

 Navigation

 	
 next

 	itucsdb1616 1.0 documentation

Welcome to itucsdb1616’s documentation!

	Team:	Twitter

	Members:	
	İsmail Emre Çetiner

	Serkan Bekir

	Yusuf Ekiz

	Mert Kurtcan

	Cem Karagöz

In our project, our aim is to create a website which has similar functionality to the social media website Twitter. We have implemented some of the features which are present on Twitter, and also some additional features.

Contents:

	User Guide

	Developer Guide

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

User Guide

Users have to sign in when they want to access any of the pages in the website.

[image: signin page]
Sign in page.

After login, users will be redirected to the home page.

[image: home page]
Home page.

After accessing the home page, users can navigate in the website and use the features using the navigation bar on top of the screen.

[image: navbar]
Navigation bar.

Administrator has some privilages and has two additional tabs in the navbar.

[image: admin navbar]
Administrator has access to Admin Panel and can see bug reports submitted by other users.

	Parts Implemented by İsmail Emre Çetiner

	Parts Implemented by Serkan Bekir

	Parts Implemented by Yusuf Ekiz
	LISTS

	POLLS

	MY LIKES PAGE

	Parts Implemented by Mert Kurtcan

	Parts Implemented by Cem Karagöz

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	User Guide

Parts Implemented by İsmail Emre Çetiner

Every user has to sign in to access any page in the website.

[image: sign in page]
Users can sign in using the related page. After login, users will be redirected to the home page or the page they requested.

For non-users, there is a Register page.

[image: register page]
Users can register using the related page. Username and password must be at least 4 characters long.

Users can follow or unfollow each other using Follow/Unfollow page.

[image: follow operation]
User can be followed or unfollowed by selecting the nickname of the user and clicking one of the buttons, Follow or Unfollow.

[image: follow list]
Following and follower lists are also displayed in this page. There is a link to the profile page of each user in the list.

Users can update their basic profile info and passwords in Update Profile page.

[image: change password]
By entering the new password (4-15 characters long) and clicking “Change Password” button, password is updated.

[image: change bio nickname]
User nickname and bio can be updated under the same page using the related form. Nickname must be 4-20 characters long.

It is possible for users to change their application settings under the Application Settings page.

[image: application settings]
In Application Settings page, all applications that are defined and activated by admin are displayed and user has the option to enable or disable them seperately.

[image: enabled applications]
After selecting or deselecting the checkboxes for each application, the form is submitted and changes are processed.

In Gifts page, users can send gifts (which are pre-defined by the admin) to the other users.

[image: gifts]
In Gifts page, all sent and received gifts are displayed and new gifts can be sent by selecting the nickname of the user and gift from related select fields.

[image: gift sent]
When the form is submitted, the gift is sent to the selected user, if the same gift has not been sent to the same person before.

For admin, there will be an additional page which is Admin Panel.

[image: admin panel]
In Admin Panel, admin has the opportunity to manage applications and gifts, and delete users.

Admin can add, delete, activate or deactivate applications which can be used by all users.

[image: add application]
It is possible to add an application either in active or deactive mode by writing its name and clicking one of the buttons.

[image: activate application]
After selecting an application, it is possible to change its mode to active or deactive, or delete it. In this example, a deactive application is activated by admin.

For the admin, it is possible to add a gift, change its description and delete it in Manage Gifts page.

[image: add gift]
By writing a name and description for a gift and submitting the form, new gifts can be defined to the system.

[image: update gift]
After selecting a gift in Update/delete gifts form, it is possible to display its description, update and also delete it.

Deleting a user is also possible for admin, under Delete User page.

[image: delete user]
Admin can select a user other than administrator and delete it by clicking Delete user button.

[image: after deleting user]
User is deleted by admin.

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	User Guide

Parts Implemented by Serkan Bekir

In Send message page, user can send new message for a selected user which has already registered.
As it is shown below.

[image: map to buried treasure]
User can select the other user who want to send message in dropdown menu and write the context
of the message in the area below the dropdown menu.

In this page, user can view messages which are sent or are received by him. Also user can go to
the send message for clicking new message page or user can select the message that desired to delete
and click delete button for delete operation.

[image: map to buried treasure]
All messages that belongs to current user are show. The sent messages are indicated with an
arrow at the beginning of the message content.

In this media page, user can add new photo, update current photos, tag some user to
the photos or delete a photo.

[image: map to buried treasure]
Options for media operations.

In add photo section, user can add a new photo and can write a description to that photo as it
is shown in the figure below.

[image: map to buried treasure]
In the upper input user can write a description and in the input below user can write a url
for the photo that wanted to add.

The photo which is added appears like this in the media menu as shown below.

[image: map to buried treasure]
Media menu with added photos.

When user clicks the update photo button the screen which is shown below, appears. As it is shown
user can update the description of photos in this part. User should choose the photo that wants to
update and then write a new description to it.

[image: map to buried treasure]
Update photo page

In this page user can tag another user for a certain photo. First, user has to choose one photo
that wants to tag and then user should choose another user for tag from the dropdown menu.

[image: map to buried treasure]
Tag photo page

After all the operations have done(add, update, tag). The media page is shown as below.

[image: map to buried treasure]
Media page

In this send question page, user can send questions for other users for challenge them. Firstly,
user has to choose another user from dropdown menu and types the question. After that put 4 options
for the question and choose one of them as correct answer. As it is shown below.

[image: map to buried treasure]
Send question page

The sending questions are shown in the quiz page. As it is seen, the question was sent to cetineris
and when he logged in he can see the question in his page.

[image: map to buried treasure]
Quiz page

After the user has answered the question correctly, total points of the user is updated and added 5
points for each correct answer.

[image: map to buried treasure]
Updated points of the user

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	User Guide

Parts Implemented by Yusuf Ekiz

LISTS

In LISTS page the user can see 3 types of lists in application.When user clicks Created, the lists which are created by the current user will be shown.
When user clicks MemberOf,the lists that current user has a insider role in it, and finally Subscribed to will show the lists which have current user as a subscriber member.

[image: map to buried treasure]
User can create a new list with Create A List Button. Button will not work without textbox input.
User can view also the 3 list types which are explained above.

New list is created. It can be seen below.

[image: map to buried treasure]

Every list has also its own page.For lists there are 2 perspectives. The first one is owner perspective, other one is visitor perspective.

Owners can delete the list, change its name and add insiders.

[image: map to buried treasure]

Visitors can only subscribe the list, they don’t have a right to do anything else.

[image: map to buried treasure]

POLLS

In POLLS page the user can see all of the polls created in the application.

Initially polls index page is empty. But user can add a poll to the application with Add A Poll button.

[image: map to buried treasure]

After adding a poll in polls index page every poll’s question and their owners are shown.

[image: map to buried treasure]

Also every poll has its own page. For these pages also we have 2 perspectives. First perspective is creator,other one is normal user.

Initially there are no choices in the poll, but the creator of the owner can add choices to the poll. Also the owner user can change the question.

[image: map to buried treasure]

After adding choice operations both owner and normal users can vote for the poll. Also for every choice number of the votes can be seen next to choice content.

[image: map to buried treasure]

Normal User Perspective

[image: map to buried treasure]

After vote it can be seen like below

[image: map to buried treasure]

MY LIKES PAGE

Initially MY Likes page are empty. It doesn’t show any tweets until current user likes a tweet.

[image: map to buried treasure]

Here it is an example of a liking a tweet.

Before like operation numberoflikes is 0 and there is no unlike button. There is only like button.

Initial Tweet Page

[image: map to buried treasure]

After tweet is liked. Number of likes increases by 1. And the tweet is also added to the My Likes page.

Tweet Page After Like

[image: map to buried treasure]

My Lıkes Page After Like

[image: map to buried treasure]

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	User Guide

Parts Implemented by Mert Kurtcan

In Settings page, user can change their email, name, surname,language, and nickname informations.
As it is shown below.

[image: update informations]
User can select language in dropdown menu and write the other data to textboxes.

[image: update informations]
When user change her/him personal information, “updated” message shown.

In this page, users can see actual informations which are changed or deleted by them.

[image: show informations]

Users also reset their personal information in same page.

[image: reset settings]

Users can turn off or turn on followers notifications.

[image: turnoff notifs]
User can select notification “off” status in dropdown menu

[image: turnon notifs]
User can select notification “off” status in dropdown menu

In **notifications* page, users can see their followers according to notification status.

[image: turned off notif]
When user turn off notification status, it would not shown in page.

[image: turned on notif]
When user turn on notification status, followers listed in page.

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	User Guide

Parts Implemented by Cem Karagöz

Every user, has a ability to post tweets to the site whether if user is admin or just a ordinary one.
Posting process can be seen below:

[image: map to buried treasure]
Tweeting for all users

Everyone has a unique my tweets page depending on their tweets and retweets on this page every user can see their tweets and retweets.

[image: map to buried treasure]
MyTweets Page

Also every tweet has a unique number and page dedicated page for its own. Which differ depending if user is its owner or not.
If user owns the tweet user will see Delete, Update options.

[image: map to buried treasure]
Tweet Owner View

If the user is not own the tweet user can only see ReTweet and Like options.

[image: map to buried treasure]
Tweet Guest View

Also every tweet has its own Link(s) that lead people to outside source(s) or picture(s).
Also every link has two views like tweet and has same abilities.

[image: map to buried treasure]
Link Guest View

[image: map to buried treasure]
Link Owner View

Also every user admin or ordinary one has ability to report bugs that distrupts user comfort. Report bug prompt is added to footer of every page for easy access.

[image: map to buried treasure]
Report Link at the footer

Every user except Admin cannot see what bug(s) are reported. Every user has same page for posting bugs.

[image: map to buried treasure]
Report Link at the footer

When a admin logs in reported bugs page will appear at navbar as seen below.

[image: map to buried treasure]
Admin navbar

[image: map to buried treasure]
User navbar

Here is the Admin Perspective Of Repored Bugs Page also every report has tree stage Normal, Focued, Fixed for tracking and dealing with bugs.

