

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

BotKit [image: Gitter] [https://gitter.im/ramswaroop/jbot?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge] [image: Bountysource] [https://www.bountysource.com/teams/jbot] [image: MIT license] [https://raw.githubusercontent.com/ramswaroop/botkit/master/LICENSE]

LEGO for building bots.

BotKit is a java application (inspired by Howdyai's Botkit [https://github.com/howdyai/botkit]) to
make Slack (Facebook and Twitter coming soon) bots in minutes. It provides all
the boilerplate code needed so that you can make your bot live right away.

SlackBot

Table of Contents

	Getting started

	Why use Botkit for Slack?

	Basic Usage

	Building a Slack Integration with Botkit

	Setting up your app

	Receiving messages

	Sending messages

	Conversations

	Usage

	Deploy to the cloud

	Contributions

	Donations

Getting started

Running your SlackBot is just 4 easy steps:

	Clone this project $ git clone git@github.com:ramswaroop/botkit.git and $ cd botkit.

	Create a slack bot [https://my.slack.com/services/new/bot] and get your slack token.

	Paste the token in application.properties file.

	Run the application by running BotKitApplication in your IDE or via commandline $ mvn spring-boot:run.

You can now start talking with your bot ;)

Why use Botkit for Slack?

	Provides you with all the boilerplate code which handles underlying websocket connections and other complexities.

	Supports a few extra events in addition to all the events supported by Slack RTM API [https://api.slack.com/events]
which makes your work a lot more easier.

	Receiving & sending messages is as easy as defining a controller method and calling reply(), you don't need to
manually parse any events nor manually encode any messages before sending.

	Conversation feature of botkit makes talking to your bot a breeze.

	Well tested with unit tests.

	And many other features which can't just be mentioned here.

Basic Usage

The main function of a Bot is to receive and reply messages. With this kit, receiving messages is as easy as just
writing a simple controller and replying to it by calling the reply() method as shown below:

@Controller(events = EventType.MESSAGE)
public void onReceiveDM(WebSocketSession session, Event event) {
 reply(session, event, new Message("Hi, I am a Slack Bot!"));
}

All the code for your bot goes in SlackBot class which
extends Bot from the core package. You can have as many
bots as you want, just make the class extend Bot class
and it gets all the powers of a Slack Bot.

Building a Slack Integration [https://api.slack.com/] with Botkit

You can integrate your services into Slack by any of the following ways:

	Bot users [https://api.slack.com/bot-users]

	Slash Commands [http://api.slack.com/slash-commands]

	Slack Webhooks [http://api.slack.com/incoming-webhooks]

	Slack Apps [https://api.slack.com/slack-apps]

And Botkit currently supports:

	Bot users via Slack Real Time Messaging (RTM) API [http://api.slack.com/rtm]

	Slack Slash Commands [https://my.slack.com/services/new/slash-commands]

	Slack Webhooks [https://my.slack.com/services/new/incoming-webhook/]

Bots interact with Slack through RTM API or technically via Web Sockets. Slash Commands are nothing but GET
and POST calls to your app. Finally, Webhooks can be of two types, Incoming and Outgoing. Incoming webhooks
is where you POST data from outside (i.e, your app) to Slack and
Outgoing webhooks [https://api.slack.com/outgoing-webhooks] is where Slack POST data to an endpoint you specify.

Setting up your app

You need to first paste your tokens/urls in application.properties file:

slackBotToken=xoxb-50014434-slacktokenx29U9X1bQ
slashCommandToken=X73Fv3tokenx242CdpEq
slackIncomingWebhookUrl=https://hooks.slack.com/services/T02WEBHOOKURLV7oOYvPiHL7y6

The core package contains all of Botkit code. You can create
packages outside core package and put your custom code there. To make a

	Slack Bot ⇒

 Extend Bot class.

	Slash Command Handler ⇒

 Annotate your class
with Spring's @Controller and have a method
with the required @RequestMapping path receiving a set of request params as shown in the
sample.

	Slack Incoming Webhook ⇒

 Just make a POST call with
RichMessage whenever you want to update
your Slack users about something.

	Slack Outgoing Webhook ⇒

 Same as Slash Command Handler.

Receiving Messages

For Bots, you receive a message as Event. For
almost all actions Slack fires a relevant event [https://api.slack.com/events] for it. Unfortunately, it does not fire
appropriate events when someone directly messages the bot (direct message) or mentions the bot on a channel
(like @bot). It just fires an event of type message for all the messages (directly to bot and to channels where bot
is a member) sent.

But guess what, you're at the right place now, BotKit handles that for you. It supports three extra
events EventType.DIRECT_MESSAGE, EventType.DIRECT_MENTION and EventType.ACK in addition to all the currently
supported Slack events [https://api.slack.com/events]. The first two events are self-explanatory, the EventType.ACK
event is nothing but an acknowledgement event which acknowledges the delivery of a previously sent message.

To receive and parse slack bot events you just need to have this:

@Controller(events = {EventType.DIRECT_MENTION, EventType.DIRECT_MESSAGE})
public void onReceiveDM(WebSocketSession session, Event event) {
 if (event.getText().contains("hi")) {
 reply(session, event, new Message("Hi, I am " + slackService.getCurrentUser().getName()));
 }
}

What you're doing here is annotating a method with @Controller
annotation and passing an array events to that annotation which you want to listen to. By default your controller will
listen to EventType.MESSAGE events if you do not specify any events explicitly.

You can also add regular expressions to your @Controller
annotation like:

@Controller(events = EventType.MESSAGE, pattern = "^([a-z]{2})(\\d+)([a-z]{2})$")
public void onReceiveMessage(WebSocketSession session, Event event, Matcher matcher) {
 reply(session, event, new Message("First group: " + matcher.group(0) + "\n" +
 "Second group: " + matcher.group(1) + "\n" +
 "Third group: " + matcher.group(2) + "\n" +
 "Fourth group: " + matcher.group(3)));
}

You can optionally have the matcher as a formal parameter in the method if you want to work on the values sent
by the user. But do keep the order of parameters as shown above.

In Slash Commands, you receive a GET or POST request as below:

token=gIkuvaNzQIHg97ATvDxqgjtO
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
user_id=U2147483697
user_name=Steve
command=/weather
text=94070
response_url=https://hooks.slack.com/commands/1234/5678

If you have configured for POST requests, data will be sent to your URL with a content-type header set as
application/x-www-form-urlencoded. If you've chosen to have your slash command's URL receive invocations as a GET
request, no explicit content-type header will be set.

NOTE: The URL you provide must be a HTTPS URL with a valid, verifiable SSL certificate.

In Incoming Webhooks, your application POST
data and do not receive any data apart from the acknowledgement for your sent data. You send data
as RichMessage to Slack Webhook URL.

In Outgoing Webhooks, you receive a POST request from Slack like below:

token=mbxmjpceetMUz2hfecqM31KC
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
timestamp=1355517523.000005
user_id=U2147483697
user_name=Steve
text=googlebot: What is the air-speed velocity of an unladen swallow?
trigger_word=googlebot:

Please note that the content of message attachments [https://api.slack.com/docs/attachments] will not be included in
the outgoing POST data in case of Outgoing Webhooks.

Sending Messages

In Bots, you can use the reply() method defined in Bot
class to send messages to Slack. You just need to set the text you want to send in
Message and everything else will be taken care
by BotKit. But you can set other fields if you want such as id in the message.

Here is an example:

@Controller(events = EventType.MESSAGE)
public void onReceiveMessage(WebSocketSession session, Event event) {
 reply(session, event, new Message("Hi, this is a message!"));
}

Under the hood the message sent is nothing but a json like below:

{
 "id": 1,
 "type": "message",
 "channel": "C024BE91L",
 "text": "Hi, this is a message!"
}

For Slash Commands and Incoming Webhooks, you can send messages as
RichMessage. Just keep in mind to encode it
before sending by just calling the encodedMessage() method. Below is an example:

@RequestMapping(value = "/slash-command",
 method = RequestMethod.POST,
 consumes = MediaType.APPLICATION_FORM_URLENCODED_VALUE)
public RichMessage onReceiveSlashCommand(@RequestParam("token") String token,
 @RequestParam("team_id") String teamId,
 @RequestParam("team_domain") String teamDomain,
 @RequestParam("channel_id") String channelId,
 @RequestParam("channel_name") String channelName,
 @RequestParam("user_id") String userId,
 @RequestParam("user_name") String userName,
 @RequestParam("command") String command,
 @RequestParam("text") String text,
 @RequestParam("response_url") String responseUrl) {
 // validate token
 if (!token.equals(slackToken)) {
 return new RichMessage("Sorry! You're not lucky enough to use our slack command.");
 }

 /** build response */
 RichMessage richMessage = new RichMessage("The is Slash Commander!");
 richMessage.setResponseType("in_channel");
 // set attachments
 Attachment[] attachments = new Attachment[1];
 attachments[0] = new Attachment();
 attachments[0].setText("I will perform all tasks for you.");
 richMessage.setAttachments(attachments);
 return richMessage.encodedMessage(); // don't forget to send the encoded message to Slack
}

Points to Note:

	Event,
Message and
RichMessage are generic models. Not all the
time, all the attributes present in them will have values. In other words, Slack sends different responses for different
events [https://api.slack.com/events/hello].

