
catkin_tools Documentation
Release 0.0.0

William Woodall

December 21, 2015

Contents

1 Installing catkin_tools 1
1.1 Installing on Ubuntu with apt-get . 1
1.2 Installing on other platforms with pip . 1
1.3 Installing from source . 1
1.4 Install catkin_tools for developing . 2

2 Quickstart 3
2.1 TL;DR . 3
2.2 Initializing a New Workspace . 3
2.3 Adding Packages to the Workspace . 4
2.4 Building the Workspace . 5
2.5 Loading the Workspace Environment . 6
2.6 Cleaning Workspace Products . 7

3 Workspace Mechanics 9
3.1 Anatomy of a Catkin Workspace . 9
3.2 Additional Workspace Directories with catkin_tools . 10
3.3 Environment Setup Files . 10
3.4 Workspace Packages and Dependencies . 11
3.5 Understanding the Build Process . 11
3.6 Workspace Chaining and the Importance of CMAKE_PREFIX_PATH 13

4 Configuration Summary 15
4.1 Contents of the Config Summary . 15
4.2 Workspace Chaining Mode . 16

5 Cheat Sheet 19
5.1 Initializing Workspaces . 19
5.2 Configuring Workspaces . 19
5.3 Building Packages . 20
5.4 Cleaning Build Products . 20
5.5 Controlling Color Display . 21
5.6 Profile Cookbook . 21
5.7 Manipulating Workspace Chaining . 21
5.8 Building With Other Jobservers . 21

6 Troubleshooting 23
6.1 Configuration Summary Warnings . 23
6.2 Dependency Resolution . 23

i

7 catkin build – Build Packages 25
7.1 Basic Usage . 25
7.2 Context-Aware Building . 30
7.3 Controlling the Number of Build Jobs . 30
7.4 Controlling Command-Line Output . 30
7.5 Running Tests Built in a Workspace . 32
7.6 Building With Warnings . 33
7.7 Debugging Build Errors . 33
7.8 Full Command-Line Interface . 34

8 catkin clean – Clean Build Products 37
8.1 Full Command-Line Interface . 37

9 catkin config – Configure a Workspace 39
9.1 Viewing the Configuration Summary . 39
9.2 Appending or Removing List-Type Arguments . 39
9.3 Installing Packages . 40
9.4 Explicitly Specifying Workspace Chaining . 40
9.5 Whitelisting and Blacklisting Packages . 41
9.6 Full Command-Line Interface . 42

10 catkin create – Create Packages 45
10.1 Full Command-Line Interface . 45

11 catkin init – Initialize a Workspace 47
11.1 Full Command-Line Interface . 47

12 catkin list – List Package Info 49
12.1 Checking for Catkin Package Warnings . 49
12.2 Using Unformatted Output in Shell Scripts . 49
12.3 Full Command-Line Interface . 49

13 catkin profile – Manage Profiles 51
13.1 Creating Profiles Automatically . 51
13.2 Explicitly Creating Profiles . 52
13.3 Setting the Active Profile . 53
13.4 Renaming and Removing Profiles . 53
13.5 Full Command-Line Interface . 53

14 Verb Aliasing 57
14.1 The Built-In Aliases . 57
14.2 Defining Additional Aliases . 57
14.3 Alias Precedence and Overriding Aliases . 58
14.4 Recursive Alias Expansion . 58

15 Extending the catkin command 59

16 The catkin command 63
16.1 Built-in catkin command verbs . 63
16.2 Extending the catkin command . 63

ii

CHAPTER 1

Installing catkin_tools

You can install the catkin_tools package as a binary through a package manager like pip or apt-get, or from
source.

Note: This project is still in beta and has not been released yet, please install from source. In particular, interface and
behaviour are still subject to incompatible changes. If you rely on a stable environment, please use catkin_make
instead of this tool.

1.1 Installing on Ubuntu with apt-get

First you must have the ROS repositories which contain the .deb for catkin_tools:

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu `lsb_release -sc` main" > /etc/apt/sources.list.d/ros-latest.list'
$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add -

Once you have added that repository, run these commands to install catkin_tools:

$ sudo apt-get update
$ sudo apt-get install python-catkin-tools

1.2 Installing on other platforms with pip

Simply install it with pip:

$ sudo pip install -U catkin_tools

1.3 Installing from source

First clone the source for catkin_tools:

$ git clone https://github.com/catkin/catkin_tools.git
$ cd catkin_tools

Then install with the setup.py file:

1

catkin_tools Documentation, Release 0.0.0

$ python setup.py install

1.3.1 Developing

Listed here are some useful tips for developing against catkin_tools.

1.4 Install catkin_tools for developing

To setup catkin_tools for fast iteration during development, use the develop verb to setup.py:

$ python setup.py develop

Now the commands, like catkin, will be in the system path and the local source files located in the catkin_tools
folder will be on the PYTHONPATH. When you are done with your development, undo this by running this command:

$ python setup.py develop -u

2 Chapter 1. Installing catkin_tools

CHAPTER 2

Quickstart

This chapter gives a high-level overview of how to use catkin_tools and the catkin command. This shows
how to use the different command verbs to create and manipulate a workspace. For a more in-depth explanation of
the mechanics of catkin workspaces, see Workspace Mechanics, and for thorogh usage details see the individual verb
documentation.

2.1 TL;DR

The following is an example workflow and sequence of commands using default settings:

$ mkdir -p /tmp/path/to/my_catkin_ws/src # Make a new workspace and source space
$ cd /tmp/path/to/my_catkin_ws # Navigate to the workspace root
$ catkin init # Initialize it with a hidden marker file
$ cd /tmp/path/to/my_catkin_ws/src # Navigate to the source space
$ catkin create pkg pkg_a # Populate the source space with packages...
$ catkin create pkg pkg_b
$ catkin create pkg pkg_c --catkin-deps pkg_a
$ catkin create pkg pkg_d --catkin-deps pkg_a pkg_b
$ catkin build # Build all packages in the workspace
$ source ../devel/setup.bash # Load the workspace's environment
$ catkin clean --all # Clean the build products
$ catkin build pkg_d # Build `pkg_d` and its deps
$ cd /tmp/path/to/my_catkin_ws/src/pkg_c # Navigate to `pkg_c`'s source directory
$ catkin build --this # Build `pkg_c` and its deps
$ catkin build --this --no-deps # Rebuild only `pkg_c`

2.2 Initializing a New Workspace

While initialization of a workspace can be done automatically with catkin build, it’s good practice to initialize
a catkin workspace explicitly. This is done by simply creating a new workspace with an empty source space (named
src by default) and calling catkin init from the workspace root:

$ mkdir -p /tmp/path/to/my_catkin_ws/src
$ cd /tmp/path/to/my_catkin_ws
$ catkin init
--
Profile: default
Extending: None
Workspace: /tmp/path/to/my_catkin_ws

3

catkin_tools Documentation, Release 0.0.0

Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel
Install Space: [missing] /tmp/path/to/my_catkin_ws/install
DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Workspace configuration appears valid.
--

Now the directory /tmp/path/to/my_catkin_ws has been initialized and catkin init has printed the
standard configuration summary to the console with the default values. This summary describes the layout of the
workspace as well as other important settings which influence build and execution behavior.

Once a workspace has been initialized, the configuration summary can be displayed by calling catkin config
without arguments from anywhere under the root of the workspace. Doing so will not modify your workspace. The
catkin command is context-sensitive, so it will determine which workspace contains the current working directory.

An important property which deserves attention is the summary value labeled Extending. This describes other
collections of libraries and packages which will be visible to your workspace. This is process called “workspace
chaining.” The value can be come from a few different sources, and can be classified in one of the three following
ways:

• No chaining

• Implicit chaining via CMAKE_PREFIX_PATH environment or cache variable

• Explicit chaining via catkin config --extend

For more information on the configuration summary and workspace chaining, see Configuration Summary. For infor-
mation on manipulating these options, see the config verb.

Note: Calling catkin init “marks” a directory path by creating a hidden directory called .catkin_tools.
This hidden directory is used to designate the parent as the root of a Catkin workspace as well as store persistent
information about the workspace configuration.

2.3 Adding Packages to the Workspace

In order to build software with Catkin, it needs to be added to the workspace’s source space. You can either download
some existing packages, or create one or more empty ones. As shown above, the default path for a Catkin source space
is ./src relative to the workspace root. A standard Catkin package is simply a directory with a CMakeLists.txt file
and a package.xml file. For more information on Catkin packages see workspace mechanics. The shell interaction
below shows the creation of three trivial packages: pkg_a, pkg_b, and another_one:

$ cd /tmp/path/to/my_catkin_ws/src
$ catkin_create_pkg pkg_a
Created file pkg_a/CMakeLists.txt
Created file pkg_a/package.xml
Successfully created files in /tmp/path/to/my_catkin_ws/src/pkg_a. Please adjust the values in package.xml.

4 Chapter 2. Quickstart

catkin_tools Documentation, Release 0.0.0

$ catkin_create_pkg pkg_b
Created file pkg_b/CMakeLists.txt
Created file pkg_b/package.xml
Successfully created files in /tmp/path/to/my_catkin_ws/src/pkg_b. Please adjust the values in package.xml.
$ catkin_create_pkg another_one
Created file another_one/CMakeLists.txt
Created file another_one/package.xml
Successfully created files in /tmp/path/to/my_catkin_ws/src/another_one. Please adjust the values in package.xml.

After these operations, your workspace’s local directory structure would look like the followng (to two levels deep):

$ cd /tmp/path/to/my_catkin_ws
$ tree -aL 2
.
-- .catkin_tools
| -- README
-- src

-- another_one
-- pkg_a
-- pkg_b

Now that there are some packages in the workspace, Catkin has something to build.

Note: Catkin utilizes an “out-of-source” and “aggregated” build pattern. This means that not only will temporary or
final build products never be placed in a package’s source directory (or anywhere in the source space for that matter),
but also all build directories are aggregated in the build space and all final build products (executables, libraries, etc.)
will be put in the devel space.

2.4 Building the Workspace

Since the catkin workspace has already been initialized, you can call catkin build from any directory contained
within it. If it had not been initialized, then catkin build would need to be called from the workspace root. Based
on the default configuration, it will locate the packages in the source space and build each of them.

$ catkin build
--
Profile: default
Extending: None
Workspace: /tmp/path/to/my_catkin_ws
Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel
Install Space: [missing] /tmp/path/to/my_catkin_ws/install
DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Workspace configuration appears valid.
--

2.4. Building the Workspace 5

catkin_tools Documentation, Release 0.0.0

Found '3' packages in 0.0 seconds.
Starting ==> another_one
Starting ==> pkg_a
Starting ==> pkg_b
Finished <== pkg_b [2.0 seconds]
Finished <== another_one [2.0 seconds]
Finished <== pkg_a [3.4 seconds]
[build] Finished.
[build] Runtime: 3.4 seconds

Calling catkin build will generate build and devel directories (as described in the config summary above)
and result in a directory structure like the following (to one level deep):

$ cd /tmp/path/to/my_catkin_ws
$ tree -aL 1
.
-- build
-- .catkin_tools
-- devel
-- src

Intermediate build products (CMake cache files, Makefiles, object files, etc.) are generated in the build directory,
or build space and final build products (libraries, executables, config files) are generated in the devel directory, or
devel space. For more information on building and customizing the build configuration see the build verb and config
verb documentation.

2.5 Loading the Workspace Environment

In order to properly “use” the products of the workspace, it’s environment needs to be loaded. Among other environ-
ment variables, sourcing a Catkin setup file modifies the CMAKE_PREFIX_PATH environment variable, which will
affect workspace chaining as described in the earlier section.