[image: map to buried treasure]
Admin Report Page

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

Developer Guide

Database Design

The database of the application consists of 27 tables and the E/R diagram is given below:

[image: e/r diagram]
Entity Relationship diagram of the project.

Necessary explanation about each of the tables are given in individual parts of the document.

Code

Server file has contributed by all team members and necessary explanations are made in individual sections of the report. The common parts are given below.

Application Initialization:

def create_app():
 app.config.from_object('settings')

 app.Buglist = Buglist()
 app.Twitlist = Twitlist()
 app.Creditlist = Creditlist()
 app.messageList = MessageList()
 app.mediaList = MediaList()
 app.tagList = TagList()
 app.quizList = QuizList()

 lm.init_app(app)
 lm.login_view='login_page'

 return app

Here, we initialize global objects as application objects which are used in different functions and return the initialized application. Database connection and main function were already implemented before we contribute to the project.

Database Initialization:

if not current_user.is_admin:
 abort(401)
with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute(open("script.sql", "r").read())
time.sleep(5)
return redirect(url_for('home_page'))

In database intialization function, non-admin users cannot access the related page and they will get an error message that they are not authorized to access to the page. If the user is admin, script file which includes createion of all tables and some initial inserts which are necessary. Since we direct the user to the home page and a query will be executed while the page is loading, we put a delay to make sure that the database intialization is completed before executing the query.

	Parts Implemented by İsmail Emre Çetiner

	Parts Implemented by Serkan Bekir

	Parts Implemented by Yusuf Ekiz
	LISTS Implementation

	LISTS Table and Operations (1st ENTITY)
	Create a New List

	Delete List

	Update List

	Select List

	LISTMEMBERS Table and Operations (Auxiliary Table)
	Add Insider

	Add Subscriber

	Delete Insider

	Delete Subscriber

	POLLS Implementation

	POLLS Table and Operations (2nd ENTITY)
	Create a New Poll

	Delete Poll

	Update Poll

	Select Poll

	CHOICES Table and Operations (3rd ENTITY)
	Create a New Choice

	Delete Choice

	Select Choices

	VOTES Table and Operations (Auxiliary Table)
	Vote for the Poll

	LIKES Table and Operations (Auxiliary Table)
	Like A Tweet

	Unlike a Tweet

	Parts Implemented by Mert Kurtcan
	Userinfo Entity:
	Insert Userinfo

	Update Userinfo

	Select Userinfo

	Delete Userinfo

	Notification Entity:
	Insert Notifications

	Update and Delete Notifications

	Select Notifications

	Style Entity:

	Parts Implemented by Cem Karagöz

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	Developer Guide

Parts Implemented by İsmail Emre Çetiner

User Entity:

User entity is the main entity of the application, which is referenced by most of the tables. User entity consists of two tables:

	Users

	Userprofile

Registeration information of all users are kept in Users table which has 4 columns. ID is the primary key of the table which is used nearly for all references to this table.

CREATE TABLE USERS(
 ID SERIAL PRIMARY KEY,
 USERNAME VARCHAR(20) UNIQUE NOT NULL,
 PASSWORD VARCHAR(150),
 JDATE DATE NOT NULL DEFAULT CURRENT_DATE
);

The code above shows the creation of the Users table. Here, username is a candidate key and it could be the primary key of the table but for practicality of the application, an extra column ID is added and used as a primary key.

Other user information such as nickname, bio and other profile information are kept in Userprofile table and it has 8 columns. ID is the primary key and foreign key to users of this table.

CREATE TABLE USERPROFILE(
 ID INTEGER PRIMARY KEY REFERENCES USERS ON DELETE CASCADE,
 USERNAME VARCHAR(20) UNIQUE NOT NULL,
 NICKNAME VARCHAR(20) NOT NULL,
 TWEETS INTEGER DEFAULT 0,
 FOLLOWING INTEGER DEFAULT 0,
 FOLLOWERS INTEGER DEFAULT 0,
 LIKES INTEGER DEFAULT 0,
 BIO VARCHAR(100)
);

Creation of the Userprofile table is shown above. For the simplicity of some queries, username is included also in this table. Other than that, following and follower numbers, bio, tweet and like counts and such information is kept in the table. Userprofile table is also referenced by various tables, especially for the operations which needs the username or nickname of the user.

class User(UserMixin):
 def __init__(self, username, password):
 self.username = username
 self.password = password
 self.active = True
 self.is_admin = False
 self.activetab = 0

Definition of the User class of shown above. It stores login information and the active tab which is used to indicate that tab to the user on the navigation bar. It also stores the user type which is either admin or a normal user. If it is admin, it has some privileges. User object is used nearly in all operations in the application. The first and basic usage of the class is register and login operations, which are explained below.

Register:

The register page is used to add new users to the application. For the registeration, user should type a username and password (twice) and submit the form. After submitting the form, register function is processed like that:

if request.method == 'POST' and form.validate():
 username = form.username.data
 password = pwd_context.encrypt(form.password.data)
 try:
 #insertions to users and userprofile tables
 login_user(get_user(username))
 return redirect(url_for('home_page'))
 except:
 flash('Username is already taken')

As it is seen above, the username and hashed password is taken as variables and the application tries to insert them into the related tables. If they are successfully inserted, the user is automatically logged in and user is redirected to the home page. Otherwise, a flash message is displayed which states that the username is already taken.

Insertions into the tables are held as follows:

with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""INSERT INTO USERS (USERNAME, PASSWORD) VALUES (%s, %s)""", (username, password))

with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 userid = get_userid(username)
 cursor.execute("""INSERT INTO USERPROFILE (ID, NICKNAME, USERNAME, BIO) VALUES(%s, %s, %s, %s)""", (userid, username, username, 'bio'))

Here, the first insertion is committed for Users table. If the insertion is successful, the user ID is got by the related function and user is inserted into the Userprofile table with this ID. The reason for two-step insertion is about unsuccessful insertion attempts. When a user tries to register with a username which already exists, the serial ID is incremented for Users table and the connection is terminated without attempting an insertion to Userprofile table. Next time, even if the username is different, the mismatch between ID attributes of tables, foreign key constraint could not be satisfied and register operation fails. To get rid of that, ID is got from the first table and inserted into the second one.

Login:

If a user is not logged in yet, he is not allowed to access any of the pages and redirected to the login page automatically. Login operation is implemented as follows:

 if request.method == 'POST' and form.validate():
 username = form.username.data
 user = get_user(username)
 if user is not None:
 password = form.password.data
 if pwd_context.verify(password, user.password):
 login_user(user)
 #automatic database initialization
 flash('You have logged in.')
 next_page = request.args.get('next', url_for('home_page'))
 return redirect(next_page)
 flash('Invalid credentials.')
return render_template('login.html', form=form)

In this function, the username and password is got from the form and the user with the username is retrieved from the database. There is a special login prosedure for admin, which will be explained soon. If the username is found and a user is returned, its password is compared with the given one and if it is verified succesfully, user login is performed. That was the login prosedure for normal users. For admin users, there is a pre-defined password in the application, which is hashed value of the admin password:

ADMINPASS = '6rounds=603422$ZgQRx3Mm/YuUaION$b/Vwzuno1Q7e1KPWehLbRdmvdf/Bjj5.4a.fvcz3TNCl.Rn2CLbQPCsGSIBarDYHMzq3jjN8KDLkBtKJzBclf0'

In “get_user” function, admin login is verified with this password:

def get_user(username):
 if (username=='admin'):
 user = User(username, current_app.config['ADMINPASS'])
 user.is_admin = True
 return user
 try:
 #get user credentials from database

If the given username is **admin””, the pre-defined password is returned in the User object and is_admin attribute is marked as True.

In addition, there is an automatic database initializtion for the first login of the admin user, which is implemented as follows:

try:
 with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""SELECT * FROM USERS WHERE ID=1""")
except:
 return redirect(url_for('initialize_database'))

Here, after the successful login, we check the existance of the first user, which is admin, in the database. If the query is not successfully completed, it means that the database has not been initialized yet, because the admin is inserted into the User table as the database is initialized. So, admin is redirected to the database initialization page and database is initialized.

The update operations for these two tables are implemented in the Update Profile page and the queries for these operations are below:

#form operations
cursor.execute("""UPDATE USERS SET PASSWORD=%s WHERE USERNAME=%s""", (password,current_user.username))
#form operations
cursor.execute("""UPDATE USERPROFILE SET NICKNAME=%s, BIO=%s WHERE USERNAME=%s""", (updateForm.nickname.data,updateForm.bio.data,current_user.username))

Delete operation for Users table can be done only by the administrator, and Userprofile table has “ON DELETE CASCADE” option on its foreign key to Users table, which is ID. The delete query is below:

#form operations
cursor.execute("""DELETE FROM USERS WHERE USERNAME=%s""",(username,))

In addition to these tables, Follows table which has 2 columns can be counted as a part of the User entity and its creation query is as follows:

CREATE TABLE FOLLOWS(
 FOLLOWERID INTEGER REFERENCES USERS(ID) ON DELETE CASCADE,
 FOLLOWEDUSER INTEGER REFERENCES USERS(ID) ON DELETE CASCADE,
 PRIMARY KEY (FOLLOWERID, FOLLOWEDUSER)
);

Here, both of the columns reference to the Users table and they form a primary key together. By defining the couple as a primary key, we can prevent the table from duplicate follow operations. Insertion and delete operations for the table are implemented in Follow/Unfollow page and details are below:

##insert/follow operation:
if followerid and followedid:
 cursor.execute("""INSERT INTO FOLLOWS (FOLLOWERID, FOLLOWEDUSER) VALUES (%s, %s)""",(followerid,followedid))
 cursor.execute("""UPDATE USERPROFILE SET FOLLOWING = FOLLOWING +1 WHERE (ID = %s) """,(followerid,))
 cursor.execute("""UPDATE USERPROFILE SET FOLLOWERS = FOLLOWERS +1 WHERE (ID = %s) """,(followedid,))

##delete/unfollow operation:
if followerid and followedid:
 cursor.execute("""SELECT FOLLOWERID FROM FOLLOWS WHERE (FOLLOWERID = %s) AND (FOLLOWEDUSER = %s)""",(followerid,followedid))
 flag = cursor.fetchone()
 for i in flag:
 cursor.execute("""DELETE FROM FOLLOWS WHERE (FOLLOWERID = %s) AND (FOLLOWEDUSER = %s)""",(followerid,followedid))
 cursor.execute("""UPDATE USERPROFILE SET FOLLOWING = FOLLOWING -1 WHERE (ID = %s)""",(followerid,))
 cursor.execute("""UPDATE USERPROFILE SET FOLLOWERS = FOLLOWERS -1 WHERE (ID = %s)""",(followedid,))

In unfollow operation, we use a flag and check the existance of the (follower-followed) couple before decrementing related attributes. If this check is not done, delete operation would run successfully but not delete any rows from the database, so that we can end up with wrong attributes, i.e. negative numbers.