	You need a channel id to send replies. Therefore, you can use reply() method for events which have a channel id
in them or else you have to explicitly set the channel id in the
Message object.

Conversations

This is the most wonderful feature of botkit, with this you can literally talk to your bot and have a conversation. See
below for an example as to how your bot sets up a meeting for your team by asking some simple questions one after the
other.

[image: Conversation feature in BotKit]

 /**
 * Conversation feature of Botkit. This method is the starting point of the conversation (as it
 * calls {@link Bot#startConversation(Event, String)} within it. You can chain methods which will be invoked
 * one after the other leading to a conversation. You can chain methods with {@link Controller#next()} by
 * specifying the method name to chain with.
 *
 * @param session
 * @param event
 */
 @Controller(pattern = "(setup meeting)", next = "confirmTiming")
 public void setupMeeting(WebSocketSession session, Event event) {
 startConversation(event, "confirmTiming"); // start conversation
 reply(session, event, new Message("Cool! At what time (ex. 15:30) do you want me to set up the meeting?"));
 }

You can start a conversation by calling startConversation(event, nextMethodName) within your controller. You can pass
the event and the name of the next controller method.

 /**
 * This method is chained with {@link SlackBot#setupMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askTimeForMeeting")
 public void confirmTiming(WebSocketSession session, Event event) {
 reply(session, event, new Message("Your meeting is set at " + event.getText() +
 ". Would you like to repeat it tomorrow?"));
 nextConversation(event); // jump to next question in conversation
 }

This is your next method in the conversation. After your desired work is done, do not forget to call nextConversation(event)
to jump to the next method. You can specify the next method to call in
next attribute of
Controller annotation.

 /**
 * This method is chained with {@link SlackBot#confirmTiming(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askWhetherToRepeat")
 public void askTimeForMeeting(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Okay. Would you like me to set a reminder for you?"));
 nextConversation(event); // jump to next question in conversation
 } else {
 reply(session, event, new Message("No problem. You can always schedule one with 'setup meeting' command."));
 stopConversation(event); // stop conversation only if user says no
 }
 }

 /**
 * This method is chained with {@link SlackBot#askTimeForMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller
 public void askWhetherToRepeat(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Great! I will remind you tomorrow before the meeting."));
 } else {
 reply(session, event, new Message("Oh! my boss is smart enough to remind himself :)"));
 }
 stopConversation(event); // stop conversation
 }

To end the conversation, call stopConversation(event) inside your controller method.

NOTE:

	Only the first method in a conversation can define a pattern. pattern attribute in Controller annotation has no
effect for rest of the methods in a conversation.

	The first method in the conversation need not call nextConversation(event) but rest of the methods do need to.

Usage

You can directly clone this project and start coding your bot (just don't touch the
core package) or you can include it as a maven/gradle dependency.

Maven

<dependency>
 <groupId>me.ramswaroop.botkit</groupId>
 <artifactId>botkit</artifactId>
 <version>1.1.0</version>
</dependency>

Gradle

dependencies {
 compile("me.ramswaroop.botkit:botkit:1.1.0")
}

Deploy to the Cloud

Bokit is Heroku ready. To deploy, you need to perform the below simple steps:

	Clone this project $ git clone git@github.com:ramswaroop/botkit.git and $ cd botkit.

	Get your slack bot token [https://my.slack.com/services/new/bot] or
slash command [https://my.slack.com/services/new/slash-commands] token or
incoming webhook [https://my.slack.com/services/new/incoming-webhook/] url.

	Paste the above tokens/urls in application.properties file.

	Download Toolbelt [https://toolbelt.heroku.com/] for your system.

	$ heroku login - Login to Heroku.

	$ heroku create - Create an app on Heroku.

	$ git push heroku master - Push your code to Heroku.

	$ heroku ps:scale web=1 - Start your application.

You can now start talking with your Bot, send commands to your Slash Command or play with Incoming Webhooks ;)

Contributions

If you would like like to contribute, raise an issue on Github and I would be more than happy to discuss :)

Donations

Buy me a coffee [https://www.bountysource.com/teams/botkit] so that I stay awake whole night and complete Botkit soon
enough :D

JBot [image: Build Status] [https://travis-ci.org/ramswaroop/jbot] [image: Gitter] [https://gitter.im/ramswaroop/jbot?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge] [image: Bountysource] [https://www.bountysource.com/teams/jbot] [image: MIT license] [https://raw.githubusercontent.com/ramswaroop/jbot/master/LICENSE]

LEGO for building bots.

JBot is a java framework (inspired by Howdyai's Botkit [https://github.com/howdyai/botkit]) to
make Slack (Facebook and Twitter coming soon) bots in minutes. It provides all
the boilerplate code needed so that you can make your bot live right away.

SlackBot

Table of Contents

	Getting started

	Why use JBot for Slack?

	Basic Usage

	Building a Slack Integration with JBot

	Setting up your app

	Receiving messages

	Sending messages

	Conversations

	Usage

	Deploy to the cloud

	Contributions

	Donations

Getting started

Running your SlackBot is just 4 easy steps:

	Clone this project $ git clone git@github.com:ramswaroop/jbot.git and $ cd jbot.

	Create a slack bot [https://my.slack.com/services/new/bot] and get your slack token.

	Paste the token in application.properties file.

	Run the application by running JBotApplication in your IDE or via commandline $ mvn spring-boot:run.

You can now start talking with your bot ;)

Why use JBot for Slack?

	Provides you with all the boilerplate code which handles underlying websocket connections and other complexities.

	Supports a few extra events in addition to all the events supported by Slack RTM API [https://api.slack.com/events]
which makes your work a lot more easier.

	Receiving & sending messages is as easy as defining a controller method and calling reply(), you don't need to
manually parse any events nor manually encode any messages before sending.

	Conversation feature of JBot makes talking to your bot a breeze.

	Well tested with unit tests.

	And many other features which can't just be mentioned here.

Basic Usage

The main function of a Bot is to receive and reply messages. With this kit, receiving messages is as easy as just
writing a simple controller and replying to it by calling the reply() method as shown below:

@Controller(events = EventType.MESSAGE)
public void onReceiveDM(WebSocketSession session, Event event) {
 reply(session, event, new Message("Hi, I am a Slack Bot!"));
}

All the code for your bot goes in SlackBot class which
extends Bot from the core package. You can have as many
bots as you want, just make the class extend Bot class
and it gets all the powers of a Slack Bot.

Building a Slack Integration [https://api.slack.com/] with JBot

You can integrate your services into Slack by any of the following ways:

	Bot users [https://api.slack.com/bot-users]

	Slash Commands [http://api.slack.com/slash-commands]

	Slack Webhooks [http://api.slack.com/incoming-webhooks]

	Slack Apps [https://api.slack.com/slack-apps]

And JBot currently supports:

	Bot users via Slack Real Time Messaging (RTM) API [http://api.slack.com/rtm]

	Slack Slash Commands [https://my.slack.com/services/new/slash-commands]

	Slack Webhooks [https://my.slack.com/services/new/incoming-webhook/]

Bots interact with Slack through RTM API or technically via Web Sockets. Slash Commands are nothing but GET
and POST calls to your app. Finally, Webhooks can be of two types, Incoming and Outgoing. Incoming webhooks
is where you POST data from outside (i.e, your app) to Slack and
Outgoing webhooks [https://api.slack.com/outgoing-webhooks] is where Slack POST data to an endpoint you specify.

Setting up your app

You need to first paste your tokens/urls in application.properties file:

slackBotToken=xoxb-50014434-slacktokenx29U9X1bQ
slashCommandToken=X73Fv3tokenx242CdpEq
slackIncomingWebhookUrl=https://hooks.slack.com/services/T02WEBHOOKURLV7oOYvPiHL7y6

The core package contains all of JBot code. You can create
packages outside core package and put your custom code there. To make a

	Slack Bot ⇒

 Extend Bot class.

	Slash Command Handler ⇒

 Annotate your class
with Spring's @Controller and have a method
with the required @RequestMapping path receiving a set of request params as shown in the
sample.

	Slack Incoming Webhook ⇒

 Just make a POST call with
RichMessage whenever you want to update
your Slack users about something.

