
javaproperties
Release 0.9.0.dev1

John T. Wodder II

2024 Feb 05

CONTENTS

1 Simple Line-Oriented .properties Format 3
1.1 Format Overview . 3
1.2 File Encoding . 4
1.3 Functions . 4

2 XML .properties Format 9
2.1 Format Overview . 9
2.2 Functions . 10

3 Properties Class 13

4 PropertiesFile Class 17

5 Low-Level Utilities 21
5.1 Low-Level Parsing . 23
5.2 Custom Encoding Error Handler . 24

6 Command-Line Utilities 27

7 Changelog 29
7.1 v0.9.0 (in development) . 29
7.2 v0.8.1 (2021-10-05) . 29
7.3 v0.8.0 (2020-11-28) . 29
7.4 v0.7.0 (2020-03-09) . 30
7.5 v0.6.0 (2020-02-28) . 30
7.6 v0.5.2 (2019-04-08) . 30
7.7 v0.5.1 (2018-10-25) . 30
7.8 v0.5.0 (2018-09-18) . 31
7.9 v0.4.0 (2017-04-22) . 31
7.10 v0.3.0 (2017-04-13) . 31
7.11 v0.2.1 (2017-03-20) . 31
7.12 v0.2.0 (2016-11-14) . 31
7.13 v0.1.0 (2016-10-02) . 32

8 Installation 33

9 Examples 35

10 Indices and tables 37

Python Module Index 39

i

Index 41

ii

javaproperties, Release 0.9.0.dev1

GitHub | PyPI | Documentation | Issues | Changelog

CONTENTS 1

https://github.com/jwodder/javaproperties
https://pypi.org/project/javaproperties
https://javaproperties.readthedocs.io
https://github.com/jwodder/javaproperties/issues

javaproperties, Release 0.9.0.dev1

2 CONTENTS

CHAPTER

ONE

SIMPLE LINE-ORIENTED .PROPERTIES FORMAT

1.1 Format Overview

The simple line-oriented .properties file format consists of a series of key-value string pairs, one (or fewer) per line,
with the key & value separated by the first occurrence of an equals sign (=, optionally with surrounding whitespace), a
colon (:, optionally with surrounding whitespace), or non-leading whitespace. A line without a separator is treated as
a key whose value is the empty string. If the same key occurs more than once in a single file, only its last value is used.

Note: Lines are terminated by \n (LF), \r\n (CR LF), or \r (CR).

Note: For the purposes of this format, only the space character (ASCII 0x20), the tab character (ASCII 0x09), and the
form feed character (ASCII 0x0C) count as whitespace.

Leading whitespace on a line is ignored, but trailing whitespace (after stripping trailing newlines) is not. Lines whose
first non-whitespace character is # or ! (not escaped) are comments and are ignored.

Entries can be extended across multiple lines by ending all but the last line with a backslash; the backslash, the line
ending after it, and any leading whitespace on the next line will all be discarded. A backslash at the end of a comment
line has no effect. A comment line after a line that ends with a backslash is treated as part of a normal key-value entry,
not as a comment.

Occurrences of =, :, #, !, and whitespace inside a key or value are escaped with a backslash. In addition, the following
escape sequences are recognized:

\t \n \f \r \uXXXX \\

Unicode characters outside the Basic Multilingual Plane can be represented by a pair of \uXXXX escape sequences
encoding the corresponding UTF-16 surrogate pair.

If a backslash is followed by character other than those listed above, the backslash is discarded.

An example simple line-oriented .properties file:

#This is a comment.
foo=bar
baz: quux
gnusto cleesh
snowman = \u2603
goat = \ud83d\udc10
novalue
host\:port=127.0.0.1\:80

3

javaproperties, Release 0.9.0.dev1

This corresponds to the Python dict:

{
"foo": "bar",
"baz": "quux",
"gnusto": "cleesh",
"snowman": "",
"goat": "",
"novalue": "",
"host:port": "127.0.0.1:80",

}

1.2 File Encoding

Although the load() and loads() functions accept arbitrary Unicode characters in their input, by default the dump()
and dumps() functions limit the characters in their output as follows:

• When ensure_ascii is True (the default), dump() and dumps() output keys & values in pure ASCII; non-
ASCII and unprintable characters are escaped with the escape sequences listed above. When ensure_ascii is
False, the functions instead pass all non-ASCII characters through as-is; unprintable characters are still escaped.

• When ensure_ascii_comments is None (the default), dump() and dumps() output the comments ar-
gument (if set) using only Latin-1 (ISO-8859-1) characters; all other characters are escaped. When
ensure_ascii_comments is True, the functions instead escape all non-ASCII characters in comments. When
ensure_ascii_comments is False, the functions instead pass all characters in comments through as-is.

– Note that, in order to match the behavior of Java’s Properties class, unprintable ASCII characters in
comments are always passed through as-is rather than escaped.

– Newlines inside comments are not escaped, but a # is inserted after every one not already followed by a #
or !.

When writing properties to a file, you must either (a) open the file using an encoding that supports all of the characters
in the formatted output or else (b) open the file using the ‘javapropertiesreplace’ error handler defined by this module.
The latter option allows one to write valid simple-format properties files in any encoding without having to worry about
whether the properties or comment contain any characters not representable in the encoding.

1.3 Functions

javaproperties.dump(props: Mapping[str, str] | Iterable[tuple[str, str]], fp: TextIO, separator: str = '=',
comments: str | None = None, timestamp: None | bool | float | datetime = True, sort_keys:
bool = False, ensure_ascii: bool = True, ensure_ascii_comments: bool | None = None)→
None

Write a series of key-value pairs to a file in simple line-oriented .properties format.

Changed in version 0.6.0: ensure_ascii and ensure_ascii_comments parameters added

Parameters

• props – A mapping or iterable of (key, value) pairs to write to fp. All keys and values
in props must be str values. If sort_keys is False, the entries are output in iteration
order.

4 Chapter 1. Simple Line-Oriented .properties Format

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#False

javaproperties, Release 0.9.0.dev1

• fp (TextIO) – A file-like object to write the values of props to. It must have been opened
as a text file.

