Jacquard Documentation
Release 0.42

Jessica Bene, Ashwini Bhasi, Chris Gates, Divya Kriti, Kevin Men:

Oct 30, 2018

Contents

2.1 PrerequiSiteso e e
22 Installing

4.1 Translate
42 MErge . . o v v i e e e e e e e e
43 Summarize e e e e e
44 Expand

5.1 Still Have Questions?

Overview

1.1 Why would I use Jacquard?
Installing Jaquard

Quick Start

Command Details

Frequently Asked Questions
Changelog

6.1 1.1.1(10/30/2018)
6.2 1.1.0(6/18/2018)
6.3 1.0.0(6/5/2018) oo
6.4 0.42(9/22/2015)
6.5 041(5/712015)o
6.6 031@/17/2015)
6.7 03(3/9/2015)
6.8 0.21(10/2014) o

Future Directions

Implementation details

8.1 Coding Conventions
8.2 TestConventions v v v v v v ...
8.3 General Architecture:

References

1.2 ContactUs i

[SCRESSR

9]

...................... 33

10 License

Bibliography

39

43

CHAPTER 1

Overview

Jacquard is an open source suite of Python command line tools that provides a practical approach to integrating
multiple patient samples and multiple variant callers. Jacquard is designed to be used by bioinformatic analysts; the
output is intended to be useful to analysts and biological researchers. Both Jacquard and its documentation assume
that users the basics of variant callers and VCF files. For more information about VCF files, see the Hts-specs.

1.1 Why would | use Jacquard?

Jacquard makes it easier to analyze multi-patient tumor-normal datasets especially when using multiple vairant callers.

Most variant callers have embraced the Variant Call Format (VCF) standard /2], a file format which clearly and
succinctly describes variants from one or more samples. However, while many callers follow the standard, they often
adopt different ways to partition results (e.g. somatic file vs. germline file, or SNP vs. indel); likewise, each caller
creates its own dialect of VCF fields and tags [73] [r5] [r7].

Moreover, each variant caller follows its own algorithms, and produces different results for the same inputs. Because
of this, it is valuable to run data through multiple variant callers and compare the outputs [r3] [r5] [r7]. However,
since each caller has its own dialect, direct comparisons are difficult.

Jacquard transforms the dialects of different variant callers into a controlled vocabulary of tags with a consistent
representation of values. Furthermore, it intelligently merges VCFs from different patients and callers to create a
single, unified VCF across your dataset. The consistent tag names and represntations expedite downstream analysis;
the intgrated VCF highlights both the prevelance of specific variants and the overall mutation loads across samples.

Jacquard can merge or expand VCFs from any variant caller. Jacquard can translate depth, alt frequency, somatic
status, and genotype tags from several somatic variant callers:

e MuTect [r]]
e VarScan [r4]
e Strelka [r6]

http://samtools.github.io/hts-specs/

Jacquard Documentation, Release 0.42

12,12:0,0:23,23:0,0 | 100

"33.7%"] 00

0.32 100

0.34 100 0.32 85

VarScan

Fig. 1: Jacquard normalized VCF dialects: Each variant caller records depth or alt frequency with a different tag
name and representation. Jacquard translates format tags from different callers into a uniform set of tags.

2 Chapter 1. Overview

Jacquard Documentation, Release 0.42

1.2 Contact Us

Email bfx-jacquard @umich.edu for support and questions.

UM BRCEF Bioinformatics Core

1.2. Contact Us 3

mailto:bfx-jacquard@umich.edu

Jacquard Documentation, Release 0.42

4 Chapter 1. Overview

CHAPTER 2

Installing Jaquard

Jacquard has been tested with Python 2.7 and 3.4 on Windows7, OSX, and *nix.

2.1 Prerequisites

Note: Pip installs all required libraries; see [Installing] below.

e natsort (3.5.2)

* nosetests, testfixtures (3.0.2), and numpy (>=1.7.1) are required for running automated tests

2.2 Installing

The easiest way to install Jacquard is through PyPI. Get pip if it’s not available in your system:

’$ pip install jacquard

You can install from source from github:

’$ pip install git+https://github.com/umich-brcf-bioinf/Jacquard

If you don’t have root permissions, you can install locally:

’$ pip install --user jacquard

Note: You may need to modify your path to include the Python install dir (e.g. /Users/<username>/.local/bin)

Jacquard Documentation, Release 0.42

6 Chapter 2. Installing Jaquard

CHAPTER 3

Quick Start

This is a simple tutorial on how to use the four Jacquard commands.

1. Install Jacquard (see /nstalling Jaguard).

2. Unzip the examples. zip file to your home directory (or other directory of your choice).

The examples directory contains sample input VCFs from five patients run with three variant callers. The input
VCFs are based on a subset of actual variant calls from clinical data; the samples were de-identified and VCF
positions have been randomized to prevent downstream identification. As a result of randomization, the sample
VCEF reference calls at a specific position don’t always match the base calls from a reference sequence.