	Slack Outgoing Webhook ⇒

 Same as Slash Command Handler.

Receiving Messages

For Bots, you receive a message as Event. For
almost all actions Slack fires a relevant event [https://api.slack.com/events] for it. Unfortunately, it does not fire
appropriate events when someone directly messages the bot (direct message) or mentions the bot on a channel
(like @bot). It just fires an event of type message for all the messages (directly to bot and to channels where bot
is a member) sent.

But guess what, you're at the right place now, JBot handles that for you. It supports three extra
events EventType.DIRECT_MESSAGE, EventType.DIRECT_MENTION and EventType.ACK in addition to all the currently
supported Slack events [https://api.slack.com/events]. The first two events are self-explanatory, the EventType.ACK
event is nothing but an acknowledgement event which acknowledges the delivery of a previously sent message.

To receive and parse slack bot events you just need to have this:

@Controller(events = {EventType.DIRECT_MENTION, EventType.DIRECT_MESSAGE})
public void onReceiveDM(WebSocketSession session, Event event) {
 if (event.getText().contains("hi")) {
 reply(session, event, new Message("Hi, I am " + slackService.getCurrentUser().getName()));
 }
}

What you're doing here is annotating a method with @Controller
annotation and passing an array events to that annotation which you want to listen to. By default your controller will
listen to EventType.MESSAGE events if you do not specify any events explicitly.

You can also add regular expressions to your @Controller
annotation like:

@Controller(events = EventType.MESSAGE, pattern = "^([a-z]{2})(\\d+)([a-z]{2})$")
public void onReceiveMessage(WebSocketSession session, Event event, Matcher matcher) {
 reply(session, event, new Message("First group: " + matcher.group(0) + "\n" +
 "Second group: " + matcher.group(1) + "\n" +
 "Third group: " + matcher.group(2) + "\n" +
 "Fourth group: " + matcher.group(3)));
}

You can optionally have the matcher as a formal parameter in the method if you want to work on the values sent
by the user. But do keep the order of parameters as shown above.

In Slash Commands, you receive a GET or POST request as below:

token=gIkuvaNzQIHg97ATvDxqgjtO
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
user_id=U2147483697
user_name=Steve
command=/weather
text=94070
response_url=https://hooks.slack.com/commands/1234/5678

If you have configured for POST requests, data will be sent to your URL with a content-type header set as
application/x-www-form-urlencoded. If you've chosen to have your slash command's URL receive invocations as a GET
request, no explicit content-type header will be set.

NOTE: The URL you provide must be a HTTPS URL with a valid, verifiable SSL certificate.

In Incoming Webhooks, your application POST
data and do not receive any data apart from the acknowledgement for your sent data. You send data
as RichMessage to Slack Webhook URL.

In Outgoing Webhooks, you receive a POST request from Slack like below:

token=mbxmjpceetMUz2hfecqM31KC
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
timestamp=1355517523.000005
user_id=U2147483697
user_name=Steve
text=googlebot: What is the air-speed velocity of an unladen swallow?
trigger_word=googlebot:

Please note that the content of message attachments [https://api.slack.com/docs/attachments] will not be included in
the outgoing POST data in case of Outgoing Webhooks.

Sending Messages

In Bots, you can use the reply() method defined in Bot
class to send messages to Slack. You just need to set the text you want to send in
Message and everything else will be taken care
by JBot. But you can set other fields if you want such as id in the message.

Here is an example:

@Controller(events = EventType.MESSAGE)
public void onReceiveMessage(WebSocketSession session, Event event) {
 reply(session, event, new Message("Hi, this is a message!"));
}

Under the hood the message sent is nothing but a json like below:

{
 "id": 1,
 "type": "message",
 "channel": "C024BE91L",
 "text": "Hi, this is a message!"
}

For Slash Commands and Incoming Webhooks, you can send messages as
RichMessage. Just keep in mind to encode it
before sending by just calling the encodedMessage() method. Below is an example:

@RequestMapping(value = "/slash-command",
 method = RequestMethod.POST,
 consumes = MediaType.APPLICATION_FORM_URLENCODED_VALUE)
public RichMessage onReceiveSlashCommand(@RequestParam("token") String token,
 @RequestParam("team_id") String teamId,
 @RequestParam("team_domain") String teamDomain,
 @RequestParam("channel_id") String channelId,
 @RequestParam("channel_name") String channelName,
 @RequestParam("user_id") String userId,
 @RequestParam("user_name") String userName,
 @RequestParam("command") String command,
 @RequestParam("text") String text,
 @RequestParam("response_url") String responseUrl) {
 // validate token
 if (!token.equals(slackToken)) {
 return new RichMessage("Sorry! You're not lucky enough to use our slack command.");
 }

 /** build response */
 RichMessage richMessage = new RichMessage("The is Slash Commander!");
 richMessage.setResponseType("in_channel");
 // set attachments
 Attachment[] attachments = new Attachment[1];
 attachments[0] = new Attachment();
 attachments[0].setText("I will perform all tasks for you.");
 richMessage.setAttachments(attachments);
 return richMessage.encodedMessage(); // don't forget to send the encoded message to Slack
}

Points to Note:

	Event,
Message and
RichMessage are generic models. Not all the
time, all the attributes present in them will have values. In other words, Slack sends different responses for different
events [https://api.slack.com/events/hello].

	You need a channel id to send replies. Therefore, you can use reply() method for events which have a channel id
in them or else you have to explicitly set the channel id in the
Message object.

Conversations

This is the most wonderful feature of jbot, with this you can literally talk to your bot and have a conversation. See
below for an example as to how your bot sets up a meeting for your team by asking some simple questions one after the
other.

[image: Conversation feature in JBot]

 /**
 * Conversation feature of JBot. This method is the starting point of the conversation (as it
 * calls {@link Bot#startConversation(Event, String)} within it. You can chain methods which will be invoked
 * one after the other leading to a conversation. You can chain methods with {@link Controller#next()} by
 * specifying the method name to chain with.
 *
 * @param session
 * @param event
 */
 @Controller(pattern = "(setup meeting)", next = "confirmTiming")
 public void setupMeeting(WebSocketSession session, Event event) {
 startConversation(event, "confirmTiming"); // start conversation
 reply(session, event, new Message("Cool! At what time (ex. 15:30) do you want me to set up the meeting?"));
 }

You can start a conversation by calling startConversation(event, nextMethodName) within your controller. You can pass
the event and the name of the next controller method.

 /**
 * This method is chained with {@link SlackBot#setupMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askTimeForMeeting")
 public void confirmTiming(WebSocketSession session, Event event) {
 reply(session, event, new Message("Your meeting is set at " + event.getText() +
 ". Would you like to repeat it tomorrow?"));
 nextConversation(event); // jump to next question in conversation
 }

This is your next method in the conversation. After your desired work is done, do not forget to call nextConversation(event)
to jump to the next method. You can specify the next method to call in
next attribute of
Controller annotation.

 /**
 * This method is chained with {@link SlackBot#confirmTiming(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askWhetherToRepeat")
 public void askTimeForMeeting(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Okay. Would you like me to set a reminder for you?"));
 nextConversation(event); // jump to next question in conversation
 } else {
 reply(session, event, new Message("No problem. You can always schedule one with 'setup meeting' command."));
 stopConversation(event); // stop conversation only if user says no
 }
 }

 /**
 * This method is chained with {@link SlackBot#askTimeForMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller
 public void askWhetherToRepeat(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Great! I will remind you tomorrow before the meeting."));
 } else {
 reply(session, event, new Message("Oh! my boss is smart enough to remind himself :)"));
 }
 stopConversation(event); // stop conversation
 }

To end the conversation, call stopConversation(event) inside your controller method.

NOTE:

	Only the first method in a conversation can define a pattern. pattern attribute in Controller annotation has no
effect for rest of the methods in a conversation.

	The first method in the conversation need not call nextConversation(event) but rest of the methods do need to.

Usage

You can directly clone this project and start coding your bot (just don't touch the
core package) or you can include it as a maven/gradle dependency.

Maven

<dependency>
 <groupId>me.ramswaroop.jbot</groupId>
 <artifactId>jbot</artifactId>
 <version>2.0.0</version>
</dependency>

Gradle

dependencies {
 compile("me.ramswaroop.jbot:jbot:2.0.0")
}

Deploy to the Cloud

Bokit is Heroku ready. To deploy, you need to perform the below simple steps:

	Clone this project $ git clone git@github.com:ramswaroop/jbot.git and $ cd jbot.

	Get your slack bot token [https://my.slack.com/services/new/bot] or
slash command [https://my.slack.com/services/new/slash-commands] token or
incoming webhook [https://my.slack.com/services/new/incoming-webhook/] url.

