

Jackalope: a slacky Jamf Pro notification plugin

[image: _images/jackalope.png]
Welcome to Jackalope’s documentation (still a work-in-progress)!

Getting Started

	Create the Slack App for Your Team

	Deploying the Slack App
	Run from application.py

	Testing with ngrok

	Environment Variables

	Using create_app()

	Docker Example
	Connect to a Docker Host

	Docker Environment Variables

	Build and Run the Containers

Backend

	Routes
	GET: /

	GET: /install

	POST: /jamf/<uuid>

	Slack Notifications

	Exceptions

Create the Slack App for Your Team

Before deploying the app on a server, you will need to create it for your Slack
team at https://api.slack.com/apps .

[image: ../_images/slack_create_app_1.png]
You will need to enable Incoming Webhooks...

[image: ../_images/slack_create_app_2.png]
...and set a Redirect URL that points to:

https://jackalope.mydomain.org/install

[image: ../_images/slack_create_app_3.png]
With those two steps complete you will be able to copy the following values for
use with the deployed application environment:

	Basic Information/App Credentials/Client ID

	Basic Information/App Credentials/Client Secret

[image: ../_images/slack_create_app_4.png]

	Manage Distribution/Share Your App with Your Team/Shareable URL

[image: ../_images/slack_create_app_5.png]

Note

You will need to set these into environment variables details in the
deployment documentation. See Environment Variables.

Deploying the Slack App

Jackalope is written in Python using the Flask framework. This
gives a wide variety of options in deploying the application in your environment
from installing onto a standalone server, a cloud instance, or within a
container.

Note

If you are testing, skip to Run from application.py below.

You will need the following components to deploy the application:

	A web server or load balancer to serve traffic over TLS

	A WSGI server (uWSGI or Gunicorn for example) to run the application code

	A MySQL server

The application will only connect to a MySQL server if all of the required
Environment Variables have been provided. If not, a local SQLite database
will be created within the application directory.

In a cloud instance deployments you can use services such as:

	Amazon Elastic Beanstalk [http://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html]

	Heroku [https://devcenter.heroku.com/articles/getting-started-with-python#introduction]

	Google Apps Engine [https://cloud.google.com/appengine/docs/standard/python/getting-started/python-standard-env]

Run from application.py

This script creates the root application object from the
jackalope.create_app() application factory function. If the script has
been called from the command line an instance will be launched in a local
development server.

$ python application.py

The development server will be accessible at:

http://localhost:5000

If the application is being deployed with a WSGI framework, configure the WSGI
server to point to the application.py file and the application object.

Alternatively, the WSGI framework can instantiate and customize an application
object using jackalope.create_app().

Testing with ngrok

For testing, you can use the ngrok [https://ngrok.com/] secure tunneling
service to expose the application to the internet and access it using both HTTP
and HTTPS.

Note

ngrok will create randomized subdomains each time you execute the
binary (e.g. 4951502d.ngrok.io). Custom subdomain names are a part of a
paid subscription.

Once you have the ngrok binary you can create your tunnel.

Expose a local port on your client (5000 in this example):

$ ngrok http 5000 --bind-tls true

Expose a port on another host from your client (such as a running Docker host):

$ ngrok http 192.168.99.100:5000 --bind-tls true

When ngrok is running you will see the available public endpoints in the
window and a stream of traffic logging. Going to http://127.0.0.1:4040 in
your browser will show the web UI and additional details on the requests that
are being made through the tunnel.

Environment Variables

Configuration settings are applied at runtime from the environment variables
detailed below.

	
DEBUG

	Run the application in debug mode (additional logging).

This setting will set to True if any value is provided. To leave this
setting disabled do not set it in the environment.

	
SECRET_KEY

	The secret key is a value used to secure sessions with the application.

If a value is not present the application will generate a 16-byte key using
os.urandom().

	
SERVER_NAME

	The domain name of the application server.

Example:

jackalope.mydomain.org

	
SLACK_CLIENT_ID

	The client ID for the Slack application.

This is obtained during the app creation process at:

https://api.slack.com/apps

	
SLACK_CLIENT_SECRET

	The client secret key for the Slack application.

This is obtained during the app creation process at:

https://api.slack.com/apps

	
SLACK_SHAREABLE_URL

	The URL provided by Slack for installing the application to channels. This
is used for the installation page’s “Add to Slack” button that is provided
as a part of this application.

This is obtainted during the app create process at:

https://api.slack.com/apps

Note

The following database values are required when connecting Jackalope
to a MySQL server. If they are omitted, a SQLite database will be created
within the application directory. This is not recommended for production
deployments.

	
DATABASE_URL

	The URL to the MySQL server with the port.

Example:

localhost:3306
database.mydomain.org:3306

	
DATABASE_NAME

	The name of the MySQL database residing on the server.