• separator (str) – The string to use for separating keys & values. Only " ", "=", and ":"
(possibly with added whitespace) should ever be used as the separator.

• comments (Optional[str]) – if non-None, comments will be written to fp as a comment
before any other content

• timestamp (None, bool, number, or datetime.datetime) – If neither None nor False, a
timestamp in the form of Mon Sep 02 14:00:54 EDT 2016 is written as a comment to fp
after comments (if any) and before the key-value pairs. If timestamp is True, the current
date & time is used. If it is a number, it is converted from seconds since the epoch to local
time. If it is a datetime.datetime object, its value is used directly, with naïve objects
assumed to be in the local timezone.

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key in
the output

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \uXXXX
escape sequences in the output; if false, non-ASCII characters will be passed through as-is

• ensure_ascii_comments (Optional[bool]) – if true, all non-ASCII characters in
comments will be replaced with \uXXXX escape sequences in the output; if None, only non-
Latin-1 characters will be escaped; if false, no characters will be escaped

Returns
None

javaproperties.dumps(props: Mapping[str, str] | Iterable[tuple[str, str]], separator: str = '=', comments: str |
None = None, timestamp: None | bool | float | datetime = True, sort_keys: bool = False,
ensure_ascii: bool = True, ensure_ascii_comments: bool | None = None)→ str

Convert a series of key-value pairs to a str in simple line-oriented .properties format.

Changed in version 0.6.0: ensure_ascii and ensure_ascii_comments parameters added

Parameters

• props – A mapping or iterable of (key, value) pairs to serialize. All keys and values in
propsmust be str values. If sort_keys is False, the entries are output in iteration order.

• separator (str) – The string to use for separating keys & values. Only " ", "=", and ":"
(possibly with added whitespace) should ever be used as the separator.

• comments (Optional[str]) – if non-None, comments will be output as a comment before
any other content

• timestamp (None, bool, number, or datetime.datetime) – If neither None nor False, a
timestamp in the form of Mon Sep 02 14:00:54 EDT 2016 is output as a comment after
comments (if any) and before the key-value pairs. If timestamp is True, the current date
& time is used. If it is a number, it is converted from seconds since the epoch to local time.
If it is a datetime.datetime object, its value is used directly, with naïve objects assumed
to be in the local timezone.

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key in
the output

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \uXXXX
escape sequences in the output; if false, non-ASCII characters will be passed through as-is

1.3. Functions 5

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

javaproperties, Release 0.9.0.dev1

• ensure_ascii_comments (Optional[bool]) – if true, all non-ASCII characters in
comments will be replaced with \uXXXX escape sequences in the output; if None, only non-
Latin-1 characters will be escaped; if false, no characters will be escaped

Return type
text string

javaproperties.load(fp: IO)→ dict[str, str]
javaproperties.load(fp: IO, object_pairs_hook: type[T])→ T
javaproperties.load(fp: IO, object_pairs_hook: Callable[[Iterator[tuple[str, str]]], T])→ T

Parse the contents of the readline-supporting file-like object fp as a simple line-oriented .properties file
and return a dict of the key-value pairs.

fpmay be either a text or binary filehandle, with or without universal newlines enabled. If it is a binary filehandle,
its contents are decoded as Latin-1.

By default, the key-value pairs extracted from fp are combined into a dict with later occurrences of a key over-
riding previous occurrences of the same key. To change this behavior, pass a callable as the object_pairs_hook
argument; it will be called with one argument, a generator of (key, value) pairs representing the key-
value entries in fp (including duplicates) in order of occurrence. load will then return the value returned by
object_pairs_hook.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to be
raised

Parameters

• fp (IO) – the file from which to read the .properties document

• object_pairs_hook (callable) – class or function for combining the key-value pairs

Return type
dict of text strings or the return value of object_pairs_hook

Raises
InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

javaproperties.loads(s: str | bytes)→ dict[str, str]
javaproperties.loads(s: str | bytes, object_pairs_hook: type[T])→ T
javaproperties.loads(s: str | bytes, object_pairs_hook: Callable[[Iterator[tuple[str, str]]], T])→ T

Parse the contents of the string s as a simple line-oriented .properties file and return a dict of the key-value
pairs.

s may be either a text string or bytes string. If it is a bytes string, its contents are decoded as Latin-1.

By default, the key-value pairs extracted from s are combined into a dictwith later occurrences of a key overrid-
ing previous occurrences of the same key. To change this behavior, pass a callable as the object_pairs_hook
argument; it will be called with one argument, a generator of (key, value) pairs representing the key-
value entries in s (including duplicates) in order of occurrence. loads will then return the value returned by
object_pairs_hook.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to be
raised

Parameters

• s (Union[str,bytes]) – the string from which to read the .properties document

• object_pairs_hook (callable) – class or function for combining the key-value pairs

Return type
dict of text strings or the return value of object_pairs_hook

6 Chapter 1. Simple Line-Oriented .properties Format

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict

javaproperties, Release 0.9.0.dev1

Raises
InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

1.3. Functions 7

javaproperties, Release 0.9.0.dev1

8 Chapter 1. Simple Line-Oriented .properties Format

CHAPTER

TWO

XML .PROPERTIES FORMAT

2.1 Format Overview

The XML .properties file format encodes a series of key-value string pairs (and optionally also a comment) as
an XML document conforming to the following Document Type Definition (published at <http://java.sun.com/dtd/
properties.dtd>):

<!ELEMENT properties (comment?, entry*)>
<!ATTLIST properties version CDATA #FIXED "1.0">
<!ELEMENT comment (#PCDATA)>
<!ELEMENT entry (#PCDATA)>
<!ATTLIST entry key CDATA #REQUIRED>

An example XML .properties file:

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<comment>This is a comment.</comment>
<entry key="foo">bar</entry>
<entry key="snowman"></entry>
<entry key="goat"></entry>
<entry key="host:port">127.0.0.1:80</entry>
</properties>

This corresponds to the Python dict:

{
"foo": "bar",
"snowman": "",
"goat": "",
"host:port": "127.0.0.1:80",

}

9

http://java.sun.com/dtd/properties.dtd
http://java.sun.com/dtd/properties.dtd
https://docs.python.org/3/library/stdtypes.html#dict

javaproperties, Release 0.9.0.dev1

2.2 Functions

javaproperties.dump_xml(props: Mapping[str, str] | Iterable[tuple[str, str]], fp: BinaryIO, comment: str | None
= None, encoding: str = 'UTF-8', sort_keys: bool = False)→ None

Write a series props of key-value pairs to a binary filehandle fp in the format of an XML properties file. The
file will include both an XML declaration and a doctype declaration.