Application Entity

Application entity forms a base for possible implementations of extensions or external applications for the website. Application entity consists of 2 tables, which are:

	Apps

	Appusers

Apps table holds the basic information about the application in 4 columns and the creation of the table is as follows:

CREATE TABLE APPS(
 ID SERIAL PRIMARY KEY,
 APPNAME VARCHAR(30) NOT NULL,
 USERCOUNT INTEGER DEFAULT 0,
 ACTIVE BOOLEAN DEFAULT FALSE
);

ID is the serial primary key of the table and referenced from the other table of the entity, Appusers. Each application has a boolean attribute Active and keeps the status of the application. In application settings, only active apps will be available for users. Insertion function of the Apps table is given below:

with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""INSERT INTO APPS (APPNAME) VALUES (%s)""", (appname,))
 if request.form['btn'] == 'add_act':
 cursor.execute("""UPDATE APPS SET ACTIVE=TRUE WHERE APPNAME=(%s)""", (appname,))

Here, the application with the given name by admin is inserted into the Apps table with the default Active attribute, false. Then the button is checked and if the clicked button is “Add and Activate”, an update operation is done and the attribute is changed to True.

After adding the application, it is possible to activate and deactivate it at any time. The query is the same as the last one. For delete operation, following query is used:

with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 if selection == 'Delete':
 cursor.execute("""DELETE FROM APPS WHERE APPNAME=(%s)""", (appname,))

Appusers table keeps the application usage information and has 3 columns. Creation query of the table is given:

CREATE TABLE APPUSERS(
 USERID INTEGER REFERENCES USERS(ID) ON DELETE CASCADE,
 APPID INTEGER REFERENCES APPS(ID) ON DELETE CASCADE,
 SUB_DATE DATE NOT NULL DEFAULT CURRENT_DATE,
 PRIMARY KEY (USERID, APPID)
);

The table has two foreign keys. Userid is the reference to the Users table, and Appid references to the Apps table. At the same time, the combination of these attributes form the primary key, and duplicate rows are not allowed.

When a user changes the application settings, the Appusers table is affected from those changes. Related code block is as follows:

cursor.execute("""DELETE FROM APPUSERS WHERE USERID=%s""",(get_userid(current_user.username),))
 #getting selected applications
 for (appid,) in appids:
 cursor=connection.cursor()
 cursor.execute("""INSERT INTO APPUSERS (USERID, APPID) VALUES (%s, %s)""", (userid,appid))
 print(appid,userid)

Since the table does not have an attribute which indicates the changes in application preferences, all rows with the ID of the current user is deleted, and the selected applications are coupled with the user ID and inserted into the table.

Gift Entity:

Gift entity is created for improving the connection between users and users can send gifts to each other. Gifts are defined and managed by the admin and the entity consists of 2 tables.

	Gifts

	Sentgifts

Basic information about the gifts are kept in Gifts table and it consists of 3 columns:

CREATE TABLE GIFTS(
 ID SERIAL PRIMARY KEY,
 GIFTNAME VARCHAR(30) NOT NULL,
 DESCRIPTION VARCHAR(100)
);

As it is seen, ID is the serial primary key and the table has two more attributes, which are giftname and description. All of the operations about the Gifts table done by the admin and it has the right to create, update, delete gifts. Under the admin panel, there is a link to Manage Gifts page and database operations for the table are done in this page. First of all, insertion is done by the following code:

giftname = addform.giftname.data
description = addform.description.data
 with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""INSERT INTO GIFTS (GIFTNAME, DESCRIPTION) VALUES (%s,%s)""", (giftname,description))

Here, the new gift is created with the given name and description by the admin. After adding a gift, admin has the opportunity to update or delete the gift at any time. Update operation is done as follows:

giftname = updateform.gifts.data
description = updateform.description.data
with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""UPDATE GIFTS SET DESCRIPTION=%s WHERE GIFTNAME=%s""",(description,giftname))

It is not possible to change de name of the gift, but admin can change the description of a gift by entering a new value to the related text area and submitting the form. In this form, there is also a delete button which removes the gift from the database and the related code block is:

giftname = updateform.gifts.data
with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""SELECT DESCRIPTION FROM GIFTS WHERE GIFTNAME=%s""",(giftname,))

The second table of the entity is Sentgifts which stores the gift exchange between users. It consists of 4 columns and created with the following query:

CREATE TABLE SENTGIFTS(
 SENDER INTEGER REFERENCES USERS(ID) ON DELETE CASCADE,
 RECEIVER INTEGER REFERENCES USERS(ID) ON DELETE CASCADE,
 GIFTID INTEGER REFERENCES GIFTS(ID) ON DELETE CASCADE,
 S_TIME TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
 PRIMARY KEY (SENDER, RECEIVER, GIFTID)
);

Sender and receiver are the foreign keys to the user table and giftid holds the value for corresponding gift. As the gift is sent, current timestamp is inserted into the related column as the sending time. Primary key of the table is combination of two columns, and sending a gift to a user twice is not allowed.

The insertions to the table is done by following lines:

else:
 try:
 with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""INSERT INTO SENTGIFTS VALUES(%s,%s,%s)""",(get_userid(current_user.username),sendform.sendto.data,sendform.gifts.data))
 cursor.execute("""SELECT USERNAME FROM USERS WHERE ID=%s""",sendform.sendto.data)
 sentto = cursor.fetchone()[0]
 cursor.execute("""SELECT GIFTNAME, DESCRIPTION FROM GIFTS WHERE ID=%s""",(sendform.gifts.data,))
 values = cursor.fetchall()
 #flash gift sent message
 except:
 #flash cannot send message

Here, the selected gift id and user id is given as the values to the query and the insertion is completed. If there is a primary key violation, an error message is displayed.

For displaying sent and received gifts, following queries are used:

with connection.cursor() as cursor3:
 cursor3.execute("""SELECT USERNAME, NICKNAME, GIFTNAME,
 DESCRIPTION, TO_CHAR(S_TIME, 'DD Mon YYYY, HH24:MI') FROM SENTGIFTS INNER JOIN GIFTS ON GIFTID=ID
 INNER JOIN USERPROFILE ON SENDER=USERPROFILE.ID WHERE (RECEIVER=%s) ORDER BY S_TIME DESC""",(get_userid(current_user.username),))
 receivedgifts = cursor3.fetchall()
with connection.cursor() as cursor4:
 cursor4.execute("""SELECT USERNAME, NICKNAME, GIFTNAME,
 DESCRIPTION, TO_CHAR(S_TIME, 'DD Mon YYYY, HH24:MI') FROM SENTGIFTS INNER JOIN GIFTS ON GIFTID=ID
 INNER JOIN USERPROFILE ON RECEIVER=USERPROFILE.ID WHERE (SENDER=%s) ORDER BY S_TIME DESC""",(get_userid(current_user.username),))
 sentgifts = cursor4.fetchall()

Here, received gifts are fetched with the sender username and nickname, giftname, description and sending time with some formatting. Like received gifts, sent gifts are fetched with the same attributes and given to the html file in order to print them in the list.

If the user wants to delete the gifts, there is a “Delete all gifts” button at the end of the page and the following lines are executed after pressing the button:

if request.form['btn'] == 'delete':
 with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""DELETE FROM SENTGIFTS WHERE RECEIVER = %s OR SENDER = %s""",(get_userid(current_user.username),get_userid(current_user.username)))
 flash('All gifts deleted.')

The lines above deletes all gifts that is sent or received by the current user.

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	Developer Guide

Parts Implemented by Serkan Bekir

In this project Messages, Media and Quiz operations are done by me.

Six tables are created for handling these three entities such as MESSAGES, MEDIA, TAGS,
QUIZ, OPTIONS and POINTS.

Messages Entity:

Firstly MESSAGE table is created for this operation.

CREATE TABLE MESSAGES(
 MESSAGEID SERIAL PRIMARY KEY,
 SENDERID INTEGER REFERENCES USERPROFILE (ID) ON DELETE SET NULL,
 RECIEVERID INTEGER REFERENCES USERPROFILE (ID) ON DELETE SET NULL,
 CONTENT VARCHAR(100) NOT NULL,
 SENT BOOLEAN DEFAULT FALSE,
 MTIME TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP
);

There are 6 columns in this table. Messageid holds the ID of the message, senderid and recieverid
hold the sender and receiver of the message. These columns are refereced by ID of the USERPROFILE
table. Content and mtime hold the content and time of the message.

Message.py:

class Message:
 def __init__(self, sender, reciever, content, sent = None):
 self.sender = sender
 self.reciever = reciever
 self.content = content
 self.sent = sent

In this python file the Message class has created for using in the operations such as add and delete.

After that firstly add_message feature is added. For doing this at the beginning add_message*
function is added and it is shown below.

def add_message(self, message):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (message.reciever,))
 recieverid = cursor.fetchone()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 senderid = cursor.fetchone()
 cursor.execute("""INSERT INTO MESSAGES (SENDERID, RECIEVERID, CONTENT, SENT) VALUES (%s, %s, %s, %s)""", (senderid, recieverid, message.content, message.sent))
 connection.commit()

This function takes message object for parameter. Firstly, we have the username of the reciever in message.reciever
With the first query we got the ID of the reciever user. Secondly, it had done the same thing for getting the ID of the sender person.
After all, senderid, recieverid, content, and sent values are inserted into the MESSAGE table.