	
DATABASE_USER

	The username to access the database with.

	
DATABASE_PASSWD

	The password to the user accessing the database.

Using create_app()

	
jackalope.create_app()

	Create the root application object, configure the database object, and
register all blueprints from jackalope.routes.

	Returns:	Flask application

	Return type:	flask.Flask

Docker Example

The docker directory within the Github repository is an example of deploying
Jackalope using Docker containers and the docker-compose utility.

Warning

This example is not configured for HTTPS traffic - only HTTP over
port 80. A production deployment should be configured with a certificate
to encrypt traffic using TLS.

docker-compose will start three containers (nginx, web - the
application - and mysql) on the host. It will also create a volume attached
to the mysql container to persist the database between container tear-downs
(but be warned: if the volume is deleted the database will be lost!).

In your shell/Terminal, cd into the docker directory before continuing.

Connect to a Docker Host

$ eval $(docker-machine env yourhost)

Docker Environment Variables

Set the following environment variables within your shell/Terminal:

	DEBUG

	SECRET_KEY

	SERVER_NAME

	SLACK_CLIENT_ID

	SLACK_CLIENT_SECRET

	SLACK_SHAREABLE_URL

	MYSQL_ROOT_PASSWORD

	MYSQL_DATABASE

	MYSQL_USER

	MYSQL_PASSWORD

Build and Run the Containers

$ docker-compose build
$ docker-compose up -d

You will be able to access the application at the IP address of the Docker host.

Note

You can use ngrok to create a secure tunnel to the Docker host
and expose it on the public internet to test with Slack. See
Testing with ngrok for more details.

Routes

GET: /

	
jackalope.routes.install.root()

	Renders the “Add to Slack” page.

GET: /install

	
jackalope.routes.install.install()

	The installation endpoint as set in the “Redirect URLs” for the Slack
application under “OAuth & Permissions”.

A code parameter will be provided by Slack to this URL once an
installing user has authorized the application for a channel.

Using the code along with the application’s set SLACK_CLIENT_ID and
SLACK_CLIENT_SECRET values, the application will make a POST to
https://slack.com/api/oauth.access to obtain an access_token and
other details for the channel installation.

Upon an ok response to the request, the details will be saved to the
database, a UUID will be generated for receiving Jamf Pro webhooks, and a
success message displayed in the Slack channel.

If the Slack channel already exists in the database its details will be
updated with those from the response.

POST: /jamf/<uuid>

	
jackalope.routes.jamfpro.jamf_webhook(jamf_uuid)

	The receiver endpoint where jamf_uuid is the auto-generated UUID for
and installed Slack channel.

Inbound webhooks must be in JSON format or a 400 error will be returned.

If a supported webhook event has been received it will be formatted into
a Slack message via
jackalope.routes.jamfpro.webhooks.webhook_notification() and sent via
jackalope.slack.send_notification().

	Parameters:	jamf_uuid (str) – The generated UUID for the installed Slack channel.

	Raises:	SlackChannelLookupError

	Raises:	JSONNotProvided

	Returns:	HTTP 204 success response.

Slack Notifications

These functions handle the processing of Jamf Pro webhook events to Slack
notifications.

	
jackalope.routes.jamfpro.webhooks.webhook_notification(webhook)

	Takes a Jamf Pro webhook event object and returns a formatted Slack
message from the details if it is in the supported webhook events list.

If the webhook event is not supported None will be returned.

	Parameters:	webhook – Jamf Pro webhook JSON as dictionary.

	Returns:	Formatted Slack message.

	Return type:	dict or None

	
jackalope.routes.jamfpro.webhooks._message(text, title, title_link=None, color='gray', fallback_text=None, image=None, fields=None)

	Create a Slack formatted message to use with
jackalope.slack.send_notification().

	Parameters:	
	text (str) – The main text to display in the message.

	title (str) – The title of the message.

	title_link (str) – An optional URL to pass that will convert the title
into a clickable link.

	color (str) – The color to display in the sidebar of the message. Must
be of a value in the _colors dictionary or will default to gray.

	fallback_text (str) – Alternative text to display in place of the
provided text value. If not submitted this will be set to the value
of text.

	image (str) – The filename of an image located in /static/images/ to
link to with the message. If not submitted this will be set to
general_64.png.

	fields (dict) – A dictionary of keyword values to populate the optional
fields attribute of the Slack message.

	
jackalope.slack.send_notification(url, message)

	Send a formatted Slack message to a channel’s inbound webhook.

	Parameters:	
	url (str) – The URL for a Slack channel’s inbound webhook.

	message (dict) – A formatted Slack message generated by
jackalope.routes.jamfpro.webhooks._message().

