a project in the current working directory, run

$ dune init proj my_proj

To initialize a project in a directory in some nested path, run

$ dune init proj my_proj path/to/my/project

If the specified directory does not already exist, it will be created.

1.3. Command-Line Interface 13

Dune Documentation

Learning More About the init Commands

Consult the manual page using the "dune init --help command for more details.

1.3.2 Finding the Root

The root of the current workspace is determined by looking up a dune-workspace or dune-project file in the current
directory and its parent directories. Dune requires at least one of these two files to operate.

If it isn’t in the current directory, Dune prints out the root when starting:

$ dune runtest
Entering directory '/home/jdimino/code/dune'’

This message can be suppressed with the --no-print-directory command line option (as in GNU make).

More precisely, Dune will choose the outermost ancestor directory containing a dune-workspace file, which is used
to mark the root of the current workspace. If no dune-workspace file is present, the same strategy applies with
dune-project files.

In case of a mix of dune-workspace and dune-project files, workspace files take precedence over project files in the
sense that if a dune-workspace file is found, only parent dune-workspace files will be considered when looking
for the root; however, if a dune-project file is found both parent dune-workspace and dune-project files will be
considered.

A dune-workspace file is also a configuration file. Dune will read it unless the --workspace command line option
is used. See dune-workspace for the syntax of this file. The scope of dune-project files is wider than the scope
dune-workspace files. For instance, a dune-project file may specify the name of the project which is a universal
property of the project, while a dune-workspace file may specify an opam switch name which is valid only on a given
machine. For this reason, it is common and recommended to commit dune-project files in repositories, while it is
less common to commit dune-workspace files.

Current Directory

If the previous rule doesn’t apply, i.e., no ancestor directory has a file named dune-workspace, then the current
directory will be used as root.

Forcing the Root (for Scripts)
You can pass the --root option to dune to select the root explicitly. This option is intended for scripts to disable the
automatic lookup.

Note that when using the --root option, targets given on the command line will be interpreted relative to the given
root, not relative to the current directory, as this is normally the case.

14 Chapter 1. Getting Started and Core Concepts

Dune Documentation

1.3.3 Interpretation of Targets

This section describes how Dune interprets the targets provided on the command line. When no targets are specified,
Dune builds the default alias.

Resolution

All targets that Dune knows how to build live in the _build directory. Although, some are sometimes copied
to the source tree for the need of external tools. These includes <package>.install files when either -p or
--promote-install-files is passed on the command line.

As a result, if you want to ask Dune to produce a particular . exe file you would have to type:

$ dune build _build/default/bin/prog.exe

However, for convenience, when a target on the command line doesn’t start with _build, Dune expands it to the
corresponding target in all the build contexts that Dune knows how to build. When using --verbose, it prints out the
actual set of targets upon starting:

$ dune build bin/prog.exe --verbose

Actual targets:

- _build/default/bin/prog.exe
- _build/4.03.0/bin/prog.exe
- _build/4.04.0/bin/prog.exe

If a target starts with the @ sign, it is interpreted as an alias. See Aliases.

Variables for Artifacts

It’s possible to build specific artifacts by using the corresponding variable on the command line. For example:

dune build '%{cmi:foo}"’

See Variables for Artifacts for more information.

1.3.4 Finding External Libraries

When a library isn’t available in the workspace, Dune will search for it in the installed world and expect it to be already
compiled.

It looks up external libraries using a specific list of search paths, and each build context has a specific list of search
paths.

When running inside an opam environment, Dune will look for installed libraries in $OPAM_SWITCH_PREFIX/1ib.
This includes both opam build context configured via the dune-workspace file and the default build context when the
variable $OPAM_SWITCH_PREFIX is set.

Otherwise, Dune takes the directory where ocamlc was found and appends ../lib " to it. For instance, if ocamlc is
found in /usr/bin, Dune looks for installed libraries in /usr/1lib.

In addition to the two above rules, Dune always inspects the OCAMLPATH environment variable and uses the paths
defined in this variable. OCAMLPATH always has precedence and can have different values in different build contexts.
For instance, you can set it manually in a specific build context via the dune-workspace file.

1.3. Command-Line Interface 15

Dune Documentation

1.3.5 Running Tests

There are two ways to run tests:
e dune build @runtest
e dune test (or the more explicit dune runtest)

The two commands are equivalent, and they will run all the tests defined in the current directory and its children
directories recursively. You can also run the tests in a specific sub-directory and its children by using:

¢ dune build @foo/bar/runtest

¢ dune test foo/bar (or dune runtest foo/bar)

1.3.6 Watch Mode

The dune buildand dune runtestcommands supporta -w (or --watch) flag. When it’s passed, Dune will perform
the action as usual and then wait for file changes and rebuild (or rerun the tests). This feature requires inotifywait
or fswatch to be installed.

1.3.7 Launching the Toplevel (REPL)

Dune supports launching a utop instance with locally defined libraries loaded.

$ dune utop <dir> -- <args>

Where <dir> is a directory under which Dune searches (recursively) for all libraries that will be loaded. <args> will
be passed as arguments to the utop command itself. For example, dune utop lib -- -implicit-bindings will
start utop, with the libraries defined in 1ib and implicit bindings for toplevel expressions.

Dune also supports loading individual modules unsealed by their signatures into the toplevel. This is accomplished by
launching a toplevel and then asking dune to return the toplevel directives needed to evaluate the module:

$ utop
use_output "dune ocaml top-module path/to/module.ml";;

Requirements & Limitations

» Utop version >= 2.0 is required for this to work.
* This subcommand only supports loading libraries. Executables aren’t supported.
* Libraries that are dependencies of utop itself cannot be loaded. For example Camomile.

* Loading libraries that are defined in different directories into one utop instance isn’t possible.

16 Chapter 1. Getting Started and Core Concepts

https://github.com/diml/utop
https://github.com/yoriyuki/Camomile

Dune Documentation

1.3.8 Restricting the Set of Packages

Restrict the set of packages from your workspace that Dune can see with the --only-packages option:

$ dune build --only-packages pkgl,pkg2,... @install

This option acts as if you went through all the Dune files and commented out the stanzas referring to a package that
isn’t in the list given to dune.

