

Itzï

Welcome to the documentation of Itzï, a software that allow dynamic simulation of floods.
Please see the Itzï’s home page [https://www.itzi.org/].

Contents:

	Installation
	Availability

	Installation on GNU/Linux

	Installation on Windows

	Verification of the installation

	Command line usage
	Run a simulation

	Get the version number

	Tutorial
	Get ready

	Surface modelling

	Culvert modelling

	Configuration file
	[time]

	[input]

	[output]

	[statistics]

	[options]

	[drainage]

	[grass]

	Frequently Asked Questions
	Controlling numerical instabilities

	Performances and computer resources usage

	Programer’s manual
	Source code management

	Development environment

	Cython code

	Testing

	Release process

Installation

Availability

The python package for Itzï is on pypi [https://pypi.python.org/pypi/itzi].
You can browse and download the source code on bitbucket [https://bitbucket.org/itzi-model/itzi].

Installation on GNU/Linux

Itzï depends on GRASS GIS 7.8 or above [https://grass.osgeo.org/download/] and NumPy [http://www.numpy.org/].
GRASS should therefore be installed in order to use Itzï.
NumPy is normally installed along GRASS.
All other dependencies are installed by pip.

To install Itzï, you’ll need to have the Python installation software pip installed.
On Ubuntu, the package is called python-pip and is installed as follow:

sudo apt-get install python-pip

Installation for a single user

This is useful when you do not have root access on the computer.

To download and install the last version of Itzï using pip:

pip install itzi --user

If Itzï is already installed and you want to update it to the last version:

pip install itzi --user --upgrade

If you prefer to download and install Itzï manually, you can do it that way:

tar -xvf itzi-20.5.tar.gz
cd itzi-20.5
python setup.py install --user

Note

For a reason not related to Itzï, pip does not always place the Itzï executable in an accessible place.
If calling itzi returns a command not found error, you need to add the installation directory (usually ~/.local/bin) to your PATH.

Installation for all users

This requires root access.
The steps are the same as above, with the addition of the use of sudo:

sudo pip install itzi

Installation on Windows

Itzï can be run on Windows 10 using the Windows Subsystem for Linux (WSL).
For that, you’ll need at least Windows 10 64bits Creators Update.

To install WSL, follow the steps given by Microsoft [https://docs.microsoft.com/en-gb/windows/wsl/install-win10].

You can then install the prerequisites:

sudo apt-get update
sudo apt-get install grass-dev grass-core python-pip

Once everything is installed, the installation steps are the same as GNU/Linux.

Verification of the installation

To check if everything went fine:

itzi version
itzi run -h

Command line usage

Run a simulation

usage: itzi run [-h] [-o] [-p] [-v | -q] config_file [config_file ...]

Positional Arguments

	config_file

	an Itzï configuration file (if several given, run in batch mode)

Named Arguments

	-o

	overwrite files if exist

Default: False

	-p

	activate profiler

Default: False

	-v

	increase verbosity

	-q

	decrease verbosity

Get the version number

usage: itzi version [-h]

Tutorial

This tutorial shows how to run a basic Itzï simulation using freely available dataset.

It assumes that GRASS 7 and Itzï are properly installed on your machine
and that you possess a basic knowledge of GRASS.

Get ready

Here we will use the GRASS North Carolina dataset [https://grass.osgeo.org/download/sample-data/].
Please download the GRASS 7 version and extract it in your grassdata directory.

Then start GRASS in the PERMANENT mapset.

Surface modelling

Adjust the region

Fit the lidar elevation raster map and set a resolution of 5m:

$ g.region -p raster=elev_lid792_1m@PERMANENT res=5 save=lidar_5m

Resample the DEM

Please note that this step is not strictly necessary.
The Itzï simulation will be carried out in any case on the defined computational
region extent and resolution.
However the bilinear interpolation smooth the surface,
which prevent high slope values that could occur if using the GRASS default nearest-neighbour sampling.