Parameters

• props – A mapping or iterable of (key, value) pairs to write to fp. All keys and values
in props must be str values. If sort_keys is False, the entries are output in iteration
order.

• fp (BinaryIO) – a file-like object to write the values of props to

• comment (Optional[str]) – if non-None, comment will be output as a <comment> ele-
ment before the <entry> elements

• encoding (str) – the name of the encoding to use for the XML document (also included in
the XML declaration)

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key in
the output

Returns
None

javaproperties.dumps_xml(props: Mapping[str, str] | Iterable[tuple[str, str]], comment: str | None = None,
sort_keys: bool = False)→ str

Convert a series props of key-value pairs to a str containing an XML properties document. The document will
include a doctype declaration but not an XML declaration.

Parameters

• props – A mapping or iterable of (key, value) pairs to serialize. All keys and values in
propsmust be str values. If sort_keys is False, the entries are output in iteration order.

• comment (Optional[str]) – if non-None, comment will be output as a <comment> ele-
ment before the <entry> elements

• sort_keys (bool) – if true, the elements of props are sorted lexicographically by key in
the output

Return type
str

javaproperties.load_xml(fp: IO)→ dict[str, str]
javaproperties.load_xml(fp: IO, object_pairs_hook: type[T])→ T
javaproperties.load_xml(fp: IO, object_pairs_hook: Callable[[Iterator[tuple[str, str]]], T])→ T

Parse the contents of the file-like object fp as an XML properties file and return a dict of the key-value pairs.

Beyond basic XML well-formedness, load_xml only checks that the root element is named “properties” and
that all of its <entry> children have key attributes. No further validation is performed; if any <entry>s happen
to contain nested tags, the behavior is undefined.

By default, the key-value pairs extracted from fp are combined into a dict with later occurrences of a key over-
riding previous occurrences of the same key. To change this behavior, pass a callable as the object_pairs_hook
argument; it will be called with one argument, a generator of (key, value) pairs representing the key-value
entries in fp (including duplicates) in order of occurrence. load_xml will then return the value returned by
object_pairs_hook.

10 Chapter 2. XML .properties Format

https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

javaproperties, Release 0.9.0.dev1

Parameters

• fp (IO) – the file from which to read the XML properties document

• object_pairs_hook (callable) – class or function for combining the key-value pairs

Return type
dict or the return value of object_pairs_hook

Raises
ValueError – if the root of the XML tree is not a <properties> tag or an <entry> element
is missing a key attribute

javaproperties.loads_xml(s: AnyStr)→ dict[str, str]
javaproperties.loads_xml(fp: IO, object_pairs_hook: type[T])→ T
javaproperties.loads_xml(s: AnyStr, object_pairs_hook: Callable[[Iterator[tuple[str, str]]], T])→ T

Parse the contents of the string s as an XML properties document and return a dict of the key-value pairs.

Beyond basic XML well-formedness, loads_xml only checks that the root element is named “properties”
and that all of its <entry> children have key attributes. No further validation is performed; if any <entry>s
happen to contain nested tags, the behavior is undefined.

By default, the key-value pairs extracted from s are combined into a dictwith later occurrences of a key overrid-
ing previous occurrences of the same key. To change this behavior, pass a callable as the object_pairs_hook
argument; it will be called with one argument, a generator of (key, value) pairs representing the key-value
entries in s (including duplicates) in order of occurrence. loads_xml will then return the value returned by
object_pairs_hook.

Parameters

• s (Union[str,bytes]) – the string from which to read the XML properties document

• object_pairs_hook (callable) – class or function for combining the key-value pairs

Return type
dict or the return value of object_pairs_hook

Raises
ValueError – if the root of the XML tree is not a <properties> tag or an <entry> element
is missing a key attribute

2.2. Functions 11

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/functions.html#type
https://docs.python.org/3/library/collections.abc.html#collections.abc.Callable
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

javaproperties, Release 0.9.0.dev1

12 Chapter 2. XML .properties Format

CHAPTER

THREE

PROPERTIES CLASS

class javaproperties.Properties(data: None | Mapping[str, str] | Iterable[tuple[str, str]] = None, defaults:
Properties | None = None)

A port of Java 8’s java.util.Properties that tries to match its behavior as much as is Pythonically possible.
Properties behaves like a normal MutableMapping class (i.e., you can do props[key] = value and so
forth), except that it may only be used to store str values.

Two Properties instances compare equal iff both their key-value pairs and defaults attributes are equal.
When comparing a Properties instance to any other type of mapping, only the key-value pairs are considered.

Changed in version 0.5.0: Properties instances can now compare equal to dicts and other mapping types

Parameters

• data (mapping or None) – A mapping or iterable of (key, value) pairs with which to
initialize the Properties instance. All keys and values in data must be text strings.

• defaults (Optional[Properties]) – a set of default properties that will be used as fall-
back for getProperty

copy()→ Properties
New in version 0.5.0.

Create a shallow copy of the mapping. The copy’s defaults attribute will be the same instance as the
original’s defaults.

defaults

A Properties subobject used as fallback for getProperty. Only getProperty, propertyNames,
stringPropertyNames, and __eq__ use this attribute; all other methods (including the standard mapping
methods) ignore it.

getProperty(key: str, defaultValue: T | None = None)→ str | T | None
Fetch the value associated with the key key in the Properties instance. If the key is not present, defaults
is checked, and then its defaults, etc., until either a value for key is found or the next defaults is None,
in which case defaultValue is returned.