Along with the inputs, the example dierctory contains output from each Jacquard command, as explained below.

3. Create an output directory.

4. The translate command creates new VCFs, adding a controlled vocabulary of new FORMAT tags.

$ jacquard translate examples/00-input_vcfs/ <output_dir>

Jacquard Documentation, Release 0.42

5. The merge command integrates a directory of VCFs into a single VCF.

$ jacquard merge examples/Ol-translated/ <output_vcf_file>

6. The summarize command adds new INFO fields and FORMAT tags that combine variant data from the
merged VCF.

$ jacquard summarize examples/02-merged.vcf <output_vcf_file>

7. The expand command explodes a VCF file into a tab-delimited file.

$ jacquard expand examples/03-summarized.vcf <output_tsv_file>

Refer to Overview for more information on Jacquard.

8 Chapter 3. Quick Start

CHAPTER 4

Command Details

Jacquard is a suite of tools that can be either run in succession or individually; the typical workflow is to run:

4.1 Translate

The translate command creates new VCFs, adding a controlled vocabulary of new FORMAT tags. It will only work
with VCF files from the supported variant callers.

4.1.1 Usage

$ jacquard translate <input_dir> <output_dir> [OPTIONS]

positional arguments:

input_dir

Directory containing VCF files (and VarScan high
confidence files)

output_dir

Directory containing VCF files. Will create if doesn’t
exist

and will overwrite files in output directory if —force

optional arguments:

Jacquard Documentation, Release 0.42

A varscan.vecf
CHROM| POS
12 100
B VarsScan tags
Y Y
VarScan + translated tags
C varscan.translated.vef
CHROM| POS
12 100

Fig. 1: Translate adds new FORMAT Tags : (A) Jacquard reads input VCF files (B) deriving new tags based on
information in each variant record and (C) writes new VCFs appending the new tags to the original record.

10 Chapter 4. Command Details

Jacquard Documentation, Release 0.42

—allow_inconsistent_sample_sets

Set this flag if not every patient is
represented by the same set of
caller-VCFs. (For example if you ran
VarScan on only a subset of cases.)

—varscan_hc_filter_file_regex=

Regex pattern that identifies optional
optional VarScan high-confidence filter
files.
The VCEF, high-confidence file pairs
should share the same prefix. For
example, given files:
patientA.snp.vef
patientA.indel.vcf
patientA.snp.fpfilter.pass
patientA.indel.fpfilter.pass
you could enable this option as
varscan_hc_filter_file_regex=
*fpfilter.pass$’

4.1.2 Description
The translate command accepts a directory of VCEF files and creates a new directory of “translated” VCF files, which
include several Jacquard-specific FORMAT tags and their corresponding metaheaders.

You can either gather all input VCFs into a single directory and run translate once or partition VCFs into separate
directories (for example, by variant caller) and run translate once for each input directory. When partitioning into
separate input directories, all file names must be unique.

Currently, translate adds Jacquard-specific FORMAT tags for:
* Allele Frequency
* Depth
* Genotype
* Somatic Status

* Passed: Indicates whether the variant record as a whole passed the VC filters; this tag is used later on when
merging translated VCFs

* Reported: This tag is used when merging translated VCFs.

See VCF metaheader excepts below for more details on how values are derived:

4.1. Translate 11

Jacquard Documentation, Release 0.42

4.1.3 Strelka Translated Tags

Tag name

Description

JQ_SK_AF

Jacquard allele frequency for Strelka: Decimal allele
frequency rounded to 4 digits (based on

alt_depth/total_depth. Uses [TIR tier 2]/DP2 if
available,

otherwise uses (ACGT tier2 depth) / DP2)

JQ_SK_DP

Jacquard depth for Strelka (uses DP2 if available,
otherwise

uses ACGT tier2 depth)

JQ_VS_GT

Jacquard genotype (based on SGT).

Example for snv: ALT=C, INFO SGT=AA->AC is
translated as

normal=0/0, tumor=0/1.
Example for indel: INFO SGT=ref->het is translated as
normal=0/0, tumor=0/1.

JQ_VS_HC_SOM

Jacquard somatic status for Strelka:

O=non-somatic,1=somatic (based on PASS in FILTER
column)

12

Chapter 4. Command Details

Jacquard Documentation, Release 0.42

4.1.4 MuTect Translated Tags

Tag name

Description
JQ_SK_AF

Jacquard allele frequency for MuTect: Decimal allele

frequency rounded to 4 digits (based on FA).
JQ_SK_DP

Jacquard depth for MuTect (based on DP)
JQ_MT_GT

Jacquard genotype (based on GT)
JQ_MT_HC_SOM

Jacquard somatic status for MuTect:

O=non-somatic,1=somatic (based on SS FORMAT tag)

4.1.5 VarScan Translated Tags

Tag name
Description
JQ_VS_AF
Jacquard allele frequency for VarScan: Decimal allele
frequency rounded to
4 digits (based on FREQ)
JQ_VS_DP
Jacquard depth for VarScan (based on DP)
JQ_VS_GT

Jacquard genotype (based on GT)

JQ_VS_HC_SOM

Jacquard somatic status for VarScan: O=non-somatic,

1=somatic (based on SOMATIC info tag where sample
column is

TUMOR and variant record passed VarScan filter).