In server.py file, there is a new_message_page() method. In this function, content variable has the content of the message, it takes
that from the html file. reciever is taken from the dropdown menu which named reciever in html file. As it is seen below of the function
that query retrieves all users username and send it to the html for adding into the dropdown menu. sender is given 1 for preventing
the object error because it is retrieved in add_message function which is explained above. After that all these values are put
in the message object and sent to add_message for inserting the MESSAGE table.

def new_message_page():
 current_user.activetab = 3
 users = None
 if request.method == 'POST':
 content = request.form['content']
 sender = 1
 reciever = request.form['reciever']
 sent = True
 messagesend = Message(sender, reciever, content, sent)
 current_app.messageList.add_message(messagesend)
 return redirect(url_for('messages_page'))
 with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""SELECT USERNAME FROM USERS""")
 users = cursor.fetchall()
 return render_template('new_message.html', users = users)

The function below (get_message) is used for getting the message that belongs to current user. First, current user’s ID is retrieved
in the first query. After that the messages which the current user is sender or reciever, are retrieved and returned as messages object.

def get_messages(self):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 userid = cursor.fetchone()
 cursor.execute("SELECT T1.MESSAGEID, T1.SENDERID, T1.RECIEVERID, T1.CONTENT, T2.NICKNAME AS SENDERNICK, T3.NICKNAME AS RECIEVERNICK FROM MESSAGES AS T1 INNER JOIN USERPROFILE AS T2 ON T1.SENDERID = T2.ID INNER JOIN USERPROFILE AS T3 ON T1.RECIEVERID = T3.ID WHERE SENDERID = %s OR RECIEVERID = %s""",(userid,userid))
 messages = [(key, Message(sendernick, recievernick, content))
 for key, sender, reciever, content, sendernick, recievernick in cursor]
 return messages

The messages are taken here and sent to the html for printing. Also delete operation is handled here. Value consist of the messageid
retrieved from the checkbox button from html. After that it is sent to delete_message() in a loop because considering the possibility
of more then one checkedbox.

def messages_page():
 current_user.activetab = 3
 messages = current_app.messageList.get_messages()
 if request.method == 'POST':
 value = request.form.getlist('message')
 for i in value:
 current_app.messageList.delete_message(i)
 return redirect(url_for('messages_page'))
 return render_template('messages.html', messages=messages)

The messages are deleted for that correspondin ID, as shown below

def delete_message(self, messageid):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("DELETE FROM MESSAGES WHERE MESSAGEID = %s""", (messageid,))
 connection.commit()

Media Entity:

MEDIA and TAGS tables are created for this entity.

In MEDIA table there are 4 columns which are photoid, ownerid, content and url.

CREATE TABLE MEDIA(
 PHOTOID SERIAL PRIMARY KEY,
 OWNERID INTEGER REFERENCES USERPROFILE (ID) ON DELETE SET NULL,
 DESCRIPTION VARCHAR (100),
 URL VARCHAR(500)
);

Photo is stored as URL in the website.

In add_photo function, it takes media object as parameter. Besides, it retrieves the ownerid like in message example.
After that it inserts the ownerid, description and url in the MEDIA table. Media object consist of all necessary data.

def add_photo(self, media):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 ownerid = cursor.fetchone()
 cursor.execute("""INSERT INTO MEDIA (OWNERID, DESCRIPTION, URL) VALUES (%s, %s, %s)""", (ownerid, media.description, media.url))
 connection.commit()

In server.py file, content and url are taken from the html file and put in to the media object.Finally, add_photo function
is called.

def newphoto_page():
 current_user.activetab = 4
 if request.method == 'POST':
 content = request.form['content']
 url = request.form['url']
 ownerid = 1
 media = Media(ownerid, content, url)
 current_app.mediaList.add_photo(media)
 return redirect(url_for('media_page'))
 return render_template('newphoto.html')

For shows the photos that user added and tagged, second query is written for retrieving the photoids of the corresponding photos.
Then with using this IDs ownerid, description and url of the photo are retrieved and return into the media object, as shown below.

def get_photos(self):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 userid = cursor.fetchone()
 cursor.close()
 cursor = connection.cursor()
 cursor.execute("SELECT DISTINCT * FROM ((SELECT DISTINCT PHOTOID FROM MEDIA WHERE OWNERID = %s) UNION (SELECT DISTINCT TAGEDPHOTOID FROM TAGS WHERE TAGEDUSERID = %s)) AS PHOTOS""",(userid,userid))
 photosid=cursor.fetchall()
 media = []
 for id in photosid:
 cursor.execute("SELECT T1.*, T2.ID FROM MEDIA AS T1 INNER JOIN USERS AS T2 ON T1.OWNERID = T2.ID WHERE T1.PHOTOID = %s""",(id,))
 media += [(key, Media(ownerid, description, url))
 for key, ownerid, description, url, id in cursor]
 print (media)
 return media

In this media_page function, photos are retrieved first, then the tag of the photos are taken that will be explained later.
Then, if delete button is clicked, it takes which items are checked and send them in delete_photo function. Finally, media and
tagList objects are sent to html file for printing to the screen.

def media_page():
 current_user.activetab = 4
 media = current_app.mediaList.get_photos()
 tagList = []
 for item in media:
 tagList += TagList.get_tags(item[0])
 if request.method == 'POST':
 if request.form['operation'] == 'delete':
 value = request.form.getlist('media')
 for i in value:
 current_app.mediaList.delete_photo(i)
 return redirect(url_for('media_page'))
 if request.form['operation'] == 'update':
 value = request.form.getlist('media')
 return render_template('media.html', media = media, tagList=tagList)

Delete operations are done in below. It takes the photoid and deletes from the table which item has that id.

def delete_photo(self, photoid):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("DELETE FROM MEDIA WHERE PHOTOID = %s""", (photoid,))
 connection.commit()

Update operations are done below. New description and id of that corresponding photo are taken and updated in the database.

def update_photo(self, description,photoid):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("UPDATE MEDIA SET DESCRIPTION = %s WHERE PHOTOID = %s""",(description,photoid))
 connection.commit()

In this function, new description and id of that corresponding photo is taken from html and sent to update_photo function.

def updatemedia_page():
 current_user.activetab = 4
 media = current_app.mediaList.get_photos()
 if request.method == 'POST':
 value = request.form.getlist('media')
 description = request.form['newdes']
 for i in value:
 current_app.mediaList.update_photo(description,i)
 return redirect(url_for('media_page'))
 return render_template('updatemedia.html', media = media)

TAGS table is created for adding tag into the photos it has ID of the photo which is tagged as references to ID of MEDIA table and
ID of the user which is tagged that photo as references to ID of USERPROFILE table.

CREATE TABLE TAGS(
TAGID SERIAL PRIMARY KEY,
TAGEDPHOTOID INTEGER REFERENCES MEDIA (PHOTOID) ON DELETE CASCADE,
TAGEDUSERID INTEGER REFERENCES USERPROFILE (ID) ON DELETE CASCADE
);

Tag is added in this function below. It takes the username and photoid as parameter and insert it into the TAGS table.

def add_tag(self, username, photoid):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (username,))
 tageduserid = cursor.fetchone()
 cursor.execute("""INSERT INTO TAGS (TAGEDPHOTOID, TAGEDUSERID) VALUES (%s, %s)""", (photoid, tageduserid))
 connection.commit()

This function which is below is used for getting the current tags on that current photo which is given to the function photoid
as parameter. It returns the tags object which has photoid and username in it. And this object is used in html file for printing
the tag in corresponding photo.

def get_tags(photoid):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("SELECT T1.PHOTOID, USERS.USERNAME FROM MEDIA AS T1 INNER JOIN TAGS AS T2 ON PHOTOID = TAGEDPHOTOID INNER JOIN USERS ON T2.TAGEDUSERID = USERS.ID WHERE PHOTOID=%s""",(photoid,))
 tags = []
 for photoid, username in cursor:
 tags += [(photoid,username)]
 print(tags)
 return tags

In this tag_page function, value consist of the ID of the photo which is selected with the radio button. Tagname has the name of
the user which is selected from the dropdown menu. Finally it is sent to add_tag function with tagname and the ID of the selected
photo.

def tag_page():
 current_user.activetab = 4
 users = None
 media = current_app.mediaList.get_photos()
 if request.method == 'POST':
 value = request.form.getlist('media')
 tagname = request.form['tag']
 for i in value:
 current_app.tagList.add_tag(tagname, i)
 return redirect(url_for('media_page'))
 with dbapi2.connect(app.config['dsn']) as connection:
 with connection.cursor() as cursor:
 cursor.execute("""SELECT USERNAME FROM USERS""")
 users = cursor.fetchall()
 return render_template('tagphoto.html', media=media, users = users)

Quiz Entity:

There are three tables are used for creating the quiz entity. These tables are QUIZ, OPTIONS and POINTS. Quiz table is used
for holding the questions and the sender and reciever of the questions. Options holds the ID of the question as references to the
ID of the QUIZ table and also consist of the option of the questions and holds the correctness boolean variable for deciding
if that option is correct answer or not. Lastly, in POINTS table, it is held the points of the users. All corresponding tables
are shown below.