1.3.9 Distributing Projects
Dune provides support for building and installing your project; however, it doesn’t provide helpers for distributing it.
It’s recommended to use dune-release for this purpose.
The common defaults are that your projects include the following files:
e README.md
e CHANGES.md
e LICENSE.md

If your project contains several packages, all the package names must be prefixed by the shortest one.

1.3.10 dune subst

One of the features dune-release provides is watermarking; it replaces various strings of the form %%ID%% in all your
project files before creating a release tarball or when the opam user pins the package.

This is especially interesting for the VERSION watermark, which gets replaced by the version obtained from the Version-
Control System (VCS). For instance, if you're using Git, dune-release invokes this command to find out the version:

$ git describe --always --dirty --abbrev=7
1.0+beta9-79-g29e9b37

If no VCS is detected, dune subst will do nothing.

Projects using Dune usually only need dune-release for creating and publishing releases. However, they may still
substitute the watermarks when the user pins the package. To help with this, Dune provides the subst sub-command.

dune subst performs the same substitution that dune-release does with the default configuration, i.e., calling dune
subst at the root of your project will rewrite all your project files.

More precisely, it replaces the following watermarks in the source files:
* NAME, the name of the project
* VERSION, output of git describe --always --dirty --abbrev=7
e VERSION_NUM, same as VERSION but with a potential leading v or V dropped
e VCS_COMMIT_ID, commit hash from the vcs
e PKG_MAINTAINER, contents of the maintainer field from the opam file
¢ PKG_AUTHORS, contents of the authors field from the opam file
* PKG_HOMEPAGE, contents of the homepage field from the opam file
* PKG_ISSUES, contents of the issues field from the opam file
* PKG_DOC, contents of the doc field from the opam file

1.3. Command-Line Interface 17

https://github.com/samoht/dune-release

Dune Documentation

* PKG_LICENSE, contents of the 1icense field from the opam file
* PKG_REPO, contents of the repo field from the opam file

The project name is obtained by reading the dune-project file in the directory where dune subst is called. The
dune-project file must exist and contain a valid (name ...) field.

Note that dune subst is meant to be called from the opam file and behaves a bit different to other Dune commands.
In particular it doesn’t try to detect the root of the workspace and must be called from the root of the project.

1.3.11 Custom Build Directory

By default Dune places all build artifacts in the _build directory relative to the user’s workspace. However, one can
customize this directory by using the --build-dir flag or the DUNE_BUILD_DIR environment variable.

$ dune build --build-dir _build-foo

this is equivalent to:
$ DUNE_BUILD_DIR=_build-foo dune build

Absolute paths are also allowed
$ dune build --build-dir /tmp/build foo.exe

1.3.12 Installing a Package
Via opam
When releasing a package using Dune in opam, there’s nothing special to do. Dune generates a file called

<package-name>.install at the root of the project. This contains a list of files to install, and opam reads it in
order to perform the installation.

Manually

When not using opam, or when you want to manually install a package, you can ask Dune to perform the installation
via the install command:

$ dune install [PACKAGE]...

This command takes a list of package names to install. If no packages are specified, Dune will install all available
packages in the workspace. When several build contexts are specified via a dune-workspace file, Dune performs the
installation in all the build contexts.

Destination Directory
For a given build context, the installation directories are determined with a single scheme for all installation sections.
Taking the 1ib installation section as an example, the priorities of this scheme are as follows:

1. if an explicit --1ib <path> argument is passed, use this path

2. if an explicit --prefix <path> argument is passed, use <path>/1ib

3. if --1ib <path> argument is passed before during dune compilation to . /configure, use this paths

4. if OPAM_SWITCH_PREFIX is present in the environment use $OPAM_SWITCH_PREFIX/1lib

18 Chapter 1. Getting Started and Core Concepts

Dune Documentation

5. otherwise, fail

Relocation Mode

The installation can be done in specific mode (--relocation) for creating a directory that can be moved. In that case,
the installed executables will look up the package sites (cf How fo Load Additional Files at Runtime) relative to its
location. The —prefix directory should be used to specify the destination.

If you’re using plugins that depend on installed libraries and aren’t executable dependencies, like libraries that need to
be loaded at runtime, you must copy the libraries manually to the destination directory.

1.3.13 Querying Merlin Configuration

Since Version 2.8, Dune no longer promotes .merlin files to the source directories. Instead, Dune stores these con-
figurations in the _build folder, and Merlin communicates directly with Dune to obtain its configuration via the ocaml-
merlin subcommand. The Merlin configuration is now stanza-specific, allowing finer control. The following commands
aren’t needed for normal Dune and Merlin use, but they can provide insightful information when debugging or config-
uring non-standard projects.

Printing the Configuration

It’s possible to manually query the generated configuration for debugging purposes:

$ dune ocaml merlin dump-config

This command prints the distinct configuration of each module present in the current directory. This directory must be
in a Dune workspace and the project must be already built. The configuration will be encoded as s-expressions, which
are used to communicate with Merlin.

Printing an Approximated .merlin

It’s also possible to print the current folder’s configuration in the Merlin configuration syntax by running the following
command:

$ dune ocaml dump-dot-merlin > .merlin

In that case, Dune prints only one configuration: the result of the configuration’s coarse merge in the current folder’s
various modules. This folder must be in a Dune workspace, and the project must be already built. Preprocessing
directives and other flags will be commented out and must be un-commented afterward. This feature doesn’t aim at
writing exact or correct .merlin files. Its sole purpose is to lessen the burden of writing the configuration from scratch.

Non-Standard Filenames

Merlin configuration loading is based on filenames, so if you have files that are preprocessed by custom rules before
they are built, they should respect the following naming convention: the unprocessed file should start with the name of
the resulting processed file followed by a dot. The rest does not matter. Dune uses only the name before the first dot to
match with available configurations.

For example, if you use the cppo preprocessor to generate the file real_module_name.ml, then the source file could
be named real_module_name.cppo.ml.

1.3. Command-Line Interface 19

Dune Documentation

1.3.14 Running a Coq Toplevel

See Running a Coq Toplevel.

20 Chapter 1. Getting Started and Core Concepts

CHAPTER
TWO

HOW-TO GUIDES

These guides will help you use Dune’s features in your project.

2.1 How to Install Dune

Dune is available as an Opam package. First, make sure that Opam is installed:

$ opam --version
2.1.5

Any version higher than 2.0.0 is supported, though preferably at least 2.1.0.

If Opam is not available, follow the official instructions on the Opam website to install it and then run its global setup
with opam init.