Exceptions

	
class jackalope.routes.errors.JackalopeException

	Base Jackalope Exception

	
class jackalope.routes.errors.JSONNotProvided

	A valid JSON body was not provided with a request.

	
class jackalope.routes.errors.SlackChannelLookupError

	Exception raised when performing a lookup of an installed Slack channel.

 Python Module Index

 a |
 j

 		 	

 		
 a	

 	
 	
 application	

 		 	

 		
 j	

 	[image: -]
 	
 jackalope	

 	
 	
 jackalope.config	

 	
 	
 jackalope.routes.errors	

Index

 _
 | A
 | C
 | E
 | I
 | J
 | R
 | S
 | W

_

 	
 	_message() (in module jackalope.routes.jamfpro.webhooks)

A

 	
 	application (module)

C

 	
 	create_app() (in module jackalope)

E

 	
 	
 environment variable

 	DATABASE_NAME

 	DATABASE_PASSWD

 	DATABASE_URL

 	DATABASE_USER

 	DEBUG

 	SECRET_KEY

 	SERVER_NAME

 	SLACK_CLIENT_ID

 	SLACK_CLIENT_SECRET

 	SLACK_SHAREABLE_URL

I

 	
 	install() (in module jackalope.routes.install)

J

 	
 	jackalope.config (module)

 	jackalope.routes.errors (module)

 	
 	JackalopeException (class in jackalope.routes.errors)

 	jamf_webhook() (in module jackalope.routes.jamfpro)

 	JSONNotProvided (class in jackalope.routes.errors)

R

 	
 	root() (in module jackalope.routes.install)

S

 	
 	send_notification() (in module jackalope.slack)

 	
 	SlackChannelLookupError (class in jackalope.routes.errors)

W

 	
 	webhook_notification() (in module jackalope.routes.jamfpro.webhooks)

 _static/minus.png

_static/comment-close.png

_static/up.png

_static/file.png

_static/plus.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/up-pressed.png

_images/slack_create_app_5.png
Sharable URL

https://slack.com/oauth/authorize?&client_id= &scop Copy

_images/slack_create_app_1.png
- Create an App

App Name

Jackalope

Don’t worry; you'll be able to change this later.

Development Slack Team

B Team Bryson v

Your app belongs to this team—leaving this team will remove your ability to

manage this app. Unfortunately, this can’t be changed later.

By creating a Web API Application, you agree to the Slack APl Terms of

Service.
Cancel Create App

_images/slack_create_app_2.png
Incoming Webhooks

Activate Incoming Webhooks

_images/slack_create_app_4.png
App Credentials

These credentials allow your app to access the Slack API. They are secret. Please don't share
your app credentials with anyone, include them in public code repositories, or store them in
insecure ways.

Client ID

Client Secret

) Show Regenerate

You'll need to send this secret along with your client ID when making your oauth.access request.

nav.xhtml

 Table of Contents

 		Jackalope: a slacky Jamf Pro notification plugin

 		Create the Slack App for Your Team

 		Deploying the Slack App

 		Run from application.py

 		Testing with ngrok

 		Environment Variables

 		Using create_app()

 		Docker Example

 		Connect to a Docker Host

 		Docker Environment Variables

 		Build and Run the Containers

 		Routes

 		GET: /

 		GET: /install

 		POST: /jamf/<uuid>

 		Slack Notifications

 		Exceptions

_images/slack_create_app_3.png
Redirect URLs

You will need to configure redirect URLs in order to automatically generate the Add to Slack
button or to distribute your app. If you pass a URL in an OAuth request, it must (partially) match
one of the URLs you enter here. Learn more

Redirect URLs

https://jackalope.mydomain.org/install & ﬁ

Add a new Redirect URL

Save URLs

_images/jackalope.png
#jackalope
% | &2 | %0 | Add a topic @ Da Q_ Search

| Today at 9:41 AM

Computer Added
A new computer has been added! -
ID: 1 | Serial Number: C2MS5J3DF0Q1

Computer Name: | User:
Today at 9:45 AM

Mobile Device Un-Enrolled
A mobile device been un-enrolled! .
ID: 1 | Serial Number: CLH3QKPZ1FXD

Device Name: | User:

Today at 9:45 AM

Mobile Device Check-In
A mobile device check-in has occurred. .
ID: 1 | Serial Number: FCPGDENBH2M3

‘ Device Name: | User:

Today at 9:45 AM

REST API Operation

A REST API operation has been performed. ‘%’
API Object Type TypeName | Name: Name | ID: 1

User: bryson.tyrrell | Action: GET | Success? True

Today at 9:46 AM

Patch Definition Update

Jamf Pro has received a new patch definition update. @
Click here to view the report

Software Title: Microsoft Word | New Version: 15.99.0
Today at 9:46 AM

_static/comment.png

_static/down.png