Quiz table:

CREATE TABLE QUIZ(
ID SERIAL PRIMARY KEY,
SENDERID INTEGER REFERENCES USERPROFILE (ID) ON DELETE SET NULL,
RECIEVERID INTEGER REFERENCES USERPROFILE (ID) ON DELETE SET NULL,
CONTENT VARCHAR(500),
ISANSWERED BOOLEAN DEFAULT FALSE
);

Options table:

CREATE TABLE OPTIONS(
OPTIONID SERIAL PRIMARY KEY,
QUESTIONID INTEGER REFERENCES QUIZ (ID) ON DELETE CASCADE,
CHOICE VARCHAR(100),
CORRECTNESS BOOLEAN DEFAULT FALSE
);

Points table:

CREATE TABLE POINTS(
USERID INTEGER PRIMARY KEY REFERENCES USERPROFILE (ID) ON DELETE CASCADE,
POINT INTEGER DEFAULT 0
);

add_quiz function takes reciever user, options, content of the question and choice as parameter. Firstly, ID of the sender
is found in the first query. After that ID of the receiver user is taken in the second query. Then content, sender and receiver
users are inserted into the QUIZ table. Then the options of the question are added. If the i value in the loop is equal to
value of the choice which indicates to correct answer, insert it into the OPTIONS table as true otherwise insert it as false.

def add_quiz(self, reciever, options, content, choice):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 senderid = cursor.fetchone()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (reciever,))
 recieverid = cursor.fetchone()
 cursor.execute("""INSERT INTO QUIZ (SENDERID, RECIEVERID, CONTENT) VALUES (%s, %s, %s)""", (senderid, recieverid, content))
 connection.commit()
 cursor.execute("""SELECT ID FROM QUIZ WHERE CONTENT=%s""", (content,))
 quizid = cursor.fetchone()
 for i in range(len(options)):
 if i == int(choice)-1:
 cursor.execute("""INSERT INTO OPTIONS (QUESTIONID, CHOICE, CORRECTNESS) VALUES (%s, %s, TRUE)""",(quizid, options[i]))
 connection.commit()
 else:
 cursor.execute("""INSERT INTO OPTIONS (QUESTIONID, CHOICE, CORRECTNESS) VALUES (%s, %s, FALSE)""",(quizid, options[i]))
 connection.commit()

get_quiz is used for list the questions which are sent to that user. It returns the ID of the question, content, isanswered boolean
which is used if the question is answered or still waiting to answer. Because according to that boolean value the question is shown on
the quiz page or not. Optionid, choice of the user and correctness of that choice.

def get_quiz(self):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 recieverid = cursor.fetchone()
 cursor.execute("""SELECT T1.ID, T1.CONTENT, T1.ISANSWERED, T2.OPTIONID, T2.CHOICE, T2.CORRECTNESS FROM QUIZ AS T1 INNER JOIN OPTIONS AS T2 ON T1.ID = T2.QUESTIONID WHERE RECIEVERID = %s""", (recieverid,))
 connection.commit()
 questions = []
 for id, content, isanswered, optionid, choice, correctness in cursor:
 questions +=[(id, content, isanswered, optionid, choice, correctness)]
 print(questions)
 return questions

This function below is used for deciding if the choosen option is correct or not. It takes the optionid and checks the correctness
value. If it is true returns true otherwise returns false.

def check_correctness(self, optionid):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT CORRECTNESS FROM OPTIONS WHERE OPTIONID=%s""", (optionid,))
 correctness = cursor.fetchone()
 return correctness

In quiz_page, firstly the questions are got if exist. Then the points of that user is taken(it will be explained below).
Then the choice of the user is held and check_correctness function is called for checking the correctness of users choices.
If choice is correct update_points is called for adding 5 points to user. Finally, in update_quiz function the isanswered
boolean variable is changed and if the question is answered it is not shown on the quiz page anymore.

def quiz_page():
 current_user.activetab = 5
 quiz = current_app.quizList.get_quiz()
 (points,) = current_app.quizList.get_points()
 idList = []
 answers = []
 corList = []
 if request.method == 'POST':
 if request.form['operation'] == 'send':
 for id, content, isanswered, optionid, choice, correctness in quiz:
 idList += [(id)]
 for i in range(0, len(idList), 4):
 choosen = request.form.getlist(str(idList[i]))
 for j in choosen:
 (cor,) = current_app.quizList.check_correctness(j)
 if cor:
 if points == None:
 current_app.quizList.add_points()
 else:
 current_app.quizList.update_points()
 current_app.quizList.update_quiz(str(int(math.ceil(int(j)/4))))
 return redirect(url_for('quiz_page'))
 elif request.form['operation'] == 'delete':
 current_app.quizList.delete_quiz()
 return redirect(url_for('quiz_page'))
 return render_template('quiz.html', quiz = quiz, points = points)

In this function the points of the current user is retrieved from the POINTS table.

def get_points(self):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 userid = cursor.fetchone()
 cursor.execute("""SELECT POINT FROM POINTS WHERE USERID=%s""", (userid,))
 points = cursor.fetchone()
 print(points)
 return points

In this function the points of current users is updated(added 5 points).

def update_points(self):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 userid = cursor.fetchone()
 cursor.execute("UPDATE POINTS SET POINT =POINT+5 WHERE USERID=%s""",(userid,))
 connection.commit()

In this function, isanswered value is changed to ‘true‘.

def update_quiz(self, questionid):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("UPDATE QUIZ SET ISANSWERED = TRUE WHERE ID = %s""",(questionid,))
 connection.commit()

In this delete_quiz function all questions that current user is recieved, is deleted.

def delete_quiz(self):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
 recieverid = cursor.fetchone()
 cursor.execute("DELETE FROM QUIZ WHERE RECIEVERID = %s""", (recieverid,))
 connection.commit()

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	Developer Guide

Parts Implemented by Yusuf Ekiz

I implemented 6 tables and their operations in this project. Tables can be seen below

	LISTS

	LISTMEMBERS

	POLLS

	CHOICES

	VOTES

	LIKES

LISTS Implementation

A list is a curated group of accounts. You can create your own lists or subscribe to lists created by others.
When the user clicks the list,the list will show the tweets which are tweeted by members of the lists.
For lists I implemented LISTS and LISTMEMBERS table. LISTS table is an entity. LISTMEMBERS is a auxiliary table

LISTS Table and Operations (1st ENTITY)

LISTS table holds the all lists in the application.It is referenced by LISTMEMBERS table.

This table has following columns

	
	LISTID as serial primary key

	Primary key of the table

	
	SUBSCRIBERS as integer and default 0

	Holds the number of users who are subscribing the list

	
	MEMBERS as integer and default 0

	Holds the number of users who are the insiders of the list

	
	NAME as varchar and not null

	Name of the list

	
	CREATORID as integer and not null references userprofile table

	Holds the id of the user who created the list

SQL CODE:

CREATE TABLE LISTS(
 LISTID SERIAL PRIMARY KEY,
 SUBSCRIBERS INTEGER DEFAULT 0,
 MEMBERS INTEGER DEFAULT 0,
 NAME VARCHAR(30) NOT NULL,
 CREATORID INTEGER NOT NULL REFERENCES USERPROFILE (ID) ON DELETE CASCADE
);

Also python classes listoflists and list are used for operations.
These classes are implemented in listoflist.py and list.py files.

List class

class List:
 def __init__(self,name,creatorname):
 self.name=name
 self.creatorname=creatorname
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(creatorname,))
 temp=cursor.fetchone()
 self.creatorid=temp[0]
 cursor.close()
 connection.close()

ListofList class

class ListOfLists:
 def __init__(self,name):
 self.name=name

Create a New List

A list is created in a addList function which is implemented in listoflist.py file (ListofLists class).
This function will take a list object as an input. And inserts the new list to the LISTS table

def addList(self,list):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 username=current_user.username
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(username,))
 temp=cursor.fetchone()
 userid=temp[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""INSERT INTO LISTS (NAME,CREATORID) VALUES (%s, %s)""", (list.name,userid))
 cursor.execute("""SELECT LISTID FROM LISTS WHERE NAME=%s AND CreatorID =%s """,(list.name,userid))
 temp2=cursor.fetchone()
 listid=temp2[0]
 cursor.execute("""INSERT INTO LISTMEMBERS (LISTID,USERID,USERTYPE) VALUES (%s,%s,%s)""",(listid,userid,'Owner'))
 connection.commit()
 cursor.close()
 connection.close()
 return

Delete List

A list is deleted in deleteList() function which is implemented in listoflist.py file (ListofLists class).
This function will take listname and creatorname as inputs. At first it will find the creatorid then it will execute a DELETE query with creatorid and listname.

def deleteList(self, listname,creatorname):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(creatorname,))
 temp=cursor.fetchone()
 creatorid=temp[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""DELETE FROM LISTS WHERE NAME=%s AND CreatorID=%s """,(listname,creatorid))
 connection.commit()
 cursor.close()
 connection.close()
 return

Update List

Name of a list is updated in updateName function which is implemented in list.py file(List class). It has only one input which is newName.
It executes a simple UPDATE SQL query.

def updateName(self,newName):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""UPDATE LISTS SET NAME=%s WHERE NAME=%s AND CREATORID=%s""",(newName,self.name,self.creatorid))
 self.name=newName
 connection.commit()
 cursor.close()
 connection.close()
 return

Select List

A list can be selected with getList function which is implemented in listoflist.py file (ListofLists class).
This function takes listname as an input. It executes a simple SELECT SQL statement.

def getList(self, listname):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT USERNAME FROM LISTS JOIN USERPROFILE ON LISTS.CREATORID = USERPROFILE.ID WHERE NAME=%s""",(listname,))
 temp=cursor.fetchone()
 username=temp[0]
 list=List(listname,username)
 connection.commit()
 cursor.close()
 connection.close()
 return list

LISTMEMBERS Table and Operations (Auxiliary Table)

LISTMEMBERS holds all of the members of all of the lists in application.
This table has following columns

	
	LISTID as serial primary key

	Primary key of the table

	
	USERID as integer and not null references userprofile table

	Holds the id of the user.

	
	USERTYPE as varchar and not null

	Holds the role of the listmember in a list. Usertype can have string values like Insider,Owner or Subscriber.

LISTID and CREATORID are primary key together.

SQL CODE:

CREATE TABLE LISTMEMBERS(
 LISTID INTEGER NOT NULL REFERENCES LISTS(LISTID) ON DELETE CASCADE,
 USERID INTEGER NOT NULL REFERENCES USERPROFILE(ID) ON DELETE CASCADE,
 USERTYPE VARCHAR(18) NOT NULL,
 PRIMARY KEY(LISTID,USERID,USERTYPE)
);

Some operations are also implemented for LISTMEMBERS table in list.py file.