Parameters

• key (str) – the key to look up the value of

• defaultValue (Any) – the value to return if key is not found in the Properties instance

Return type
str (if key was found)

13

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str

javaproperties, Release 0.9.0.dev1

load(inStream: IO)→ None
Update the Properties instance with the entries in a .properties file or file-like object.

inStream may be either a text or binary filehandle, with or without universal newlines enabled. If it is a
binary filehandle, its contents are decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to
be raised

Parameters
inStream (IO) – the file from which to read the .properties document

Returns
None

Raises
InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

loadFromXML(inStream: IO)→ None
Update the Properties instance with the entries in the XML properties file inStream.

Beyond basic XML well-formedness, loadFromXML only checks that the root element is named
properties and that all of its entry children have key attributes; no further validation is performed.

Parameters
inStream (IO) – the file from which to read the XML properties document

Returns
None

Raises
ValueError – if the root of the XML tree is not a <properties> tag or an <entry> element
is missing a key attribute

propertyNames()→ Iterator[str]
Returns a generator of all distinct keys in the Properties instance and its defaults (and its defaults’s
defaults, etc.) in unspecified order

Return type
Iterator[str]

setProperty(key: str, value: str)→ None
Equivalent to self[key] = value

store(out: TextIO, comments: str | None = None)→ None
Write the Properties instance’s entries (in unspecified order) in .properties format to out, including
the current timestamp.

Parameters

• out (TextIO) – A file-like object to write the properties to. It must have been opened as a
text file with a Latin-1-compatible encoding.

• comments (Optional[str]) – If non-None, comments will be written to out as a com-
ment before any other content

Returns
None

storeToXML(out: BinaryIO, comment: str | None = None, encoding: str = 'UTF-8')→ None
Write the Properties instance’s entries (in unspecified order) in XML properties format to out.

Parameters

14 Chapter 3. Properties Class

https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.BinaryIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

javaproperties, Release 0.9.0.dev1

• out (BinaryIO) – a file-like object to write the properties to

• comment (Optional[str]) – if non-None, comment will be output as a <comment> ele-
ment before the <entry> elements

• encoding (str) – the name of the encoding to use for the XML document (also included
in the XML declaration)

Returns
None

stringPropertyNames()→ set[str]
Returns a set of all keys in the Properties instance and its defaults (and its defaults’s defaults,
etc.)

Return type
set[str]

15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#set
https://docs.python.org/3/library/stdtypes.html#str

javaproperties, Release 0.9.0.dev1

16 Chapter 3. Properties Class

CHAPTER

FOUR

PROPERTIESFILE CLASS

class javaproperties.PropertiesFile(mapping: None | Mapping[str, str] | Iterable[tuple[str, str]] = None,
**kwargs: str)

New in version 0.3.0.

A custom mapping class for reading from, editing, and writing to a .properties file while preserving comments
& whitespace in the original input.

A PropertiesFile instance can be constructed from another mapping and/or iterable of pairs, after which
it will act like an OrderedDict. Alternatively, an instance can be constructed from a file or string with
PropertiesFile.load() or PropertiesFile.loads(), and the resulting instance will remember the for-
matting of its input and retain that formatting when written back to a file or string with the dump() or dumps()
method. The formatting information attached to an instance pf can be forgotten by constructing another mapping
from it via dict(pf), OrderedDict(pf), or even PropertiesFile(pf) (Use the copy()method if you want
to create another PropertiesFile instance with the same data & formatting).

When not reading or writing, PropertiesFile behaves like a normal MutableMapping class (i.e., you can do
props[key] = value and so forth), except that (a) like OrderedDict, key insertion order is remembered and
is used when iterating & dumping (and reversed is supported), and (b) like Properties, it may only be used
to store strings and will raise a TypeError if passed a non-string object as key or value.

Two PropertiesFile instances compare equal iff both their key-value pairs and comment & whitespace lines
are equal and in the same order. When comparing a PropertiesFile to any other type of mapping, only the
key-value pairs are considered, and order is ignored.

PropertiesFile currently only supports reading & writing the simple line-oriented format, not XML.

copy()→ PropertiesFile
Create a copy of the mapping, including formatting information

dump(fp: TextIO, separator: str = '=', ensure_ascii: bool = True)→ None
Write the mapping to a file in simple line-oriented .properties format.

If the instance was originally created from a file or string with PropertiesFile.load() or
PropertiesFile.loads(), then the output will include the comments and whitespace from the origi-
nal input, and any keys that haven’t been deleted or reassigned will retain their original formatting and
multiplicity. Key-value pairs that have been modified or added to the mapping will be reformatted with
join_key_value() using the given separator and ensure_ascii setting. All key-value pairs are output
in the order they were defined, with new keys added to the end.

Changed in version 0.8.0: ensure_ascii parameter added

Note: Serializing a PropertiesFile instance with the dump() function instead will cause all formatting
information to be ignored, as dump() will treat the instance like a normal mapping.

17

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/collections.abc.html#collections.abc.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterable
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/collections.abc.html#collections.abc.MutableMapping
https://docs.python.org/3/library/collections.html#collections.OrderedDict
https://docs.python.org/3/library/functions.html#reversed
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/typing.html#typing.TextIO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

javaproperties, Release 0.9.0.dev1

Parameters

• fp (TextIO) – A file-like object to write the mapping to. It must have been opened as a
text file with a Latin-1-compatible encoding.

• separator (str) – The string to use for separating new or modified keys & values. Only
" ", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

• ensure_ascii (bool) – if true, all non-ASCII characters in new or modified key-value
pairs will be replaced with \uXXXX escape sequences in the output; if false, non-ASCII
characters will be passed through as-is

Returns
None

dumps(separator: str = '=', ensure_ascii: bool = True)→ str
Convert the mapping to a str in simple line-oriented .properties format.