	Paste the above tokens/urls in application.properties file.

	Download Toolbelt [https://toolbelt.heroku.com/] for your system.

	$ heroku login - Login to Heroku.

	$ heroku create - Create an app on Heroku.

	$ git push heroku master - Push your code to Heroku.

	$ heroku ps:scale web=1 - Start your application.

You can now start talking with your Bot, send commands to your Slash Command or play with Incoming Webhooks ;)

Contributions

If you would like like to contribute, raise an issue on Github and I would be more than happy to discuss :)

Donations

Buy me a coffee [https://www.bountysource.com/teams/jbot] so that I stay awake whole night and complete JBot soon
enough :D

JBot [image: Build Status] [https://travis-ci.org/ramswaroop/jbot] [image: Javadocs] [http://www.javadoc.io/doc/me.ramswaroop.jbot/jbot] [image: Gitter] [https://gitter.im/ramswaroop/jbot?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge] [image: Bountysource] [https://www.bountysource.com/teams/jbot] [image: Gratipay Team] [https://gratipay.com/JBot/] [image: MIT license] [https://raw.githubusercontent.com/ramswaroop/jbot/master/LICENSE]

LEGO for building bots.

JBot is a java framework (inspired by Howdyai's Botkit [https://github.com/howdyai/botkit]) to
make Slack (Facebook and Twitter coming soon) bots in minutes. It provides all
the boilerplate code needed so that you can make your bot live right away.

SlackBot

Table of Contents

	Getting started

	Why use JBot for Slack?

	Basic Usage

	Building a Slack Integration with JBot

	Setting up your app

	Receiving messages

	Sending messages

	Conversations

	Usage

	Deploy to the cloud

	Documentation History

	Contributions

	Donations

Getting started

Running your SlackBot is just 4 easy steps:

	Clone this project $ git clone git@github.com:ramswaroop/jbot.git and $ cd jbot.

	Create a slack bot [https://my.slack.com/services/new/bot] and get your slack token.

	Paste the token in application.properties file.

	Run the example application by running JBotApplication in your IDE or via commandline:

$ cd jbot-example
$ mvn spring-boot:run

You can now start talking with your bot ;)

Why use JBot for Slack?

	Provides you with all the boilerplate code which handles underlying websocket connections and other complexities.

	Supports a few extra events in addition to all the events supported by Slack RTM API [https://api.slack.com/events]
which makes your work a lot more easier.

	Receiving & sending messages is as easy as defining a controller method and calling reply(), you don't need to
manually parse any events nor manually encode any messages before sending.

	Conversation feature of JBot makes talking to your bot a breeze.

	Well tested with good coverage unit tests.

	And many other features which can't just be mentioned here.

Not satisfied? Read on...

	JBot got more than 400 stars in just 2 days after release.

	It is in the Hacker News [https://news.ycombinator.com/item?id=12239667] 50 club.

	Chosen by DZone daily picks [http://mailer.dzone.com/display.php?M=15184241&C=dcebb6887365120539df1fbf19a071ed&S=9043&L=658&N=4604].

	Last but not the least, it's listed on Slack.com [https://api.slack.com/community]

Still not satisfied? Open an issue on Github [https://github.com/ramswaroop/jbot/issues] and we can chat.

Basic Usage

The main function of a Bot is to receive and reply messages. With this kit, receiving messages is as easy as just
writing a simple controller and replying to it by calling the reply() method as shown below:

@Controller(events = EventType.MESSAGE)
public void onReceiveDM(WebSocketSession session, Event event) {
 reply(session, event, new Message("Hi, I am a Slack Bot!"));
}

All the code for your bot goes in SlackBot class which
extends Bot from the core package. You can have as many
bots as you want, just make the class extend Bot class
and it gets all the powers of a Slack Bot.

Building a Slack Integration [https://api.slack.com/] with JBot

You can integrate your services into Slack by any of the following ways:

	Bot users [https://api.slack.com/bot-users]

	Slash Commands [http://api.slack.com/slash-commands]

	Slack Webhooks [http://api.slack.com/incoming-webhooks]

	Slack Apps [https://api.slack.com/slack-apps]

And JBot currently supports:

	Bot users via Slack Real Time Messaging (RTM) API [http://api.slack.com/rtm]

	Slack Slash Commands [https://my.slack.com/services/new/slash-commands]

	Slack Webhooks [https://my.slack.com/services/new/incoming-webhook/]

Bots interact with Slack through RTM API or technically via Web Sockets. Slash Commands are nothing but GET
and POST calls to your app. Finally, Webhooks can be of two types, Incoming and Outgoing. Incoming webhooks
is where you POST data from outside (i.e, your app) to Slack and
Outgoing webhooks [https://api.slack.com/outgoing-webhooks] is where Slack POST data to an endpoint you specify.

Setting up your app

You need to first paste your tokens/urls in application.properties file:

slackBotToken=xoxb-50014434-slacktokenx29U9X1bQ
slashCommandToken=X73Fv3tokenx242CdpEq
slackIncomingWebhookUrl=https://hooks.slack.com/services/T02WEBHOOKURLV7oOYvPiHL7y6

You can directly use jbot-example or use jbot as a dependency. To make a

	Slack Bot ⇒

 Extend Bot class.

	Slash Command Handler ⇒

 Annotate your class
with Spring's @Controller and have a method
with the required @RequestMapping path receiving a set of request params as shown in the
sample.

	Slack Incoming Webhook ⇒

 Just make a POST call with
RichMessage whenever you want to update
your Slack users about something.

	Slack Outgoing Webhook ⇒

 Same as Slash Command Handler.

Receiving Messages

For Bots, you receive a message as Event. For
almost all actions Slack fires a relevant event [https://api.slack.com/events] for it. Unfortunately, it does not fire
appropriate events when someone directly messages the bot (direct message) or mentions the bot on a channel
(like @bot). It just fires an event of type message for all the messages (directly to bot and to channels where bot
is a member) sent.

But guess what, you're at the right place now, JBot handles that for you. It supports three extra
events EventType.DIRECT_MESSAGE, EventType.DIRECT_MENTION and EventType.ACK in addition to all the currently
supported Slack events [https://api.slack.com/events]. The first two events are self-explanatory, the EventType.ACK
event is nothing but an acknowledgement event which acknowledges the delivery of a previously sent message.

To receive and parse slack bot events you just need to have this:

@Controller(events = {EventType.DIRECT_MENTION, EventType.DIRECT_MESSAGE})
public void onReceiveDM(WebSocketSession session, Event event) {
 if (event.getText().contains("hi")) {
 reply(session, event, new Message("Hi, I am " + slackService.getCurrentUser().getName()));
 }
}

What you're doing here is annotating a method with @Controller
annotation and passing an array events to that annotation which you want to listen to. By default your controller will
listen to EventType.MESSAGE events if you do not specify any events explicitly.

You can also add regular expressions to your @Controller
annotation like:

@Controller(events = EventType.MESSAGE, pattern = "^([a-z]{2})(\\d+)([a-z]{2})$")
public void onReceiveMessage(WebSocketSession session, Event event, Matcher matcher) {
 reply(session, event, new Message("First group: " + matcher.group(0) + "\n" +
 "Second group: " + matcher.group(1) + "\n" +
 "Third group: " + matcher.group(2) + "\n" +
 "Fourth group: " + matcher.group(3)));
}

You can optionally have the matcher as a formal parameter in the method if you want to work on the values sent
by the user. But do keep the order of parameters as shown above.

In Slash Commands, you receive a GET or POST request as below:

token=gIkuvaNzQIHg97ATvDxqgjtO
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
user_id=U2147483697
user_name=Steve
command=/weather
text=94070
response_url=https://hooks.slack.com/commands/1234/5678

If you have configured for POST requests, data will be sent to your URL with a content-type header set as
application/x-www-form-urlencoded. If you've chosen to have your slash command's URL receive invocations as a GET
request, no explicit content-type header will be set.

NOTE: The URL you provide must be a HTTPS URL with a valid, verifiable SSL certificate.

In Incoming Webhooks, your application POST
data and do not receive any data apart from the acknowledgement for your sent data. You send data
as RichMessage to Slack Webhook URL.

In Outgoing Webhooks, you receive a POST request from Slack like below:

token=mbxmjpceetMUz2hfecqM31KC
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
timestamp=1355517523.000005
user_id=U2147483697
user_name=Steve
text=googlebot: What is the air-speed velocity of an unladen swallow?
trigger_word=googlebot:

Please note that the content of message attachments [https://api.slack.com/docs/attachments] will not be included in
the outgoing POST data in case of Outgoing Webhooks.