Add Insider

As it has been explained above,in application there are 3 member types.
A list can have only a one owner. Owner is added when it is created. You can see above.
We can also add insider members to the lists with addInsider function which is in list.py file(List class).
Its code can be seen below. Function takes membername as a parameter. At first function fetch listid from database.
Then it fetches member id from USERS Table. Finally it inserts the insider to the list.

def addInsider(self,membername):
 try:
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT LISTID FROM LISTS WHERE NAME=%s AND CreatorID=%s""",(self.name,self.creatorid))
 temp=cursor.fetchone()
 listid=temp[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(membername,))
 temp1=cursor.fetchone()
 memberid=temp1[0]
 cursor.execute("""INSERT INTO LISTMEMBERS (LISTID,USERID,USERTYPE) VALUES (%s, %s,%s)""", (listid,memberid,'Insider'))
 cursor.execute("""UPDATE LISTS SET MEMBERS=MEMBERS+1 WHERE LISTID =%s""",(listid,))
 connection.commit()
 cursor.close()
 connection.close()
 return 1
 except:
 return 0

Add Subscriber

Finally members with subscriber role also can be added to the list with addSubscriber function which is in list.py file(List class).
The only difference between addSubscriber and andMember function is USERTYPE value in the table. At first function fetch listid from database.
Then it fetches member id from USERS Table. Finally it inserts the subscriber.

def addSubscriber(self,membername):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT LISTID FROM LISTS WHERE NAME=%s AND CreatorID=%s""",(self.name,self.creatorid))
 temp=cursor.fetchone()
 listid=temp[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(membername,))
 temp=cursor.fetchone()
 memberid=temp[0]
 cursor.execute("""INSERT INTO LISTMEMBERS (LISTID,USERID,USERTYPE) VALUES (%s, %s,%s)""", (listid,memberid,'Subscriber'))
 cursor.execute("""UPDATE LISTS SET MEMBERS=MEMBERS+1 WHERE LISTID =%s""",(listid,))
 connection.commit()
 cursor.close()
 connection.close()
 return

Delete Insider

Members that who have insider role in list can be deleted with deleteInsider function in list.py file(List class).
This function takes membername as a parameter. At first it finds the member’s userid. Then it tries to find the listid. And finally it deletes the listmember.

def deleteInsider(self,membername):
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(membername,))
 tempmemberid=cursor.fetchone()
 memberid=tempmemberid[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""SELECT LISTID FROM LISTS WHERE NAME=%s AND CREATORID=%s""",(self.name,self.creatorid))
 temp=cursor.fetchone()
 listid=temp[0]
 cursor.execute("""DELETE FROM LISTMEMBERS WHERE LISTID = %s AND USERID =%s AND USERTYPE""",(listid,memberid,'Insider'))
 cursor.execute("""UPDATE LISTS SET MEMBERS=MEMBERS-1 WHERE LISTID =%s""",(listid,))
 connection.commit()
 cursor.close()
 connection.close()
 return

Delete Subscriber

Members that who have subscriber role in list can be deleted also with deleteSubscriber function in list.py file(List class).
This function takes member name as a parameter. Firstly it will find the member’s user id with SELECT query. Then it will try to find the list id.
Finally it will execute DELETE SQL statement and UPDATES the number of members in the list.

def deleteSubscriber(self, membername):
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(membername,))
 tempmemberid=cursor.fetchone()
 memberid=tempmemberid[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""SELECT LISTID FROM LISTS WHERE NAME=%s AND CREATORID=%s""",(self.name,self.creatorid))
 temp=cursor.fetchone()
 listid=temp[0]
 cursor.execute("""DELETE FROM LISTMEMBERS WHERE LISTID = %s AND USERID =%s AND USERTYPE = %s""",(listid,memberid,'Subscriber'))
 cursor.execute("""UPDATE LISTS SET MEMBERS=MEMBERS-1 WHERE LISTID =%s""",(listid,))
 connection.commit()
 cursor.close()
 connection.close()
 return

POLLS Implementation

Polls allow people to weigh in on questions posed by other people on this social media website. Users can also create their own polls and see the results instantly.
3 tables are created in order to implement polls. These tables’ names are POLLS CHOICES and VOTES.
POLLS and CHOICES are entities. VOTES is an auxiliary table.

POLLS Table and Operations (2nd ENTITY)

POLLS table holds all of the polls’ data in application. It is referenced by CHOICES and VOTES tables.

This table has following columns

	
	POLLID as serial primary key

	Primary key of the table

	
	POLLQUESTION as varchar and not null

	Question of the poll

	
	CREATORID as integer and not null references userprofile table

	Holds the id of the user who created the poll

	
	VOTENUMBER as integer and default 0

	Holds the number of votes which are made by users

	
	CHOICENUMBER as integer and default 0

	Holds the number of choices in a poll

SQL CODE:

CREATE TABLE POLLS(
 POLLID SERIAL PRIMARY KEY,
 CREATORID INTEGER NOT NULL REFERENCES USERPROFILE(ID) ON DELETE CASCADE,
 VOTENUMBER INTEGER NOT NULL DEFAULT 0,
 CHOICENUMBER INTEGER NOT NULL DEFAULT 0,
 POLLQUESTION VARCHAR(40) NOT NULL
);

In order to implement the polls. ListofPolls and Poll classes are created. They are created in poll.py and listofpolls.py files.

Poll class

class Poll():
 def __init__(self,question,creatorname):
 self.votenumber=0
 self.question=question
 self.creatorname=creatorname
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(creatorname,))
 temp=cursor.fetchone()
 self.creatorid=temp
 cursor.close()
 connection.close()
 return

ListOfPolls class

class ListOfPolls:
 def __init__(self,name):
 self.name=name
 return

Create a New Poll

A poll is created in a addPoll function which is implemented in listofpolls.py file(ListOfPolls class).
This function will take a poll object as an input. And inserts the new poll to the POLLS table with INSERT SQL statement.

def addPoll(self,poll):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 username=current_user.username
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(username,))
 temp=cursor.fetchone()
 userid=temp[0]
 cursor.execute("""INSERT INTO POLLS (POLLQUESTION,CREATORID) VALUES (%s, %s)""", (poll.question,userid))
 connection.commit()
 cursor.close()
 connection.close()
 return

Delete Poll

A poll is deleted in deletePoll function which is implemented in listofpolls.py file(ListOfPolls class)
This function will take pollquestion and pollcreatorname as parameters.
After taking parameters it will find the creator id then executes a DELETE SQL query with pollquestion and creator id as parameters.

def deletePoll(self,pollquestion,pollcreatorname):
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(pollcreatorname,))
 temp=cursor.fetchone()
 creatorid=temp[0]
 cursor.execute("""DELETE FROM POLLS WHERE POLLQUESTION=%s AND CREATORID=%s """,(pollquestion,creatorid))
 connection.commit()
 cursor.close()
 connection.close()
 return

Update Poll

Question of a poll can be updated in updateQuestion function which is implemented in poll.py(Poll Class) file. It has only one input which is newquestion.
It will execute an UPDATE SQL statement with parameters such as newquestion,oldquestion(self.question) and creatorid(self.creatorid).

def updateQuestion(self,newquestion):
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""UPDATE POLLS SET POLLQUESTION = %s WHERE POLLQUESTION =%s AND CREATORID=%s """,(newquestion,self.question,self.creatorid))
 self.question=newquestion
 connection.commit()
 cursor.close()
 connection.close()
 return

Select Poll

A list can be selected with getList function which is implemented in listofpolls.py file(ListOfPolls class).
This function takes listname as an input. It executes a simple SQL SELECT statement. Finally it returns a poll object.

def getAPoll(self,pollquestion):
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT VOTENUMBER,CHOICENUMBER FROM POLLS WHERE POLLQUESTION=%s""",(pollquestion,))
 temp2=cursor.fetchone()
 votenumber=temp2[0]
 choicenumber=temp2[1]
 poll=Poll(pollquestion,creatorname)
 poll.votenumber=votenumber
 poll.choicenumber=choicenumber
 return poll

CHOICES Table and Operations (3rd ENTITY)

CHOICES table holds the all of the choices for every poll in application. It is referenced by VOTES table.

This table has following columns

	
	CHOICEID as serial unique

	Serial number to represent choices

	
	POLLID as integer and not null references polls table

	Holds the id of the poll which consists of this choice

	
	CONTENT as varchar and not null

	Holds the content of the choice

	
	NUMBEROFVOTES as integer and default 0

	This columns shows how many votes are used for this choice.

POLLID , CHOICEID , CONTENT act as a primary key together.

SQL CODE:

CREATE TABLE CHOICES(
 CHOICEID SERIAL UNIQUE,
 POLLID INTEGER NOT NULL REFERENCES POLLS(POLLID) ON DELETE CASCADE,
 CONTENT VARCHAR(20) NOT NULL,
 NUMBEROFVOTES INTEGER NOT NULL DEFAULT 0,
 PRIMARY KEY (CHOICEID,POLLID,CONTENT)
);

Operations of choices are implemented in polls.py file(Poll class).