$ r.resamp.interp input=elev_lid792_1m@PERMANENT output=elev_lid792_5m

Create a raster mask

Generate a drainage direction map and then create a watershed raster using the outlet point coordinates:

$ r.watershed elevation=elev_lid792_5m drainage=elev_lid792_5m_drainage
$ r.water.outlet input=elev_lid792_5m_drainage output=watershed coordinates=638888,220011

Create a raster mask to prevent calculation outside of the watershed:

$ r.mask rast=watershed

Create boundary condition maps

Create a vector map with the watershed outlet point:

$ echo '638888|220011' > watershed_out.txt
$ v.in.ascii input=watershed_out.txt output=watershed_out

Using this vector map, create two raster maps for the boundary conditions.
The first with a value corresponding to the type of condition,
here 4 corresponds to a fixed water depth inside the domain.
The second being the value of the depth wanted, here 0.

$ v.to.rast input=watershed_out type=point output=bctype use=val value=4
$ v.to.rast input=watershed_out type=point output=bcvalue use=val value=0

Create rainfall and friction maps

Create maps of uniform rainfall and friction coefficient:

$ r.mapcalc exp='rain=100'
$ r.mapcalc exp='n=0.05'

Create a parameters file

Create a new parameter file and fill it with the ID of the created maps.
It should look like the following:

[time]
duration = 02:00:00
record_step = 00:05:00

[input]
dem = elev_lid792_5m@PERMANENT
friction = n@PERMANENT
rain = rain@PERMANENT
bctype = bctype@PERMANENT
bcval = bcvalue@PERMANENT

[output]
prefix = nc_itzi_tutorial
values = h, wse, v, vdir, boundaries

[statistics]
stats_file = nc_itzi_tutorial.csv

Run the simulation

Run the simulation:

$ itzi run <parameter_file_name>

At the end of the simulation, Itzï should have generated five Space-Time
Raster Dataset (STRDS) in the form:

<prefix>_<variable>

The maps contained in those STDRS are following this naming convention:

<prefix>_<variable>_<order_number>

Here is the example of the map nc_itzi_tutorial_h_0020:

[image: NC depth]
All the results can be processed using the GRASS tools for raster maps and / or space-time dataset.
For instance, it is easy to generate an animation of the results using g.gui.animation.

Culvert modelling

New in version 17.7.

As you can notice in the image above, the flow accumulates at some points.
One of this accumulation is due to a road that act like a dike and weir.
It is better seen when displaying the streets and flow arrows:

[image: Illustration of road blockage]
One option to solve this problem is to model a culvert using the coupled modelling capacity of Itzï.
Itzï is able to run the SWMM drainage model alongside the surface model, and model the interactions between the two.

In the present case, the first step is to decide where the culvert will be located, and annotate:

	The coordinates of the the input and output node,

	the altitude at those points.

Unfortunately, two issues limit the use for the modelling of culvert:

	SWMM needs to have a connected outfall node in the network model

	The Itzï coupling code is designed for manhole, not culvert entrance.

We can circumvent those limitations by first, adding an outlet at a higher elevation, linked to the rest of the network by a dummy pipe,
and second, set the coupling surface to a large surface (here we’ll set it equal to the cell surface).

SWMM configuration file

The description of the drainage network is done in a classic SWMM configuration file.
More information could be found in the SWMM user’s manual [https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100N3J6.txt].

Note

START_DATE and START_TIME are not taken into account during a coupled simulation.
The drainage model always starts and stops at the same time than the surface model.