4.1. Translate

13

Jacquard Documentation, Release 0.42

Jacquard can incorporate VarScan high-confidence files

To run translate with VarScan calls, Jacquard requires the VarScan VCEF files (snp and/or indel). For each VarScan
VCE, Jacquard can optionally accept VarScan somatic high-confidence files; these are supplemental non-VCF files
that list variant records which passed a more stringent set of VarScan filters.

When high-confidence files are present, the translate command adds a FILTER field value for low-confidence variant
records (i.e. records which may have initially passed filters, but are absent in the high-confidence files).

To use VarScan’s somatic high-confidence files, they must be placed alongside corresponding VarScan VCFs and must
have the same file name prefix as their corresponding VCF file. The high-confidence filename suffix can be specified
using the command line argument.

Example VarScan files:

case_A.varscan.indel.vcf
case_A.varscan.indel.Somatic.hc.filter.pass
case_A.varscan.snp.vef
case_A.varscan.snp.Somatic.hc. filter.pass
case_B.varscan.indel.vcf
case_B.varscan.indel.Somatic.hc.filter.pass

4.2 Merge

The merge command integrates a directory of VCFs into a single VCF. It is caller-agnostic and can be used on any set
of VCF files.

4.2.1 Usage

$ jacquard merge <input_dir> <output_file>
[-—include_format_tags=JQ_.x*]
[-—include_cells=valid]
[-—include_rows=at_least_one_somatic]

positional arguments:

input_dir

Directory containing input VCF files to be merged

output_file
An integrated VCF file

optional arguments:

14 Chapter 4. Command Details

Jacquard Documentation, Release 0.42

—include_format_tags=

Comma-separated user-defined list of regular
expressions for format tags to be included in
output; (defaults to ‘JQ_.*’)

—include_cells=

all: Include all variants

valid: Only include valid variants

passed: Only include variants which passed their
respective filter

somatic: Only include somatic variants

—include_rows=

all: Include all variants at loci
at_least_one_passed: Include all variants at loci
where at least one variant passed
all_passed: Include all variants at loci where
all variants passed
at_least_one_somatic: Include all variants at
loci where at least one variant was high-
confidence somatic
all_somatic: Include all variants at loci where
all variants were high-confidence somatic

—include_all

Equivalent to:
—include_format_tags=".%*’
—include_cells=all
—include_rows=all

Useful when merging untranslated VCFs.

4.2.2 Description

Conceptually, merge has four basic steps, each described in detail below.

1. Integrate matching loci from different VCFs into common rows

2. Combine matching samples from different VCFs into common columns

3. Filter tag values and rows

4. Assemble the subset of FORMAT tags to be included in the final VCF

Integrate matching loci

Merge first develops the superset of all loci (CHROM, POS, REF, and ALT) across the set of all input VCFs. For each
locus, the input VCF FORMAT tags and values are merged into a single row. Input variant record-level fields (such as

4.2. Merge

15

Jacquard Documentation, Release 0.42

FILTER, INFO, etc.) are ignored.

CHROM | POS | REF | ALT | ... | NORMAL | TUMOR

2 [uole 7. Tom: Togs:

12 [l c e[[FoiENaeasy

12 es]71 s 002:.. |0s5a: 12 [aas|T

2 lzo0(7 [al logs:, Togs: 12 lagolT

= =
= = = =
§ §(5(8|3 $
Ele|2|e|&]|&
o) - -
case_C.vcd o 3 ! ! % il
CHROM | POS | REF [ALT|... CHROM [POS [REF [ALT .. i i i i 2 2
12 [100] A | C [-|o42:. [osi:
12 _[uole T[] - 002:_|0.3
Njc|e 0 @:4
2 [us[7[al.l o1 Toas:. 5| T [A | 01:_ 015
E 15| 7|6 |..|002:_|054:..]002:..]050:...] . |
loes: 2 ool 1 al Togs: 200| 7 | A | |o05:_|065:_[005: _|os5:_|00s: _Joss:

Fig. 2: Matching loci : Variant records from separate files that share the same CHROM, POS, REF, ALT are merged

into a single variant record.

Combine matching samples

In the input directory, an individual sample could be called by more than one variant caller. When merging, Jacquard
combines results from the same sample into a single column. Merged sample names are constructed by concatenating
the filename prefix and the VCF column header.