Create a New Choice

Every choice of the poll can be created in a addChoice function which is implemented in poll.py(Poll class) file.
This function will take the choicecontent as an input. At first it will try to find the current poll in database.
Then it inserts the new choice to the CHOICES table with INSERT SQL statement. Finally it updates the NUMBEROFCHOICES column of current poll in POLLS table.

def addChoice(self,choicecontent):
 try:
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT POLLID FROM POLLS WHERE CREATORID=%s AND POLLQUESTION =%s """,(self.creatorid,self.question))
 temp=cursor.fetchone()
 pollid=temp[0]
 cursor.execute("""INSERT INTO CHOICES (POLLID,CONTENT) VALUES (%s,%s)""",(pollid,choicecontent))
 cursor.execute("""UPDATE POLLS SET CHOICENUMBER=CHOICENUMBER + 1 WHERE POLLID=%s""",(pollid,))
 connection.commit()
 cursor.close()
 connection.close()
 return
 except:
 print("Database Problems")
 return

Delete Choice

A choice of the poll is deleted in deleteChoice function which is implemented in polls.py file(Polls class)
This function will take choicecontent as an input. At first it will find current poll in the database.
After finding the pollid from database it DELETE* SQL statement will be executed with pollid and choicecontent parameters.

def deleteChoice(self,choicecontent):
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT POLLID FROM POLLS WHERE CREATORID=%s AND POLLQUESTION =%s """,(self.creatorid,self.question))
 temp=cursor.fetchone()
 pollid=temp[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""DELETE FROM CHOICES WHERE POLLID=%s AND CONTENT =%s""",(pollid,choicecontent))
 cursor.execute("""UPDATE POLLS SET CHOICENUMBER=CHOICENUMBER -1 WHERE POLLID=%s"""(pollid,))
 connection.commit()
 cursor.close()
 connection.close()
 return

Select Choices

We can get all the choices with getChoices function in poll.py file(Poll class)
This function takes no additional parameters. It executes a simple SQL SELECT statement with current poll’s id. And returns a choices array.

def getChoices(self):
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT POLLID FROM POLLS WHERE CREATORID=%s AND POLLQUESTION =%s """,(self.creatorid,self.question))
 temp=cursor.fetchone()
 pollid=temp
 cursor.execute("""SELECT CONTENT,NUMBEROFVOTES FROM CHOICES WHERE POLLID=%s ORDER BY CHOICEID""",(pollid,))
 choices=[(temp[0],temp[1]) for temp in cursor.fetchall()]
 connection.commit()
 cursor.close()
 connection.close()
 return choices

VOTES Table and Operations (Auxiliary Table)

VOTES Table holds the all the votes for the polls.

This table has following columns

	
	CHOICEID as integer and not null references choices table

	Holds the id of the chosen choice.

	
	POLLID as integer and not null references polls table

	Holds the id of the poll

	
	USERID as integer and not null references userprofile table

	Holds the id of the user.

POLLID CHOICEID USERID act as a primary key together.

Operations of VOTES table are implemented in poll.py file(Poll class).

Vote for the Poll

A user can use their vote with the voteforPoll function.
This function takes choiceContent as a parameter.At first it tries to find pollid of current poll,choiceid of current choice and userid of voter.
Then it executes a INSERT SQL command for inserting this vote to the VOTES tables.

def voteforPoll(self,choiceContent):
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT POLLID FROM POLLS WHERE CREATORID=%s AND POLLQUESTION =%s """,(self.creatorid,self.question))
 temp=cursor.fetchone()
 pollid=temp[0]
 cursor.close()
 cursor=connection.cursor()
 cursor.execute("""SELECT CHOICEID FROM CHOICES WHERE CONTENT=%s AND POLLID =%s """,(choiceContent,pollid))
 temp=cursor.fetchone()
 choiceid=temp[0]
 cursor.close()
 cursor=connection.cursor()
 username=current_user.username
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(username,))
 temp=cursor.fetchone()
 userid=temp[0]
 cursor.execute("""INSERT INTO VOTES (POLLID,CHOICEID,USERID) VALUES (%s,%s,%s)""",(pollid,choiceid,userid))
 cursor.execute("""UPDATE CHOICES SET NUMBEROFVOTES=NUMBEROFVOTES+1 WHERE CHOICEID=%s""",(choiceid,))
 connection.commit()
 cursor.close()
 connection.close()

LIKES Table and Operations (Auxiliary Table)

In this application users can like each other’s posts. This action is implemented by LIKES table operations.
LIKES Table holds the data of liked tweets.

This table has following columns

	
	USERID as integer and not null references userprofile table

	Holds the id of the user who liked the tweet

	
	TWEETID as integer and not null references tweets table

	Holds the id of the tweet which is liked by the user.

	
	LikeTime as integer and not null default current_timestamp

	Holds the time of the like action.

USERID and TWEETID act as a primary key together.
Operations of LIKES table are implemented in likeoperations.py file.

Like A Tweet

A user can like someone’s tweet with like function. This function will take only tweetid as a parameter. Firstly, it tries to find the id of current user.
Then it executes a simple INSERT SQL command. Then it updates the TWEETS and USERPROFILE table for LIKE stats.

def like(tweetid):
 try:
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(current_user.username,))
 temp=cursor.fetchone()
 userid=temp[0]
 cursor.execute("""INSERT INTO LIKES (USERID,TWEETID) VALUES(%s,%s)""",(userid,tweetid))
 cursor.execute("""UPDATE TWEETS SET NUMBEROFLIKES=NUMBEROFLIKES + 1 WHERE TWEETID=%s""",(tweetid,))
 cursor.execute("""UPDATE USERPROFILE SET LIKES=LIKES + 1 WHERE ID=%s""",(userid,))
 connection.commit()
 cursor.close()
 connection.close()
 return 1
 except:
 return 0

Unlike a Tweet

Unliking a tweet is similar to liking a tweet. We can do this action with unlike function. It also takes only tweetid as a parameter.Then it tries to find
the id of current user. Then it executes a DELETE SQL command and makes update for USERPROFILE and TWEETS table.

def unlike(tweetid):
 try:
 connection=dbapi2.connect(current_app.config['dsn'])
 cursor=connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""",(current_user.username,))
 temp=cursor.fetchone()
 userid=temp[0]
 cursor.execute("""DELETE FROM LIKES WHERE USERID=%s AND TWEETID=%s""",(userid,tweetid))
 cursor.execute("""UPDATE TWEETS SET NUMBEROFLIKES=NUMBEROFLIKES - 1 WHERE TWEETID=%s""",(tweetid,))
 cursor.execute("""UPDATE USERPROFILE SET LIKES=LIKES - 1 WHERE ID=%s""",(userid,))
 connection.commit()
 cursor.close()
 connection.close()
 return 1
 except:
 return 0

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	itucsdb1616 1.0 documentation

 	Developer Guide

Parts Implemented by Mert Kurtcan

In this project Settings, Notifications and Style operations are done by me.

Four tables are created for handling these three entities such as USERINFO, NOTIFS and STYLEINFO.

Userinfo Entity:

Firstly USERINFO table is created with this operation.

SQL Code:

CREATE TABLE USERINFO(
 USERID INTEGER PRIMARY KEY NOT NULL REFERENCES USERS (ID) ON DELETE CASCADE,
 NAME VARCHAR(20) NOT NULL,
 SURNAME VARCHAR(20) NOT NULL,
 NICKNAME VARCHAR(20) NOT NULL,
 EMAIL VARCHAR(25) NOT NULL,
 LANGUAGE VARCHAR(20) NOT NULL
);

There are 6 columns in this table. userid is primary key that holds the ID of the userinfo and refereced by ID of the USERPROFILE.
Other instances of table are name, surname, nickname, email, and language which holds each information of the Userinfo.

Insert Userinfo

User information is inserted with empty data when registration occurs and implemented in server.py file

userid = get_userid(username)
cursor.execute("""INSERT INTO USERINFO (USERID, NAME, SURNAME, NICKNAME, EMAIL, LANGUAGE) VALUES(%s, %s, %s, %s, %s, %s)""",
 (userid, '', '', '', '', ''))

Update Userinfo

User information is updated in change_settings method which is implemented in usersettings.py file.
This method takes current user and other information comes from user side as an input and search for users’ identity number from USERS table.
Then executes a simple UPDATE SQL statement.

Usersettings.py:

def change_settings(email,language, nickname,username, name, surname):
 try:
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (username,))
 values=cursor.fetchone()
 id=values[0]
 cursor.execute("""UPDATE USERINFO SET NAME=%s, SURNAME=%s, NICKNAME=%s, EMAIL=%s, LANGUAGE=%s WHERE USERID=%s""",
 (name,surname, nickname, email, language, id))

 connection.commit()
 cursor.close()
 connection.close()
 return True
 except:
 return False

Select Userinfo

User information is viewed in show_settings method which is implemented in usersettings.py file.
This method takes current user and other information comes from user side as an input and search for users’ identity number from USERS table.
Then executes a simple SELECT SQL statement.

Usersettings.py:

def show_settings(username):
 try:
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (username,))
 values=cursor.fetchone()
 id=values[0]
 cursor.execute("""SELECT NAME, SURNAME, NICKNAME, EMAIL,LANGUAGE FROM USERINFO WHERE USERID=%s""", (id,))
 values = cursor.fetchone()

 connection.commit()
 cursor.close()
 connection.close()
 return values
 except:
 return False

Delete Userinfo

User information is removed in delete_settings method which is implemented in usersettings.py file.
This method takes current user and other information comes from user side as an input and search for users’ identity number from USERS table.
Then executes DELETE SQL statement, then INSERT SQL statement to consistency for other operations .

Usersettings.py:

def delete_settings(username):
 try:
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (username,))
 values=cursor.fetchone()
 id=values[0]
 cursor.execute("""DELETE FROM USERINFO WHERE USERID=%s""", (id,))
 cursor.execute("""INSERT INTO USERINFO (USERID, NAME, SURNAME, NICKNAME, EMAIL, LANGUAGE) VALUES(%s,%s, %s, %s, %s, %s)""",
 (id,'', '', '', '', ''))

 connection.commit()
 cursor.close()
 connection.close()
 return values
 except:
 return False

Server.py:

Personal information about user taken here which sent to the html for printing. Also delete operation is handled here.

def settings_page():
 try:
 if request.method == 'POST' and request.form['btn']=="update":
 name = request.form['name']
 surname = request.form['surname']
 email = request.form['email']
 language = request.form['Language']
 nickname = request.form['nickname']
 username = current_user.username
 if change_settings(email,language,nickname,username, name, surname):
 flash("Updated")
 else:
 flash("Could not update")
 return render_template('settings.html')

 elif request.method == 'POST' and request.form['btn']=="show":
 username = current_user.username
 values=show_settings(username)
 return render_template('settings.html', table=values)

 elif request.method == 'POST' and request.form['btn']=="delete":
 username = current_user.username
 if delete_settings(username):
 flash("Deleted")
 else:
 flash("Could not delete")
 return render_template('settings.html')

 return render_template('settings.html')
 except:
 pass
 return render_template('home.html')

Notification Entity:

Firstly NOTIFS table is created with this operation.