Note: Opam requires a “shell hook” to work properly. Make sure to set it up correctly during opam init. Otherwise
you will have to run eval $(opam env) every time you create an Opam switch or change directory.

Then, you can install Dune in an Opam switch using the following command:

$ opam install dune

After the command completes, the following should display a version number:

$ dune --version
3.12.1

Note: Inmost cases, when using Opam you will not need to install Dune by hand. Installing the project’s dependencies
will install it in the Opam switch.

21

https://opam.ocaml.org/doc/Install.html

Dune Documentation

2.2 How to Set up Automatic Formatting

This guide will show you how to configure Dune so that it can check the formatting of your source code.

Formatting is defined per project. This ensures that if a project is reused elsewhere, its formatting configuration will
not interfere.

2.2.1 Setting Up the Environment

First, let’s open the dune-project file. Make sure that the version specified in (lang dune X.Y) is at least 2.0.
Most formatting configuration happens in that file. If you want to format OCaml sources and dune files, you don’t have
anything to add. Otherwise, refer to the formatting stanza.

Next we need to install some code formatting tools. For OCaml code, this means installing OCamlFormat with opam
install ocamlformat. Formatting dune files is built into Dune and does not require any extra tools. For Reason
code, this uses the refmt tool which is already installed if you are using Reason syntax in your project. If your project
uses a dialect, a specific tool might be required.

Using OCamlFormat requires some configuration. Take note of the version returned by ocamlformat --version
(let’s name that X.Y.Z) and create an .ocamlformat file in the same directory as dune-project with the following
contents:

version=X.Y.Z
profile=default

The version line is checked by OCamlFormat and ensures that everybody contributing to the project uses the same
version.

Note that you do not have to add ocaml format to your opam files.

2.2.2 Running the Formatters

Run the dune build @fmt command. It will format the source files in the corresponding project and display the
differences:

$ dune build @fmt

--- hello.ml

+++ hello.ml.formatted

@@ -1,3 +1 @@

-let O =

- print_endline

- "hello, world"

+let () = print_endline "hello, world"

Then it’s possible to accept the correction by calling dune promote to replace the source files with the corrected
versions.

$ dune promote
Promoting _build/default/hello.ml.formatted to hello.ml.

As usual with promotion, it’s possible to combine these two steps by running dune build @fmt --auto-promote.
This command can also be shortened to dune fmt. See Diffing and Promotion for more details.

22 Chapter 2. How-to Guides

https://github.com/ocaml-ppx/ocamlformat

Dune Documentation

2.2.3 Setting Up Your CI

To check formatting in CI, the precise set up depends on the CI system used, but in general it is easier to set up a
dedicated job that just installs dune and the formatting tools, rather than doing that as part of the jobs that run tests.

If you use ocaml-ci, you have nothing to do: a formatting job is set up automatically.

If you use setup-ocaml, you can use the lint-fint extend listed in the README file.

2.3 How to Generate Opam Files from dune-project

This guide will show you how to configure Dune so that it generates opam files.

2.3.1 Declaring Package Dependencies
The goal of this first step is to add (package) stanzas in your dune-project file. These stanzas declare the metadata
that your package uses in the language of opam packages. See Declaring a Package.

The next step depends on whether you are starting from a clean slate (new package) or adapting an existing opam file.

For a New Package (No Existing Opam File)

If your project does not have any opam files, you will have to find your package dependencies. In the simple case,
collect all the libraries that appear in the (1libraries) fields of your project and put this list in the (depends) field
of the corresponding (package). See The OCaml Ecosystem for the difference between libraries and packages.

Example: you have a library that looks like:

(library
(public_name frobnitz)
(libraries lwt fmt))

You can declare the package as:

(package
(name frobnitz)
(depends 1wt fmt))

Also add common metadata using (authors), (maintainers), (license), (source), as well as a (synopsis)
and a (description) for

For an Existing Package

If you already have an opam file (or several of them), you can convert it by following the rules in package.

For example, if your opam file looks like:

opam-version: 2.0

authors: ["Anil Madhavapeddy" "Rudi Grinberg"]
maintainer: ["team@nirage.org"]

name: "cohttp-async"

synopsis: "HTTP client and server for the Async library"

(continues on next page)

2.3. How to Generate Opam Files from dune-project 23

https://ocaml.ci.dev/
https://github.com/ocaml/setup-ocaml

Dune Documentation

(continued from previous page)

description: "A _really_ long description"
license: "ISC"
bug-reports: "https://github.com/mirage/ocaml-cohttp/issues"
homepage: "https://github.com/mirage/ocaml-cohttp/"
dev-repo: "git+https://github.com/mirage/ocaml-cohttp.git"
build: [
["dune" "subst"] {dev}
[
"dune"
"build"

n_p
name
n_j
jobs
"@install"
"@runtest" {with-test}
"@doc" {with-doc}
]
]
depends: [
"dune" { >= "3.4" }
"odoc" { with-doc }
"cohttp" { >= "1.0.2" }
"conduit-async" { >= "1.0.3" }
"async" { >= "v0.10.0" }

You can express this as:

(source (github mirage/ocaml-cohttp))
(license ISO)

(authors "Anil Madhavapeddy" "Rudi Grinberg")
(maintainers "team@mirage.org™)

(package
(name cohttp-async)
(synopsis "HTTP client and server for the Async library")
(description "A _really_ long description'™)
(depends
(cohttp (>= 1.0.2))
(conduit-async (>= 1.0.3))
(async (>= v0.10.0))))

24 Chapter 2. How-to Guides

Dune Documentation

General Notes and Tips

* Do not declare a dependency on the dune and odoc packages. Dune will generate them with the right constraints.

* For fields that are common between packages (like (authors) or (license)), you can use a global one rather
than replicate it between packages.

e If you use a platform such as GitHub you can use (source) as a shorthand instead of specifying
(bug_reports), (homepage), etc.

* (package) stanzas do not support all opam fields or complete syntax for dependency specifications. If the
package you are adapting requires this, keep the corresponding opam fields in a pkg.opam. template file. See
Packages.

* Itis not necessary to specify (version), this will be added at release time if you use dune-release.

2.3.2 Generating Opam Files

If you have existing * . opam files, make a backup of them because the instructions in this section will overwrite them.

Now that you have declared package metadata in dune-project, you can add (generate_opam_files) in
(dune-project).