Sending Messages

In Bots, you can use the reply() method defined in Bot
class to send messages to Slack. You just need to set the text you want to send in
Message and everything else will be taken care
by JBot. But you can set other fields if you want such as id in the message.

Here is an example:

@Controller(events = EventType.MESSAGE)
public void onReceiveMessage(WebSocketSession session, Event event) {
 reply(session, event, new Message("Hi, this is a message!"));
}

Under the hood the message sent is nothing but a json like below:

{
 "id": 1,
 "type": "message",
 "channel": "C024BE91L",
 "text": "Hi, this is a message!"
}

For Slash Commands and Incoming Webhooks, you can send messages as
RichMessage. Just keep in mind to encode it
before sending by just calling the encodedMessage() method. Below is an example:

@RequestMapping(value = "/slash-command",
 method = RequestMethod.POST,
 consumes = MediaType.APPLICATION_FORM_URLENCODED_VALUE)
public RichMessage onReceiveSlashCommand(@RequestParam("token") String token,
 @RequestParam("team_id") String teamId,
 @RequestParam("team_domain") String teamDomain,
 @RequestParam("channel_id") String channelId,
 @RequestParam("channel_name") String channelName,
 @RequestParam("user_id") String userId,
 @RequestParam("user_name") String userName,
 @RequestParam("command") String command,
 @RequestParam("text") String text,
 @RequestParam("response_url") String responseUrl) {
 // validate token
 if (!token.equals(slackToken)) {
 return new RichMessage("Sorry! You're not lucky enough to use our slack command.");
 }

 /** build response */
 RichMessage richMessage = new RichMessage("The is Slash Commander!");
 richMessage.setResponseType("in_channel");
 // set attachments
 Attachment[] attachments = new Attachment[1];
 attachments[0] = new Attachment();
 attachments[0].setText("I will perform all tasks for you.");
 richMessage.setAttachments(attachments);
 return richMessage.encodedMessage(); // don't forget to send the encoded message to Slack
}

Points to Note:

	Event,
Message and
RichMessage are generic models. Not all the
time, all the attributes present in them will have values. In other words, Slack sends different responses for different
events [https://api.slack.com/events/hello].

	You need a channel id to send replies. Therefore, you can use reply() method for events which have a channel id
in them or else you have to explicitly set the channel id in the
Message object.

Conversations

This is the most wonderful feature of jbot, with this you can literally talk to your bot and have a conversation. See
below for an example as to how your bot sets up a meeting for your team by asking some simple questions one after the
other.

[image: Conversation feature in JBot]

 /**
 * Conversation feature of JBot. This method is the starting point of the conversation (as it
 * calls {@link Bot#startConversation(Event, String)} within it. You can chain methods which will be invoked
 * one after the other leading to a conversation. You can chain methods with {@link Controller#next()} by
 * specifying the method name to chain with.
 *
 * @param session
 * @param event
 */
 @Controller(pattern = "(setup meeting)", next = "confirmTiming")
 public void setupMeeting(WebSocketSession session, Event event) {
 startConversation(event, "confirmTiming"); // start conversation
 reply(session, event, new Message("Cool! At what time (ex. 15:30) do you want me to set up the meeting?"));
 }

You can start a conversation by calling startConversation(event, nextMethodName) within your controller. You can pass
the event and the name of the next controller method.

 /**
 * This method is chained with {@link SlackBot#setupMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askTimeForMeeting")
 public void confirmTiming(WebSocketSession session, Event event) {
 reply(session, event, new Message("Your meeting is set at " + event.getText() +
 ". Would you like to repeat it tomorrow?"));
 nextConversation(event); // jump to next question in conversation
 }

This is your next method in the conversation. After your desired work is done, do not forget to call nextConversation(event)
to jump to the next method. You can specify the next method to call in
next attribute of
Controller annotation.

 /**
 * This method is chained with {@link SlackBot#confirmTiming(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askWhetherToRepeat")
 public void askTimeForMeeting(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Okay. Would you like me to set a reminder for you?"));
 nextConversation(event); // jump to next question in conversation
 } else {
 reply(session, event, new Message("No problem. You can always schedule one with 'setup meeting' command."));
 stopConversation(event); // stop conversation only if user says no
 }
 }

 /**
 * This method is chained with {@link SlackBot#askTimeForMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller
 public void askWhetherToRepeat(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Great! I will remind you tomorrow before the meeting."));
 } else {
 reply(session, event, new Message("Oh! my boss is smart enough to remind himself :)"));
 }
 stopConversation(event); // stop conversation
 }

To end the conversation, call stopConversation(event) inside your controller method.

NOTE:

	Only the first method in a conversation can define a pattern. pattern attribute in Controller annotation has no
effect for rest of the methods in a conversation.

	The first method in the conversation need not call nextConversation(event) but rest of the methods do need to.

Usage

You can directly clone this project and use jbot-example or you can include it as a maven/gradle
dependency in your project.

Maven

<dependency>
 <groupId>me.ramswaroop.jbot</groupId>
 <artifactId>jbot</artifactId>
 <version>3.0.2</version>
</dependency>

Gradle

dependencies {
 compile("me.ramswaroop.jbot:jbot:3.0.2")
}

NOTE: When you include jbot as a dependency please make sure to include me.ramswaroop.jbot package for auto-scan.
For example, you can specify scanBasePackages in @SpringBootApplication or @ComponentScan. See
jbot-example to learn more.

Deploy to the Cloud

Bokit is Heroku ready. To deploy, you need to perform the below simple steps:

	Clone this project $ git clone git@github.com:ramswaroop/jbot.git and $ cd jbot.

	Get your slack bot token [https://my.slack.com/services/new/bot] or
slash command [https://my.slack.com/services/new/slash-commands] token or
incoming webhook [https://my.slack.com/services/new/incoming-webhook/] url.

	Paste the above tokens/urls in application.properties file.

	Download Toolbelt [https://toolbelt.heroku.com/] for your system.

	$ heroku login - Login to Heroku.

	$ heroku create - Create an app on Heroku.

	$ git push heroku master - Push your code to Heroku.

	$ heroku ps:scale web=1 - Start your application.

You can now start talking with your Bot, send commands to your Slash Command or play with Incoming Webhooks ;)

Documentation History

	README-Slack-JBot-3.0.2

	README-Slack-JBot-2.0.0

	README-Slack-BotKit-1.1.0

Contributions

If you would like like to contribute, raise an issue on Github [https://github.com/ramswaroop/jbot/issues] and I would
be more than happy to discuss :)

Donations

Buy me a coffee [https://www.bountysource.com/teams/jbot] so that I stay awake whole night and complete JBot soon
enough :D

Slack Bot

Table of Contents

	Getting started

	Basic Usage

	Building a Slack Integration with JBot

	Setting up your bot

	Receiving messages

	Sending messages

	Conversations

	Usage

	Deploy to the cloud

	Documentation History

Getting started

Running your SlackBot is just 4 easy steps:

	Clone this project $ git clone git@github.com:ramswaroop/jbot.git.

	Create a slack bot [https://my.slack.com/services/new/bot] and get your slack token.

	Paste the token in application.properties file.

	Run the example application by running JBotApplication in your IDE or via commandline:

$ cd jbot
$ mvn clean install
$ cd jbot-example
$ mvn spring-boot:run

You can now start talking with your bot ;)

Basic Usage

The main function of a Bot is to receive and reply messages. With JBot, receiving messages is as easy as just
writing a simple @Controller and replying to it by calling the reply() method as shown below:

@Controller(events = EventType.MESSAGE)
public void onReceiveDM(WebSocketSession session, Event event) {
 reply(session, event, "Hi, I am a Slack Bot!");
}

All the code for your bot goes in SlackBot class which
extends Bot from the core package. You can have as many
bots as you want, just make the class extend Bot class
and it gets all the powers of a Slack Bot. Though it is recommended to have separate JBot instances for different bots.

Building a Slack Integration [https://api.slack.com/] with JBot

You can integrate your services into Slack by any of the following ways:

	Bot users [https://api.slack.com/bot-users]

	Slash Commands [http://api.slack.com/slash-commands]

	Slack Webhooks [http://api.slack.com/incoming-webhooks]

	Slack Apps [https://api.slack.com/slack-apps]

And JBot currently supports:

	Bot users via Slack Real Time Messaging (RTM) API [http://api.slack.com/rtm]

	Slack Slash Commands [https://my.slack.com/services/new/slash-commands]

	Slack Webhooks [https://my.slack.com/services/new/incoming-webhook/]

Bots interact with Slack through RTM API or technically via Web Sockets. Slash Commands are nothing but GET
and POST calls to your app. Finally, Webhooks can be of two types, Incoming and Outgoing. Incoming webhooks
is where you POST data from outside (i.e, your app) to Slack and
Outgoing webhooks [https://api.slack.com/outgoing-webhooks] is where Slack POST data to an endpoint you specify.