Setup files are located in one of the result spaces generated by your workspace. Both the devel space or the install
space are valid result spaces. In the default build configuration, only the devel space is generated. You can load the
environment for your respective shell like so:

$ source /tmp/path/to/my_catkin_ws/devel/setup.bash

At this point you should be able to use products built by any of the packages in your workspace.

Note: Any time the member packages change in your workspace, you will need to re-run the source command.

Loading the environment from a Catkin workspace can set arbitrarily many environment variables, depending on
which “environment hooks” the member packages define. As such, it’s important to know which workspace environ-
ment is loaded in a given shell.

It’s not unreasonable to automatically source a given setup file in each shell for convenience, but if you do so, it’s good
practice to pay attention to the Extending value in the Catkin config summary. Any Catkin setup file will modify
the CMAKE_PREFIX_PATH environment variable, and the config summary should catch common inconsistencies in
the environment.

6 Chapter 2. Quickstart

catkin_tools Documentation, Release 0.0.0

2.6 Cleaning Workspace Products

Instead of using dangerous commands like rm -rf build devel in your workspace when cleaning build prod-
ucts, you can use the catkin clean --all command. Just like the other verbs, catkin clean is context-
aware, so it only needs to be called from a directory under the workspace root.

In order to clean the build space and devel space for the workspace, you can use any following command:

$ catkin clean --build --devel
Removing buildspace: /tmp/path/to/my_catkin_ws/build
Removing develspace: /tmp/path/to/my_catkin_ws/devel

For more information on less aggressive cleaning options see the clean verb documentation.

2.6. Cleaning Workspace Products 7

catkin_tools Documentation, Release 0.0.0

8 Chapter 2. Quickstart

CHAPTER 3

Workspace Mechanics

This chapter defines how Catkin workspaces are organized and used, as well as some standardized nomenclature for
describing elements of a Catkin workspace. Unlike integrated development environments (IDEs) which normally only
manage single projects, the purpose of Catkin is to enable the simultaneous compilation of numerous independently-
authored projects. As such, these projects need to be organized in a “workspace” which contains both the source and
build products for a collection of “packages.”

3.1 Anatomy of a Catkin Workspace

A standard catkin workspace, as defined by REP-0128, is a folder with a prescribed set “spaces”, each of which is
normally a folder within the workspace:

• source space – default: ./src

• build space – default: ./build

• devel space – default: ./devel

• install space – default: ./install

Though there are standard conventions for the layout and names of the workspace’s various spaces, they can be
renamed for a given build using the catkin config verb.

3.1.1 source space

The source space is where the code for your packages resides and normally is in the folder
/path/to/workspace/src. The build command considers source space to be read-only, in that during a
build no files or folders should be created or modified in that folder. Therefore catkin workspaces are said to be built
“out of source”, which simply means that the folder in which you build your code is not under or part of the folder
with contains the source code.

3.1.2 build space

Temporary build files are put into the build space, which by default is in the /path/to/workspace/build
folder. The build space is the working directory in which commands like cmake and make are run.

9

http://www.ros.org/reps/rep-0128.html

catkin_tools Documentation, Release 0.0.0

3.1.3 devel space

Generated files, like executables, libraries, pkg-config files, CMake config files, or message code, are placed in
the devel space. By convention the devel space is located as a peer to the source space and build space in the
/path/to/workspace/devel folder. The layout of the devel space is intended to mimic the root of an FHS
filesystem, with folders like include, lib, bin, and share. Running code is possible from devel space because
references to the source space are created.

3.1.4 install space

Finally, if the packages in the workspace are setup for installing, the --install option can be invoked to in-
stall the packages to the CMAKE_INSTALL_PREFIX, which in REP-0128 terms is the install space. The install
space, like the devel space, has an FHS layout along with some generated setup files. The install space is set to
/path/to/workspace/install by changing the CMAKE_INSTALL_PREFIX by default. This is done to pre-
vent users from accidentally trying to install to the normal CMAKE_INSTALL_PREFIX path, /usr/local. Unlike
the devel space, the install space is completely standalone and does not require the source space or build space to
function, and is suitable for packaging.

3.2 Additional Workspace Directories with catkin_tools

3.2.1 Hidden Marker / Config Directory

In addition to the standard workspace structure, catkin_tools also adds a marker directory called
.catkin_tools at the root of the workspace. This directory both acts as a marker for the root of the workspace
and contains persistent configuration information.

This directory contains subdirectories representing different configuration profiles, and inside of each profile directory
are YAML files which contain verb-specific metadata. It additionally contains a file which lists the name of the active
configuration profile if it is different than default.

3.2.2 Build Log Directory

Another addition is the build_logs directory which is generated in the build space and contains individual build
logs for each package.

3.3 Environment Setup Files

In addition to the FHS folders, some setup scripts are generated in the devel space, e.g. setup.bash or
setup.zsh. These setup scripts are intended to make it easier to use the resulting devel space for building on
top of the packages that were just built or for running programs built by those packages. The setup script can be used
like this in bash:

$ source /path/to/workspace/devel/setup.bash

Or like this in zsh:

% source /path/to/workspace/devel/setup.zsh

10 Chapter 3. Workspace Mechanics

https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
https://en.wikipedia.org/wiki/Filesystem_Hierarchy_Standard
http://www.ros.org/reps/rep-0128.html

catkin_tools Documentation, Release 0.0.0

Sourcing these setup scripts adds this workspace and any “underlaid” workspaces to your environment, prefixing
the CMAKE_PREFIX_PATH, PKG_CONFIG_PATH, PATH, LD_LIBRARY_PATH, CPATH, and PYTHONPATHwith
local workspace folders.

The setup scripts will also execute any shell hooks exported by packages in the workspace, which is how roslib,
for example, sets the ROS_PACKAGE_PATH environment variable.

Note: Like the devel space, the install space includes setup.* and related files at the top of the
file hierarchy. This is not suitable for some packaging systems, so this can be disabled by passing the
-DCATKIN_BUILD_BINARY_PACKAGE="1" option to cmake using the --cmake-args option for this verb.
Though this will suppress the installation of the setup files, you will loose the functionality provided by them, namely
extending the environment and executing environment hooks.

3.4 Workspace Packages and Dependencies

A workspace’s packages consist of any packages found in the source space. A package is any folder which contains
a package.xml as defined in REP-0127.

The catkin build command determines the order in which packages are built based on the depend,
build_depend, run_depend, and build_type tags in a package’s package.xml file.

• The *_depend tags are used to determine the topological build order of the packages.

• The build_type tag is used to determine which build work flow to use on the package.

Packages without an explicitly defined build_type tag are assumed to be catkin packages, but plain CMake pack-
ages can be built by adding a package.xml file to the root of their source tree with the build_type flag set to
cmake and appropriate build_depend and run_depend tags set, as described in REP-0136. This has been done
in the past for building packages like opencv, pcl, and flann.

3.5 Understanding the Build Process

3.5.1 Legacy Catkin Workflow

The core Catkin meta-buildsystem was originally designed in order to efficiently build numerous inter-dependent,
but separately developed, CMake projects. This was developed by the Robot Operating System (ROS) community,
originally as a successor to the standard meta-buildtool rosbuild. The ROS community’s distributed development
model with many modular projects and the need for building distributable binary packages motivated the design of a
system which efficiently merged numerous disparate projects so that they utilize a single target dependency tree and
build space.

To facilitate this “merged” build process, a workspace’s source space would contain boiler-plate “top-level”
CMakeLists.txt which automatically added all of the Catkin CMake projects below it to the single large CMake
project.

Then the user would build this collection of projects like a single unified CMake project with a workflow similar to
the standard CMake out-of-source build workflow. They would all be configured with one invocation of cmake and
subsequently targets would be built with one or more invocations of make:

$ mkdir build
$ cd build
$ cmake ../src
$ make

3.4. Workspace Packages and Dependencies 11

http://www.ros.org/reps/rep-0127.html
http://www.ros.org/reps/rep-0136.html

catkin_tools Documentation, Release 0.0.0

In order to help automate the merged build process, Catkin was distributed with a command-line tool called
catkin_make. This command automated the above CMake work flow while setting some variables according
to standard conventions. These defaults would result in the execution of the following commands:

$ mkdir build
$ cd build
$ cmake ../src -DCATKIN_DEVEL_SPACE=../devel -DCMAKE_INSTALL_PREFIX=../install
$ make -j<number of cores> -l<number of cores> [optional target, e.g. install]

An advantage of this approach is that the total configuration would be smaller than configuring each package individ-
ually and that the Make targets can be parallelized even amongst dependent packages.

In practice, however, it also means that in large workspaces, modification of the CMakeLists.txt of one package would
necessitate the reconfiguration of all packages in the entire workspace.

A critical flaw of this approach, however, is that there is no fault isolation. An error in a leaf package (package with no
dependencies) will prevent all packages from configuring. Packages might have colliding target names. The merged
build process can even cause CMake errors to go undetected if one package defines variables needed by another one,
and can depend on the order in which independent packages are built. Since packages are merged into a single CMake
invocation, this approach also requires developers to specify explicit dependencies on some targets inside of their
dependencies.

Another disadvantage of the merged build process is that it can only work on a homogeneous workspace consisting
only of Catkin CMake packages. Other types of packages like plain CMake packages and autotools packages cannot
be integrated into a single configuration and a single build step.

3.5.2 Isolated Catkin Workflow

The numerous drawbacks of the merged build process and the catkin_make tool motivated the development of the
catkin_make_isolated tool. In contrast to catkin_make, the catkin_make_isolated command uses
an isolated build process, wherein each package is independently configured, built, and loaded into the environment.

This way, each package is built in isolation and the next packages are built on the atomic result of the current one. This
resolves the issues with target collisions, target dependency management, and other undesirable cross-talk between
projects. This also allows for the homogeneous automation of other buildtools like the plain CMake or autotools.

The isolated workflow also enabled the following features:

• Allowing building of part of a workspace

• Building Catkin and non-Catkin projects into a single devel space

• Building packages without re-configuring or re-building their dependencies

• Removing the requirement that all packages in the workspace are free of CMake errors before any packages can
be built

There are, however, still some problems with catkin_make_isolated. First, it is dramatically slower than
catkin_make since it cannot parallelize the building of targets or even packages which do not depend on each
other. It also lacks robustness to changes in the list of packages in the workspace. Since it is a “released” tool, it also
has strict API stability requirements.

3.5.3 Parallel Isolated Catkin Workflow and catkin build

The limitations of catkin_make_isolated and the need for additional high-level build tools lead to the develop-
ment of a parallel version of catkin make isolated, or pcmi, as part of Project Tango. pcmi later became the build
verb of the catkin command included in this project.

12 Chapter 3. Workspace Mechanics

http://osrfoundation.org/blog/project-tango-announced.html

catkin_tools Documentation, Release 0.0.0

As such, the principle behavior of the build verb is to build each package in isolation and in topological order while
parallelizing the building of packages which do not depend on each other.

Other functional improvements over catkin_make and catkin_make_isolated include the following:

• The use of sub-command “verbs” for better organization of build options and build-related functions

• Robustly adapting a build when packages are added to or removed from the source space

• Context-aware building of a given package based on the working directory

• Utilization of persistent build metadata which catches common errors

• Support for different build “profiles” in a single workspace

• Explicit control of workspace chaining

• Additional error-checking for common environment configuration errors

• Numerous other command-line user-interface improvements

3.6 Workspace Chaining and the Importance of
CMAKE_PREFIX_PATH

Above, it’s mentioned that the Catkin setup files export numerous environment variables, including
CMAKE_PREFIX_PATH. Since CMake 2.6.0, the CMAKE_PREFIX_PATH is used when searching for include files,
binaries, or libraries using the FIND_PACKAGE(), FIND_PATH(), FIND_PROGRAM(), or FIND_LIBRARY()
CMake commands.