From now on, commands like dune build and dune runtest are going to regenerate the contents of opam files from
the metadata in (package) stanzas. If you only want to generate the opam file, run dune build <project_name>.
opam.

Run dune build once and observe that the opam files have been created or updated. Make sure to add these changes
to your version control system.

2.4 Cross-Compilation

Dune allows for cross-compilation by defining build contexts with multiple targets. Targets are specified by adding a
targets field to the build context definition.

targets takes a list of target name. It can be either:
* native, the native tools that can build binaries to run on the machine doing the build
* the name of an alternative toolchain

Note that at the moment, there is no official support for cross-compilation in OCaml. Dune supports the opam-cross-
<x> repositories from the OCaml-cross organization on GitHub, such as:

¢ opam-cross-windows
* opam-cross-android
* opam-cross-ios
In particular:
* to build Windows binaries using opam-cross-windows, write windows in the list of targets
* to build Android binaries using opam-cross-android, write android in the list of targets
* to build IOS binaries using opam-cross-ios, write ios in the list of targets

For example, the following workspace file defines three different targets for the default build context:

2.4. Cross-Compilation 25

https://github.com/tarides/dune-release
https://github.com/ocaml-cross/
https://github.com/ocaml-cross/opam-cross-windows
https://github.com/ocaml-cross/opam-cross-android
https://github.com/ocaml-cross/opam-cross-ios

Dune Documentation

(context (default (targets native windows android)))

This configuration defines three build contexts:
* default
e default.windows
e default.android

Note that the native target is always implicitly added when not present; however, dune build @install will skip
this context, i.e., default will only be used for building executables needed by the other contexts.

With such a setup, calling dune build @install will build all the packages three times.

Note that instead of writing a dune-workspace file, you can also use the -x command line option. Passing -x foo
to dune without having a dune-workspace file is the same as writing the following dune-workspace file:

(context (default (targets foo)))

If you have a dune-workspace and pass a -x foo option, foo will be added as target of all context stanzas.

2.4.1 How Does it Work?

In such a setup, binaries that need to be built and executed in the default.windows or default.android contexts
as part of the build will no longer be executed. Instead, all the binaries that will be executed come from the default
context. One consequence of this is that all preprocessing (PPX or otherwise) will be done using binaries built in the
default context.

To clarify this with an example, let’s assume that you have the following src/dune file:

(executable (name foo))
(rule (with-stdout-to blah (run ./foo.exe)))

When building _build/default/src/blah, dune will resolve ./foo.exe to _build/default/src/foo.exe as
expected. However, for _build/default.windows/src/blah dune will resolve ./foo.exe to _build/default/
src/foo.exe

Assuming that the right packages are installed or that your workspace has no external dependencies, Dune will be able
to cross-compile a given package without doing anything special.

Some packages might still have to be updated to support cross-compilation. For instance if the foo.exe program in
the previous example was using Sys.os_type, it should instead take it as a command line argument:

(rule (with-stdout-to blah (run ./foo.exe -os-type %{os_type})))

2.5 Dealing with Foreign Libraries

The OCaml programming language can interface with libraries written in foreign languages such as C. This section
explains how to do this with Dune. Note that it does not cover how to write the C stubs themselves, but this is covered
by the OCaml manual.

More precisely, this section covers:
* How to add C/C++ stubs to an OCaml library

* How to pass specific compilation flags for compiling the stubs

26 Chapter 2. How-to Guides

https://caml.inria.fr/pub/docs/manual-ocaml/intfc.html

Dune Documentation

* How to build a library with a foreign build system

In general, Dune has limited support for building source files written in foreign languages. This support is suitable
for most OCaml projects containing C stubs, but it is too limited for building complex libraries written in C or other
languages. For such cases, Dune can integrate a foreign build system into a normal Dune build.

2.5.1 Adding C/C++ Stubs to an OCaml Library

To add C stubs to an OCaml library, simply list the C files without the .c extension in the Foreign Stubs field. For
instance:

(library
(name mylib)
(foreign_stubs (language c) (names filel file2)))

You can also add C++ stubs to an OCaml library by specifying (language cxx) instead.

Dune is currently not flexible regarding the extension of the C/C++ source files. They have to be .c for C files and
.Cpp, .ccor .cxx for C++ files. If you have source files with other extensions and you want to build them with Dune,
you need to rename them first. Alternatively, you can use the foreign build sandboxing method described below.

Header Files
C/C++ source files may include header files in the same directory as the C/C++ source files or in the same directory
group when using include_subdirs.

The header files must have the .h extension.

Installing Header Files

It is sometimes desirable to install header files with the library. For that you have two choices: install them explicitly
with an install stanza or use the install_c_headers field of the /ibrary stanza. This field takes a list of header files
names without the .h extension. When a library installs header files, they are made visible to users of the library via
the include search path.

2.5.2 Stub Generation with Dune Ctypes

Beginning in Dune 3.0, it’s possible to use the ctypes field to generate bindings for C libraries without writing any C
code.

Note that Dune support for this feature is experimental and is not subject to backward compatibility guarantees.

To use Dune ctypes stub generation, you must provide two OCaml modules: a “type description” module for describing
the C library types and constants, and a “function description” module for describing the C library functions. Addi-
tionally, you must list any C headers and a method for resolving build and link flags.

If you’re binding a library distributed by your OS, you can use the pkg-config utility to resolve any build and link flags.
Alternatively, if you’re using a locally installed library or a vendored library, you can provide the flags manually.

The “type description” module must define a functor named Types with signature Ctypes.TYPE. The “function de-
scription” module must define a functor named Functions with signature Ctypes.FOREIGN.

2.5. Dealing with Foreign Libraries 27

https://github.com/ocamllabs/ocaml-ctypes
https://www.freedesktop.org/wiki/Software/pkg-config/

Dune Documentation

A Toy Example

To begin, you must declare the ctypes extension in your dune-project file:

(lang dune 3.15)
(using ctypes 0.3)

Next, here is a dune file you can use to define an OCaml program that binds a C system library called 1ibfoo, which
offers foo.h in a standard location.