If the instance was originally created from a file or string with PropertiesFile.load() or
PropertiesFile.loads(), then the output will include the comments and whitespace from the origi-
nal input, and any keys that haven’t been deleted or reassigned will retain their original formatting and
multiplicity. Key-value pairs that have been modified or added to the mapping will be reformatted with
join_key_value() using the given separator and ensure_ascii setting. All key-value pairs are output
in the order they were defined, with new keys added to the end.

Changed in version 0.8.0: ensure_ascii parameter added

Note: Serializing a PropertiesFile instance with the dumps() function instead will cause all formatting
information to be ignored, as dumps() will treat the instance like a normal mapping.

Parameters

• separator (str) – The string to use for separating new or modified keys & values. Only
" ", "=", and ":" (possibly with added whitespace) should ever be used as the separator.

• ensure_ascii (bool) – if true, all non-ASCII characters in new or modified key-value
pairs will be replaced with \uXXXX escape sequences in the output; if false, non-ASCII
characters will be passed through as-is

Return type
str

property header_comment: str | None

New in version 0.7.0.

The concatenated values of all comments at the top of the file, up to (but not including) the first key-value
pair or timestamp comment, whichever comes first. The comments are returned with comment markers
and the whitespace leading up to them removed, with line endings changed to \n, and with the line ending
on the final comment (if any) removed. Blank/all-whitespace lines among the comments are ignored.

The header comment can be changed by assigning to this property. Assigning a string s causes everything
before the first key-value pair or timestamp comment to be replaced by the output of to_comment(s). As-
signing None causes the header comment to be deleted (also achievable with del pf.header_comment).

>>> pf = PropertiesFile.loads('''\
... #This is a comment.
... ! This is also a comment.

(continues on next page)

18 Chapter 4. PropertiesFile Class

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None

javaproperties, Release 0.9.0.dev1

(continued from previous page)

... #Tue Feb 25 19:13:27 EST 2020

... key = value

... zebra: apple

... ''')
>>> pf.header_comment
'This is a comment.\n This is also a comment.'
>>> pf.header_comment = 'New comment'
>>> print(pf.dumps(), end='')
#New comment
#Tue Feb 25 19:13:27 EST 2020
key = value
zebra: apple
>>> del pf.header_comment
>>> pf.header_comment is None
True
>>> print(pf.dumps(), end='')
#Tue Feb 25 19:13:27 EST 2020
key = value
zebra: apple

classmethod load(fp: IO)→ PropertiesFile
Parse the contents of the readline-supporting file-like object fp as a simple line-oriented .properties
file and return a PropertiesFile instance.

fp may be either a text or binary filehandle, with or without universal newlines enabled. If it is a binary
filehandle, its contents are decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to
be raised

Parameters
fp (IO) – the file from which to read the .properties document

Return type
PropertiesFile

Raises
InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

classmethod loads(s: AnyStr)→ PropertiesFile
Parse the contents of the string s as a simple line-oriented .properties file and return a PropertiesFile
instance.

s may be either a text string or bytes string. If it is a bytes string, its contents are decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to
be raised

Parameters
s (Union[str,bytes]) – the string from which to read the .properties document

Return type
PropertiesFile

Raises
InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

19

https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes

javaproperties, Release 0.9.0.dev1

property timestamp: str | None

New in version 0.7.0.

The value of the timestamp comment, with the comment marker, any whitespace leading up to it, and the
trailing newline removed. The timestamp comment is the first comment that appears to be a valid timestamp
as produced by Java 8’s Date.toString() and that does not come after any key-value pairs; if there is no
such comment, the value of this property is None.

The timestamp can be changed by assigning to this property. Assigning a string s replaces the timestamp
comment with the output of to_comment(s); no check is made as to whether the result is a valid timestamp
comment. Assigning None or False causes the timestamp comment to be deleted (also achievable with
del pf.timestamp). Assigning any other value x replaces the timestamp comment with the output of
to_comment(java_timestamp(x)).

>>> pf = PropertiesFile.loads('''\
... #This is a comment.
... #Tue Feb 25 19:13:27 EST 2020
... key = value
... zebra: apple
... ''')
>>> pf.timestamp
'Tue Feb 25 19:13:27 EST 2020'
>>> pf.timestamp = 1234567890
>>> pf.timestamp
'Fri Feb 13 18:31:30 EST 2009'
>>> print(pf.dumps(), end='')
#This is a comment.
#Fri Feb 13 18:31:30 EST 2009
key = value
zebra: apple
>>> del pf.timestamp
>>> pf.timestamp is None
True
>>> print(pf.dumps(), end='')
#This is a comment.
key = value
zebra: apple

20 Chapter 4. PropertiesFile Class

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False

CHAPTER

FIVE

LOW-LEVEL UTILITIES

javaproperties.escape(field: str, ensure_ascii: bool = True)→ str
Escape a string so that it can be safely used as either a key or value in a .properties file. All non-ASCII
characters, all nonprintable or space characters, and the characters \ # ! = : are all escaped using either the
single-character escapes recognized by unescape (when they exist) or \uXXXX escapes (after converting non-
BMP characters to surrogate pairs).

Changed in version 0.6.0: ensure_ascii parameter added

Parameters

• field (str) – the string to escape

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \uXXXX
escape sequences in the output; if false, non-ASCII characters will be passed through as-is

Return type
str

javaproperties.java_timestamp(timestamp: None | bool | float | datetime = True)→ str
New in version 0.2.0.

Returns a timestamp in the format produced by Java 8’s Date.toString(), e.g.:

Mon Sep 02 14:00:54 EDT 2016

If timestamp is True (the default), the current date & time is returned.

If timestamp is None or False, an empty string is returned.

If timestamp is a number, it is converted from seconds since the epoch to local time.

If timestamp is a datetime.datetime object, its value is used directly, with naïve objects assumed to be in
the local timezone.

The timestamp is always constructed using the C locale.

Parameters
timestamp (None, bool, number, or datetime.datetime) – the date & time to display

Return type
str

javaproperties.join_key_value(key: str, value: str, separator: str = '=', ensure_ascii: bool = True)→ str
Join a key and value together into a single line suitable for adding to a simple line-oriented .properties file.
No trailing newline is added.