Filename

VCF Column header

Merged sample names

case_A.strelka.vef

#CHROM ... FORMAT SAM-

PLE1 SAMPLE2

case_ AISAMPLE1
case_AISAMPLE2

case_A.mutect.vcf

#CHROM ... FORMAT SAM-

PLE1 SAMPLE2

case_AISAMPLEI1
case_AISAMPLE2

case_B.strelka.vcf

#CHROM ... FORMAT SAM-

PLE3 SAMPLE4

case_ BISAMPLE3
case_BISAMPLE4

case_B.mutect.vcf

#CHROM ... FORMAT SAM-

PLE3 SAMPLE4

case_ BISAMPLE?3
case_BISAMPLE4

Given the input VCFs above, the resulting merged VCF will have four sample columns:

e case_A | SAMPLE1
e case_A | SAMPLE2
e case_ B | SAMPLE3
e case_B | SAMPLE4

Filter cell values and rows

Variant records are filtered to highlight the high-confidence somatic variants.

16

Chapter 4. Command Details

Jacquard Documentation, Release 0.42

patientA.mutect.vcf patientA.varscan.vcf patientA.strelka.vcf
N T N T N T
N T N T N T f N i T i

I

Fig. 3: Combine matching samples : Case-specific information reported in different files is combined into a single
caselsample column.

For VCFs from supported callers, merge filters the result to include only valid variants records where at least one
variant at that loci was somatic. The filter stringency can be set with flags described above. Since these filters operate
on Jacquard tags, merge cannot filter VCFs from unsupported callers; use —include_all for untranslated VCF files.

Assemble the subset of FORMAT tags

Merge builds a new set of INFO tags and returns a subset of incoming FORMAT tags. By default, Jacquard only
carries forward tags that begin with ‘JQ’, i.e. Jacquard-translated tags. When working with VCFs from unsupported
callers, use —include_format_tags or —include_all to merge unstranslated VCFs.

Note that while most variant callers have their own distinct set of FORMAT tags, some tag names are common across
multiple callers. If there are any FORMAT tag name collisions, merge will add a prefix (e.g. JQ1_<original_tag>) in
order to disambiguate the FORMAT tags.

4.3 Summarize

The summarize command adds new INFO fields and FORMAT tags that combine variant data from the merged VCFE.
It will only work with VCF files that have been translated.

4.3.1 Usage

$ jacquard summarize <input_file> <output_file>

positional arguments:

4.3. Summarize 17

Jacquard Documentation, Release 0.42

Legend

- high-confidence somatic variant record (reported by at least one of the callers)

passed variant record (by at at least one of the callers)
failed variant record (by all callers)

invalid variant record (by all callers)

. variant record not reported for this case (by any caller)
" variant record was filtered

A all cells, all rows
variant record | caseA | caseB
vl
w2
w3
v
v
v
w7
B —include_cells = valid . Cc --include_rows = at_least_one_somatic
variant record | case A case B variant record case A case B case C
wl
wa

Fig. 4: Filter cell values and rows : (A) Beginning with the matrix of all variant records, (B) the include_cells
flag transforms excluded cells (sample-records) from their original value to “.” (not-observed). (C) Finally, the in-
clude_row flag excludes entire loci.

18 Chapter 4. Command Details

Jacquard Documentation, Release 0.42

VarScan
FREG
I - stralka
AU:CUGUTY
12,12:0,0:23 23:0.0 MoTect
EA
f.32
| JG V5_AF |
0.34
JG SE_AF
g
1G_MT_AF
0.32
SampleA-113|TUMOR
10_VS_AF 10_SK_AF J_MT_AF 1Q_SUMMARY_AF
0.34 0.32 0.32 0.33

Fig. 5: Summarizing Format Tags : The Jacquard-translated format tags from each caller are aggregated to create
summary format tags.

4.3. Summarize 19

Jacquard Documentation, Release 0.42

input_file
Jacquard-merged VCF file (or any VCF with Jacquard
tags; e.g. JQ_SOM_MT)

output_file
A single VCF file

4.3.2 Description

The summarize command uses the Jacquard-specific tags to aggregate caller information from the file, providing a
summary-level view. Summary fields (e.g. average allele frequency) can highlight interesting variants.

The summarized format tags contain the prefix ‘JQ_SUMMARY’.

Example summary FORMAT tags

Tag name Description
JQ_SUMMARY_AF_AVERAGE

Average allele frequency across recognized variant
callers that reported frequency for this position
[average(JQ_*_AF)].

JQ_SUMMARY_AF_RANGE

Max(allele frequency) - min (allele frequency)
across recognized callers.

JQ_SUMMARY_HC_GT

High confidence consensus genotype (inferred from
JQ_*_GT and JQ_*_CALLER_PASSED). Majority
rules;

ties go to the least unusual variant (0/1>0/2>1/1).
Variants which failed their filter are ignored.

JQ_SUMMARY_SOM_COUNT

Count of recognized variant callers that reported
confident somatic call for this sample-position.

Refer to the summary VCF metaheaders for a full list of summary tags and descriptions.

4.4 Expand

The expand command explodes a VCEF file into a tab-separated file. It is not caller-dependent and will work with any
VCEF file.