(executable
(name foo)
(libraries core)
; ctypes backward compatibility shims warn sometimes; suppress them
(flags (:standard -w -9-27))
(ctypes
(external_library_name libfoo)
(build_flags_resolver pkg_config)
(headers (include "foo.h"))
(type_description
(instance Types)
(functor Type_description))
(function_description
(concurrency unlocked)
(instance Functions)
(functor Function_description))
(generated_types Types_generated)
(generated_entry_point C)))

This field will introduce a module named C into your project, with the sub-modules Types and Functions that will
have your fully-bound C types, constants, and functions.

Given 1ibfoo with the C header file foo.h:

#define FOO_VERSION 1
int foo_init(void);
int foo_fnubar(char *);

void foo_exit(void);

Your example type_description.ml file is:

open Ctypes

module Types (F : Ctypes.TYPE) = struct
open F

let foo_version = constant "FOO_VERSION" int
end

Your example function_description.ml file is:

28 Chapter 2. How-to Guides

Dune Documentation

open Ctypes
(* This Types_generated module is an instantiation of the Types
functor defined in the type_description.ml file. It's generated by

a C program that Dune creates and runs behind the scenes. *)
module Types = Types_generated

module Functions (F : Ctypes.FOREIGN) = struct
open F

let foo_init = foreign "foo_init" (void @-> returning int)
let foo_fnubar = foreign "foo_fnubar" (string_opt @-> returning int)

let foo_exit = foreign "foo_exit" (void @-> returning void)
end

Finally, the entry point of your executable named above, foo.ml, demonstrates how to access the bound C library
functions and values:

let O =
if (C.Types.foo_version <> 1) then
failwith "foo only works with libfoo version 1";

match C.Functions.foo_init () with
| 0@ ->
C.Functions. foo_fnubar "fnubar!";
C.Functions. foo_exit ()
| err_code ->
Printf.eprintf "foo_init failed: %d" err_code;

From here, one only needs to run dune build ./foo.exe to generate the stubs and build and link the example foo.
exe program.

Complete information about the ctypes combinators used above is available at the ctypes project.

Ctypes Field Reference

The ctypes field can be used in any executable(s) or library stanza.

((executable|library)
(ctypes
(external_library_name <package-name>)
(type_description
(instance <module-name>)
(functor <module-name>))
(function_description
(instance <module-name>)
(functor <module-name>)
<optional-function-description-fields>)
(generated_entry_point <module-name>)

(continues on next page)

2.5. Dealing with Foreign Libraries 29

https://github.com/ocamllabs/ocaml-ctypes

Dune Documentation

(continued from previous page)

)

<optional-ctypes-fields>)

* type_description: the functor module is a description of the C library types and constants written in the

ctypes domain-specific language you wish to bind. The instance module is the name of the instantiated
functor, inserted into the top-level of the generated_entry_point module.

e function_description: the functor module is a description of the C library functions written in the ctypes

domain-specific language you wish to bind. The instance module is the name of the instantiated functor,
inserted into the top-level of the generated_entry_point module. The function_description field can
be repeated. This is useful if you need to specify sets of functions with different concurrency policies (see below).

The instantiated types described above can be accessed from the function descriptions by referencing them as the
module specified in optional generated_types field.

<optional-ctypes-fields> are:

e (build_flags_resolver <pkg_config|vendored-field>) tells Dune how to compile and link your for-

eign library. Specifying pkg_config will use the pkg-config tool to query the compilation and link flags for
external_library_name. For vendored libraries, provide the build and link flags using vendored field. If
build_flags_resolver is not specified, the default of pkg_config will be used.

(generated_types <module-name>) is the name of an intermediate module. By default, it’s named
Types_generated. You can use this module to access the types defined in Type_description from your
Function_description module(s).

(generated_entry_point <module-name>) is the name of a generated module that your instantiated Types
and Functions modules will instantiated under. We suggest calling it C.

Headers can be added to the generated C files:

— (headers (include "includel include2" ...)) adds #include <includel>, #include
<include2>. It uses the Ordered Set Language.

— (headers (preamble <preamble>) adds directly the preamble. Variables can be used in <preamble>
such as %{read: }.

Since the Dune’s ctypes feature is still experimental, it could be useful to add additional dependencies in or-
der to make sure that local headers or libraries are available: (deps <deps-conf list>). See Dependency
Specification for more details.

<optional-function-description-fields> are:

¢ (concurrency <sequential|unlocked|lwt_jobs|lwt_preemptive>) tells ctypes stubgen whether

to call your C functions with the runtime lock held or released. These correspond to the concurrency_policy
type in the ctypes library. If concurrency is not specified, the default of sequential will be used.

* (errno_policy <ignore_errno|return_errno>) specifies the errno_policy passed to the code generator.

With ignore_errno, the errno variable is not accessed or returned by function calls. With return_errno, all
functions will return the tuple (retval, errno).

<vendored-field> is:

¢ (vendored (c_flags <flags>) (c_library_flags <flags>)) provide the build and link flags for bind-

ing your vendored code. You must also provide instructions in your dune file on how to build the vendored
foreign library; see the foreign_library stanza. Usually the <flags> should contain : standard in order to add
the default flags used by the OCaml compiler for C files use_standard_c_and_cxx_flags.

30

Chapter 2. How-to Guides

https://www.freedesktop.org/wiki/Software/pkg-config/
https://ocaml.org/p/ctypes/0.20.1/doc/Cstubs/index.html#type-errno_policy

Dune Documentation

2.5.3 Foreign Build Sandboxing

When the build of a C library is too complicated to express in the Dune language, it’s possible to simply sandbox a
foreign build. Note that this method can be used to build other things, not just C libraries.

To do that, follow the following procedure:
* Put all the foreign code in a sub-directory
* Tell Dune not to interpret configuration files in this directory via an data_only_dirs stanza
e Write a custom rule that:
— depends on this directory recursively via source_tree
— invokes the external build system
— copies the generated files
— the C archive .a must be built with -fpic

— the 1libfoo. so must be copied as d11foo.so, and no 1ibfoo. so should appear, otherwise the dynamic
linking of the C library will be attempted. However, this usually fails because the 1ibfoo. so isn’t available
at the time of the execution.

* Attach the C archive files to an OCaml library via Foreign Archives.

For instance, let’s assume that you want to build a C library 1ibfoo using 1ibfoo’s own build system and attach it to
an OCaml library called foo.