As such, this is also the primary way that Catkin “chains” workspaces together. When you build a Catkin workspace
for the first time, it will automatically use CMAKE_PREFIX_PATH to find dependencies. After that compilation, the
value will be cached internally by each project as well as the Catkin setup files and they will ignore any changes to
your CMAKE_PREFIX_PATH environment variable until they are cleaned.

Note: Workspace chaining is the act of putting the products of one workspace A in the search scope of another
workspace B. When describing the relationship between two such chained workspaces, A and B, it is said that
workspace B extends workspace A and workspace A is extended by workspace B. This concept is also sometimes
referred to as “overlaying” or “inheriting” a workspace.

Similarly, when you source a Catkin workspace’s setup file from a workspace’s devel space or install space, it
prepends the path containing that setup file to the CMAKE_PREFIX_PATH environment variable. The next time you
initialize a workspace, it will extend the workspace that you previously sourced.

On one hand, this makes it easy and automatic to chain workspaces. At the same time, however, previous tools
like catkin_make and catkin_make_isolated had no easy mechanism for either making it obvious which
workspace was being extended, nor did they provide features to explicitly extend a given workspace. This means that
for users unaware of Catkin’s use of CMAKE_PREFIX_PATH

Since it’s not expected that 100% of users will read this section of the documentation, the catkin program adds both
configuration consistency checking for the value of CMAKE_PREFIX_PATH and makes it obvious on each invocation
which workspace is being extended. Furthermore, the catkin command adds an explicit extension interface to
override the value of $CMAKE_PREFIX_PATH with the catkin config --extend command.

Note: While workspaces can be chained together to add search paths, invoking a build in one workspace will not
cause products in any other workspace to be built.

3.6. Workspace Chaining and the Importance of CMAKE_PREFIX_PATH 13

catkin_tools Documentation, Release 0.0.0

14 Chapter 3. Workspace Mechanics

CHAPTER 4

Configuration Summary

4.1 Contents of the Config Summary

Most catkin commands which modify a workspace’s configuration will display the standard configuration summary,
as shown below:

$ cd /tmp/path/to/my_catkin_ws
$ catkin config
--
Profile: default
Extending: None
Workspace: /tmp/path/to/my_catkin_ws
Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel
Install Space: [missing] /tmp/path/to/my_catkin_ws/install
DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Whitelisted Packages: None
Blacklisted Packages: None
--
Workspace configuration appears valid.
--

This summary describes the layout of the workspace as well as other important settings which influence build and
execution behavior. Each of these options can be modified either with the config verb’s options described in the full
command-line usage or by changing environment variables. The summary is composed of the following sections:

4.1.1 Overview Section

• Profile – The name of this configuration

• Extending – Describes if your current configuration will extend another Catkin workspace, and through which
mechanism it determined the location of the extended workspace:

15

catkin_tools Documentation, Release 0.0.0

– No Chaining

Extending: None

– Implicit Chaining – Derived from the CMAKE_PREFIX_PATH environment or cache variable.

Extending: [env] /opt/ros/hydro

Extending: [cached] /opt/ros/hydro

– Explicit Chaining – Specified by catkin config --extend

Extending: [explicit] /opt/ros/hydro

• [* Space] – Lists the paths to each of the catkin “spaces” and whether or not they exist

• DESTDIR – An optional prefix to the install space as defined by GNU Standards

• Isolate Develspaces – Builds products (like libraries and binaries) into individual FHS subdirectories in the
devel space, instead of a single FHS directory

• Install Packages – Enable creating and installation into the install space

• Isolate Installs – Installs products into individual FHS subdirectories in the install space

• Additional CMake Args – Arguments to be passed to CMake during the configuration step for all packages to
be built.

• Additional Make Args – Arguments to be passed to Make during the build step for all packages to be built.

• Additional catkin Make Args – Similar to Additional Make Args but only applies to Catkin packages.

• Package Whitelist – These are the packages that will be built with a bare call to catkin build

• Package Blacklist – These are the packages that will not be built unless explicitly named

4.1.2 Notes Section

The summary will sometimes contain notes about the workspace or the action that you’re performing, or simply tell
you that the workspace configuration appears valid.

4.1.3 Warnings Section

If something is wrong with your configuration such as a missing source space, an additional section will appear at the
bottom of the summary with details on what is wrong and how you can fix it.

4.2 Workspace Chaining Mode

An important property listed in the configuration configuration which deserves attention is the summary value of the
Extending property. This affects which other collections of libraries and packages which will be visible to your
workspace. This is process called “workspace chaining.” For more details on this see the details about workspace
chaining and CMAKE_PREFIX_PATH in Workspace Mechanics.

The information about which workspace to extend can come from a few different sources, and can be classified in one
of three ways:

16 Chapter 4. Configuration Summary

https://www.gnu.org/prep/standards/html_node/DESTDIR.html

catkin_tools Documentation, Release 0.0.0

4.2.1 No Chaining

This is what is shown in the above example configuration and it implies that there are no other Catkin workspaces
which this workspace extends. The user has neither explicitly specified a workspace to extend, and the
CMAKE_PREFIX_PATH environment variable is empty:

Extending: None

4.2.2 Implicit Chaining via CMAKE_PREFIX_PATH Environment or Cache Variable

In this case, the catkin command is implicitly assuming that you want to build this workspace against resources
which have been built into the directories listed in your CMAKE_PREFIX_PATH environment variable. As such, you
can control this value simply by changing this environment variable.

For example, ROS users who load their system’s installed ROS environment by calling something similar to source
/opt/ros/hydro/setup.bash will normally see an Extending value such as:

Extending: [env] /opt/ros/hydro

If you don’t want to extend the given workspace, unsetting the CMAKE_PREFIX_PATH environment variable will
change it back to none. You can also alternatively

Once you have built your workspace once, this CMAKE_PREFIX_PATH will be cached by the underlying CMake
buildsystem. As such, the Extending status will subsequently describe this as the “cached” extension path:

Extending: [cached] /opt/ros/hydro

Once the extension mode is cached like this, you must use catkin clean to before changing it to something else.

4.2.3 Explicit Chaining via catkin config --extend

This behaves like the above implicit chaining except it means that this workspace is explicitly extending another
workspace and the workspaces which the other workspace extends, recursively. This can be set with the catkin
config --extend command. It will override the value of CMAKE_PREFIX_PATH and persist between builds.

Extending: [explicit] /tmp/path/to/other_ws

4.2. Workspace Chaining Mode 17

catkin_tools Documentation, Release 0.0.0

18 Chapter 4. Configuration Summary

CHAPTER 5

Cheat Sheet

This is a non-exhaustive list of some common and useful invocations of the catkin command. All of the commands
which do not explicitly specify a workspace path (with --workspace) are assumed to be run from within a directory
contained by the target workspace. For thorough documentation, please see the chapters on each verb.

5.1 Initializing Workspaces

Initialize a workspace with a default layout (src/build/devel) in the current directory:

• catkin init

• catkin init --workspace .

• catkin config --init

• mkdir src && catkin build

... with a default layout in a different directory:

• catkin init --workspace /tmp/path/to/my_catkin_ws

... which explicity extends another workspace:

• catkin config --init --extend /opt/ros/hydro

Initialize a workspace with a source space called other_src:

• catkin config --init --source-space other_src

... or a workspace with build, devel, and install space ending with the suffix _alternate:

• catkin config --init --space-suffix _alternate

5.2 Configuring Workspaces

View the current configuration:

• catkin config

Setting and un-setting CMake options:

• catkin config --cmake-args -DENABLE_CORBA=ON -DCORBA_IMPLEMENTATION=OMNIORB

• catkin config --no-cmake-args

19

catkin_tools Documentation, Release 0.0.0

Toggle installing to the specified install space:

• catkin config --install

5.3 Building Packages

Build all the packages:

• catkin build

... one at a time, with additional debug output:

• catkin build -p 1

... and force CMake to re-configure for each one:

• catkin build --force-cmake

Build a specific package and its dependencies:

• catkin build my_package

... or ignore its dependencies:

• catkin build my_package --no-deps

Build the package containing the current working directory:

• catkin build --this

... but don’t rebuild its dependencies:

• catkin build --this --no-deps

Build packages with aditional CMake args:

• catkin build --cmake-args -DCMAKE_BUILD_TYPE=Debug

... and save them to be used for the next build:

• catkin build --save-config --cmake-args -DCMAKE_BUILD_TYPE=Debug

Build all packages in a given directory:

• catkin build $(catkin list -u /path/to/folder)

... or in the current folder:

• catkin build $(catkin list -u .)

5.4 Cleaning Build Products

Blow away the build, devel, and install spaces (if they exist):

• catkin clean -a

... or just the build space:

• catkin clean --build

... or just delete the CMakeCache.txt files for each package:

• catkin clean --cmake-cache

... or just delete the build directories for packages which have been disabled or removed:

20 Chapter 5. Cheat Sheet

catkin_tools Documentation, Release 0.0.0

• catkin clean --orphans

5.5 Controlling Color Display

Disable colors when building in a shell that doesn’t support it (like IDEs):

• catkin --no-color build

... or enable it for shells that don’t know they support it:

• catkin --force-color build

5.6 Profile Cookbook

Create “Debug” and “Release” profiles and then build them in independent build and devel spaces:

catkin config --profile debug -x _debug --cmake-args -DCMAKE_BUILD_TYPE=Debug
catkin config --profile release -x _release --cmake-args -DCMAKE_BUILD_TYPE=Release
catkin build --profile debug
catkin build --profile release

Quickly build a package from scratch to make sure all of its dependencies are satisfied, then clean it:

catkin config --profile my_pkg -x _my_pkg_test
catkin build --profile my_pkg my_pkg
catkin clean --profile my_pkg --all

5.7 Manipulating Workspace Chaining

Change from implicit to explicit chaining:

catkin clean -a
catkin config --extend /opt/ros/hydro

Change from explicit to implicit chaining:

catkin clean -a
catkin config --no-extend

5.8 Building With Other Jobservers

Build with distcc:

CC="distcc gcc" CXX="distcc g++" catkin build -p$(distcc -j) -j$(distcc -j) --no-jobserver

5.5. Controlling Color Display 21

catkin_tools Documentation, Release 0.0.0

22 Chapter 5. Cheat Sheet

CHAPTER 6

Troubleshooting

6.1 Configuration Summary Warnings

The catkin tool is capable of detecting some issues or inconsistencies with the build configuration automatically. In
these cases, it will often describe the problem as well as how to resolve it. The catkin tool will detect the following
issues automatically.

6.1.1 Missing Workspace Components

• Uninitialized workspace (mising .catkin_tools directory)

• Missing source space as specified by the configuration

6.1.2 Inconsistent Environment

• The CMAKE_PREFIX_PATH environment variable is different than the cahced CMAKE_PREFIX_PATH

• The explicitly extended workspace path yeilds a different CMAKE_PREFIX_PATH than the cached
CMAKE_PREFIX_PATH

• The build space or devel space was built with a different tool such as catkin_make or
catkin_make_isolated

• The build space or devel space was built in a different isolation mode

6.2 Dependency Resolution

6.2.1 Packages Are Being Built Out of Order

• The package.xml dependency tags are most likely incorrect. Note that dependencies are only used to order
the packages, and there is no warning if a package can’t be found.

• Run catkin list --deps /path/to/ws/src to list the dependencies of each package and look for
errors.

23

catkin_tools Documentation, Release 0.0.0

24 Chapter 6. Troubleshooting

CHAPTER 7

catkin build – Build Packages

The build verb for the catkin command is used to build one or more packages in a catkin workspace. Like most
catkin verbs, the catkin build verb is context-aware. This means that it can be executed from within any
directory contained by an initialized workspace.