21

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.oracle.com/javase/8/docs/api/java/util/Date.html#toString--
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#False
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

javaproperties, Release 0.9.0.dev1

>>> join_key_value('possible separators', '= : space')
'possible\\ separators=\\= \\: space'

Changed in version 0.6.0: ensure_ascii parameter added

Parameters

• key (str) – the key

• value (str) – the value

• separator (str) – the string to use for separating the key & value. Only " ", "=", and ":"
(possibly with added whitespace) should ever be used as the separator.

• ensure_ascii (bool) – if true, all non-ASCII characters will be replaced with \\uXXXX
escape sequences in the output; if false, non-ASCII characters will be passed through as-is

Return type
str

javaproperties.to_comment(comment: str, ensure_ascii: bool | None = None)→ str
Convert a string to a .properties file comment. Non-Latin-1 or non-ASCII characters in the string may be
escaped using \uXXXX escapes (depending on the value of ensure_ascii), a # is prepended to the string, any
CR LF or CR line breaks in the string are converted to LF, and a # is inserted after any line break not already
followed by a # or !. No trailing newline is added.

>>> to_comment('They say foo=bar,\r\nbut does bar=foo?')
'#They say foo=bar,\n#but does bar=foo?'

Changed in version 0.6.0: ensure_ascii parameter added

Parameters

• comment (str) – the string to convert to a comment

• ensure_ascii (Optional[bool]) – if true, all non-ASCII characters will be replaced with
\uXXXX escape sequences in the output; if None, only non-Latin-1 characters will be escaped;
if false, no characters will be escaped

Return type
str

javaproperties.unescape(field: str)→ str
Decode escape sequences in a .properties key or value. The following escape sequences are recognized:

\t \n \f \r \uXXXX \\

If a backslash is followed by any other character, the backslash is dropped.

In addition, any valid UTF-16 surrogate pairs in the string after escape-decoding are further decoded into the
non-BMP characters they represent. (Invalid & isolated surrogate code points are left as-is.)

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to be
raised

Parameters
field (str) – the string to decode

Return type
str

22 Chapter 5. Low-Level Utilities

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

javaproperties, Release 0.9.0.dev1

Raises
InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

exception javaproperties.InvalidUEscapeError(escape: str)
Bases: ValueError

New in version 0.5.0.

Raised when an invalid \uXXXX escape sequence (i.e., a \u not immediately followed by four hexadecimal digits)
is encountered in a simple line-oriented .properties file

escape: str

The invalid \uXXXX escape sequence encountered

5.1 Low-Level Parsing

javaproperties.parse(src: IO | str | bytes)→ Iterator[PropertiesElement]
Parse the given data as a simple line-oriented .properties file and return a generator of PropertiesElement
objects representing the key-value pairs (as KeyValue objects), comments (as Comment objects), and blank lines
(as Whitespace objects) in the input in order of occurrence.

If the same key appears multiple times in the input, a separate KeyValue object is emitted for each entry.

src may be a text string, a bytes string, or a text or binary filehandle/file-like object supporting the readline
method (with or without universal newlines enabled). Bytes input is decoded as Latin-1.

Changed in version 0.5.0: Invalid \uXXXX escape sequences will now cause an InvalidUEscapeError to be
raised

Changed in version 0.7.0: parse() now accepts strings as input, and it now returns a generator of custom objects
instead of triples of strings

Parameters
src (string or file-like object) – the .properties document

Return type
Iterator[PropertiesElement]

Raises
InvalidUEscapeError – if an invalid \uXXXX escape sequence occurs in the input

class javaproperties.PropertiesElement(source: str)
New in version 0.7.0.

Superclass of objects returned by parse()

source: str

The raw, unmodified input line (including trailing newlines)

property source_stripped: str

Like source, but with the final trailing newline and line continuation (if any) removed

class javaproperties.Comment(source: str)
New in version 0.7.0.

Subclass of PropertiesElement representing a comment

5.1. Low-Level Parsing 23

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.IO
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/collections.abc.html#collections.abc.Iterator
https://docs.python.org/3/library/io.html#io.IOBase.readline
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

javaproperties, Release 0.9.0.dev1

is_timestamp()→ bool
Returns True iff the comment’s value appears to be a valid timestamp as produced by Java 8’s Date.
toString()

property source_stripped: str

Like source, but with the final trailing newline (if any) removed

property value: str

Returns the contents of the comment, with the comment marker, any whitespace leading up to it, and the
trailing newline removed

class javaproperties.KeyValue(key: str, value: str, source: str)
New in version 0.7.0.

Subclass of PropertiesElement representing a key-value entry

key: str

The entry’s key, after processing escape sequences

value: str

The entry’s value, after processing escape sequences

class javaproperties.Whitespace(source: str)
New in version 0.7.0.

Subclass of PropertiesElement representing a line that is either empty or contains only whitespace (and
possibly some line continuations)

5.2 Custom Encoding Error Handler

New in version 0.6.0.

Importing javaproperties causes a custom error handler, 'javapropertiesreplace', to be automatically defined
that can then be supplied as the errors argument to str.encode, open, or similar encoding operations in order to
cause all unencodable characters to be replaced by \uXXXX escape sequences (with non-BMP characters converted to
surrogate pairs first).

This is useful, for example, when calling javaproperties.dump(obj, fp, ensure_ascii=False) where fp
has been opened using an encoding that does not contain all Unicode characters (e.g., Latin-1); in such a case, if
errors='javapropertiesreplace' is supplied when opening fp, then any characters in a key or value of obj
that exist outside fp’s character set will be safely encoded as .properties file format-compatible escape sequences
instead of raising an error.

Note that the hexadecimal value used in a \uXXXX escape sequences is always based on the source character’s codepoint
value in Unicode regardless of the target encoding:

>>> # Here we see one character encoded to the byte 0x00f0 (because that's
>>> # how the target encoding represents it) and a completely different
>>> # character encoded as the escape sequence \u00f0 (because that's its
>>> # value in Unicode):
>>> 'apple: \uF8FF; edh: \xF0'.encode('mac_roman', 'javapropertiesreplace')
b'apple: \xf0; edh: \\u00f0'

javaproperties.javapropertiesreplace_errors(e: UnicodeError)→ tuple[str, int]
New in version 0.6.0.

