
IXN Website, Events, SSIGs
Documentation

Leo McArdle, Cameron Mcloughlin, Minjae Kang

Apr 28, 2018

Contents:

1 Development Setup 1
1.1 Cloning the repository . 1
1.2 Docker . 1
1.3 Vagrant . 2
1.4 Admin Interface . 3
1.5 Authentication . 3
1.6 Google Maps API Key . 3

2 Development Methodology 5
2.1 Git Workflow . 5

3 API Setup 7
3.1 UCL API OAuth Credentials . 7
3.2 Google Maps API Key . 7

4 Azure Deployment Manual 9
4.1 PostgreSQL server . 9
4.2 Create Web App . 9
4.3 Configure Web App . 9
4.4 Create Deployment User . 10
4.5 Deploy Web App . 10
4.6 Create superuser . 10

i

ii

CHAPTER 1

Development Setup

The recommended development environment is Docker, but a Vagrant environment is also provided.

1.1 Cloning the repository

Both environments require you to:

1. Clone the repository: git clone https://github.com/UCLComputerScience/
103P_2018_team51.git

2. Enter the cloned repository: cd 103P_2018_team51

3. Copy the env-dist file to .env: cp env-dist .env

1.2 Docker

Ensure you’ve installed Docker Compose by following the instructions here: https://docs.docker.com/compose/install/

Then, build the container with: docker-compose build.

Next, you’ll need to run the database migrations, to set up the database. To do this:

1. Open a shell within the docker container: docker-compose run web sh

2. Within the container, run: python3 manage.py migrate

Now, close the container shell with exit (or open a new terminal window) and run the container with:
docker-compose up.

You should now be able to access the site at: http://localhost:8000

1

https://docs.docker.com/compose/install/
http://localhost:8000

IXN Website, Events, SSIGs Documentation

1.2.1 Stopping the container

To stop the running container, go to the terminal it’s running in and hit Ctrl + C. Docker will then gracefully bring the
container down.

If the container is hanging, hit Ctrl + C again to kill it.

1.2.2 Updating the container

When pulling in new changes to the requirements.txt file from git, the container will need to be rebuilt.

To rebuild and bring the container up in one step run: docker-compose up --build.

1.2.3 Tips, tricks and oddities

Running Docker as root

If running docker-compose as root, as is recommended, then all files and directories created in the source directory
within the container will be owned by root, and git will be unable to properly version control them. Run sudo chown
-R $USER:$USER . outside the container to update their ownership to your user.

1.3 Vagrant

Download Vagrant and install it from here: https://www.vagrantup.com/downloads.html

You’ll also need to install VirtualBox from here: https://www.virtualbox.org/wiki/Downloads

Bring the machine up with: vagrant up.

After the machine has finished booting, open a shell within it with: vagrant ssh.

Next, you’ll want to navigate to the directory holding the project’s source code with: cd /vagrant.

Here, run the database migrations to set up the database with python3 manage.py migrate, and bring the
server up with gulp.

You should now be able to access the site at: http://localhost:8000

1.3.1 Stopping the machine

To stop the running machine:

1. Kill the server with: Ctrl + C

2. Exit from the machine’s shell with: exit

3. Stop the machine with: vagrant halt

1.3.2 Updating the machine

When pulling in changes to the requirements.txt file from git, those new requirements will need to be installed
in the machine.

Do this by running pip3 install -r requirements.txt from the /vagrant path within the machine.

2 Chapter 1. Development Setup

https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
http://localhost:8000

IXN Website, Events, SSIGs Documentation

1.3.3 Tips, tricks and oddities

Using Windows as a host

It seems that on Windows, the up.sh provisioning script isn’t run on every vagrant up. This will usually be
apparent if running gulp produces an error about it not being installed. This can be resolved by running ./up.sh
from the /vagrant path within the machine, every time after you bring it up.

It also seems that the correct database configuration options aren’t set. Resolve this by updating your .env file to
include:

DATABASE_HOST=localhost
DATABASE_USER=vagrant
DATABASE_PASSWORD=vagrant

1.4 Admin Interface

Create a superuser to access the admin interface at http://localhost:8000/admin.

Do this by running python3 manage.py createsuperuser within your development environment.