If a workspace is not yet initialized, catkin build can initialize it, but only if it is called from the workspace root
and the default workspace structure is desired.

Workspaces can also be built from arbitrary working directories if the user specifies the path to the workspace with the
--workspace option.

Note: To set up the workspace and clone the repositories used in the following examples, you can use rosin-
stall_generator and wstool. This clones all of the ROS packages necessary for building the introductory ROS tutorials:

$ mkdir -p /tmp/path/to/my_catkin_ws/src
$ cd /tmp/path/to/my_catkin_ws
$ catkin init
$ cd /tmp/path/to/my_catkin_ws/src
$ rosinstall_generator --deps ros_tutorials > .rosinstall
$ wstool update

7.1 Basic Usage

Consider a Catkin workspace with a source space populated with the following Catkin packages which have yet to be
built:

$ pwd
/tmp/path/to/my_catkin_ws

$ ls ./*
./src:
catkin console_bridge genlisp genpy
message_runtime ros_comm roscpp_core std_msgs
common_msgs gencpp genmsg message_generation
ros ros_tutorials rospack

7.1.1 Previewing The Build

Before actually building anything in the workspace, it is useful to preview which packages catkin build will
build, and in what order. This can be done with the --dry-run option:

25

http://wiki.ros.org/rosinstall_generator
http://wiki.ros.org/rosinstall_generator
http://wiki.ros.org/wstool

catkin_tools Documentation, Release 0.0.0

$ catkin build --dry-run
--
Profile: default
Extending: None
Workspace: /tmp/path/to/my_catkin_ws
Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel
Install Space: [missing] /tmp/path/to/my_catkin_ws/install
DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Whitelisted Packages: None
Blacklisted Packages: None
--
Workspace configuration appears valid.
--
Found '36' packages in 0.0 seconds.
Packages to be built:
- catkin (catkin)
- genmsg (catkin)
- gencpp (catkin)
- genlisp (catkin)
- genpy (catkin)
- console_bridge (cmake)
- cpp_common (catkin)
- message_generation (catkin)
- message_runtime (catkin)
- ros_tutorials (metapackage)
- rosbuild (catkin)
- rosclean (catkin)
- roscpp_traits (catkin)
- rosgraph (catkin)
- roslang (catkin)
- roslaunch (catkin)
- rosmaster (catkin)
- rospack (catkin)
- roslib (catkin)
- rosparam (catkin)
- rospy (catkin)
- rostime (catkin)
- roscpp_serialization (catkin)
- rosunit (catkin)
- rosconsole (catkin)
- rostest (catkin)
- std_msgs (catkin)
- geometry_msgs (catkin)
- rosgraph_msgs (catkin)
- std_srvs (catkin)
- xmlrpcpp (catkin)
- roscpp (catkin)

26 Chapter 7. catkin build – Build Packages

catkin_tools Documentation, Release 0.0.0

- roscpp_tutorials (catkin)
- rosout (catkin)
- rospy_tutorials (catkin)
- turtlesim (catkin)
Total packages: 36

In addition to the listing the package names and in which order they would be built, it also displays the buildtool type
of each package. Among those listed above are:

• catkin – A CMake package which uses Catkin

• cmake – A “vanilla” CMake package

• metapackage – A package which contains no build products, but just groups other packages together for distri-
bution

7.1.2 Building Specific Packages

In addition to the usage above, the --dry-run option will show what the behavior of catkin build will be with
various other options. For example, the following will happen when you specify a single package to build:

$ catkin build roscpp_tutorials --dry-run
....
Found '36' packages in 0.1 seconds.
Packages to be built:
- catkin (catkin)
- genmsg (catkin)
- gencpp (catkin)
- genlisp (catkin)
- genpy (catkin)
- console_bridge (cmake)
- cpp_common (catkin)
- message_generation (catkin)
- message_runtime (catkin)
- rosbuild (catkin)
- roscpp_traits (catkin)
- roslang (catkin)
- rospack (catkin)
- roslib (catkin)
- rostime (catkin)
- roscpp_serialization (catkin)
- rosunit (catkin)
- rosconsole (catkin)
- std_msgs (catkin)
- rosgraph_msgs (catkin)
- xmlrpcpp (catkin)
- roscpp (catkin)
- roscpp_tutorials (catkin)
Total packages: 23

As shown above, only 23 packages (roscpp_tutorials and its dependencies), of the total 36 packages would be
built.

7.1.3 Skipping Packages

Suppose you built every package up to roscpp_tutorials, but that package had a build error. After fixing the
error, you could run the same build command again, but the build verb provides an option to save time in this

7.1. Basic Usage 27

catkin_tools Documentation, Release 0.0.0

situation. If re-started from the beginning, none of the products of the dependencies of roscpp_tutorials would
be re-built, but it would still take some time for the underlying byuildsystem to verify that for each package.

Those checks could be skipped, however, by jumping directly to a given package. You could use the --start-with
option to continue the build where you left off after fixing the problem. (The following example uses the --dry-run
option again to preview the behavior):

$ catkin build roscpp_tutorials --start-with roscpp_tutorials --dry-run
....
Found '36' packages in 0.0 seconds.
Packages to be built:
(skip) catkin (catkin)
(skip) genmsg (catkin)
(skip) gencpp (catkin)
(skip) genlisp (catkin)
(skip) genpy (catkin)
(skip) console_bridge (cmake)
(skip) cpp_common (catkin)
(skip) message_generation (catkin)
(skip) message_runtime (catkin)
(skip) rosbuild (catkin)
(skip) roscpp_traits (catkin)
(skip) roslang (catkin)
(skip) rospack (catkin)
(skip) roslib (catkin)
(skip) rostime (catkin)
(skip) roscpp_serialization (catkin)
(skip) rosunit (catkin)
(skip) rosconsole (catkin)
(skip) std_msgs (catkin)
(skip) rosgraph_msgs (catkin)
(skip) xmlrpcpp (catkin)
(skip) roscpp (catkin)
------ roscpp_tutorials (catkin)
Total packages: 23

However, you should be careful when using the --start-with option, as catkin build will assume that all
dependencies leading up to that package have already been successfully built.

If you’re only interested in building a single package in a workspace, you can also use the --no-deps option along
with a package name. This will skip all of the package’s dependencies, build the given package, and then exit.

$ catkin build roscpp_tutorials --no-deps roscpp_tutorials --dry-run
....
Found '36' packages in 0.0 seconds.
Packages to be built:
- roscpp_tutorials (catkin)
Total packages: 1

7.1.4 Build Products

At this point the workspace has not been modified, but once we tell the build verb to actually build the workspace
then directories for a build space and a devel space will be created:

$ catkin build
Creating buildspace directory, '/tmp/path/to/my_catkin_ws/build'
--
Profile: default

28 Chapter 7. catkin build – Build Packages

catkin_tools Documentation, Release 0.0.0

Extending: None
Workspace: /tmp/path/to/my_catkin_ws
Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel
Install Space: [missing] /tmp/path/to/my_catkin_ws/install
DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Whitelisted Packages: None
Blacklisted Packages: None
--
Workspace configuration appears valid.
--
Found '36' packages in 0.0 seconds.
Starting ==> catkin
Starting ==> console_bridge
Finished <== catkin [2.4 seconds]

....

[build] Finished.
[build] Runtime: 3 minutes and 54.6 seconds

Since no packages were given as arguments, catkin build built all of the packages in the workspace.

As shown above, after the build finishes, we now have a build space with a folder containing the intermediate build
products for each package and a devel space with an FHS layout into which all the final build products have been
written.

$ ls ./*
./build:
catkin genlisp message_runtime roscpp
rosgraph_msgs rosout rostest turtlesim
build_logs genmsg ros_tutorials
roscpp_serialization roslang rospack rostime
xmlrpcpp console_bridge genpy rosbuild
roscpp_traits roslaunch rosparam rosunit
cpp_common geometry_msgs rosclean
roscpp_tutorials roslib rospy std_msgs
gencpp message_generation rosconsole rosgraph
rosmaster rospy_tutorials std_srvs

./devel:
_setup_util.py bin env.sh etc include
lib setup.bash setup.sh setup.zsh share

./src:
catkin console_bridge genlisp genpy
message_runtime ros_comm roscpp_core std_msgs
common_msgs gencpp genmsg message_generation
ros ros_tutorials rospack

7.1. Basic Usage 29

catkin_tools Documentation, Release 0.0.0

Note: The products of catkin build differ significantly from the behavior of catkin_make, for ex-
ample, which would have all of the build files and intermediate build products in a combined build space or
catkin_make_isolated which would have an isolated FHS directory for each package in the devel space.

7.2 Context-Aware Building

In addition to building all packages or specified packages with various dependency requirements, catkin build
can also determine the package containing the current working directory. This is equivalent to specifying the name of
the package on the command line, and is done by passing the --this option to catkin build like the following:

$ cd /tmp/path/to/my_catkin_ws/src/roscpp_tutorials
$ catkin build --this --dry-run
....
Found '36' packages in 0.0 seconds.
Packages to be built:
- roscpp_tutorials (catkin)
Total packages: 1

7.3 Controlling the Number of Build Jobs

By default catkin build on a computer with N cores will build up to N packages in parallel and will distribute N
make jobs among them using an internal jobserver. If your platform doesn’t support jobserver scheduling, catkin
build will pass -jN -lN to make for each package.

You can control the maximum number of packages allowed to build in parallel by using the -p or
--parallel-packages option and you can change the number of make jobs available with the -j or --jobs
option.

By default, these jobs options aren’t passed to the underlying make command. To disable the jobserver, you can use
the --no-jobserver option, and you can pass flags directly to make with the --make-args option.

Note: Jobs flags (-jN and/or -lN) can be passed directly to make by giving them to catkin build, but other
make arguments need to be passed to the --make-args option.

7.4 Controlling Command-Line Output

7.4.1 Status Line

While running catkin build with default options, you would have seen the “live” status lines similar to the
following:

[build - 5.9] [genmsg - 1.3] [message_runtime - 0.7] ... [4/4 Active | 3/36 Completed]

This status line stays at the bottom of the screen and displays the continuously-updated progress of the entire build as
well as the active build jobs which are still running. It is composed of the following information:

• Total Build Time – The first block on the left, indicates the total elapsed build time in seconds thus far. Above,
[build - 5.9] means that the build has been running for a total of 5.9 seconds.

30 Chapter 7. catkin build – Build Packages

catkin_tools Documentation, Release 0.0.0

• Active Job Status – The next blocks show the currently active jobs with as name of the package being built and
the elapsed time for that job, in seconds. The above block like [genmsg - 1.3] means that the genmsg
package is currently being built, and it has been building for 1.3 seconds.

• Active and Completed Counts – The final block, justified to the right, is the number of packages being actively
built out of the total allowed parallel jobs (specified with the -p options) as well as the number of completed
packages out of the total. Above, the block [4/4 Active | 3/36 Completed] means that there are
four out of four jobs active and three of the total 36 packages to be built have been completed.

This status line can be disabled by passing the --no-status option to catkin build.