[TITLE]
'Wake county culvert'

[OPTIONS]
FLOW_UNITS CMS
INFILTRATION HORTON
FLOW_ROUTING DYNWAVE
START_DATE 01/01/0001
START_TIME 00:00:00
REPORT_START_DATE 01/01/0001
REPORT_START_TIME 00:00:00
END_DATE 01/01/0001
END_TIME 2:00:00
SWEEP_START 01/01
SWEEP_END 12/31
DRY_DAYS 0
REPORT_STEP 00:05:00
WET_STEP 00:00:05
DRY_STEP 01:00:00
ROUTING_STEP 2
ALLOW_PONDING YES
INERTIAL_DAMPING NONE
VARIABLE_STEP .5
LENGTHENING_STEP 0
MIN_SURFAREA 25
NORMAL_FLOW_LIMITED FROUDE
SKIP_STEADY_STATE NO
FORCE_MAIN_EQUATION D-W
LINK_OFFSETS DEPTH
MIN_SLOPE 0

[JUNCTIONS]
;; Invert Max. Init. Surcharge Ponded
;;Name Elev. Depth Depth Depth Area
;;------- -------- ------ ------ ---------- ------
J0 112 0.0 0 0 0
J1 111.4 0.0 0 0 0

[OUTFALLS]
;; Invert Outfall Stage/Table Tide
;;Name Elev. Type Time Series Gate
;;-------- --------- -------- -------------- ----
O2 1000 FREE NO

[COORDINATES]
;;Node X-Coord Y-Coord
;;---------- ------- -------
J0 638752 220262
J1 638769 220233

[CONDUITS]
;; Inlet Outlet Manning Inlet Outlet
;;Name Node Node Length N Offset Offset
;;------ ------ ------- ------ ------- ------ ------
C0 J0 J1 34 0.017 0 0
C1 J1 O2 100 0.017 0 0

[XSECTIONS]
;;Link Shape Geom1 Geom2 Geom3 Geom4 Barrels
;;------- ---------- ----- ----- ----- ----- -------
C0 CIRCULAR 1.5 0 0 0 2
C1 CIRCULAR 0.1 0 0 0 1

Here, J0 and J1 are the input and output nodes of the culvert, and C0 is the culvert itself.
The latter is made of two pipes of 1.5m of diameter.
The outfall O2 and the link C1 are added to comply with the SWMM rule needing them.

Update the Itzï’s parameter file

The parameter file of created in the precedent tutorial could be used and adapted by the addition of the [drainage] section, like so:

[time]
duration = 00:50:00
record_step = 00:05:00

[input]
dem = elev_lid792_5m@PERMANENT
friction = n@PERMANENT
rain = rain@PERMANENT
bctype = bctype@PERMANENT
bcval = bcvalue@PERMANENT

[output]
prefix = nc_itzi_tutorial_drainage
values = h, v, vdir

[statistics]
stats_file = nc_itzi_tutorial_drainage.csv

[drainage]
swmm_inp = tutorial_drainage.inp
output = nc_itzi_tutorial_drainage

[options]
cfl = 0.7
theta = 0.9
dtmax = .5

Where swmm_inp is the path to the SWMM configuration file and output is the name of the Space-Time Vector Dataset where the drainage data will be written.

Running the simulation

The simulation is ran the same way as the previous tutorial.
Itzï will call SWMM that will in turn loads its own configuration file automatically.

The resulting water depth map is shown here:

[image: Water depth with culvert]
The area upstream the road is noticeably less flooded, with a maximum water depth coming down from 1.03m without culvert to 0.45m with culvert.
You can use the temporal tools of GRASS to query the evolution in time of the drainage network values.
For example, to get the evolution of the flow leaving the upstream node J0 of the culvert:

t.vect.db.select input=nc_itzi_tutorial_drainage@itzi_results columns=outflow where="node_id=='J0'"

start_time|end_time|outflow
0||0
300||0.0425260290503502
600||1.63466286659241
900||4.20853137969971
1200||4.59034490585327
1500||4.64469814300537
1800||4.6541862487793
2100||4.6692533493042
2400||4.65738391876221
2700||4.66986560821533
3000||4.66973972320557

Configuration file

The parameters of a simulation are given through a configuration file in
a format similar to Microsoft Windows INI files.
An example is given in the tutorial above.
The file is separated in sections described below.