Setting up your app

You need to first paste your tokens/urls in application.properties file:

slackBotToken=xoxb-50014434-slacktokenx29U9X1bQ
slashCommandToken=X73Fv3tokenx242CdpEq
slackIncomingWebhookUrl=https://hooks.slack.com/services/T02WEBHOOKURLV7oOYvPiHL7y6

You can directly use jbot-example or use jbot as a dependency. To make a

	Slack Bot ⇒

 Extend Bot class.

	Slash Command Handler ⇒

 Annotate your class
with Spring's @Controller and have a method
with the required @RequestMapping path receiving a set of request params as shown in the
sample.

	Slack Incoming Webhook ⇒

 Just make a POST call with
RichMessage whenever you want to update
your Slack users about something.

	Slack Outgoing Webhook ⇒

 Same as Slash Command Handler.

Since JBot 4.0.0, there is a new property which helps turn specific services on/off. You can set the property in
application.properties file:

spring.profiles.active=slack,facebook

To use Jbot for Slack only, remove "facebook" from the profiles. Note: You must have @Profile defined in your Slack
bot classes. See SlackBot in jbot-example.

Receiving Messages

For Bots, you receive a message as Event. For
almost all actions Slack fires a relevant event [https://api.slack.com/events] for it. Unfortunately, it does not fire
appropriate events when someone directly messages the bot (direct message) or mentions the bot on a channel
(like @bot). It just fires an event of type message for all the messages (directly to bot and to channels where bot
is a member) sent.

But guess what, you're at the right place now, JBot handles that for you. It supports three extra
events EventType.DIRECT_MESSAGE, EventType.DIRECT_MENTION and EventType.ACK in addition to all the currently
supported Slack events [https://api.slack.com/events]. The first two events are self-explanatory, the EventType.ACK
event is nothing but an acknowledgement event which acknowledges the delivery of a previously sent message.

To receive and parse slack bot events you just need to have this:

@Controller(events = {EventType.DIRECT_MENTION, EventType.DIRECT_MESSAGE})
public void onReceiveDM(WebSocketSession session, Event event) {
 if (event.getText().contains("hi")) {
 reply(session, event, "Hi, I am " + slackService.getCurrentUser().getName());
 }
}

What you're doing here is annotating a method with @Controller
annotation and passing an array events to that annotation which you want to listen to. By default your controller will
listen to EventType.MESSAGE events if you do not specify any events explicitly.

You can also add regular expressions to your @Controller
annotation like:

@Controller(events = EventType.MESSAGE, pattern = "^([a-z]{2})(\\d+)([a-z]{2})$")
public void onReceiveMessage(WebSocketSession session, Event event, Matcher matcher) {
 reply(session, event, new Message("First group: " + matcher.group(0) + "\n" +
 "Second group: " + matcher.group(1) + "\n" +
 "Third group: " + matcher.group(2) + "\n" +
 "Fourth group: " + matcher.group(3)));
}

You can optionally have a matcher as a formal parameter in the method if you want to work on the values sent
by the user. But do keep the order of parameters as shown above.

In Slash Commands, you receive a GET or POST request as below:

token=gIkuvaNzQIHg97ATvDxqgjtO
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
user_id=U2147483697
user_name=Steve
command=/weather
text=94070
response_url=https://hooks.slack.com/commands/1234/5678

If you have configured for POST requests, data will be sent to your URL with a content-type header set as
application/x-www-form-urlencoded. If you've chosen to have your slash command's URL receive invocations as a GET
request, no explicit content-type header will be set.

NOTE: The URL you provide must be a HTTPS URL with a valid, verifiable SSL certificate.

In Incoming Webhooks, your application POST
data and do not receive any data apart from the acknowledgement for your sent data. You send data
as RichMessage to Slack Webhook URL.

In Outgoing Webhooks, you receive a POST request from Slack like below:

token=mbxmjpceetMUz2hfecqM31KC
team_id=T0001
team_domain=example
channel_id=C2147483705
channel_name=test
timestamp=1355517523.000005
user_id=U2147483697
user_name=Steve
text=googlebot: What is the air-speed velocity of an unladen swallow?
trigger_word=googlebot:

Please note that the content of message attachments [https://api.slack.com/docs/attachments] will not be included in
the outgoing POST data in case of Outgoing Webhooks.

Sending Messages

In Bots, you can use the reply() method defined in Bot
class to send messages to Slack. You just need to set the text you want to send in
Message and everything else will be taken care
by JBot. But you can set other fields if you want such as id in the message.

Here is an example:

@Controller(events = EventType.MESSAGE)
public void onReceiveMessage(WebSocketSession session, Event event) {
 reply(session, event, "Hi, this is a message!");
}

Under the hood the message sent is nothing but a json like below:

{
 "id": 1,
 "type": "message",
 "channel": "C024BE91L",
 "text": "Hi, this is a message!"
}

For Slash Commands and Incoming Webhooks, you can send messages as
RichMessage. Just keep in mind to encode it
before sending by just calling the encodedMessage() method. Below is an example:

@RequestMapping(value = "/slash-command",
 method = RequestMethod.POST,
 consumes = MediaType.APPLICATION_FORM_URLENCODED_VALUE)
public RichMessage onReceiveSlashCommand(@RequestParam("token") String token,
 @RequestParam("team_id") String teamId,
 @RequestParam("team_domain") String teamDomain,
 @RequestParam("channel_id") String channelId,
 @RequestParam("channel_name") String channelName,
 @RequestParam("user_id") String userId,
 @RequestParam("user_name") String userName,
 @RequestParam("command") String command,
 @RequestParam("text") String text,
 @RequestParam("response_url") String responseUrl) {
 // validate token
 if (!token.equals(slackToken)) {
 return new RichMessage("Sorry! You're not lucky enough to use our slack command.");
 }

 /** build response */
 RichMessage richMessage = new RichMessage("The is Slash Commander!");
 richMessage.setResponseType("in_channel");
 // set attachments
 Attachment[] attachments = new Attachment[1];
 attachments[0] = new Attachment();
 attachments[0].setText("I will perform all tasks for you.");
 richMessage.setAttachments(attachments);
 return richMessage.encodedMessage(); // don't forget to send the encoded message to Slack
}

Points to Note:

	Event,
Message and
RichMessage are generic models. Not all the
time, all the attributes present in them will have values. In other words, Slack sends different responses for different
events [https://api.slack.com/events/hello].

	You need a channel id to send replies. Therefore, you can use reply() method for events which have a channel id
in them or else you have to explicitly set the channel id in the
Message object.

Conversations

This is a differentiating feature of JBot, with this you can literally talk to your bot and have a conversation. See
below for an example as to how your bot sets up a meeting for your team by asking some simple questions one after the
other.

[image: Conversation feature of JBot]

 /**
 * Conversation feature of JBot. This method is the starting point of the conversation (as it
 * calls {@link Bot#startConversation(Event, String)} within it. You can chain methods which will be invoked
 * one after the other leading to a conversation. You can chain methods with {@link Controller#next()} by
 * specifying the method name to chain with.
 *
 * @param session
 * @param event
 */
 @Controller(pattern = "(setup meeting)", next = "confirmTiming")
 public void setupMeeting(WebSocketSession session, Event event) {
 startConversation(event, "confirmTiming"); // start conversation
 reply(session, event, new Message("Cool! At what time (ex. 15:30) do you want me to set up the meeting?"));
 }

You can start a conversation by calling startConversation(event, nextMethodName) within your controller. You can pass
the event and the name of the next controller method.

 /**
 * This method is chained with {@link SlackBot#setupMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askTimeForMeeting")
 public void confirmTiming(WebSocketSession session, Event event) {
 reply(session, event, new Message("Your meeting is set at " + event.getText() +
 ". Would you like to repeat it tomorrow?"));
 nextConversation(event); // jump to next question in conversation
 }

This is your next method in the conversation. After your desired work is done, do not forget to call nextConversation(event)
to jump to the next method. You can specify the next method to call in
next attribute of
Controller annotation.

 /**
 * This method is chained with {@link SlackBot#confirmTiming(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller(next = "askWhetherToRepeat")
 public void askTimeForMeeting(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Okay. Would you like me to set a reminder for you?"));
 nextConversation(event); // jump to next question in conversation
 } else {
 reply(session, event, new Message("No problem. You can always schedule one with 'setup meeting' command."));
 stopConversation(event); // stop conversation only if user says no
 }
 }

 /**
 * This method is chained with {@link SlackBot#askTimeForMeeting(WebSocketSession, Event)}.
 *
 * @param session
 * @param event
 */
 @Controller
 public void askWhetherToRepeat(WebSocketSession session, Event event) {
 if (event.getText().contains("yes")) {
 reply(session, event, new Message("Great! I will remind you tomorrow before the meeting."));
 } else {
 reply(session, event, new Message("Oh! my boss is smart enough to remind himself :)"));
 }
 stopConversation(event); // stop conversation
 }

NOTE:

	Only the first method in a conversation can define a pattern. pattern attribute in Controller annotation has no
effect for rest of the methods in a conversation.