24 Chapter 5. Low-Level Utilities

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#True
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str.encode
https://docs.python.org/3/library/functions.html#open
https://docs.python.org/3/library/exceptions.html#UnicodeError
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

javaproperties, Release 0.9.0.dev1

Implements the 'javapropertiesreplace' error handling (for text encodings only): unencodable characters
are replaced by \uXXXX escape sequences (with non-BMP characters converted to surrogate pairs first)

5.2. Custom Encoding Error Handler 25

javaproperties, Release 0.9.0.dev1

26 Chapter 5. Low-Level Utilities

CHAPTER

SIX

COMMAND-LINE UTILITIES

As of version 0.4.0, the command-line programs have been split off into a separate package, javaproperties-cli,
which must be installed separately in order to use them. See the package’s documentation for details.

27

https://github.com/jwodder/javaproperties-cli
http://javaproperties-cli.readthedocs.io

javaproperties, Release 0.9.0.dev1

28 Chapter 6. Command-Line Utilities

CHAPTER

SEVEN

CHANGELOG

7.1 v0.9.0 (in development)

• Drop support for Python 3.6

• Support Python 3.11 and 3.12

• Migrated from setuptools to hatch

7.2 v0.8.1 (2021-10-05)

• Fix a typing issue in Python 3.9

• Support Python 3.10

7.3 v0.8.0 (2020-11-28)

• Drop support for Python 2.7, 3.4, and 3.5

• Support Python 3.9

• ensure_ascii parameter added to PropertiesFile.dump() and PropertiesFile.dumps()

• Bugfix: When parsing XML input, empty <entry> tags now produce an empty string as a value, not None

• Added type annotations

• Properties and PropertiesFile no longer raise TypeError when given a non-string key or value, as type
correctness is now expected to be enforced through static type checking

• The PropertiesElement classes returned by parse() are no longer subclasses of namedtuple, but they can
still be iterated over to retrieve their fields like a tuple

29

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/collections.html#collections.namedtuple

javaproperties, Release 0.9.0.dev1

7.4 v0.7.0 (2020-03-09)

• parse() now accepts strings as input

• Breaking: parse() now returns a generator of custom objects instead of triples of strings

• Gave PropertiesFile a settable timestamp property

• Gave PropertiesFile a settable header_comment property

• Handle unescaping surrogate pairs on narrow Python builds

7.5 v0.6.0 (2020-02-28)

• Include changelog in the Read the Docs site

• Support Python 3.8

• When dumping a value that begins with more than one space, only escape the first space in order to better match
Java’s behavior

• Gave dump(), dumps(), escape(), and join_key_value() an ensure_ascii parameter for optionally not
escaping non-ASCII characters in output

• Gave dump() and dumps() an ensure_ascii_comments parameter for controlling what characters in the
comments parameter are escaped

• Gave to_comment() an ensure_ascii parameter for controlling what characters are escaped

• Added a custom encoding error handler 'javapropertiesreplace' that encodes invalid characters as \uXXXX
escape sequences

7.6 v0.5.2 (2019-04-08)

• Added an example of each format to the format descriptions in the docs

• Fix building in non-UTF-8 environments

7.7 v0.5.1 (2018-10-25)

• Bugfix: java_timestamp() now properly handles naïve datetime objects with fold=1

• Include installation instructions, examples, and GitHub links in the Read the Docs site

30 Chapter 7. Changelog

https://docs.python.org/3/library/datetime.html#datetime.datetime

javaproperties, Release 0.9.0.dev1

7.8 v0.5.0 (2018-09-18)

• Breaking: Invalid \uXXXX escape sequences now cause an InvalidUEscapeError to be raised

• Properties instances can now compare equal to dicts and other mapping types

• Gave Properties a copy method

• Drop support for Python 2.6 and 3.3

• Fixed a DeprecationWarning in Python 3.7

7.9 v0.4.0 (2017-04-22)

• Split off the command-line programs into a separate package, javaproperties-cli

7.10 v0.3.0 (2017-04-13)

• Added the PropertiesFile class for preserving comments in files [#1]

• The ordereddict package is now required under Python 2.6

7.11 v0.2.1 (2017-03-20)

• Bugfix to javaproperties command: Don’t die horribly on missing non-ASCII keys

• PyPy now supported

7.12 v0.2.0 (2016-11-14)

• Added a javaproperties command for basic command-line manipulating of .properties files

• Gave json2properties a --separator option

• Gave json2properties and properties2json --encoding options

• Exported the java_timestamp() function

• to_comment() now converts CR LF and CR line endings inside comments to LF

• Some minor documentation improvements

7.8. v0.5.0 (2018-09-18) 31

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#DeprecationWarning
https://github.com/jwodder/javaproperties-cli

javaproperties, Release 0.9.0.dev1

7.13 v0.1.0 (2016-10-02)

Initial release

javaproperties provides support for reading & writing Java .properties files (both the simple line-oriented format
and XML) with a simple API based on the json module — though, for recovering Java addicts, it also includes a
Properties class intended to match the behavior of Java 8’s java.util.Properties as much as is Pythonically
possible.

Previous versions of javaproperties included command-line programs for basic manipulation of .properties
files. As of version 0.4.0, these programs have been split off into a separate package, javaproperties-cli.