[time]

Simulation duration could be given by a combination of start time, end
time and duration. If only the duration is given, the results will be
written as a relative time STRDS. In case start time is given, the
simulation will use an absolute temporal type.

	Keyword

	Description

	Format

	start_time

	Starting time

	yyyy-mm-dd HH:MM

	end_time

	Ending time

	yyyy-mm-dd HH:MM

	duration

	Simulation duration

	HH:MM:SS

	record_step

	Time-step at which results are written to the disk

	HH:MM:SS

Valid combinations:

	start_time and end_time

	start_time and duration

	duration only

[input]

Itzï does not support Lat-Long coordinates. A projected location should
be used. The inputs maps could be given either as STRDS or single maps.
First, the module try to load a STRDS of the given name. If
unsuccessful, it will load the given map, and stop with an error if the
name does not correspond to either a map or a STRDS.

The following inputs are mandatory:

	Digital elevation model in meters

	Friction, expressed as Manning’s n

	Keyword

	Description

	Format

	dem

	Elevation in meters

	map or strds

	friction

	Manning’s n (friction coefficient)

	map or strds

	start_h

	Starting water depth in meters

	map name

	rain

	Rainfall in mm/h

	map or strds

	inflow

	Point inflow in m/s (ex: for 20 m3/s on
a 10x10 cell, velocity is 0.2 m/s)

	map or strds

	bctype

	Boundary conditions type

	map or strds

	bcval

	Boundary conditions values

	map or strds

	infiltration

	Fixed infiltration rate in mm/h

	map or strds

	effective_porosity

	Effective porosity in mm/mm

	map or strds

	capillary_pressure

	Wetting front capillary pressure head
in mm

	map or strds

	hydraulic_conductivity

	Soil hydraulic conductivity in mm/h

	map or strds

	losses

	User-defined losses in mm/h
(new in16.9, renamed in 17.7)

	map or strds

Deprecated since version 17.7: drainage_capacity is renamed to losses

Deprecated since version 20.5: effective_pororosity is renamed to effective_porosity

Warning

If the selected input are located in another GRASS mapset than the current one (or the one specified in the [grass] section),
you must define the full map ID (map@mapset) and add those mapsets to the GRASS search path with g.mapsets.

Boundary conditions type are defined by an integer as follow:

	0 or 1: Closed boundary (default)

	2: Open boundary: velocity at the boundary is equal to the velocity
inside the domain

	3: Not implemented yet

	4: User-defined water depth inside the domain

The “open” and “closed” boundary conditions are applied only at the border of the GRASS computational region.

Note

infiltration and any of the Green-Ampt parameters are mutually exclusives.
Likewise, if any of the Green-Ampt parameter is given, all the others should be given as well.

[output]

	Keyword

	Description

	Format

	prefix

	Prefix of output STRDS

	string

	values

	Values to be saved. Each one will be a STRDS

	comma separated list

The possible values to be exported are the following:

	Keyword

	Description

	Format

	h

	Water depth

	meters

	wse

	Water surface elevation (depth + elevation)

	meters

	v

	Overland flow speed (velocity’s magnitude)

	m/s

	vdir

	Velocity’s direction. CCW from East

	degrees

	qx

	Volumetric flow, x direction. Positive if going East

	m³/s

	qy

	Volumetric flow, y direction. Positive if going South

	m³/s

	boundaries

	Flow coming in (positive) or going out (negative) the
domain due to boundary conditions. Average since the
last record

	m/s

	infiltration

	Infiltration rate. Average since the last record

	mm/h

	rainfall

	Rainfall rate. Average since the last record

	mm/h

	inflow

	Average user flow since the last record

	m/s

	losses

	Average losses since the last record
(new in 17.1, renamed in 17.7)

	m/s

	drainage_stats

	Average exchange flow between surface and drainage model
since the last record (new in 17.7)

	m/s

	verror

	Total created volume due to numerical error since the
last record (new in 17.1)

	m³

New in version 17.1: drainage_cap and verror are added.