20 Chapter 4. Command Details

Jacquard Documentation, Release 0.42

[FIMED FIELDS [INFO PATIENT A | PATENT B |
| | AF DP N T [v T 1t]
Y
o
S
e
Sy

= = = = = = = =
E q| <| ll:| u:II <| <| ll!I u:II
= E - = E = = = = =
2|58 || g |5 |22 |5 |2 |5 2|5 |E|z5|¢z
o = -3 = T = w = = = = = = = = =
o ~lg & | & | £ | f|:f || |f]|EF]|¢=
[c] = = = = = = = =
S E E E 5 S E &

Fig. 6: Expanding Columns : The INFO column and sample-specific FORMAT tags from the input VCF file are
separated into distinct columns in the output file.

4.4.1 Usage

$ jacquard expand <input_file> <output_file> [OPTIONS]

positional arguments:

input_file
A VCF file

output_file
A tab separated text file

optional arguments:

-s, —selected_columns_file FILE

File containing an ordered list of column names to be
included

in the output file; column names can include regular
expressions

4.4.2 Description

Expand command converts a VCF file into a tab-delimited file. This format is more suitable than a VCF for analysis
and visualization in R, Pandas, Excel, or another third-party application.

4.4.3 Note

e The ‘fixed’ fields (i.e. CHROM, POS, ID, REF, ALT, QUAL, FILTER) are directly copied from the input VCF
file.

* Based on the metaheaders, each field in the INFO column is expanded into a separate column named after its
tag ID.

4.4. Expand 21

Jacquard Documentation, Release 0.42

Fig. 7: Tabular format of expand output: Expand transforms the dense VCF format into a tabular format.

e Each FORMAT tag is expanded into a set of columns, one for each sample, named as <FORMAT tag
ID>l<sample column name>.

* By default, all INFO fields and FORMAT tags are expanded; specific INFO fields and FORMAT tags can be
selected using the —selected_columns_file option.

* Expand also emits a tab-delimited glossary file, based on the metaheaders in the input VCF file. FORMAT and
INFO tag IDs are listed in the glossary and are defined by their metaheader description.

Variants Patient Samples
1
2
3 mnann | Bl | B N 1 IIIIIIIII
4
.
| n N i || || X
!
8 | |
) | | X
10
1 |0l BN UNN DN NIM N N AN NN NN DN DEE N NN BN NOE BN EOR WR Il AN IR NEN EER
12
13
14
15 | | |] n |
16 n
1 [| n
18 pinn il mi
19
20 |]
21
22
23
24
25 | [] | |
20 I
27 B
28 | |

Fig. 8: Pattern Identification : The expanded output file can be visualized in a third-party tool to identify patterns in
the dataset.

Translate and summarize commands are useful only for supported callers; merge and expand work for any VCFs.
Each of these commands is described in detail in the following pages.

General usage

$ jacquard <SUBCOMMAND> [ARGUMENTS] [OPTIONS]

For help on a specific command:

$ jacquard <SUBCOMMAND> --help

22 Chapter 4. Command Details

Jacquard Documentation, Release 0.42

* Jacquard first writes output files to a temporary directory and only copies the files upon successful completion
of each subcommand.

* Error, warning, and info messages are written to console and log file. Debug messages are only written to the
log file (unless —verbose specified).

Input File Conventions
 Jacquard assumes that the first element of the filename (up to the first dot) is a patient identifier. For example:
* patientA-113.mutect.vcf
e patientA-113.strelka.snv.vcf
e patientA-113.strelka.indel.vcf

This set of three files all have the same patient identifier (patientA-113). The tumor-normal
sample pairs will be combined into a single pair of tumor-normals columns in the merged
VCEF. See merge for more details.

* To translate a specific VCF dialect, Jacquard determines the source variant caller based on the VCF metaheaders.
For this reason it is essential that you preserve all metaheaders in the source VCF.

* For a specific source VCF, Jacquard automatically determines the tumor and normal samples based on the
column header and the metaheaders.

4.4. Expand 23

Jacquard Documentation, Release 0.42

24 Chapter 4. Command Details

CHAPTER B

Frequently Asked Questions

Is Jacquard a variant caller? Jacquard is not a variant caller. It accepts VCF output from variant callers and inte-
grates them for simplified annotation and analysis.

Can Jacquard annotate data? No, Jacquard cannot annotate data; however the output from translate, merge, and
summarize can be run through an annotation tool such as SnpEff or Annovar.

Can I use Jacquard with any variant caller? Merge and expand are able to process VCF files from any variant
caller. Translate and summarize, however, must be run with VCF files from one or more of the supported
variant callers. Currently, Jacquard supports MuTect, VarScan, and Strelka.

I’d like to merge my VCFs, but my caller isn’t supported by Jacquard. Both merge and expand commands can
be used to show all of the results from different callers without standardization of the input data. However, it is
recommended that the input data be standardized whenever possible to directly compare data across callers.