	The first method in the conversation need not call nextConversation(event) but rest of the methods do need to.

	next attribute in @Controller should have the name of the next method in the conversation that needs to be invoked.

	To end the conversation, call stopConversation(event) inside your controller method.

Usage

You can directly clone this project and use jbot-example or you can include it as a maven/gradle
dependency in your project.

Maven

<dependency>
 <groupId>me.ramswaroop.jbot</groupId>
 <artifactId>jbot</artifactId>
 <version>4.0.1</version>
</dependency>

Gradle

dependencies {
 compile("me.ramswaroop.jbot:jbot:4.0.1")
}

NOTE: When you include jbot as a dependency please make sure to include me.ramswaroop.jbot package for auto-scan.
For example, you can specify scanBasePackages in @SpringBootApplication or @ComponentScan. See
jbot-example to learn more.

Deploy to the Cloud

JBot is Heroku ready. To deploy, you need to perform the below simple steps:

	Clone this project $ git clone git@github.com:ramswaroop/jbot.git and $ cd jbot.

	Get your slack bot token [https://my.slack.com/services/new/bot] or
slash command [https://my.slack.com/services/new/slash-commands] token or
incoming webhook [https://my.slack.com/services/new/incoming-webhook/] url.

	Paste the above tokens/urls in application.properties file.

	Download Toolbelt [https://toolbelt.heroku.com/] for your system.

	$ heroku login - Login to Heroku.

	$ heroku create - Create an app on Heroku.

	$ git push heroku master - Push your code to Heroku.

	$ heroku ps:scale web=1 - Start your application.

You can now start talking with your Bot, send commands to your Slash Command or play with Incoming Webhooks ;)

Documentation History

	README-Slack-JBot-4.0.0 (Current)

	README-Slack-JBot-3.0.2

	README-Slack-JBot-2.0.0

	README-Slack-BotKit-1.1.0

Facebook Bot

Table of Contents

	Getting started

	Basic Usage

	Building a Fb Messenger Bot with JBot

	Setting up your bot

	Receiving messages

	Sending messages

	Conversations

	Get Started Button

	Greeting Text

	Usage

	Deploying in Production

	Documentation History

Getting started

Similar to Slack, Facebook is simple too but has few extra steps:

	Clone this project $ git clone git@github.com:ramswaroop/jbot.git.

	Create a facebook app [https://developers.facebook.com/docs/apps/register#create-app] and a
page [https://www.facebook.com/pages/create].

	Generate a Page Access Token for the page (inside app's messenger settings).

[image: generate_fb_token]

	Paste the token created above in application.properties file.

	Run the example application by running JBotApplication in your IDE or via commandline:

$ cd jbot
$ mvn clean install
$ cd jbot-example
$ mvn spring-boot:run

	Setup webhook to receive messages and other events. You need to have a secure public address to setup webhook. You may use localtunnel.me [https://localtunnel.me] to
generate a secure public address if you're running locally on your machine.

[image: localtunnel_demo]

	Specify the address created above in "Callback Url" field under "Webooks" setting and give the verify token
as fb_token_for_jbot and click "Verify and Save".

[image: setup_webhook]

You can now start messaging your bot by going to the facebook page and clicking on the "Send message" button.

If you're too lazy to start now and just want to play around, you can try jbot-example by visiting
JBot facebook page [https://www.facebook.com/jbotframework/] and clicking on the "Send Message" button.

Basic Usage

The main function of a Bot is to receive and reply messages. With JBot, receiving messages is as easy as just
writing a simple @Controller and replying to it by calling the reply() method as shown below:

@Controller(events = EventType.MESSAGE)
public void onReceiveMessage(Event event) {
 if ("hi".equals(event.getMessage().getText())) {
 reply(event, "Hi, I am JBot.");
 }
}

All the code for your bot goes in FbBot class which
extends Bot from the core package. You can have as many
bots as you want, just make the class extend Bot class
and it gets all the powers of a Facebook Bot. Though it is recommended to have separate JBot instances for different bots.

Building a Fb Messenger Bot with JBot

Before we deep dive into the details, be sure you have a facebook app, a fb page and have setup webhooks. See the
Getting Started section to learn more.

Setting up your bot

In facebook, we can make messenger bots for pages and not for users. To start using fb APIs, we need a page access token
which can be generated from any of your fb app settings. This page access token needs to be specified in
application.properties file in jbot-example. You can remove
"slack" from the spring.profiles.active as well. After this, you can start the bot by running JBotApplication from your IDE
or via command-line.

Once the bot is started, you can go to the app's setting and setup webhooks. Give the secure url to your bot applcation,
you may use localtunnel.me [https://localtunnel.me] to generate one if you're running on your machine and not on any
server. You also need to provide a "Verify Token" which can be found in
application.properties file in fbBotToken property.

Receiving Messages

Facebook sends Callback to /webhook
for all the events your page has subscribed to. It sends as POST request to your /webhook endpoint.

Luckily, with JBot, you don't have to worry about defining your own handler to handle those POST calls, parsing the
event etc. To receive events from Fb, you just have to define methods with @Controller annotation (from here on, we
will call them as @Controller).

i. Here is a simple example which gets invoked when your bot receives an event of type MESSAGE or POSTBACK from
facebook.

@Controller(events = {EventType.MESSAGE, EventType.POSTBACK})
public void onReceiveMessage(Event event) {
 if ("hi".equals(event.getMessage().getText())) {
 reply(event, "Hi, I am JBot.");
 }
}

ii. Another example which adds a pattern to the @Controller. Adding a pattern will restrict the method to be invoked
only when the event text or event payload (depending on the event type) matches the pattern defined. You can specify a
regular expression in pattern.

@Controller(events = {EventType.MESSAGE, EventType.POSTBACK}, pattern = "^(?i)(hi|hello|hey)$")
public void onGetStarted(Event event) {
 // quick reply buttons
 Button[] quickReplies = new Button[]{
 new Button().setContentType("text").setTitle("Sure").setPayload("yes"),
 new Button().setContentType("text").setTitle("Nope").setPayload("no")
 };
 reply(event, new Message().setText("Hello, I am JBot. Would you like to see more?").setQuickReplies(quickReplies));
}

You can optionally have a matcher as a formal parameter (after event) in the method if you want to work on the
matched values sent by the user. You can access by matcher.group(0), matcher.group(1) etc.

One thing to note here, the pattern will be matched against the text or payload depending on the event type
received. For the below example, the event received will be of type QUICK_REPLY and the pattern in this case will be
matched against the payload attribute in QuickReply and not against the text attribute.

@Controller(events = EventType.QUICK_REPLY, pattern = "(yes|no)")
public void onReceiveQuickReply(Event event) {
 if ("yes".equals(event.getMessage().getQuickReply().getPayload())) {
 reply(event, "Cool! You can type: \n 1) Show Buttons \n 2) Show List \n 3) Setup meeting");
 } else {
 reply(event, "See you soon!");
 }
}

You can see all the webhook events [https://developers.facebook.com/docs/messenger-platform/reference/webhook-events]
that the messenger platform currently supports. You may see that there is no specific QUICK_REPLY event type listed
there. This is an extra event added by JBot to make your task easier.