Changed in version 17.7: drainage_cap is renamed to losses

Additionally to output a map at each record_step, h and v also
produce a map of maximum values.

Note

Water depth maps, apart from map of maximum values,
do not display values under the hmin threshold (See below).
When the exported map is totally empty, it is deleted at the end of the simulation.

[statistics]

	Keyword

	Description

	Format

	stats_file

	Statistics file

	CSV table

Statistics file

Changed in version 17.1: Mass balance calculation now takes into account the volume from losses.
Created volume calculation is changed.

The statistic file is presented as a CSV file and updated at each record_step.
The values exported are shown in the table below.

Water entering the domain is represented by a positive value.
Water that leaves the domain is negative.
Volumes are in m³.

	Keyword

	Description

	sim_time

	Elapsed simulation time

	avg_timestep

	Average time-step duration since last record

	#timesteps

	Number of time-steps since the last record

	boundary_vol

	Water volume that passed the domain boundaries since last record

	rain_vol

	Rain volume that entered the domain since last record

	inf_vol

	Water volume that left the domain due to infiltration since
last record

	inflow_vol

	Water volume that entered or left the domain due to user
inflow since last record

	losses_vol

	Water volume that entered or left the domain due to
losses since last record

	drain_net_vol

	Water volume that entered or left the surface domain since
last record due to exchanges with the drainage network

	domain_vol

	Total water volume in the domain at this time-step

	created_vol

	Water volume created due to numerical errors since last record
record

	%error

	Percentage of the domain volume variation due to numerical
error. Corresponds to created_vol / (domain_vol -
old_domain_vol) * 100

Changed in version 17.7: drain_cap_vol is renamed to losses_vol

New in version 17.7: drain_net_vol is added.

[options]

	Keyword

	Description

	Format

	Default value

	hmin

	Water depth threshold in metres

	positive float

	0.005

	cfl

	Coefficient applied to calculate time-step

	positive float

	0.7

	theta

	Inertia weighting coefficient

	float between
0 and 1

	0.9

	vrouting

	Routing velocity in m/s

	positive float

	0.1

	dtmax

	Maximum surface flow time-step in seconds.

	positive float

	5.0

	dtinf

	Time-step of infiltration and losses, in s

	positive float

	60.0

When water depth is under hmin, the flow is routed at the fixed velocity defined by vrouting.

[drainage]

New in version 17.7.

This section is needed only if carrying out a simulation that couples drainage and surface flow.

Warning

This functionality is still new and in need of testing.
It may be buggy. Use with care.

	Keyword

	Description

	Default value

	swmm_inp

	Path to the EPA SWMM configuration file (.inp)

	

	output

	Name of the output Space Time Vector Dataset where
are written the results of the drainage network simulation

	

	orifice_coeff

	Orifice coefficient for calculating the flow exchange

	0.167

	free_weir_coeff

	Free weir coefficient for calculating the flow exchange

	0.54

	submerged_weir_coeff

	Submerged weir coefficient for flow exchange calculation

	0.056

New in version 17.11: orifice_coeff, free_weir_coeff and submerged_weir_coeff are added.

The output maps are organised in two layers.
The nodes are stored in layer 1, the links in layer 2.

The values stored for the nodes are described below. All are instantaneous.