Does Jacquard work with germline callers? The translate command is optimized to work with tumor-normal sam-
ple pairs. Germline VCFs can be used with merge and expand commands. Better support for germline and
pedigree VCFs is coming soon.

5.1 Still Have Questions?

Email bfx-jacquard @umich.edu for support and questions.

25

http://snpeff.sourceforge.net/index.html
http://annovar.openbioinformatics.org/en/latest/
mailto:bfx-jacquard@umich.edu

Jacquard Documentation, Release 0.42

26 Chapter 5. Frequently Asked Questions

CHAPTER O

Changelog

6.1 1.1.1 (10/30/2018)

* Adjusted Mutect translators to:
— parse normal and tumor designations from SAMPLE metaheaders if available

— recognize more variations of Mutect metaheader formats

6.2 1.1.0 (6/18/2018)

* Adjusted translate to correctly parse newer versions of Mutect
» Updated supported versions for Mutect, Strelka, Varscan

¢ Fixed error in JQ_SUMMARY_DP_AVERAGE tag description

6.3 1.0.0 (6/5/2018)

* Removed obsolete spikes directory

* Fixed bug in expand which could overwrite fixed VCF fields (e.g. REF, ALT, etc.) if identically named fields in
INFO.

» Switched to semantic versioning

6.4 0.42 (9/22/2015)

¢ Added docs on readthedocs.

* Improved workflow documentation with example data

27

Jacquard Documentation, Release 0.42

* Merge will now disambiguate tag collisions from multiple VCs
¢ Translate/summarize now supports GT tags
» Extended precision to 4 decimal places to support analysis of gene-panels.

* Adjusted translate to handle empty high-confidence VarScan files.

6.5 0.41 (5/7/2015)

¢ Combined filter command with merge command

» Extended expand to create simple metaheader glossary

* Adjusted code to support Python >=2.7 or 3.x

 Improved checks for consistent VCF file sets

* Fixed bug in merge that caused error if any VCFs were unsorted

* Fixed bug in summarize that caused error if variant was called by subset of callers

6.6 0.31 (3/17/2015)

* Downgraded VCF format from 4.2 to 4.1
¢ Fixed a bug that omitted CALLERS_REPORTED_LIST summary tag

 Simplified summary tags; removed dependency on numpy

Adjusted VarScan translation to accept a file pattern to identify high-confidence files

6.7 0.3 (3/9/2015)

* Replaced normalize, tag commands with translate; relaxed constraints on incoming data.
* Renamed consensus to summarize

* More consistent behavior in expand

» Significantly improved merge performance
* Added new summary tags:
CALLERS_REPORTED_COUNT
CALLERS_REPORTED_LIST
SAMPLES_REPORTED_COUNT
CALLERS_PASSED_COUNT
CALLERS_PASSED_LIST

— SAMPLES_PASSED_COUNT

* Fixed bug in how Strelka calculated AF on indels
¢ Improved command validation and error handling

* Added project/code documentation

28 Chapter 6. Changelog

Jacquard Documentation, Release 0.42

* Removed dependencies on pandas

6.8 0.21 (10/2014)

* Initial public release

6.8. 0.21 (10/2014) 29

Jacquard Documentation, Release 0.42

30 Chapter 6. Changelog

CHAPTER /

Future Directions

Parallelize translate

Improve performance of merge

Add weave command to combine translate, merge, summarize

Extend expand to parse SnpEff/Annovar annotated results

Extend expand to generate formatted results

Improve command validation (check source tags, check “shape” of inputs)
Enable 4.2/4.3 VCF support

Add support for new somatic callers

Add support for Germline workflows

Add support for Galaxy integration

Add gene-level rollup for annotated data

31

Jacquard Documentation, Release 0.42

32 Chapter 7. Future Directions

CHAPTER 8

Implementation details

8.1 Coding Conventions

Code should support Python 2.7 and 3.x without modification.

» Use pylint to keep code PEP8 compliant.

* Name variables, method, directory, module names as my_thing.

* Name classes as MyClass.

* Use absolute imports.

* Encapsulate where possible; prefix private vars/methods/classes with “_".

* Avoid globals.

8.2 Test Conventions

* Use nosetests for automated testing.

» Each module has a corresponding module_test.
 TestCases should extend JacquardBaseTestCase

* Top level methods are tested in ModuleTestCase.

* Each class should have a test case (e.g. MyClassTestCase)

* Every code path should have a unit test; prefer single assert per test. A test method name should reflect the
method and code path as {test_method_name}_{conditionUnderTest}; e.g.

def test_my_method_returnsZeroIfMissingInput (self):

* Every command should have a functional test

e Prefer unit tests to functional tests

33

Jacquard Documentation, Release 0.42

* Prefer tests on public methods, but note that it is sometimes easier to test a private method. Use good judgement.
* Attempt PEPS compliance.

* Make unit tests independent.