32 Chapter 7. Changelog

https://en.wikipedia.org/wiki/.properties
https://docs.python.org/3/library/json.html#module-json
https://docs.oracle.com/javase/8/docs/api/java/util/Properties.html
http://javaproperties-cli.readthedocs.io

CHAPTER

EIGHT

INSTALLATION

javaproperties requires Python 3.7 or higher. Just use pip for Python 3 (You have pip, right?) to install it:

python3 -m pip install javaproperties

33

https://pip.pypa.io

javaproperties, Release 0.9.0.dev1

34 Chapter 8. Installation

CHAPTER

NINE

EXAMPLES

Dump some keys & values (output order not guaranteed):

>>> properties = {"key": "value", "host:port": "127.0.0.1:80", "snowman": "", "goat": ""}
>>> print(javaproperties.dumps(properties))
#Mon Sep 26 14:57:44 EDT 2016
key=value
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
snowman=\u2603

Load some keys & values:

>>> javaproperties.loads('''
... #Mon Sep 26 14:57:44 EDT 2016
... key = value
... goat: \\ud83d\\udc10
... host\\:port=127.0.0.1:80
... #foo = bar
... snowman
... ''')
{'goat': '', 'host:port': '127.0.0.1:80', 'key': 'value', 'snowman': ''}

Dump some properties to a file and read them back in again:

>>> with open('example.properties', 'w', encoding='latin-1') as fp:
... javaproperties.dump(properties, fp)
...
>>> with open('example.properties', 'r', encoding='latin-1') as fp:
... javaproperties.load(fp)
...
{'goat': '', 'host:port': '127.0.0.1:80', 'key': 'value', 'snowman': ''}

Sort the properties you’re dumping:

>>> print(javaproperties.dumps(properties, sort_keys=True))
#Mon Sep 26 14:57:44 EDT 2016
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
key=value
snowman=\u2603

Turn off the timestamp:

35

javaproperties, Release 0.9.0.dev1

>>> print(javaproperties.dumps(properties, timestamp=None))
key=value
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
snowman=\u2603

Use your own timestamp (automatically converted to local time):

>>> print(javaproperties.dumps(properties, timestamp=1234567890))
#Fri Feb 13 18:31:30 EST 2009
key=value
goat=\ud83d\udc10
host\:port=127.0.0.1\:80
snowman=\u2603

Dump as XML:

>>> print(javaproperties.dumps_xml(properties))
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>
<entry key="key">value</entry>
<entry key="goat"></entry>
<entry key="host:port">127.0.0.1:80</entry>
<entry key="snowman"></entry>
</properties>

New in v0.6.0: Dump Unicode characters as-is instead of escaping them:

>>> print(javaproperties.dumps(properties, ensure_ascii=False))
#Tue Feb 25 19:13:27 EST 2020
key=value
goat=
host\:port=127.0.0.1\:80
snowman=

36 Chapter 9. Examples

CHAPTER

TEN

INDICES AND TABLES

• genindex

• search

37

javaproperties, Release 0.9.0.dev1

38 Chapter 10. Indices and tables

PYTHON MODULE INDEX

j
javaproperties, ??

39

javaproperties, Release 0.9.0.dev1

40 Python Module Index

INDEX

C
Comment (class in javaproperties), 23
copy() (javaproperties.Properties method), 13
copy() (javaproperties.PropertiesFile method), 17

D
defaults (javaproperties.Properties attribute), 13
dump() (in module javaproperties), 4
dump() (javaproperties.PropertiesFile method), 17
dump_xml() (in module javaproperties), 10
dumps() (in module javaproperties), 5
dumps() (javaproperties.PropertiesFile method), 18
dumps_xml() (in module javaproperties), 10

E
escape (javaproperties.InvalidUEscapeError attribute),

23
escape() (in module javaproperties), 21

G
getProperty() (javaproperties.Properties method), 13

H
header_comment (javaproperties.PropertiesFile prop-

erty), 18

I
InvalidUEscapeError, 23
is_timestamp() (javaproperties.Comment method), 23

J
java_timestamp() (in module javaproperties), 21
javaproperties

module, 1
javapropertiesreplace, 24
javapropertiesreplace_errors() (in module

javaproperties), 24
join_key_value() (in module javaproperties), 21

K
key (javaproperties.KeyValue attribute), 24

KeyValue (class in javaproperties), 24

L
load() (in module javaproperties), 6
load() (javaproperties.Properties method), 13
load() (javaproperties.PropertiesFile class method), 19
load_xml() (in module javaproperties), 10
loadFromXML() (javaproperties.Properties method), 14
loads() (in module javaproperties), 6
loads() (javaproperties.PropertiesFile class method),

19
loads_xml() (in module javaproperties), 11

M
module

javaproperties, 1

P
parse() (in module javaproperties), 23
Properties (class in javaproperties), 13
PropertiesElement (class in javaproperties), 23
PropertiesFile (class in javaproperties), 17
propertyNames() (javaproperties.Properties method),

14

S
setProperty() (javaproperties.Properties method), 14
source (javaproperties.PropertiesElement attribute), 23
source_stripped (javaproperties.Comment property),

24
source_stripped (javaproperties.PropertiesElement

property), 23
store() (javaproperties.Properties method), 14
storeToXML() (javaproperties.Properties method), 14
stringPropertyNames() (javaproperties.Properties

method), 15

T
timestamp (javaproperties.PropertiesFile property), 19
to_comment() (in module javaproperties), 22

41

javaproperties, Release 0.9.0.dev1

U
unescape() (in module javaproperties), 22

V
value (javaproperties.Comment property), 24
value (javaproperties.KeyValue attribute), 24

W
Whitespace (class in javaproperties), 24

42 Index

	Simple Line-Oriented .properties Format
	Format Overview
	File Encoding
	Functions

	XML .properties Format
	Format Overview
	Functions

	Properties Class
	PropertiesFile Class
	Low-Level Utilities
	Low-Level Parsing
	Custom Encoding Error Handler

	Command-Line Utilities
	Changelog
	v0.9.0 (in development)
	v0.8.1 (2021-10-05)
	v0.8.0 (2020-11-28)
	v0.7.0 (2020-03-09)
	v0.6.0 (2020-02-28)
	v0.5.2 (2019-04-08)
	v0.5.1 (2018-10-25)
	v0.5.0 (2018-09-18)
	v0.4.0 (2017-04-22)
	v0.3.0 (2017-04-13)
	v0.2.1 (2017-03-20)
	v0.2.0 (2016-11-14)
	v0.1.0 (2016-10-02)

	Installation
	Examples
	Indices and tables
	Python Module Index
	Index