	Column

	Description

	cat

	DB key

	node_id

	Name of the node

	type

	Node type (junction, storage, outlet etc.)

	linkage_type

	Equation used for the drainage/surface linkage

	linkage_flow

	Flow moving from the drainage to the surface

	inflow

	Flow entering the node (m³/s)

	outflow

	Flow exiting the node (m³/s)

	latFlow

	SWMM lateral flow (m³/s)

	head

	Hydraulic head in metre

	crownElev

	Elevation of the highest crown of the connected conduits

	crestElev

	Elevation of the top of the node in metres

	invertElev

	Elevation of the bottom of the node in metres

	initDepth

	Water depth in the node at the start of the simulation

	fullDepth

	crownElev - invertElev (m)

	surDepth

	Depth above crownElev before overflow begins

	pondedArea

	Area above the node where ponding occurs (m²)

	degree

	Number of pipes connected to the node

	newVolume

	Water volume in the node

	fullVolume

	Volume in the node when head - invertElev = crestElev

The values stored for the links are as follows:

	Column

	Description

	cat

	DB key

	link_id

	Name of the link

	type

	Link type (conduit, pump etc.)

	flow

	Volumetric flow (m³/s)

	depth

	Water depth in the conduit (m)

	velocity

	Average flow velocity (m/s)

	volume

	Water volume stored in the conduit (m³)

	offset1

	Height above inlet node invert elevation (m)

	offset2

	Height above outlet node invert elevation (m)

	yFull

	Average water depth when the pipe is full (m)

	froude

	Average Froude number

[grass]

New in version 16.9.

Setting those parameters allows to run simulation outside the GRASS shell.
This is especially useful for batch processing involving different locations and mapsets.
If Itzï is run from within the GRASS shell, this section is not necessary.

	Keyword

	Description

	Format

	grass_bin

	Path to the grass binary

	string

	grassdata

	Full path to the GIS DataBase

	string

	location

	Name of the location

	string

	mapset

	Name of the mapset

	string

	region

	Name of region setting

	string

	mask

	Name of the raster map to be used as a mask

	string

New in version 17.11: region and mask are added.

With GNU/Linux, grass_bin could be simply grass.

The region and mask parameters are optionals and are applied only during the simulation.
After the simulation, those parameters are returned to the previous region and mask setting.

Frequently Asked Questions

Controlling numerical instabilities

In some cases, runaway instabilities could occur, creating wave-like surface flow:

[image: Example of instabilities]

There are two ways to control them.
The first one and the more effective is by reducing the time-step,
which could be achieved by changing two options:

	cfl that applies to every calculated time-step

	dtmax that defines a maximum value for the time-step

The second one is by reducing the theta option.
Please note however that a value below 0.7 could be counter-productive.

Performances and computer resources usage

Itzï is parallelized using OpenMP.
By default, it will try to use all available hardware threads on the machine.
The number of threads used can be changed by setting the environment variable OMP_NUM_THREADS.

Given the type of numerical scheme, using a computer with more cores and
faster RAM will likely decrease the computation time.
No parallel efficiency test has been performed so far, though.
For an example of expected performance, a 24h simulation of urban floods with direct
rainfall on a 5m DEM of 3.5 millions cells takes around 3 hours with an Intel Core i7-4790 (4 cores, 8 threads).

How to decrease computation time

The factors that influence the computation time are:

	The duration of the simulated event.

	The number of cells in the domain.

	The number of wet cells in the domain.
Direct rainfall is more demanding.

	The cell size. A smaller cell size decreases the time-step.

	The maximum water depth in the domain.
The higher the water, the smaller the time-step.

	The amount and frequency of result maps. Disk operations being slow
and not yet parallelized (as of version 17.1), writing more maps to
the disk will slow the simulation down.

As we can see, they are two main categories of factors.
Those that increase the raw computation load (more cells),
and those that lower the simulation time-step.
For the same study area, increasing the cell size is the more efficient way to make a simulation faster,
because it influence both the number of cells and the time-step.

Memory usage

On average, Itzï 17.1 uses around 250 MB of RAM for each million cells in the domain.

Programer’s manual

Itzï is written principaly in Python.
The computationally intensive parts of the code and some C bindings are written in Cython.
Itzï includes the SWMM source code, which is written in C.
As of version 20.5, itzi only supports Python 3.