8.3 General Architecture:

Modules are typically one of these:

» commands (like franslate): these modules are invoked from the command line; they follow a simple
command pattern.

e variant caller transforms (like mutect): these modules contain classes that add Jacquard annotations to a
native VCF record.

« utilities (like vcf or logger): these modules provide a common method or class used by other modules.

Note that translate is the only command that should understand variant caller dialects; other commands should be
caller agnostic.

Extending and adapting existing patterns will ensure commands/transforms stay consistent. Here are some guidelines
on how to extend functionality:

8.3.1 How to add a new format tag:

For all variant callers that support the new tag, you will need to extend each variant caller transform to:

¢ define the new tag (set the metaheader and how the new value is derived); by convention, tags ID values are
JQ_<caller_abbreviation>_<tag_name>

* add the new tag to the variant caller’s reader

Note: If the new tag can be summarized, you will also need to add a corresponding tag to summa-
rize_rollup_transform.

8.3.2 How to add a new variant caller:

¢ Add a new module in variant_caller_transforms.

* In the new module, define the supported version.

* Add supported tags (as described in section above).

* Add a VcfReader class to interpret native VCFs to translated VCFs.

* Add a new class named for the variant caller; define a claim method to recognize and claim VCF files.
* Add the new variant caller class to variant_caller_factory.

..note:: The variant caller should have no dependencies on other packages (except utils and vcf) and classes
should only refer to variant callers through variant_caller_factory (except tests).

34 Chapter 8. Implementation details

Jacquard Documentation, Release 0.42

8.3.3 How to add a new command:

* Add a new module in jacquard, named for the command.

¢ In the new module, add the methods:

add_subparser(subparser) with appropriate help and defaults.

get_required_input_output_types().

validate_args(args).

report_prediction

execute(args, execution_context).

Note: Commands are independent and should not refer to other commands.

w variant_caller_transforms/mutect. py

> varscan.py
jacquard.py utils/fcommand_validator.py translate.py sl

|] |

1 1

|
| specifies command-line
options and arguments

» | |

| |

validates command-ine | |

options and arguments |
| |
validation of command-line | |

k== options and arguments: -

|
determines desired command
1

Y

I
|

[}

|

|

I

|

|

I

|

|

|

|

1

|

1

|

detemmines varant caller |
for each input VCF file h
|

|

|

|
|
1
|
|
|
| FORMAT tag values
|

|

|

|

8
i
£
8
i

'
————————————— writestransformed VCF files to output directory- — — — — — — — — — — — — — —
|
I

ey it

Fig. 1: UML Sequence Diagram : An example UML sequence diagram for Translate. Other commands follow a
similar sequence.

8.3. General Architecture: 35

Jacquard Documentation, Release 0.42

36 Chapter 8. Implementation details

CHAPTER 9

References

37

Jacquard Documentation, Release 0.42

38 Chapter 9. References

cHAaPTER 10

License

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

“License” shall mean the terms and conditions for use, reproduction, and distribution as defined by
Sections 1 through 9 of this document.

“Licensor” shall mean the copyright owner or entity authorized by the copyright owner that is grant-
ing the License.

“Legal Entity” shall mean the union of the acting entity and all other entities that control, are con-
trolled by, or are under common control with that entity. For the purposes of this definition, “control”
means (i) the power, direct or indirect, to cause the direction or management of such entity, whether
by contract or otherwise, or (ii) ownership of fifty percent (50%) or more of the outstanding shares,
or (iii) beneficial ownership of such entity.

“You” (or “Your”) shall mean an individual or Legal Entity exercising permissions granted by this
License.

“Source” form shall mean the preferred form for making modifications, including but not limited to
software source code, documentation source, and configuration files.

“Object” form shall mean any form resulting from mechanical transformation or translation of a
Source form, including but not limited to compiled object code, generated documentation, and con-
versions to other media types.

“Work” shall mean the work of authorship, whether in Source or Object form, made available under
the License, as indicated by a copyright notice that is included in or attached to the work (an example
is provided in the Appendix below).

“Derivative Works” shall mean any work, whether in Source or Object form, that is based on (or
derived from) the Work and for which the editorial revisions, annotations, elaborations, or other

39

Jacquard Documentation, Release 0.42

modifications represent, as a whole, an original work of authorship. For the purposes of this License,
Derivative Works shall not include works that remain separable from, or merely link (or bind by
name) to the interfaces of, the Work and Derivative Works thereof.

“Contribution” shall mean any work of authorship, including the original version of the Work and
any modifications or additions to that Work or Derivative Works thereof, that is intentionally submit-
ted to Licensor for inclusion in the Work by the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the purposes of this definition, “sub-
mitted” means any form of electronic, verbal, or written communication sent to the Licensor or its
representatives, including but not limited to communication on electronic mailing lists, source code
control systems, and issue tracking systems that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding communication that is conspicuously
marked or otherwise designated in writing by the copyright owner as “Not a Contribution.”