7.4.2 Package Build Messages

Normally, unless an error occurs, the output from each package’s build proces is collected but not printed to the
console. All that is printed is a pair of messages designating the start and end of a package’s build. This is formatted
like the following for the genmsg package:

Starting ==> genmsg
Finished <== genmsg [2.4 seconds]

However, if you would like to see more of the messages from the underlying buildsystem, you can invoke the -v or
--verbose option. This will print the normal message when a package build starts and finished as well as the output
of each build command in a block, once it finishes:

Starting ==> catkin

[catkin]: ==> '/path/to/my_catkin_ws/build/catkin/build_env.sh /usr/local/bin/cmake /path/to/my_catkin_ws/src/catkin -DCATKIN_DEVEL_PREFIX=/path/to/my_catkin_ws/devel/catkin -DCMAKE_INSTALL_PREFIX=/path/to/my_catkin_ws/install' in '/path/to/my_catkin_ws/build/catkin'
-- The C compiler identification is Clang 5.0.0
-- The CXX compiler identification is Clang 5.0.0
-- Check for working C compiler: /usr/bin/cc
-- Check for working C compiler: /usr/bin/cc -- works
-- Detecting C compiler ABI info
-- Detecting C compiler ABI info - done
-- Check for working CXX compiler: /usr/bin/c++
-- Check for working CXX compiler: /usr/bin/c++ -- works
-- Detecting CXX compiler ABI info
-- Detecting CXX compiler ABI info - done
-- Using CATKIN_DEVEL_PREFIX: /path/to/my_catkin_ws/devel/catkin
-- Using CMAKE_PREFIX_PATH: /path/to/my_catkin_ws/install
-- This workspace overlays: /path/to/my_catkin_ws/install
-- Found PythonInterp: /usr/bin/python (found version "2.7.5")
-- Using PYTHON_EXECUTABLE: /usr/bin/python
-- Python version: 2.7
-- Using default Python package layout
-- Found PY_em: /Library/Python/2.7/site-packages/em.pyc
-- Using CATKIN_ENABLE_TESTING: ON
-- Call enable_testing()
-- Using CATKIN_TEST_RESULTS_DIR: /path/to/my_catkin_ws/build/catkin/test_results
-- Found gtest: gtests will be built
-- catkin 0.5.86
-- Configuring done
-- Generating done
-- Build files have been written to: /path/to/my_catkin_ws/build/catkin
[catkin]: <== '/path/to/my_catkin_ws/build/catkin/build_env.sh /usr/local/bin/cmake /path/to/my_catkin_ws/src/catkin -DCATKIN_DEVEL_PREFIX=/path/to/my_catkin_ws/devel/catkin -DCMAKE_INSTALL_PREFIX=/path/to/my_catkin_ws/install' finished with return code '0'

[catkin]: ==> '/path/to/my_catkin_ws/build/catkin/build_env.sh /usr/bin/make -j4 -l4' in '/path/to/my_catkin_ws/build/catkin'
[catkin]: <== '/path/to/my_catkin_ws/build/catkin/build_env.sh /usr/bin/make -j4 -l4' finished with return code '0'

7.4. Controlling Command-Line Output 31

catkin_tools Documentation, Release 0.0.0

[catkin]: ==> '/path/to/my_catkin_ws/build/catkin/build_env.sh /usr/bin/make install' in '/path/to/my_catkin_ws/build/catkin'
Install the project...
-- Install configuration: ""
... truncated for brevity
[catkin]: <== '/path/to/my_catkin_ws/build/catkin/build_env.sh /usr/bin/make install' finished with return code '0'

Finished <== catkin [3.4 seconds]

Note: The printing of these command outputs maybe be interleaved with commands from other package builds if
more than one package is being built at the same time.

If you want to see the output from commands streaming to the screen, then you can use the -i or --interleave
option. This option will cause the output from commands to be pushed to the screen immediately, instead of buffering
until the command finishes. This ends up being pretty confusing, so when interleaved output is used catkin build
prefixes each line with [<package name>]: like this:

[roscpp_traits]: ==> '/Users/william/my_catkin_ws/build/roscpp_traits/build_env.sh /usr/bin/make cmake_check_build_system' in '/Users/william/my_catkin_ws/build/roscpp_traits'
[ros_tutorials]: -- The CXX compiler identification is Clang 5.0.0
[ros_tutorials]: -- Check for working C compiler: /usr/bin/cc
[roscpp_traits]: ==> '/Users/william/my_catkin_ws/build/roscpp_traits/build_env.sh /usr/bin/make -j4 -l4' in '/Users/william/my_catkin_ws/build/roscpp_traits'
[rosbuild]: ==> '/Users/william/my_catkin_ws/build/rosbuild/build_env.sh /usr/bin/make -j4 -l4' in '/Users/william/my_catkin_ws/build/rosbuild'
[rosclean]: -- The C compiler identification is Clang 5.0.0
[ros_tutorials]: -- Check for working C compiler: /usr/bin/cc -- works
[ros_tutorials]: -- Detecting C compiler ABI info
[rosclean]: -- The CXX compiler identification is Clang 5.0.0
[rosclean]: -- Check for working C compiler: /usr/bin/cc

Note: When you use -p 1 and -v at the same time, -i is implicitly added.

7.5 Running Tests Built in a Workspace

Running tests for a given package typically is done by invoking a special make target like test or run_tests.
catkin packages all define the run_tests target which aggregates all types of tests and runs them together. So in
order to get tests to build and run for your packages you need to pass them this additional run_tests or test target
as a command line option to make.

To run catkin tests for all catkin packages in the workspace, use the following:

$ catkin run_tests

Or the longer version:

$ catkin build [...] --catkin-make-args run_tests

To run a catkin test for a specific catkin package, from a directory within that package:

$ catkin run_tests --no-deps --this

For non-catkin packages which define a test target, you can do this:

$ catkin build [...] --make-args test

If you want to run tests for just one package, then you should build that package and this narrow down the build to just
that package with the additional make argument:

32 Chapter 7. catkin build – Build Packages

catkin_tools Documentation, Release 0.0.0

$ # First build the package
$ catkin build package
...
$ # Then run its tests
$ catkin build package --no-deps --catkin-make-args run_tests
$ # Or for non-catkin packages
$ catkin build package --no-deps --make-args test

For catkin packages and the run_tests target, failing tests will not result in an non-zero exit code. So if you want
to check for failing tests, use the catkin_test_results command like this:

$ catkin_test_results build/<package name>

The result code will be non-zero unless all tests passed.

7.6 Building With Warnings

It can sometimes be useful to compile with additional warnings enabled across your whole catkin workspace. To
achieve this, use a command similar to this:

$ catkin build -v --cmake-args -DCMAKE_C_FLAGS="-Wall -W -Wno-unused-parameter"

This command passes the -DCMAKE_C_FLAGS=... arugment to all invocations of cmake.

7.7 Debugging Build Errors

As mentioned above, by default the output from each build is optimistically hidden to give a clean overview of the
workspace build, but when there is a problem with a build a few things happen.

First, the package with a failure prints the failing command’s output to the screen between some enclosing lines:

[rospack]: ==> '/path/to/my_catkin_ws/build/rospack/build_env.sh /usr/bin/make -j4 -l4' in '/path/to/my_catkin_ws/build/rospack'
[66%] Built target rospack
make[1]: *** [CMakeFiles/rosstackexe.dir/all] Interrupt: 2
make[1]: *** [CMakeFiles/rospackexe.dir/all] Interrupt: 2
make: *** [all] Interrupt: 2
[rospack]: <== '/path/to/my_catkin_ws/build/rospack/build_env.sh /usr/bin/make -j4 -l4' failed with return code '-2'

And the status line is updated to reflect that that package has run into an issue by placing a ! in front of it:

[build - 1.7] [!cpp_common] [!rospack] [genlisp - 0.3] [1/1 Active | 10/23 Completed]

Then the catkin build command waits for the rest of the currently still building packages to finish (without
starting new package builds) and then summarizes the errors for you:

[build] There were '2' errors:

Failed to build package 'cpp_common' because the following command:

Command run in directory: /path/to/my_catkin_ws/build/cpp_common
/path/to/my_catkin_ws/build/cpp_common/build_env.sh /usr/bin/make -j4 -l4

Exited with return code: -2

Failed to build package 'rospack' because the following command:

7.6. Building With Warnings 33

catkin_tools Documentation, Release 0.0.0

Command run in directory: /path/to/my_catkin_ws/build/rospack
/path/to/my_catkin_ws/build/rospack/build_env.sh /usr/bin/make -j4 -l4

Exited with return code: -2
Build summary:
Successful catkin
Successful genmsg
...
Failed cpp_common
Failed rospack
Not built roscpp_serialization
Not built roscpp
...

Packages marked as Not built were requested, but not yet built because catkin stopped due to failed packages.

To try to build as many requested packages as possible (instead of stopping after the first package failed), you can
pass the --continue-on-failure option. Then the catkin build command will then continue building
packages whose dependencies built successfully

If you don’t want to scroll back up to find the error amongst the other output, you can cat the whole build log out of
the build_logs folder in the build space:

$ cat build/build_logs/rospack.log
[rospack]: ==> '/path/to/my_catkin_ws/build/rospack/build_env.sh /usr/bin/make cmake_check_build_system' in '/path/to/my_catkin_ws/build/rospack'
[rospack]: <== '/path/to/my_catkin_ws/build/rospack/build_env.sh /usr/bin/make cmake_check_build_system' finished with return code '0'
[rospack]: ==> '/path/to/my_catkin_ws/build/rospack/build_env.sh /usr/bin/make -j4 -l4' in '/path/to/my_catkin_ws/build/rospack'
[66%] Built target rospack
make[1]: *** [CMakeFiles/rosstackexe.dir/all] Interrupt: 2
make[1]: *** [CMakeFiles/rospackexe.dir/all] Interrupt: 2
make: *** [all] Interrupt: 2
[rospack]: <== '/path/to/my_catkin_ws/build/rospack/build_env.sh /usr/bin/make -j4 -l4' failed with return code '-2'

7.8 Full Command-Line Interface

usage: catkin build [-h] [--workspace WORKSPACE] [--profile PROFILE]
[--dry-run] [--this] [--no-deps]
[--start-with PKGNAME | --start-with-this | --continue-on-failure]
[--force-cmake] [--no-install-lock] [--save-config]
[--parallel-jobs PARALLEL_JOBS]
[--cmake-args ARG [ARG ...] | --no-cmake-args]
[--make-args ARG [ARG ...] | --no-make-args]
[--catkin-make-args ARG [ARG ...] | --no-catkin-make-args]
[--verbose] [--interleave-output] [--no-status] [--no-notify]
[PKGNAME [PKGNAME ...]]

Build one or more packages in a catkin workspace. This invokes `CMake`,
`make`, and optionally `make install` for either all or the specified packages
in a catkin workspace. Arguments passed to this verb can temporarily override
persistent options stored in the catkin profile config. If you want to save
these options, use the --save-config argument. To see the current config, use
the `catkin config` command.

optional arguments:
-h, --help show this help message and exit
--workspace WORKSPACE, -w WORKSPACE

34 Chapter 7. catkin build – Build Packages

catkin_tools Documentation, Release 0.0.0

The path to the catkin_tools workspace or a directory
contained within it (default: ".")

--profile PROFILE The name of a config profile to use (default: active
profile)

--dry-run, -n List the packages which will be built with the given
arguments without building them.

Packages:
Control which packages get built.

PKGNAME Workspace packages to build, package dependencies are
built as well unless --no-deps is used. If no packages
are given, then all the packages are built.

--this Build the package containing the current working
directory.

--no-deps Only build specified packages, not their dependencies.
--start-with PKGNAME Build a given package and those which depend on it,

skipping any before it.
--start-with-this Similar to --start-with, starting with the package

containing the current directory.
--continue-on-failure, -c

Try to continue building packages whose dependencies
built successfully even if some other requested
packages fail to build.

Build:
Control the build behavior.

--force-cmake Runs cmake explicitly for each catkin package.
--no-install-lock Prevents serialization of the install steps, which is

on by default to prevent file install collisions

Config:
Parameters for the underlying buildsystem.

--save-config Save any configuration options in this section for the
next build invocation.