UPI stands for Unique Person Identifier, a unique id given to every member of UCL, set this to your own UPI (found
on your UCL ID card) if you want to be able to log into the admin interface through UCL API OAuth.

1.5 Authentication

The project makes use of UCL API OAuth for authentication.

1.5.1 Reverse Proxy

UCL API prohibits setting localhost as as callback URL, so you’ll need to set up a reverse proxy to access your local
development server through a remote url.

One solution is localtunnel, which can be used by following the instructions here: https://localtunnel.github.io/www/.

1.5.2 OAuth Credentials

Generate your credentials by following the instructions here: UCL API OAuth Credentials.

Then update your .env file to include the Client ID and Client Secret from the UCL API dashboard, for example:

UCLAPI_CLIENT_ID=0123456789.0123456789
UCLAPI_CLIENT_SECRET=0123456789abcdef

Test you’ve setup your credentials correctly by attempting to log in by visiting /auth.

1.6 Google Maps API Key

Generate your credentials by following the instructions here: Google Maps API Key.

Then update your .env file to include the API key:

1.4. Admin Interface 3

http://localhost:8000/admin
https://uclapi.com/
https://localtunnel.github.io/www/

IXN Website, Events, SSIGs Documentation

GOOGLE_MAPS_KEY=0123456789abcdef

4 Chapter 1. Development Setup

CHAPTER 2

Development Methodology

2.1 Git Workflow

2.1.1 Fetching the latest changes

The latest changes can be fetched with: git fetch origin.

Using git fetch is preferred over git pull as it means there’s no risk of modifying the branch you’re currently
on - it gives you full control over what you want to do with the changes you’ve fetched.

2.1.2 Creating a feature branch

Create a new branch to work on your feature with the latest commits from the master branch with: git branch -b
feature-name origin/master

2.1.3 Committing the feature

Once you’ve finished working on your feature, you’ll want to commit it to your branch. Do this by:

1. Checking the current status of your files with: git status

2. Staging all the changes to files you want to commit with: git add file_one file_two

3. Committing the staged changes with a descriptive commit message: git commit -m "commit
message"

If you’ve been working on a feature linked to an issue, which is usually the case, you’ll want to end the commit message
with the issue number. For example, if I’d been working on issue 7, my commit command might look something like:
git commit -m "commit message #7".

5

IXN Website, Events, SSIGs Documentation

2.1.4 Updating the branch with the latest changes

While you’ve been working on your feature, there may have been updates to the master branch which you’ll want to
include in your feature branch. Do this by:

1. Fetching the latest changes with: git fetch origin

2. Rebasing your branch with the changes with: git rebase origin/master

At this point the rebase may succeed, or it may fail. If it fails run git status and follow the instructions to resolve
the merge conflicts.

2.1.5 Pushing the branch

After committing your feature and rebasing with master, push the branch to the origin remote with: git push
origin feature-name.

2.1.6 Creating a pull request

Now that your feature branch is on the origin remote, go to https://github.com/UCLComputerScience/103P_2018_team51/compare/master. . . feature-
name and click Create pull request to create a pull request.

Your commit will be reviewed, and if approved, rebased into the master branch.

If changes were requested, you can make them in your local branch, commit and push to the remote branch as before.

6 Chapter 2. Development Methodology

https://github.com/UCLComputerScience/103P_2018_team51/compare/master...feature-name
https://github.com/UCLComputerScience/103P_2018_team51/compare/master...feature-name

CHAPTER 3

API Setup

3.1 UCL API OAuth Credentials

Create a new app at: https://uclapi.com/dashboard/.

Then fill in the OAuth Callback URL to be the remote url of your server, followed by /auth/callback. If using a
localtunnel development server, this will be something like:

https://abcdefghij.localtunnel.me/auth/callback

Test you’ve setup your credentials correctly by attempting to log in by visiting /auth.

3.2 Google Maps API Key

A Google Maps API key is necessary for displaying the maps on event pages.