“Contributor” shall mean Licensor and any individual or Legal Entity on behalf of whom a Contri-
bution has been received by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of, publicly display, publicly perform,
sublicense, and distribute the Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of this License, each Contributor
hereby grants to You a perpetual, worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made, use, offer to sell, sell, import,
and otherwise transfer the Work, where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their Contribution(s) alone or by combination
of their Contribution(s) with the Work to which such Contribution(s) was submitted. If You institute
patent litigation against any entity (including a cross-claim or counterclaim in a lawsuit) alleging
that the Work or a Contribution incorporated within the Work constitutes direct or contributory
patent infringement, then any patent licenses granted to You under this License for that Work shall
terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the Work or Derivative Works thereof in
any medium, with or without modifications, and in Source or Object form, provided that You meet
the following conditions:

(a) You must give any other recipients of the Work or Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices stating that You changed the files;
and

(c) You must retain, in the Source form of any Derivative Works that You distribute, all copyright,
patent, trademark, and attribution notices from the Source form of the Work, excluding those
notices that do not pertain to any part of the Derivative Works; and

(d) If the Work includes a “NOTICE” text file as part of its distribution, then any Derivative Works
that You distribute must include a readable copy of the attribution notices contained within
such NOTICE file, excluding those notices that do not pertain to any part of the Derivative
Works, in at least one of the following places: within a NOTICE text file distributed as part
of the Derivative Works; within the Source form or documentation, if provided along with the
Derivative Works; or, within a display generated by the Derivative Works, if and wherever such
third-party notices normally appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add Your own attribution notices within
Derivative Works that You distribute, alongside or as an addendum to the NOTICE text from
the Work, provided that such additional attribution notices cannot be construed as modifying
the License.

40 Chapter 10. License

Jacquard Documentation, Release 0.42

You may add Your own copyright statement to Your modifications and may provide additional or
different license terms and conditions for use, reproduction, or distribution of Your modifications,
or for any such Derivative Works as a whole, provided Your use, reproduction, and distribution of
the Work otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise, any Contribution intentionally
submitted for inclusion in the Work by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions. Notwithstanding the above, nothing herein
shall supersede or modify the terms of any separate license agreement you may have executed with
Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade names, trademarks, service
marks, or product names of the Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or agreed to in writing, Licensor pro-
vides the Work (and each Contributor provides its Contributions) on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied, including, without
limitation, any warranties or conditions of TITLE, NON-INFRINGEMENT, MERCHANTABIL-
ITY, or FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for determining
the appropriateness of using or redistributing the Work and assume any risks associated with Your
exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory, whether in tort (including negligence),
contract, or otherwise, unless required by applicable law (such as deliberate and grossly negligent
acts) or agreed to in writing, shall any Contributor be liable to You for damages, including any
direct, indirect, special, incidental, or consequential damages of any character arising as a result of
this License or out of the use or inability to use the Work (including but not limited to damages for
loss of goodwill, work stoppage, computer failure or malfunction, or any and all other commercial
damages or losses), even if such Contributor has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing the Work or Derivative Works
thereof, You may choose to offer, and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted against, such Contributor by reason of your
accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

41

Jacquard Documentation, Release 0.42

42 Chapter 10. License

Bibliography

[r1] Cibulskis K et al. Sensitive detection of somatic point mutations in impure and heterogeneous cancer samples.
Nat Biotechnol 2013, 31:213-219.

[r2] Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, et al. The variant call format and VCFtools.
Bioinformatics 2011; 27: 2156-8.

[r3] Kim SY, Speed TP. Comparing somatic mutation-callers: beyond Venn diagrams. BMC Bioinformatics 2013,
14:189.

[r4] Koboldt DC et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome se-
quencing. Genome Res 2012, 22:568-576.

[r5] O’Rawe J et al. Low concordance of multiple variant-calling pipelines: practical implications for exome and
genome sequencing. Genome Med 2013, 5:28.

[r6] Saunders CT et al. Strelka: accurate somatic small-variant calling from sequenced tumor-normal sample pairs.
Bioinformatics 2012, 28:1811-7.

[r7] Xu H. et al. Comparison of somatic mutation calling methods in amplicon and whole exome sequence data. BMC
Genomics 2014, 15: 244.

43

	Overview
	Why would I use Jacquard?
	Contact Us

	Installing Jaquard
	Prerequisites
	Installing

	Quick Start
	Command Details
	Translate
	Merge
	Summarize
	Expand

	Frequently Asked Questions
	Still Have Questions?

	Changelog
	1.1.1 (10/30/2018)
	1.1.0 (6/18/2018)
	1.0.0 (6/5/2018)
	0.42 (9/22/2015)
	0.41 (5/7/2015)
	0.31 (3/17/2015)
	0.3 (3/9/2015)
	0.21 (10/2014)

	Future Directions
	Implementation details
	Coding Conventions
	Test Conventions
	General Architecture:

	References
	License
	Bibliography