The first step is to put the sources of 1ibfoo in your project, for instance in src/libfoo. Then tell Dune to consider
src/libfoo as raw data by writing the following in src/dune:

(data_only_dirs libfoo)

The next step is to setup the rule to build 1ibfoo. For this, writing the following code src/dune:

(rule
(deps (source_tree libfoo))
(targets libfoo.a dllfoo.so)
(action
(no-infer
(progn
(chdir libfoo (run make))
(copy libfoo/libfoo.a libfoo.a)
(copy libfoo/libfoo.so dllfoo.so0)))))

We copy the resulting archive files to the top directory where they can be declared as targets. The build is done in a
no-infer action because 1ibfoo/libfoo.a and libfoo/libfoo. so are dependencies produced by an external build
system.

The last step is to attach these archives to an OCaml library as follows:

(library
(name bar)
(foreign_archives foo0))

Then, whenever you use the bar library, you’ll also be able to use C functions from libfoo.

2.5. Dealing with Foreign Libraries 31

Dune Documentation

Limitations

When using the sandboxing method, the following limitations apply:
* The build of the foreign code will be sequential
* The build of the foreign code won’t be incremental

Both these points could be improved. If you’re interested in helping make this happen, please let the Dune team know
and someone will guide you.

Real Example

The re2 project uses this method to build the re2 C library. You can look at the file re2/src/re2_c/dune in this
project to see a full working example.

2.6 Generating Documentation

2.6.1 Prerequisites

Documentation in Dune is done courtesy of the odoc tool. Therefore, to generate documentation in Dune, you will
need to install this tool. This should be done with opam:

$ opam install odoc

2.6.2 Writing Documentation

Documentation comments will be automatically extracted from your OCaml source files following the syntax described
in the section Text formatting of the OCaml manual.

Additional documentation pages may be attached to a package using the documentation stanza.

2.6.3 Building Documentation

To generate documentation using the @doc alias, all that’s required to is to build this alias:

$ dune build @doc

An index page containing links to all the opam packages in your project can be found in:

$ open _build/default/_doc/_html/index.html

Documentation for private libraries may also be built with:

$ dune build @doc-private

But these libraries will not be in the main HTML listing above, since they don’t belong to any particular package, but
the generated HTML will still be found in _build/default/_doc/_html/<library>.

32 Chapter 2. How-to Guides

https://github.com/janestreet/re2
https://github.com/ocaml-doc/odoc
http://caml.inria.fr/pub/docs/manual-ocaml/ocamldoc.html

Dune Documentation

Documentation Stanza: Examples

The documentation stanza will attach all the .m1d files in the current directory in a project with a single package.

(documentation)

This stanza will attach three .mld files to package foo. The .mld files should be named foo.mld, bar.mld, and
baz.mld

(documentation
(package foo)
(mld_files foo bar baz))

This stanza will attach all .m1d files to the inferred package, excluding wip.mld, in the current directory:

(documentation
(mld_files :standard \ wip))

All .mld files attached to a package will be included in the generated .install file for that package. They’ll be
installed by opam.

Package Entry Page
The index.mld file (specified as index in mld_files) is treated specially by Dune. This will be the file used to
generate the entry page for the package, linked from the main package listing.

To generate pleasant documentation, we recommend writing an index.mld file with at least short description of your
package and possibly some examples.

If you do not write your own index.mld file, Dune will generate one with the entry modules for your package. But
this generated file will not be installed.

2.6.4 Passing Options to odoc

(env
(<profile>
(odoc <optional-fields>)))

See env for more details on the (env ...) stanza. <optional-fields> are:

e (warnings <mode>) specifies how warnings should be handled. <mode> can be: fatal or nonfatal. The
default value is nonfatal. This field is available since Dune 2.4.0 and requires odoc 1.5.0.

2.6.5 Local Documentation Search Using Sherlodoc

If Sherlodoc is installed, generated HTML documentation will include a search bar. It supports search by name, docu-
mentation and fuzzy type search.

In can be installed with:

$ opam install sherlodoc

2.6. Generating Documentation 33

https://github.com/ocaml-doc/odoc

Dune Documentation

2.7 How to Load Additional Files at Runtime

There are many ways for applications to load files at runtime and Dune provides a well-tested, key-in-hand portable
system for doing so. The Dune model works by defining sites where files will be installed and looked up at runtime.
At runtime, each site is associated to a list of directories which contain the files added in the site.

WARNING: This feature remains experimental and is subject to breaking changes without warning. It must be explicitly
enabled in the dune-project file with (using dune_site 0.1)

2.7.1 Sites
Defining a Site

A site is defined in a package package in the dune-project file. It consists of a name and a section (e.g 1ib, share,
etc) where the site will be installed as a sub-directory.

(lang dune 3.15)
(using dune_site 0.1)
(name mygui)

(package
(name mygui)
(sites (share themes)))

Adding Files to a Site

Here the package mygui defines a site named themes that will be located in the section share. This package can add
files to this site using the install stanza:

(install

(section (site (mygui themes)))
(files
(layout.css as default/layout.css)
(ok.png as default/ok.png)
(ko.png as default/ko.png)))

Another package mygui_material_theme can install files inside mygui directory for adding a new theme. Inside the
scope of mygui_material_theme the dune file contains:

(install

(section (site mygui themes))

(files
(layout.css as material/layout.css)
(ok.png as material/ok.png)
(ko.png as material/ko.png)))

The package mygui must be present in the workspace or installed.

Warning: Two files should not be installed by different packages at the same destination.

34 Chapter 2. How-to Guides

Dune Documentation

Getting the Locations of a Site at Runtime

The executable mygui will be able to get the locations of the themes site using the generate_sites_module stanza.

(executable

(name mygui)

(modules mygui mysites)
(libraries dune-site))

(generate_sites_module
(module mysites)
(sites mygui))

The generated module mysites depends on the library dune-site provided by Dune.

Then inside mygui .m1 module the locations can be recovered and used:

(** Locations of the site for the themes *)
let themes_locations : string list = Mysites.Sites.themes

(** Merge the contents of the directories in [dirs] *)
let lookup_dirs dirs =
List.filter Sys.file_exists dirs
|> List.map (fun dir -> Array.to_list (Sys.readdir dir))
|> List.concat

(** Get the available themes *)
let find_available_themes () = lookup_dirs themes_locations

(** [lookup_file name dirs] finds the first file called [name] in [dirs]
let lookup_file filename dirs =
List.find_map
(fun dir ->

let filename' = Filename.concat dir filename in
if Sys.file_exists filename' then Some filename' else None)
dirs

(** [lookup_theme_file theme file] get the [file] of the [theme] *)
let lookup_theme_file file theme =
lookup_file (Filename.concat theme file) themes_locations

let get_layout_css = lookup_theme_file "layout.css"
let get_ok_ico = lookup_theme_file "ok.png"
let get_ko_ico = lookup_theme_file "ko.png"

:':)

2.7. How to Load Additional Files at Runtime

35

Dune Documentation

Tests

During tests, the files are copied into the sites through the dependency (package mygui) and (package
mygui_material_theme) as for other files in install stanza.