We do our best to keep Itzï PEP8-compliant [https://www.python.org/dev/peps/pep-0008/].
Please use the pycodestyle [https://pypi.python.org/pypi/pycodestyle/] utility to check your code for compliance.
Sometimes it is difficult to keep the line length under 72 characters.
The line length could be extended to 90 characters in those cases.

Source code management

The source code is managed by git [https://git-scm.com/] and hosted on GitHub [https://github.com/ItziModel/itzi].
The best way to contribute is to fork the main repository, make your modifications and then create a pull request on Bitbucket.
The repository have two branches:

	master than contain the current released verion.

	dev where the main development takes place.

The code should be tested in dev before being merged to master for release.
Any larger, possibly breaking changes should be done in a feature branch from dev.

Development environment

Create a virtual environment to work on the source code.

$ python3 -m venv itzi_dev

Activate the virtual env and install the dev version of Itzï.

$ source itzi_dev/bin/activate
$ pip install numpy
$ cd itzi
$ pip install -e .

Now, every change you make to the Python code will be directly reflected when running itzi from the command line.
To leave the virtual env:

$ deactivate

Cython code

After modifying the Cython code, you should first compile it to C, then compile the C code.

$ cython -3 itzi/swmm/swmm_c.pyx itzi/flow.pyx
$ rm -rf build/
$ pip install -e .

Testing

Testing is done through pytest. Running the tests require the following additional requirements:

	pytest

	pytest-cov

	pytest-xdist

	pandas

	requests

pytest-xdist allows to run each test in a separate process.
To do so, run the following command:

$ pytest --forked -v

To estimate the test coverage:

$ pytest --cov=itzi --forked -v

Release process

Once a potential feature branch is merged into dev:

	Make sure all the tests pass

	Merge dev into master

	Bump the version number

	Write the release notes

	Update the documentation if necessary

	Run the tests one last time

	Create an annotated tag for version number

	Create the package and push to pypi

	Write a blog post anouncing the version

	Post a link to the anouncement on twitter and the user mailing list

Index

 _static/ajax-loader.gif

_images/nc_itzi_tutorial_arrows_s.png
A

Woter depth (m)

— streets_wake

— streams.

_images/nc_itzi_tutorial_drainage.png
Water depth @] B W] 200m

2.00
© nc_itzi_tutorial_drainage_0024
— nc_itzi_tutorial_drainage_0024
1.00
0.50
0.30

0.00

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/instability.png

_images/nc_itzi_tutorial.png
0.58

0.01

i e 100 meters

_static/file.png

nav.xhtml

 Table of Contents

 		
 Itzï

 		
 Installation

 		
 Availability

 		
 Installation on GNU/Linux

 		
 Installation for a single user

 		
 Installation for all users

 		
 Installation on Windows

 		
 Verification of the installation

 		
 Command line usage

 		
 Run a simulation

 		
 Positional Arguments

 		
 Named Arguments

 		
 Get the version number

 		
 Tutorial

 		
 Get ready

 		
 Surface modelling

 		
 Adjust the region

 		
 Resample the DEM

 		
 Create a raster mask

 		
 Create boundary condition maps

 		
 Create rainfall and friction maps

 		
 Create a parameters file

 		
 Run the simulation

 		
 Culvert modelling

 		
 SWMM configuration file

 		
 Update the Itzï’s parameter file

 		
 Running the simulation

 		
 Configuration file

 		
 [time]

 		
 [input]

 		
 [output]

 		
 [statistics]

 		
 Statistics file

 		
 [options]

 		
 [drainage]

 		
 [grass]

 		
 Frequently Asked Questions

 		
 Controlling numerical instabilities

 		
 Performances and computer resources usage

 		
 How to decrease computation time

 		
 Memory usage

 		
 Programer’s manual

 		
 Source code management

 		
 Development environment

 		
 Cython code

 		
 Testing

 		
 Release process

_static/up-pressed.png

_static/minus.png

_static/plus.png

_static/up.png