--parallel-jobs PARALLEL_JOBS, --parallel PARALLEL_JOBS, -p PARALLEL_JOBS
Maximum number of packages which could be built in
parallel (default is cpu count)

--cmake-args ARG [ARG ...]
Arbitrary arguments which are passes to CMake. It
collects all of following arguments until a "--" is
read.

--no-cmake-args Pass no additional arguments to CMake.
--make-args ARG [ARG ...]

Arbitrary arguments which are passes to make.It
collects all of following arguments until a "--" is
read.

--no-make-args Pass no additional arguments to make (does not affect
--catkin-make-args).

--catkin-make-args ARG [ARG ...]
Arbitrary arguments which are passes to make but only
for catkin packages.It collects all of following
arguments until a "--" is read.

--no-catkin-make-args
Pass no additional arguments to make for catkin
packages (does not affect --make-args).

7.8. Full Command-Line Interface 35

catkin_tools Documentation, Release 0.0.0

Interface:
The behavior of the command-line interface.

--verbose, -v Print output from commands in ordered blocks once the
command finishes.

--interleave-output, -i
Prevents ordering of command output when multiple
commands are running at the same time.

--no-status Suppresses status line, useful in situations where
carriage return is not properly supported.

--no-notify Suppresses system popup notification.

36 Chapter 7. catkin build – Build Packages

CHAPTER 8

catkin clean – Clean Build Products

The clean verb makes it easier and safer to clean various products of a catkin workspace. In addition to removing
entire build, devel, and install spaces, it also gives you more fine-grained control over removing just parts of these
directories.

The clean verb is context-aware, but in order to work, it must be given the path to an initialized catkin workspace,
or called from a path contained in an initialized catkin workspace. This is because the paths to the relevant spaces are
contained in a workspace’s metadata directory.

8.1 Full Command-Line Interface

usage: catkin clean [-h] [--workspace WORKSPACE] [--profile PROFILE] [-a] [-b]
[-d] [-i] [-c] [-o]

Deletes various products of the build verb.

optional arguments:
-h, --help show this help message and exit
--workspace WORKSPACE, -w WORKSPACE

The path to the catkin_tools workspace or a directory
contained within it (default: ".")

--profile PROFILE The name of a config profile to use (default: active
profile)

Basic:
Clean workspace subdirectories.

-a, --all Remove all of the *spaces associated with the given or
active profile. This will remove everything but the
source space and the hidden .catkin_tools directory.

-b, --build Remove the buildspace.
-d, --devel Remove the develspace.
-i, --install Remove the installspace.

Advanced:
Clean only specific parts of the workspace.

-c, --cmake-cache Clear the CMakeCache for each package, but leave build
and devel spaces.

-o, --orphans Remove only build directories whose source packages
are no longer enabled or in the source space. This
might require --force-cmake on the next build.

37

catkin_tools Documentation, Release 0.0.0

38 Chapter 8. catkin clean – Clean Build Products

CHAPTER 9

catkin config – Configure a Workspace

The config verb can be used to both view and mapiulate a workspace’s configuration options. These options include
all of the elements listed in thr configuration summary.

By default, the config verb gets and sets options for a workspace’s active profile. If no profiles have been specified
for a workspace, this is a default profile named default.

Note: Calling catkin config on an uninitialied workspace will not automatically initialize it unless it is used
with the --init option.

9.1 Viewing the Configuration Summary

Once a workspace has been initialized, the configuration summary can be displayed by calling catkin config
without arguments from anywhere under the root of the workspace. Doing so will not modify your workspace. The
catkin command is context-sensitive, so it will determine which workspace contains the current working directory.

9.2 Appending or Removing List-Type Arguments

Several configuration options are actually lists of values. Normally for these options, the given values will replace the
current values in the configuration.

If you would only like to modify, but not replace the value of a list-type option, you can use the -a / --append-args
and -r / --remove-args options to append or remove elements from these lists, respectively.

List-type options include:

• --cmake-args

• --make-args

• --catkin-make-args

• --whitelist

• --blacklist

39

catkin_tools Documentation, Release 0.0.0

9.3 Installing Packages

Without any additional arguments, packages are not “installed” using the standard CMake install() targets. Ad-
dition of the --install option will configure a workspace so that it creates an install space and write the products
of all install targets to that FHS tree. The contents of the install space, which, by default, is located in a directory
named install will look like the following:

$ ls ./install
_setup_util.py bin env.sh etc include
lib setup.bash setup.sh setup.zsh share

9.4 Explicitly Specifying Workspace Chaining

Normally, a catkin workspace automatically “extends” the other workspaces that have previously been sourced in your
environment. Each time you source a catkin setup file from a result-space (devel-space or install-space), it sets the
$CMAKE_PREFIX_PATH in your environment, and this is used to build the next workspace. This is also sometimes
referred to as “workspace chaining” and sometimes the extended workspace is referred to as a “parent” workspace.

With catkin config, you can explicitly set the workspace you want to extend, using the --extend argument.
This is equivalent to sourcing a setup file, building, and then reverting to the environment before sourcing the setup
file.

Note that in case the desired parent workspace is different from one already being used, using the --extend argument
also necessitates cleaning the setup files from your workspace with catkin clean.

For example, regardless of your current environment variable settings (like $CMAKE_PREFIX_PATH), this will build
your workspace against the /opt/ros/hydro install space.

First start with an empty CMAKE_PREFIX_PATH and initialize, build, and source a workspace:

$ echo $CMAKE_PREFIX_PATH

$ mkdir -p /tmp/path/to/my_catkin_ws/src
$ cd /tmp/path/to/my_catkin_ws
$ catkin init
--
Profile: default
Extending: None
Workspace: /tmp/path/to/my_catkin_ws
...
--
Workspace configuration appears valid.
--

$ cd /tmp/path/to/my_catkin_ws
$ catkin create pkg aaa
$ catkin create pkg bbb
$ catkin create pkg ccc
$ catkin build
...

$ source devel/setup.bash
$ echo $CMAKE_PREFIX_PATH
/tmp/path/to/my_catkin_ws/devel

$ catkin config

40 Chapter 9. catkin config – Configure a Workspace

catkin_tools Documentation, Release 0.0.0

--
Profile: default
Extending: None
Workspace: /tmp/path/to/my_catkin_ws
...
--
Workspace configuration appears valid.
--

At this point you have a workspace which doesn’t extend anything. If you realize this after the fact, you can ex-
plicitly tell it to extend another workspace. Suppose you wanted to extend a standard ROS system install like
/opt/ros/hydro. This can be done with the --extend option:

$ catkin config --extend /opt/ros/hydro
--
Profile: default
Extending: [explicit] /opt/ros/hydro
Workspace: /tmp/path/to/my_catkin_ws
Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel
Install Space: [missing] /tmp/path/to/my_catkin_ws/install
DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Whitelisted Packages: None
Blacklisted Packages: None
--
Workspace configuration appears valid.
--

$ catkin clean --setup-files
$ catkin build
...

$ source devel/setup.bash
$ echo $CMAKE_PREFIX_PATH
/tmp/path/to/my_catkin_ws:/opt/ros/hydro

9.5 Whitelisting and Blacklisting Packages

Packages can be added to a package whitelist or blacklist in order to change which packages get built. If the whitelist
is non-empty, then a call to catkin build with no specific package names will only build the packages on the
whitelist. This means that you can still build packages not on the whitelist, but only if they are named explicitly or are
dependencies of other whitelisted packages.

To set the whitelist, you can call the following command:

To clear the whitelist, you can use the --no-whitelist option:

9.5. Whitelisting and Blacklisting Packages 41

catkin_tools Documentation, Release 0.0.0

catkin config --no-whitelist

If the blacklist is non-empty, it will filter the packages to be built in all cases except where a given package is named
explicitly. This means that blacklisted packages will not be built even if another package in the workspace depends on
them.

Note: Blacklisting a package does not remove it’s build directory or build products, it only pevents it from being
rebuilt.

To set the blacklist, you can call the following command:

To clear the blacklist, you can use the --no-blacklist option:

catkin config --no-blacklist

Note that you can still build packages on the blacklist and whitelist by passing their names to catkin build
explicitly.

9.6 Full Command-Line Interface

usage: catkin config [-h] [--workspace WORKSPACE] [--profile PROFILE]
[--append-args | --remove-args] [--init]
[--extend EXTEND_PATH | --no-extend] [--mkdirs]
[--whitelist PKG [PKG ...] | --no-whitelist]
[--blacklist PKG [PKG ...] | --no-blacklist]
[-s SOURCE_SPACE | --default-source-space]
[-b BUILD_SPACE | --default-build-space]
[-d DEVEL_SPACE | --default-devel-space]
[-i INSTALL_SPACE | --default-install-space]
[-x SPACE_SUFFIX] [--isolate-devel | --merge-devel]
[--install | --no-install]
[--isolate-install | --merge-install]
[--parallel-jobs PARALLEL_JOBS]
[--cmake-args ARG [ARG ...] | --no-cmake-args]
[--make-args ARG [ARG ...] | --no-make-args]
[--catkin-make-args ARG [ARG ...] |
--no-catkin-make-args]

This verb is used to configure a catkin workspace's configuration and layout.
Calling `catkin config` with no arguments will display the current config and
affect no changes if a config already exists for the current workspace and
profile.

optional arguments:
-h, --help show this help message and exit
--workspace WORKSPACE, -w WORKSPACE

The path to the catkin_tools workspace or a directory
contained within it (default: ".")

--profile PROFILE The name of a config profile to use (default: active
profile)

Behavior:
Options affecting argument handling.

--append-args, -a For list-type arguments, append elements.
--remove-args, -r For list-type arguments, remove elements.

42 Chapter 9. catkin config – Configure a Workspace

catkin_tools Documentation, Release 0.0.0

Workspace Context:
Options affecting the context of the workspace.

--init Initialize a workspace if it does not yet exist.
--extend EXTEND_PATH, -e EXTEND_PATH

Explicitly extend the result-space of another catkin
workspace, overriding the value of $CMAKE_PREFIX_PATH.

--no-extend Un-set the explicit extension of another workspace as
set by --extend.

--mkdirs Create directories required by the configuration (e.g.
source space) if they do not already exist.

Package Build Defaults:
Packages to include or exclude from default build behavior.

--whitelist PKG [PKG ...]
Set the packages on the whitelist. If the whitelist is
non-empty, only the packages on the whitelist are
built with a bare call to `catkin build`.

--no-whitelist Clear all packages from the whitelist.
--blacklist PKG [PKG ...]

Set the packages on the blacklist. Packages on the
blacklist are not built with a bare call to `catkin
build`.

--no-blacklist Clear all packages from the blacklist.

Spaces:
Location of parts of the catkin workspace.

-s SOURCE_SPACE, --source-space SOURCE_SPACE
The path to the source space.

--default-source-space
Use the default path to the source space ("src")

-b BUILD_SPACE, --build-space BUILD_SPACE
The path to the build space.

--default-build-space
Use the default path to the build space ("build")

-d DEVEL_SPACE, --devel-space DEVEL_SPACE
Sets the target devel space

--default-devel-space
Sets the default target devel space ("devel")

-i INSTALL_SPACE, --install-space INSTALL_SPACE
Sets the target install space

--default-install-space
Sets the default target install space ("install")

-x SPACE_SUFFIX, --space-suffix SPACE_SUFFIX
Suffix for build, devel, and install space if they are
not otherwise explicitly set.

Devel Space:
Options for configuring the structure of the devel space.

--isolate-devel Build products from each catkin package into isolated
devel spaces.

--merge-devel Build products from each catkin package into a single
merged devel spaces.

Install Space:

9.6. Full Command-Line Interface 43

catkin_tools Documentation, Release 0.0.0

Options for configuring the structure of the install space.