Installation

Installation is done simply with dune install; however, if one wants to install this tool to make it relocatable, one
can use dune install --relocatable --prefix $dir. The files will be copied to the directory $dir but the
binary $dir/bin/mygui will find the site location relative to its location. So even if the directory $dir is moved,
themes_locations will be correct.

For installation through opam, dune install must be invoked with the option --create-install-files which
creates an install file <pkg>.install and copy the file that needs substitution to an intermediary directory. The
<pkg>.opan file generated by Dune generate_opam_files does the right invocation.

Implementation Details

The main difficulty for sites is that their directories are found at different locations at different times:
* When the package is available locally, the location is inside _build
* When the package is installed, the location is inside the install prefix

* If alocal package wants to install files to the site of another installed package the location is at the same time in
_build and in the install prefix of the second package.

With the last example, we see that the location of a site is not always a single directory, but rather it can consist of a
sequence of directories: ["dirl" ; "dir2"]. So alookup must first look into dirl, then into dir2.

2.7.2 Plugins and Dynamic Loading of Packages

Dune allows you to define and load plugins without having to deal with specific compilation, installation directories,
dependencies, or the Dynlink_ module.

To define a plugin:

* The package defining the plugin interface must define a site where the plugins must live. Traditionally, this is in
(1ib plugins), but it’s just a convention.

* Define a library that each plugin must use to register itself (or otherwise provide its functionality).
* Define the plugin in another package using the plugin stanza.

* Generate a module that may load all available plugins using the generated_module stanza.

Example

We demonstrate an example of the scheme above. The example consists of the following components:
Inside package app:

* An executable app, that we intend to extend with plugins

* A library app.registration which defines the plugin registration interface

* A generated module Sifes which can load available plugins at runtime

36 Chapter 2. How-to Guides

Dune Documentation

* An executable app that will use the module Sites to load all the plugins

Inside package Pluginl, we declare a plugin using the app.registration api and the plugin stanza.

Directory structure

— app.ml

— dune

— dune-project
— plugin

dune
dune-project
pluginl_impl.ml

L— registration.ml

Main Executable (C)

¢ The dune-project file:

(lang dune 3.15)
(using dune_site 0.1)
(name app)

(package
(name app)
(sites (1ib plugins)))

¢ The dune file:

(executable
(public_name app)
(modules sites app)
(libraries app.register dune-site dune-site.plugins))

(library
(public_name app.register)
(name registration)
(modules registration))

(generate_sites_module
(module sites)
(plugins (app plugins)))

The generated module sifes depends here also on the library dune-site.plugins because the plugins optional field is
requested.

If the executable being created is an OCaml toplevel, then the 1ibraries stanza needs to also include the dune-site.
toplevel library. This causes the loading to use the toplevel’s normal loading mechanism rather than Dynload.
loadfile (which is not allowed in toplevels).

e The module registration.ml of the library app.registration:

2.7. How to Load Additional Files at Runtime 37

Dune Documentation

let todo : (unit -> unit) Queue.t = Queue.create ()

¢ The code of the executable app.ml:

(* load all the available plugins *)
let () = Sites.Plugins.Plugins.load_all ()

let () = print_endline "Main app starts..."
(* Execute the code registered by the plugins *)
let) = Queue.iter (fun f -> £ ()) Registration.todo

The Plugin “plugin1”

¢ The plugin/dune-project file:

(lang dune 3.15)
(using dune_site 0.1)

(generate_opam_files true)

(package
(name pluginl))

¢ The plugin/dune file:

(library
(public_name pluginl.pluginl_impl)
(name pluginl_impl)
(modules pluginl_impl)
(libraries app.register))

(plugin
(name pluginl)
(libraries pluginl.pluginl_impl)
(site (app plugins)))

* The code of the plugin plugin/pluginl_impl.ml:

let O =
print_endline "Registration of Pluginl";

Queue.add (fun () -> print_endline "Pluginl is doing something.

..") Registration.todo

Running the Example

$ dune build @install && dune exec ./app.exe
Registration of Pluginl

Main app starts...

Pluginl is doing something...

38

Chapter 2. How-to Guides

Dune Documentation

2.8 Instrumentation

In this section, we’ll explain how to define and use instrumentation backends (such as bisect_ppx or landmarks) so
that you can enable and disable coverage via dune-workspace files or by passing a command-line flag or environment
variable. In addition to providing an easy way to toggle instrumentation of your code, this setup avoids creating a hard
dependency on the precise instrumentation backend in your project.

2.8.1 Specifying What to Instrument

When an instrumentation backend is activated, Dune will only instrument libraries and executables for which the user
has requested instrumentation.

To request instrumentation, one must add the following field to a library or executable stanza:

(library
(name ...)
(instrumentation

(backend <name> <args>)
<optional-fields>))

The backend <name> can be passed into arguments using <args>.

This field can be repeated multiple times in order to support various backends. For instance:

(library

(name foo)

(modules foo)

(instrumentation (backend bisect_ppx --bisect-silent yes))
(instrumentation (backend landmarks)))

This will instruct Dune that when either the bisect_ppx or landmarks instrumentation is activated, the library should
be instrumented with this backend.

By default, these fields are simply ignored; however, when the corresponding instrumentation backend is activated,
Dune will implicitly add the relevant ppx rewriter to the list of ppx rewriters.

At the moment, it isn’t possible to instrument code that’s preprocessed via an action preprocessors. As these prepro-
cessors are quite rare nowadays, there is no plan to add support for them in the future.

<optional-fields> are:

* (deps <deps-conf list>) specifies extra instrumentation dependencies, for instance, if it reads a generated
file. The dependencies are only applied when the instrumentation is actually enabled. The specification of
dependencies is described in Dependency Specification.

2.8.2 Enabling/Disabling Instrumentation

Activating an instrumentation backend can be done via the command line or the dune-workspace file.