To get your key:

1. Visit https://console.developers.google.com/cloud-resource-manager and sign in

2. Click “Create a Project”

3. Give your project a name, perhaps “SSIG site dev”

4. Click “Create”

5. Click on your newly created project

6. Visit https://console.developers.google.com/apis/api/maps-backend.googleapis.com/overview

7. Click “Enable”, wait for the API to be enabled for your project

8. Visit https://console.developers.google.com/apis/credentials/wizard?api=maps-backend.googleapis.com

9. Click “What credentials do I need?”

10. Your API key will be displayed

7

https://uclapi.com/dashboard/
https://console.developers.google.com/cloud-resource-manager
https://console.developers.google.com/apis/api/maps-backend.googleapis.com/overview
https://console.developers.google.com/apis/credentials/wizard?api=maps-backend.googleapis.com

IXN Website, Events, SSIGs Documentation

11. Click “Restrict key” to restrict with what sites and APIs the key can be used (recommended in production)

8 Chapter 3. API Setup

CHAPTER 4

Azure Deployment Manual

4.1 PostgreSQL server

1. Create a new PostgreSQL server: https://portal.azure.com/#create/Microsoft.PostgreSQLServer

2. Open the configuration page for the PostgreSQL server you’ve created

3. Navigate to “Connection Security” under “Settings” in the sidebar

4. Toggle “Allow access to Azure services” to “On”

5. Click “Add My IP”

6. Click “Save”

4.2 Create Web App

1. Create a new Web App in the same resource group as your PostgreSQL server: https://portal.azure.com/#create/
Microsoft.WebSite

2. Open the configuration page for the Web App you’ve created

3. Navigate to “Extensions” under “Development Tools in” the sidebar

4. Click “Add”, and install “Python 3.6.4 x86”

4.3 Configure Web App

Now we need to provide the Web App with some settings to run:

1. Navigate to “Application settings” under “Settings” on the sidebar.

2. Scroll down to “Application settings” and click “Add new setting” for each of the following:

9

https://portal.azure.com/#create/Microsoft.PostgreSQLServer
https://portal.azure.com/#create/Microsoft.WebSite
https://portal.azure.com/#create/Microsoft.WebSite

IXN Website, Events, SSIGs Documentation

Name Value
DATABASE_NAME postgresql
DATABASE_USER enter the postgresql username you previously created
DATABASE_PASSWORD enter the postgresql password you previously created
DATABASE_HOST enter the domain of the postgresql server you previously created
SECRET_KEY randomly generate a string and enter it here
ALLOWED_HOSTS enter the domain of the web app you’ve created
UCLAPI_CLIENT_ID create UCL API OAuth Credentials and enter the client id here
UCLAPI_CLIENT_SECRET create UCL API OAuth Credentials and enter the client secret here
GOOGLE_MAPS_KEY create a Google Maps API Key and enter it here

Finally click “Save”.

4.4 Create Deployment User

Follow the documentation here: https://docs.microsoft.com/en-gb/azure/app-service/
app-service-deployment-credentials

4.5 Deploy Web App

1. Clone the repository: git clone https://github.com/UCLComputerScience/
103P_2018_team51.git

2. Enter the cloned repository: cd 103P_2018_team51

3. Navigate to your Web App’s overview page

4. Create a new remote from the “Git clone url” on the Web App Overview page: git remote add azure
<paste "Git clone url" here>

5. Deploy the app to azure with: git push azure master

6. Enter the previously created deployment credentials when prompted

4.6 Create superuser

Run the python3 manage.py createsuperuser command locally by setting the database settings on the
command line:

DATABASE_NAME=postgresql DATABASE_USER=<enter value> DATABASE_PASSWORD=<enter value>
→˓DATABASE_HOST=<enter value> python3 manage.py createsuperuser

UPI stands for Unique Person Identifier, a unique id given to every member of UCL, set this to your own UPI (found
on your UCL ID card) if you want to be able to log into the admin interface through UCL API OAuth.

You can now log into the admin interface at: https://your-domain/admin/login

10 Chapter 4. Azure Deployment Manual

https://docs.microsoft.com/en-gb/azure/app-service/app-service-deployment-credentials
https://docs.microsoft.com/en-gb/azure/app-service/app-service-deployment-credentials
https://your-domain/admin/login

	Development Setup
	Cloning the repository
	Docker
	Vagrant
	Admin Interface
	Authentication
	Google Maps API Key

	Development Methodology
	Git Workflow

	API Setup
	UCL API OAuth Credentials
	Google Maps API Key

	Azure Deployment Manual
	PostgreSQL server
	Create Web App
	Configure Web App
	Create Deployment User
	Deploy Web App
	Create superuser