--install Causes each package to be installed to the install
space.

--no-install Disables installing each package into the install
space.

--isolate-install Install each catkin package into a separate install
space.

--merge-install Install each catkin package into a single merged
install space.

Build Options:
Options for configuring the way packages are built.

--parallel-jobs PARALLEL_JOBS, --parallel PARALLEL_JOBS, -p PARALLEL_JOBS
Maximum number of packages which could be built in
parallel (default is cpu count)

--cmake-args ARG [ARG ...]
Arbitrary arguments which are passes to CMake. It must
be passed after other arguments since it collects all
following options.

--no-cmake-args Pass no additional arguments to CMake.
--make-args ARG [ARG ...]

Arbitrary arguments which are passes to make.It must
be passed after other arguments since it collects all
following options.

--no-make-args Pass no additional arguments to make (does not affect
--catkin-make-args).

--catkin-make-args ARG [ARG ...]
Arbitrary arguments which are passes to make but only
for catkin packages.It must be passed after other
arguments since it collects all following options.

--no-catkin-make-args
Pass no additional arguments to make for catkin
packages (does not affect --make-args).

44 Chapter 9. catkin config – Configure a Workspace

CHAPTER 10

catkin create – Create Packages

This verb enables you to quickly create workspace elements like boilerplate Catkin packages.

10.1 Full Command-Line Interface

usage: catkin create [-h] {pkg} ...

Creates a catkin workspace

positional arguments:
{pkg} sub-command help
pkg Create a catkin package.

optional arguments:
-h, --help show this help message and exit

usage: catkin create pkg [-h] [--rosdistro ROSDISTRO] [-v MAJOR.MINOR.PATCH]
[-l LICENSE] [-m NAME EMAIL] [-a NAME EMAIL]
[-d DESCRIPTION] [--catkin-deps [DEP [DEP ...]]]
[--system-deps [DEP [DEP ...]]]
[--boost-components [COMP [COMP ...]]]
PKGNAME

Create a new Catkin package. Note that while the default options used by this
command are sufficient for prototyping and local usage, it is important that
any publically-available packages have a valid license and a valid maintainer
e-mail address.

positional arguments:
PKGNAME The name of the package to create. This name should be

completely lower-case with individual words separated
by undercores.

optional arguments:
-h, --help show this help message and exit
--rosdistro ROSDISTRO

The ROS distro (default: environment variable
ROS_DISTRO if defined)

Package Metadata:
-v MAJOR.MINOR.PATCH, --version MAJOR.MINOR.PATCH

45

catkin_tools Documentation, Release 0.0.0

Initial package version. (default 0.0.0)
-l LICENSE, --license LICENSE

The software license under which the code is
distributed, such as BSD, MIT, GPLv3, or others.
(default: "TODO")

-m NAME EMAIL, --maintainer NAME EMAIL
A maintainer who is responsible for the package.
(default: [username, username@todo.todo]) (multiple
allowed)

-a NAME EMAIL, --author NAME EMAIL
An author who contributed to the package. (default: no
additional authors) (multiple allowed)

-d DESCRIPTION, --description DESCRIPTION
Description of the package. (default: empty)

Package Dependencies:
--catkin-deps [DEP [DEP ...]], -c [DEP [DEP ...]]

The names of one or more Catkin dependencies. These
are Catkin-based packages which are either built as
source or installed by your system's package manager.

--system-deps [DEP [DEP ...]], -s [DEP [DEP ...]]
The names of one or more system dependencies. These
are other packages installed by your operating
system's package manager.

C++ Options:
--boost-components [COMP [COMP ...]]

One or more boost components used by the package.

46 Chapter 10. catkin create – Create Packages

CHAPTER 11

catkin init – Initialize a Workspace

The init verb is the simplest way to “initialize” a catkin workspace so that it can be automatically detected automat-
ically by other verbs which need to know the location of the workspace root.

This verb does not store any configuration information, but simply creates the hidden .catkin_tools directory in
the specified workspace. If you want to initialize a workspace simultaneously with an initial config, see the --init
option for the config verb.

Catkin workspaces can be initialized anywhere. The only constraint is that catkin workspaces cannot contain other
catkin workspaces. If you call caktin init and it reports an error saying that the given directory is already
contained in a workspace, you can call catkin config to determine the root of that workspace.

11.1 Full Command-Line Interface

usage: catkin init [-h] [--workspace WORKSPACE] [--profile PROFILE] [--reset]

Initializes a given folder as a catkin workspace

optional arguments:
-h, --help show this help message and exit
--workspace WORKSPACE, -w WORKSPACE

The path to the catkin_tools workspace or a directory
contained within it (default: ".")

--reset Reset (delete) all of the metadata for the given
workspace.

47

catkin_tools Documentation, Release 0.0.0

48 Chapter 11. catkin init – Initialize a Workspace

CHAPTER 12

catkin list – List Package Info

The list verb for the catkin command is used to find and list information about catkin packages. By default, it
will list the packages in the workspace containing the current working directoy. It can also be used to list the packages
in any other arbitrary directory.

12.1 Checking for Catkin Package Warnings

In addition to the names of the packages in your workspace, running catkin list will output any warnings about
catkin packages in your workspace. To suppress these warnings, you can use the --quiet option.

12.2 Using Unformatted Output in Shell Scripts

catkin list --unformatted is useful for automating shell scripts in UNIX pipe-based programs.

12.3 Full Command-Line Interface

usage: catkin list [-h] [--deps] [--depends-on [DEPENDS_ON [DEPENDS_ON ...]]]
[folders [folders ...]]

Lists catkin packages in the workspace or other arbitray folders.

positional arguments:
folders Folders in which to find packages. (default: cwd)

optional arguments:
-h, --help show this help message and exit
--deps, --dependencies

List dependencies of each package.
--depends-on [DEPENDS_ON [DEPENDS_ON ...]]

List all packages that depend on supplied argument
package(s).

--quiet Don't print out detected package warnings.
--unformatted, -u Print list without punctuation and additional details.

49

catkin_tools Documentation, Release 0.0.0

50 Chapter 12. catkin list – List Package Info

CHAPTER 13

catkin profile – Manage Profiles

Many verbs contain a --profile option, which selects which configuration profile to use, without which it will
use the “active” profile. The profile verb enables you to manager the available profiles as well as set the “active”
profile when using other verbs.

Even without using the profile verb, any use of the catkin command which changes the workspace is impliclty
using a configuration profile called “default”.

The profile verb has several sub-commands for profile management. These include the following:

• list – List the available profiles

• set – Set the active profile by name.

• add – Add a new profile by name.

• rename – Rename a given profile.

• remove – Remove a profile by name.

13.1 Creating Profiles Automatically

After initializing a workspace, you can start querying information about profiles. Until you execute a verb which
actually writes a profile configuration, however, there will be no profiles listed:

$ mkdir -p /tmp/path/to/my_catkin_ws/src
$ cd /tmp/path/to/my_catkin_ws
$ catkin init
$ catkin profile list
[profile] This workspace has no metadata profiles. Any configuration
settings will automatically by applied to a new profile called `default`.

To see these effects, you can run catkin config to write a default configuration to the workspace:

$ cd /tmp/path/to/my_catkin_ws
$ catkin config
--
Profile: default
Extending: None
Workspace: /tmp/path/to/my_catkin_ws
Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel
Install Space: [missing] /tmp/path/to/my_catkin_ws/install

51

catkin_tools Documentation, Release 0.0.0

DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Workspace configuration appears valid.
--
$ catkin profile list
[profile] Available profiles:
- default (active)

The profile verb now shows that the profile named “default” is avialable and is active. Calling catkin config
with the --profile argument will automatically create a profile based on the given configuration options:

$ catkin config --profile alternate -x _alt
--
Profile: alternate
Extending: None
Workspace: /tmp/path/to/my_catkin_ws
Source Space: [exists] /tmp/path/to/my_catkin_ws/src
Build Space: [missing] /tmp/path/to/my_catkin_ws/build_alt
Devel Space: [missing] /tmp/path/to/my_catkin_ws/devel_alt
Install Space: [missing] /tmp/path/to/my_catkin_ws/install_alt
DESTDIR: None
--
Isolate Develspaces: False
Install Packages: False
Isolate Installs: False
--
Additional CMake Args: None
Additional Make Args: None
Additional catkin Make Args: None
--
Workspace configuration appears valid.
--
$ catkin profile list
[profile] Available profiles:
- alternate
- default (active)

Note that while the profile named alternate has been configured, it is still not active, so any calls to catkin-verbs
without an explicit --profile alternate option will still use the profile named default.

13.2 Explicitly Creating Profiles

Profiles can also be added explicitly with the add command. This profile can be initialized with configuration infor-
mation from either the default settings or another profile.

$ catkin profile list
[profile] Available profiles:
- alternate

52 Chapter 13. catkin profile – Manage Profiles

catkin_tools Documentation, Release 0.0.0

- default (active)
$ catkin profile add alternate_2 --copy alternate
[profile] Created a new profile named alternate_2 based on profile alternate
[profile] Available profiles:
- alternate
- alternate_2
- default (active)

13.3 Setting the Active Profile

The active profile can be easily set with the set sub-command. Suppose a workspace has the following profiles:

$ catkin profile list
[profile] Available profiles:
- alternate
- alternate_2
- default (active)
$ catkin profile set alternate_2
[profile] Activated catkin metadata profile: alternate_2
[profile] Available profiles:
- alternate
- alternate_2 (active)
- default

13.4 Renaming and Removing Profiles

The profile verb can also be used for renaming and removing profiles:

$ catkin profile list
[profile] Available profiles:
- alternate
- alternate_2 (active)
- default
$ catkin profile rename alternate_2 alternate2
[profile] Renamed profile alternate_2 to alternate2
[profile] Available profiles:
- alternate
- alternate2 (active)
- default
$ catkin profile remove alterate
[profile] Removed profile: alternate
[profile] Available profiles:
- alternate2 (active)
- default

13.5 Full Command-Line Interface

usage: catkin profile [-h] [--workspace WORKSPACE]
{list,set,add,rename,remove} ...

Manage metadata profiles for a catkin workspace

13.3. Setting the Active Profile 53

catkin_tools Documentation, Release 0.0.0

positional arguments:
{list,set,add,rename,remove}

sub-command help
list List the available profiles.
set Set the active profile by name.
add Add a new profile by name.
rename Rename a given profile.
remove Remove a profile by name.

optional arguments:
-h, --help show this help message and exit
--workspace WORKSPACE, -w WORKSPACE

The path to the catkin workspace. Default: current
working directory

13.5.1 catkin profile list

usage: catkin profile list [-h]

optional arguments:
-h, --help show this help message and exit

13.5.2 catkin profile set

usage: catkin profile set [-h] name

positional arguments:
name The profile to activate.

optional arguments:
-h, --help show this help message and exit

13.5.3 catkin profile add

usage: catkin profile add [-h] [-f] [--copy BASE_PROFILE | --copy-active] name

positional arguments:
name The new profile name.

optional arguments:
-h, --help show this help message and exit
-f, --force Overwrite an existing profile.
--copy BASE_PROFILE Copy the settings from an existing profile. (default:

None)
--copy-active Copy the settings from the active profile.

13.5.4 catkin profile rename

usage: catkin profile rename [-h] [-f] current_name new_name

positional arguments:

54 Chapter 13. catkin profile – Manage Profiles

catkin_tools Documentation, Release 0.0.0

current_name The current name of the profile to be renamed.
new_name The new name for the profile.

optional arguments:
-h, --help show this help message and exit
-f, --force Overwrite an existing profile.