Via the command line, it is done as follows:

$ dune build --instrument-with <names>

Here <names> is a comma-separated list of instrumentation backends. For example:

2.8. Instrumentation 39

Dune Documentation

$ dune build --instrument-with bisect_ppx,landmarks

This will instruct Dune to activate the given backend globally, i.e., in all defined build contexts.

It’s also possible to enable instrumentation backends via the dune-workspace file, either globally or for specific builds
contexts.

To enable an instrumentation backend globally, type the following in your dune-workspace file:

(lang dune 3.15)
(instrument_with bisect_ppx)

or for each context individually:

(lang dune 3.15)
(context default)
(context (default (name coverage) (instrument_with bisect_ppx)))
(context (default (name profiling) (instrument_with landmarks)))

If both the global and local fields are present, the precedence is the same as the profile field: the per-context setting
takes precedence over the command-line flag, which takes precedence over the global field.

2.8.3 Declaring an Instrumentation Backend
Instrumentation backends are libraries with the special field (instrumentation.backend). This field instructs Dune
that the library can be used as an instrumentation backend, and it also provides the parameters specific to this backend.

Currently, Dune will only support ppx instrumentation tools, and the instrumentation library must specify the ppx
rewriters that instruments the code. This can be done as follows:

(library

(instrumentation.backend
(ppx <ppx-rewriter-name>)))

When such an instrumentation backend is activated, Dune will implicitly add the mentioned ppx rewriter to the list of
ppx rewriters for libraries and executables that specify this instrumentation backend.

2.9 JavaScript Compilation With Js_of ocaml

Js_of _ocaml is a compiler from OCaml to JavaScript. The compiler works by translating OCaml bytecode to JS files.
The compiler can be installed with opam:

$ opam install js_of_ocaml-compiler

40 Chapter 2. How-to Guides

http://ocsigen.org/js_of_ocaml/

Dune Documentation

2.9.1 Compiling to JS

Dune has full support building Js_of_ocaml libraries and executables transparently. There’s no need to customize or
enable anything to compile OCaml libraries/executables to JS.

To build a JS executable, just define an executable as you would normally. Consider this example:

$ echo 'print_endline "hello from js"' > foo.ml

With the following dune file:

(executable (name foo) (modes js))

And then request the . js target:

$ dune build ./foo.bc.js
$ node _build/default/foo.bc.js
hello from js

Similar targets are created for libraries, but we recommend sticking to the executable targets.

If you’re using the Js_of_ocaml syntax extension, you must remember to add the appropriate PPX in the preprocess
field:

(executable
(name foo)
(modes js)
(preprocess (pps js_of_ocaml-ppx)))

2.9.2 Separate Compilation

Dune supports two modes of compilation:

* Direct compilation of a bytecode program to JavaScript. This mode allows Js_of ocaml to perform whole-
program deadcode elimination and whole-program inlining.

 Separate compilation, where compilation units are compiled to JavaScript separately and then linked together.
This mode is useful during development as it builds more quickly.

The separate compilation mode will be selected when the build profile is dev, which is the default. It can also be
explicitly specified in an env stanza. See env for more information.

2.10 JavaScript Compilation With Melange

2.10.1 Introduction

Melange compiles OCaml to JavaScript. It produces one JavaScript file per OCaml module. Melange can be installed
with opam:

$ opam install melange

Dune can build projects using Melange, and it allows the user to produce JavaScript files by defining a melange.emit
stanza. Dune libraries can be used with Melange by adding melange to (modes ...) in the library stanza.

Melange support is still experimental in Dune and needs to be enabled in the dune-project file:

2.10. JavaScript Compilation With Melange 41

https://github.com/melange-re/melange

Dune Documentation

(using melange 0.1)

Once that’s in place, you can use the Melange mode in /ibrary stanzas melange.emit stanzas.

2.10.2 Simple Project
Let’s start by looking at a simple project with Melange and Dune. Subsequent sections explain the different concepts
used here in further detail.

First, make sure that the dune-project file specifies at least version 3.8 of the Dune language, and the Melange extension
is enabled:

(lang dune 3.15)
(using melange 0.1)

Next, write a dune file with a melange.emit stanza:

(melange.emit
(target output))

Finally, add a source file to build:

$ echo 'Js.log "hello from melange"' > hello.ml

After running dune build @melange or just dune build, Dune produces the following file structure:

— _build
L default
L— output
L— hello.js
— dune
— dune-project
L— hello.ml

The resulting JavaScript can now be run:

$ node _build/default/output/hello.js
hello from melange

2.10.3 Libraries

Adding Melange support to Dune libraries is done as follows:
¢ (modes melange): adding melange to modes is required. This field also supports the Ordered Set Language.

e (melange.runtime_deps <deps>): optionally, define any runtime dependencies using melange.
runtime_deps. This field is analog to the runtime_deps field used in melange.emit stanzas.

42 Chapter 2. How-to Guides

Dune Documentation

2.10.4 melange.emit

New in version 3.8.

The melange.emit stanza allows the user to produce JavaScript files from Melange libraries and entry-point modules.
It’s similar to the OCaml executable stanza, with the exception that there is no linking step.

(melange.emit
(target <target>)
<optional-fields>)

<target> is the name of the folder where resulting JavaScript artifacts will be placed. In particular, the folder will be
placed under _build/default/$path-to-directory-of-melange-emit-stanza.

The result of building a melange.emit stanza will match the file structure of the source tree. For example, given the
following source tree:

app.ml

lib
dune # (library (name lib) (modes melange))
helper.ml

E dune # (melange.emit (target output) (libraries 1lib))

The resulting layout in _build/default/output will be as follows:

output
|: app.js
lib
lib.js
helper.js

<optional-fields> are:
* (alias <alias-name>) specifies an alias to which to attach the targets of the melange.emit stanza.

— These targets include the . js files generated by the stanza modules, the targets for the . js files of any
library that the stanza depends on, and any copy rules for runtime dependencies (see runtime_deps field
below).

— By default, all stanzas will have their targets attached to an alias melange. The behavior of this default
alias is exclusive: if an alias is explicitly defined in the stanza, the targets from this stanza will be excluded
from the melange alias.

— The targets of melange.emit are also attached to the Dune default alias (@all), regardless of whether the
(alias ...) field is present.

e (module_systems <module_systems>) sp