Sending Messages

Like receiving, for sending messages to users from your bot you need to make POST calls to the
Facebook's Send API [https://developers.facebook.com/docs/messenger-platform/reference/send-api]. But again, with JBot,
you can simply reply by calling the reply() method from within your @Controller method. There are various overloaded
versions of the reply() method to suit your needs.

i. The simplest example is like,

reply(event, "Hi, I am Jbot.");

It takes an event object and a string which is the reply text.

ii. Another example in which JBot replies with two quick reply buttons:

// quick reply buttons
Button[] quickReplies = new Button[]{
 new Button().setContentType("text").setTitle("Sure").setPayload("yes"),
 new Button().setContentType("text").setTitle("Nope").setPayload("no")
};
reply(event, new Message().setText("Hello, I am JBot. Would you like to see more?").setQuickReplies(quickReplies));

If you see here, we have set payload in both the buttons. So, to know which button the user clicked you can have a
@Controller with event EventType.QUICK_REPLY and pattern as (yes|no) like below:

@Controller(events = EventType.QUICK_REPLY, pattern = "(yes|no)")
public void onReceiveQuickReply(Event event) {
 if ("yes".equals(event.getMessage().getQuickReply().getPayload())) {
 reply(event, "Cool! You can type: \n 1) Show Buttons \n 2) Show List \n 3) Setup meeting");
 } else {
 reply(event, "See you soon!");
 }
}

iii. In this example, JBot replies with two standard buttons:

Button[] buttons = new Button[]{
 new Button().setType("web_url").setUrl("http://blog.ramswaroop.me").setTitle("JBot Docs"),
 new Button().setType("web_url").setUrl("https://goo.gl/uKrJWX").setTitle("Buttom Template")
};
reply(event, new Message().setAttachment(new Attachment().setType("template").setPayload(new Payload()
 .setTemplateType("button").setText("These are 2 link buttons.").setButtons(buttons))));

iv. The last example shows JBot replying with a list of three items:

Element[] elements = new Element[]{
 new Element().setTitle("AnimateScroll").setSubtitle("A jQuery Plugin for Animating Scroll.")
 .setImageUrl("https://plugins.compzets.com/images/as-logo.png")
 .setDefaultAction(new Button().setType("web_url").setMessengerExtensions(true)
 .setUrl("https://plugins.compzets.com/animatescroll/")),
 new Element().setTitle("Windows on Top").setSubtitle("Keeps a specific Window on Top of all others.")
 .setImageUrl("https://plugins.compzets.com/images/compzets-logo.png")
 .setDefaultAction(new Button().setType("web_url").setMessengerExtensions(true)
 .setUrl("https://www.compzets.com/view-upload.php?id=702&action=view")),
 new Element().setTitle("SimpleFill").setSubtitle("Simplest form filler ever.")
 .setImageUrl("https://plugins.compzets.com/simplefill/chrome-extension/icon-64.png")
 .setDefaultAction(new Button().setType("web_url").setMessengerExtensions(true)
 .setUrl("https://plugins.compzets.com/simplefill/"))
};
reply(event, new Message().setAttachment(new Attachment().setType("template").setPayload(new Payload()
 .setTemplateType("list").setElements(elements))));

Here is a screencast which shows all the examples we discussed:

[image: fbbot demo]

You should have a look at Facebook's Send API [https://developers.facebook.com/docs/messenger-platform/reference/send-api]
for all kinds of replies the bot can send. For example, you can even send a receipt to your user, airline boarding pass
and much more.

Conversations

This is a differentiating feature of JBot, with this you can literally talk to your bot and have a conversation. See
below for an example as to how your bot sets up a meeting for your team by asking some simple questions one after the
other.

[image: Conversation feature of JBot]

/**
 * Type "setup meeting" to start a conversation with the bot. Provide the name of the next method to be
 * invoked in {@code next}. This method is the starting point of the conversation (as it
 * calls {@link Bot#startConversation(Event, String)} within it. You can chain methods which will be invoked
 * one after the other leading to a conversation.
 *
 * @param event
 */
@Controller(pattern = "(?i)(setup meeting)", next = "confirmTiming")
public void setupMeeting(Event event) {
 startConversation(event, "confirmTiming"); // start conversation
 reply(event, "Cool! At what time (ex. 15:30) do you want me to set up the meeting?");
}

/**
 * This method will be invoked after {@link FbBot#setupMeeting(Event)}. You need to
 * call {@link Bot#nextConversation(Event)} to jump to the next question in the conversation.
 *
 * @param event
 */
@Controller(next = "askTimeForMeeting")
public void confirmTiming(Event event) {
 reply(event, "Your meeting is set at " + event.getMessage().getText() +
 ". Would you like to repeat it tomorrow?");
 nextConversation(event); // jump to next question in conversation
}

/**
 * This method will be invoked after {@link FbBot#confirmTiming(Event)}. You can
 * call {@link Bot#stopConversation(Event)} to end the conversation.
 *
 * @param event
 */
@Controller(next = "askWhetherToRepeat")
public void askTimeForMeeting(Event event) {
 if (event.getMessage().getText().contains("yes")) {
 reply(event, "Okay. Would you like me to set a reminder for you?");
 nextConversation(event); // jump to next question in conversation
 } else {
 reply(event, "No problem. You can always schedule one with 'setup meeting' command.");
 stopConversation(event); // stop conversation only if user says no
 }
}

/**
 * This method will be invoked after {@link FbBot#askTimeForMeeting(Event)}. You can
 * call {@link Bot#stopConversation(Event)} to end the conversation.
 *
 * @param event
 */
@Controller
public void askWhetherToRepeat(Event event) {
 if (event.getMessage().getText().contains("yes")) {
 reply(event, "Great! I will remind you tomorrow before the meeting.");
 } else {
 reply(event, "Okay, don't forget to attend the meeting tomorrow :)");
 }
 stopConversation(event); // stop conversation
}

NOTE:

	Only the first method in a conversation can define a pattern. pattern attribute in @Controller annotation has no
effect for rest of the methods in a conversation.

	The first method in the conversation need not call nextConversation(event) but rest of the methods do need to.

	next attribute in @Controller should have the name of the next method in the conversation that needs to be invoked.

	To end the conversation, call stopConversation(event) inside your controller method.

Get Started Button

You can set the "Get Started" button by simply calling the setGetStartedButton("hi"); where "hi" is your payload. You
can see the init() method in FbBot.java. Just
uncomment the @PostConstruct after you've setup your webhook.

The "Get Started" button is only shown to users new to your bot.
Learn more [https://developers.facebook.com/docs/messenger-platform/reference/messenger-profile-api/get-started-button].

Greeting Text

The greeting text allows you to specify a message people will see on the welcome screen of your bot. The welcome
screen is displayed for people interacting with your bot for the first time. You can set the greeting text like:

setGreetingText(new Payload[]{new Payload().setLocale("default").setText("JBot is a Java Framework to help" +
 " developers make Facebook, Slack and Twitter bots easily. You can see a quick demo by clicking " +
 "the \"Get Started\" button.")});

You can define different greeting text for different locales.
Learn more [https://developers.facebook.com/docs/messenger-platform/reference/messenger-profile-api/greeting].

Usage

You can directly clone this project and use jbot-example or you can include it as a maven/gradle
dependency in your project.

Maven

<dependency>
 <groupId>me.ramswaroop.jbot</groupId>
 <artifactId>jbot</artifactId>
 <version>4.0.1</version>
</dependency>

Gradle

dependencies {
 compile("me.ramswaroop.jbot:jbot:4.0.1")
}

NOTE: When you include jbot as a dependency please make sure to include me.ramswaroop.jbot package for auto-scan.
For example, you can specify scanBasePackages in @SpringBootApplication or @ComponentScan. See
jbot-example to learn more.

Deploying in Production

You can use supervisord or similar tools for deploying this app in production. Here is a sample supervisord.conf
for this application:

[inet_http_server]
port=127.0.0.1:9001

[supervisord]
logfile=/tmp/supervisord.log
logfile_maxbytes=50MB
logfile_backups=10
loglevel=info
pidfile=/tmp/supervisord.pid
nodaemon=false
minfds=1024
minprocs=200

[rpcinterface:supervisor]
supervisor.rpcinterface_factory = supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=http://127.0.0.1:9001

[program:jbot]
command=mvn spring-boot:run
;directory=/var/www/jbot.ramswaroop.me/jbot/jbot-example/ ; change this
autostart=true
autorestart=true
;user=jbot ; change this
redirect_stderr=true
stdout_logfile=/tmp/jbot.log

Documentation History

	README-facebook-JBot-4.0.0 (Current)

 _static/up-pressed.png

_static/up.png

_images/localtunnel-demo.gif
(zsh)

Last login: Sat Mar 17 14:29:00 on ttyse02

_images/nMchYK5.gif

_static/ajax-loader.gif

_images/fb-setup-webhook-640.gif
P
© suos
e
 he

—

© e

p—
sanoss

& wrs

= v

APp 0 saisoonIs2eces D st noescoorer | T

B A S —

ot s e sy i o e i B e G i

P —

T s Mesengrrtorn, ot s 00 e oS 805, o e your i ot >
[it S i

s messaging

_images/fbbot-conversation.gif
 JBot & X

Typically replies instantly

Get Sarted

_images/fb-generate-token-640.gif
@rewe v wwseonszesssz D st noereoonen: [T

. e

5 s . . §
O —

e e e ooy B o

o :

Sermo

O ———

. 0 e g 55 o 4 1115500 S350 Qo 5 e b e 00 S o

saons
© s e g s Toen
. st s

eshanks S ot

Torocevnmessages v e s s, o3 S s
ey

_images/fbbot-demo.gif
JB

» Typically replies instantly

Get Started

_static/comment-bright.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