13.5.5 catkin profile remove

usage: catkin profile remove [-h] [name [name ...]]

positional arguments:
name One or more profile names to remove.

optional arguments:
-h, --help show this help message and exit

13.5. Full Command-Line Interface 55

catkin_tools Documentation, Release 0.0.0

56 Chapter 13. catkin profile – Manage Profiles

CHAPTER 14

Verb Aliasing

The catkin command allows you to define your own verb “aliases” which expand to more complex expressions in-
cluding built-in verbs, command-line options, and other verb aliases. These are processed before any other command-
line processing takes place, and can be useful for making certain use patterns more convenient.

14.1 The Built-In Aliases

You can list the available aliases using the --list-aliases option to the catkin command. Below are the
built-in aliases as displayed by this command:

$ catkin --list-aliases
b: build
bt: b --this
ls: list
install: config --install

14.2 Defining Additional Aliases

Verb aliases are defined in the verb_aliases subdirectory of the catkin config folder,
~/.config/catkin/verb_aliases. Any YAML files in that folder (files with a .yaml extension)
will be processed as definition files.

These files are formatted as simple YAML dictionaries which map aliases to expanded expressions, which must be
composed of other catkin verbs, options, or aliases:

<ALIAS>: <EXPRESSION>

For example, aliases which configure a workspace profile so that it ignores the value of the CMAKE_PREFIX_PATH
environment variable, and instead extends one or another ROS install spaces could be defined as follows:

~/.config/catkin/verb_aliases/10-ros-distro-aliases.yaml
extend-sys: config --profile sys --extend /opt/ros/hydro -x _sys
extend-overlay: config --profile overlay --extend ~/ros/hydro/install -x _overlay

After defining these aliases, one could use them with optional additional options and build a given configuration
profile.

$ catkin extend-overlay
$ catkin profile set overlay
$ catkin build some_package

57

catkin_tools Documentation, Release 0.0.0

Note: The catkin command will initialize the verb_aliases directory with a file named
00-default-aliases.yaml containing the set of built-in aliases. These defaults can be overridden by adding
additional definition files, but the default alias file should not be modified since any changes to it will be over-written
by invocations of the catkin command.

14.3 Alias Precedence and Overriding Aliases

Verb alias files in the verb_aliases directory are processed in alphabetical order, so files which start with larger
numbers will override files with smaller numbers. In this way you can override the built-in aliases using a file which
starts with a number higher than 00-.

For example, the bt: build --this alias exists in the default alias file, 00-default-aliases.yaml, but
you can create a file to override it with an alternate definition defined in a file named 01-my-aliases.yaml.

~/.config/catkin/verb_aliases/01-my-aliases.yaml
Override `bt` to build with no deps
bt: build --this --no-deps

You can also disable or unset an alias by setting its value to null. For example, the ls: list alias is defined in
the default aliases, but you can override it with this entry in a custom file named something like 02-unset.yaml:

~/.config/catkin/verb_aliases/02-unset.yaml
Disable `ls` alias
ls: null

14.4 Recursive Alias Expansion

Additionally, verb aliases can be recursive, for instance in the bt alias, the b alias expands to build so that b
--this expands to build --this. The catkin command shows the expansion of aliases when they are invoked
so that their behavior is more transparent:

$ catkin bt
==> Expanding alias 'bt' from 'catkin bt' to 'catkin b --this'
==> Expanding alias 'b' from 'catkin b --this' to 'catkin build --this'
...

58 Chapter 14. Verb Aliasing

CHAPTER 15

Extending the catkin command

The catkin command is setup to be easily extended using the setuptools notion of entry_points,
see: http://guide.python-distribute.org/creation.html#entry-points By using the entry_points extensions to the
catkin command can be made within the catkin_tools package or an external package. Regardless of what
package the entry_point is defined in, it will be defined in the setup.py of that package, and will take this
form:

from setuptools import setup

setup(
...
entry_points={

...
'catkin_tools.commands.catkin.verbs': [

Example from catkin_tools' setup.py:
'list = catkin_tools.verbs.catkin_list:description',
'my_verb = my_package.some.module:description',

],
},

)

This entry in the setup.py places a file in the PYTHONPATH when either the install or the develop verb
is given to setup.py. This file relates the key (in this case my_verb) to a module and attribute (in this case
my_package.some.module and description). Then the catkin command will use the pkg_resources
modules to retrieve these mapping at run time. Any entry for the catkin_tools.commands.catkin.verbs
group must point to a description attribute of a module, where the description attribute is a dict. The
description dict should take this form (the description from the build verb for example):

description = dict(
verb='build',
description="Builds a catkin workspace",
main=main,
prepare_arguments=prepare_arguments,
argument_preprocessor=argument_preprocessor,

)

This dict defines all the information that the catkin command needs to provide and execute your verb. The verb
key takes a string which is the verb name (as shown in help and used for invoking the verb). The description
key takes a string which is the description which is shown in the catkin -h output. The main key takes a callable
(function) which is called when the verb is invoked. The signature of the main callable should be like this:

def main(opts):
...
return 0

59

http://guide.python-distribute.org/creation.html#entry-points

catkin_tools Documentation, Release 0.0.0

Where the opts parameter is the Namespace object returns from ArgumentParser.parse_args(...) and
should return an exit code which is passed to sys.exit.

The prepare_arguments key takes a function with this signature:

def prepare_arguments(parser):
add = parser.add_argument
What packages to build
add('packages', nargs='*',

help='Workspace packages to build, package dependencies are built as well unless --no-deps is used. '
'If no packages are given, then all the packages are built.')

add('--no-deps', action='store_true', default=False,
help='Only build specified packages, not their dependencies.')

return parser

The above example is a snippet from the build verb’s prepare_arguments function. The purpose of this
function is to take a given ArgumentParser object, which was created by the catkin command, and add this
verb’s argparse arguments to it and then return it.

Finally, the argument_preprocessor command is an optional entry in the description dict which has this
signature:

def argument_preprocessor(args):
"""Processes the arguments for the build verb, before being passed to argparse"""
CMake/make pass-through flags collect dashed options. They require special
handling or argparse will complain about unrecognized options.
args = sys.argv[1:] if args is None else args
extract_make_args = extract_cmake_and_make_and_catkin_make_arguments
args, cmake_args, make_args, catkin_make_args = extract_make_args(args)
Extract make jobs flags.
jobs_flags = extract_jobs_flags(' '.join(args))
if jobs_flags:

args = re.sub(jobs_flags, '', ' '.join(args)).split()
jobs_flags = jobs_flags.split()

extras = {
'cmake_args': cmake_args,
'make_args': make_args + (jobs_flags or []),
'catkin_make_args': catkin_make_args,

}
return args, extras

The above example is the argument_preprocessor function for the build verb. The purpose of the
argument_preprocessor callable is to allow the verb to preprocess its own arguments before they are passed
to argparse. In the case of the build verb, it is extracting the CMake and Make arguments before having them
passed to argparse. The input parameter to this function is the list of arguments which come after the verb, and this
function is only called when this verb has been detected as the first positional argument to the catkin command. So,
you do not need to worry about making sure the arguments you just got are yours. This function should return a tuple
where the first item in the tuple is the potentially modified list of arguments, and the second item is a dictionary of
keys and values which should be added as attributes to the opts parameter which is later passed to the main callable.
In this way you can take the arguments for your verb, parse them, remove some, add some or whatever, then you can
additionally return extra information which needs to get passed around the argparse parse_args function. Most
verbs should not need to do this, and in fact the built-in list verb’s description dict does not include one:

description = dict(
verb='list',
description="Lists catkin packages in a given folder",
main=main,
prepare_arguments=prepare_arguments,

60 Chapter 15. Extending the catkin command

catkin_tools Documentation, Release 0.0.0

)

Hopefully, this information will help you get started when you want to extend the catkin command with custom
verbs.

This Python package provides command line tools for working with the catkin meta-buildsystem and catkin
workspaces.

Note: This is the documentation for the catkin command-line tool and not the Catkin package specification
documentation. For documentation on writing catkin packages, see: http://docs.ros.org/api/catkin/html/

61

http://docs.ros.org/api/catkin/html/

catkin_tools Documentation, Release 0.0.0

62 Chapter 15. Extending the catkin command

CHAPTER 16

The catkin command

The catkin Command-Line Interface (CLI) tool is the single point of entry for most of the functionality provided
by this package. All invocations of the catkin CLI tool take this form:

$ catkin [global options] <verb> [verb arguments and options]

The different capabilities of the catkin CLI tool are organized into different sub-command “verbs.” This is similar
to common command-line tools such as git or apt-get. Verbs include actions such as build which builds a
catkin workspace or list which simply lists the catkin packages found in one or more folders.

Additionally, global options can be provided before the verb, options like -d for debug level verbosity or -h for help
on the catkin CLI tool itself. Verbs can take arbitrary arguments and options, but they must all come after the verb.
For more help on the usage of a particular verb, simply pass the -h or --help option after the verb.

16.1 Built-in catkin command verbs

Each of the following verbs is built-in to the catkin command and has its own detailed documentation:

• build – Build packages in a catkin workspace

• config – Configure a catkin workspace’s layout and settings

• clean – Clean products generated in a catkin workspace

• create – Create structrures like Catkin packages

• init – Initialize a catkin workspace

• list – Find and list information about catkin packages in a workspace

• profile – Manage different named configuration profiles

16.2 Extending the catkin command

If you would like to add a verb to the catkin command without modifying its source, please read Extending the
catkin command.

63

	Installing catkin_tools
	Installing on Ubuntu with apt-get
	Installing on other platforms with pip
	Installing from source
	Install catkin_tools for developing

	Quickstart
	TL;DR
	Initializing a New Workspace
	Adding Packages to the Workspace
	Building the Workspace
	Loading the Workspace Environment
	Cleaning Workspace Products

	Workspace Mechanics
	Anatomy of a Catkin Workspace
	Additional Workspace Directories with catkin_tools
	Environment Setup Files
	Workspace Packages and Dependencies
	Understanding the Build Process
	Workspace Chaining and the Importance of CMAKE_PREFIX_PATH

	Configuration Summary
	Contents of the Config Summary
	Workspace Chaining Mode

	Cheat Sheet
	Initializing Workspaces
	Configuring Workspaces
	Building Packages
	Cleaning Build Products
	Controlling Color Display
	Profile Cookbook
	Manipulating Workspace Chaining
	Building With Other Jobservers

	Troubleshooting
	Configuration Summary Warnings
	Dependency Resolution

	catkin build – Build Packages
	Basic Usage
	Context-Aware Building
	Controlling the Number of Build Jobs
	Controlling Command-Line Output
	Running Tests Built in a Workspace
	Building With Warnings
	Debugging Build Errors
	Full Command-Line Interface

	catkin clean – Clean Build Products
	Full Command-Line Interface

	catkin config – Configure a Workspace
	Viewing the Configuration Summary
	Appending or Removing List-Type Arguments
	Installing Packages
	Explicitly Specifying Workspace Chaining
	Whitelisting and Blacklisting Packages
	Full Command-Line Interface

	catkin create – Create Packages
	Full Command-Line Interface

	catkin init – Initialize a Workspace
	Full Command-Line Interface

	catkin list – List Package Info
	Checking for Catkin Package Warnings
	Using Unformatted Output in Shell Scripts
	Full Command-Line Interface

	catkin profile – Manage Profiles
	Creating Profiles Automatically
	Explicitly Creating Profiles
	Setting the Active Profile
	Renaming and Removing Profiles
	Full Command-Line Interface

	Verb Aliasing
	The Built-In Aliases
	Defining Additional Aliases
	Alias Precedence and Overriding Aliases
	Recursive Alias Expansion

	Extending the catkin command
	The catkin command
	Built-in catkin command verbs
	Extending the catkin command