SQL Code:

CREATE TABLE NOTIFS(
 NOTIFID SERIAL PRIMARY KEY,
 USERID INTEGER NOT NULL REFERENCES USERS (ID) ON DELETE CASCADE,
 FOLLOWERID INTEGER NOT NULL,
 PERM INTEGER NOT NULL
);

There are 4 columns in this table. notifid is a primary key that holds the ID of the notif table. userid is a foreign key refereced by ID of the USERPROFILE
Other two columns of table are followerid which holds follower’s id on each row and perm which holds “on” or “off” status of notification.

Insert Notifications

Notification information is inserted with followed user’s id, follower user’s id when follow operation occurs and implemented in followoperations.py file

cursor.execute("""INSERT INTO NOTIFS (USERID, FOLLOWERID, PERM) VALUES (%s, %s,%s)""",(followedid,followerid, '1'))

Update and Delete Notifications

Notification view status is change in notif_settings method which is implemented in usersettings.py file.
This method takes username and “on” or “off” status as an input and search for users’ username from USERS table.
Then executes UPDATE SQL statement.

Usersettings.py:

def notif_settings(username, notif):
 try:
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (username,))
 values=cursor.fetchone()
 id=values[0]
 cursor.execute("""UPDATE NOTIFS SET PERM=%s WHERE USERID=%s""",(notif, id))

 connection.commit()
 cursor.close()
 connection.close()
 return True
 except:
 return False

Select Notifications

User Notifications can be selected in notifications.py file
This function takes username as an input. It executes a SQL SELECT statement, then join USERS and NOTIFs tables. After that, function returns the followers username.

Notifications.py:

def show_set(username):
 try:
 connection = dbapi2.connect(current_app.config['dsn'])
 cursor = connection.cursor()
 cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (username,))
 values=cursor.fetchone()
 id=values[0]

 cursor.execute("""select users.username from users inner join notifs on users.id = (select followerid from notifs where userid = %s) where notifs.perm = '1'""", (id,))
 value=cursor.fetchone()
 followername=value[0]

 connection.commit()
 cursor.close()
 connection.close()
 return followername
 except:
 return False

Server.py:

In this notifs_page function, if “on” or “off” status selected,it sends notifications status to notif_setting. Then, followers name would be viewed
according to return this function and taken here and sent to the html for printing.

def notifs_page():
 if request.method=='POST' and request.form['btn']=="notif":
 username = current_user.username
 follower=show_set(username)
 return render_template('notifications.html', person=follower)

 elif request.method == 'POST' and request.form['btn']=="notif_update":
 case = request.form['notif']
 username = current_user.username
 if notif_settings(username, case):
 flash("Updated")
 else:
 flash("Could not update")
 return render_template('home.html')
 else:
 return render_template('notifications.html')

Style Entity:

Firstly STYLEINFO and COLORINFO table is created with this operation. These tables created for user side interface operations.

SQL Code:

CREATE TABLE COLORINFO(
 COLORID SERIAL PRIMARY KEY,
 COLOR VARCHAR(30) NOT NULL
);

CREATE TABLE STYLEINFO(
 STYLEID SERIAL PRIMARY KEY,
 USERID INTEGER NOT NULL REFERENCES USERINFO(USERID) ON DELETE CASCADE,
 COLORID INTEGER NOT NULL REFERENCES COLORINFO ON DELETE CASCADE
);

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 Navigation

 	
 previous

 	itucsdb1616 1.0 documentation

 	Developer Guide

Parts Implemented by Cem Karagöz

In this project Tweet, TweetLink, and Bug entities are done by me.

Tweet Entity:

TweetId (Primary Key)
Userıd (Foreign Key)
Tıtle
Context
Twtime
Numberoflikes
NumberofRTs
isRT
RtownerID (Foreign Key)

SQL Table:

CREATE TABLE TWEETS(
TWEETID SERIAL PRIMARY KEY NOT NULL,
USERID INTEGER REFERENCES USERS(ID) ON DELETE CASCADE,
TITLE VARCHAR(20) NOT NULL,
CONTEXT VARCHAR(140) NOT NULL,
TWTIME TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
NUMBEROFLIKES INTEGER NOT NULL DEFAULT 0,
NUMBEROFRTS INTEGER NOT NULL DEFAULT 0,
isRT INTEGER DEFAULT 0,
RTOwnerID INTEGER DEFAULT 1 REFERENCES USERPROFILE(ID) ON DELETE CASCADE
);

Pyton Class used to represent the tweet:

class Twit:
 def __init__(self, title, context, twitid, userhandle, numberoflikes, numberofrts, isrt, rtowner):
 self.title = title
 self.context = context
 self.twitid = twitid
 self.userhandle = userhandle
 self.numberoflikes = numberoflikes
 self.numberofrts = numberofrts
 self.isrt = isrt
 self.rtowner = rtowner

Python classes and functions are used to make connection between the browser and the database.

When users visit other users profile or tweets they will see a diffrent page so for identifying owner from other users i used getid which gives current userid
and get ownerid which returns tweets ownerid back.

cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
owner = cursor.fetchone()
return usernum

cursor.execute("""SELECT USERID FROM TWEETS WHERE TWEETID=%s""", (twitid,))
owner = cursor.fetchone()
return owner

There is several functions for getting tweets:

For a single tweet (get_twit(self, twitid)):

cursor.execute("""SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE tweets.tweetid = %s""", [twitid],)

For your Feed page(get_hometwit(self)):

cursor.execute(""" SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN follows ON follows.followeduser = tweets.userid
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE follows.followerid = %s AND tweets.isrt = %s
 UNION
 SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE tweets.userid = %s AND tweets.isrt = %s
 UNION
 SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN follows ON follows.followeduser = tweets.rtownerid
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE follows.followerid = %s AND tweets.isrt = %s
 UNION
 SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE tweets.rtownerid = %s AND tweets.isrt = %s
 ORDER BY TWEETID DESC; """, (userid, 0, userid, 0, userid, 1, userid, 1))

For your and every other user Profile page(get_elsetwits(self, usrhandle)):

cursor.execute("""SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE tweets.userid = %s AND tweets.isrt = %s
 UNION
 SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE tweets.rtownerid = %s AND tweets.isrt = %s
 ORDER BY TWEETID DESC""", (userid, 0, userid, 1))

For your Tweets page(get_twits(self)):

cursor.execute("""SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE tweets.userid = %s AND tweets.isrt = %s
 UNION
 SELECT tweets.title,
 tweets.context,
 tweets.tweetid,
 users.username,
 tweets.numberoflikes,
 tweets.numberofrts,
 tweets.isrt,
 userprofile.username AS rtowner
 FROM tweets
 RIGHT JOIN users ON users.id = tweets.userid
 RIGHT JOIN userprofile ON userprofile.id = tweets.rtownerid
 WHERE tweets.rtownerid = %s AND tweets.isrt = %s
 ORDER BY TWEETID DESC""", (userid, 0, userid, 1))

For adding new tweets(add_twit(self, twit)):

cursor.execute("""INSERT INTO TWEETS (USERID, TITLE, CONTEXT) VALUES (%s, %s, %s)""", (userid, twit.title, twit.context))

For updating tweets(update_twit(self, twitid, twit)):

cursor.execute("""UPDATE TWEETS SET TITLE=%s, CONTEXT=%s WHERE TWEETID=%s""", (twit.title, twit.context, twitid))

For deleting tweets(delete_twit(self, twitid)):

cursor.execute("""DELETE FROM TWEETS WHERE TWEETID=%s""", [twitid],)

	TweetLink Entity

	*TweetLId (Primary Key)
*TweetId (Foreign Key)
*ContextL

SQL Table:

CREATE TABLE TWEETLINK(
TWEETLID SERIAL PRIMARY KEY NOT NULL,
TWEETID INTEGER NOT NULL REFERENCES TWEETS(TWEETID),
CONTEXTL VARCHAR(150) NOT NULL
);

Pyton Class used to represent the tweetlink:

class Link:
 def __init__(self, tweetlid, contextl, twitid):
 self.tweetlid = tweetlid
 self.contextl = contextl
 self.twitid = twitid

Every tweet can have it own link to the outsite of the site or inside.

For getting links for tweet(get_link(self, twitid)):

cursor.execute("""SELECT tweetlid, CONTEXTL, TWEETID FROM TWEETLINK WHERE TWEETID=%s""", (twitid,))
link = [(Link(tweetlid, contextl, tweetid))
 for tweetlid, contextl, tweetid in cursor]

For adding links for tweet(add_link(self, twitid, link):

cursor.execute("""INSERT INTO TWEETLINK (TWEETID, CONTEXTL) VALUES (%s, %s)""", (twitid, link.contextl))

For deleting links for tweet(def delete_link(self, tweetid)):

cursor.execute("""DELETE FROM TWEETLINK WHERE tweetid=%s""", tweetid,)

For updating links for tweet(update_link(self, tweetid, contextl)):

cursor.execute("""SELECT tweetlid FROM TWEETLINK WHERE TWEETID=%s
 ORDER BY TWEETLID DESC""", (tweetid,))
twitlid=cursor.fetchone()
cursor.execute("""UPDATE TWEETLINK SET contextl=%s WHERE tweetlid=%s""", (contextl, twitlid))

	Bug Entity

	*Userid (Foreign Key)
*Bugid (Primary Key)
*BUGCAUSE
*FOCUS
*FIXED

SQL Table:

CREATE TABLE BUGS(
USERID INTEGER REFERENCES USERS ON DELETE CASCADE,
BUGID SERIAL PRIMARY KEY,
BUGCAUSE VARCHAR(80) NOT NULL,
FOCUS INTEGER DEFAULT 0,
FIXED INTEGER DEFAULT 0
);

Pyton Class used to represent the Bugs:

class Bug:
def __init__(self, bugid, bugcause, userid, focus, fixed):
 self.bugid = bugid
 self.bugcause = bugcause
 self.userid = userid
 self.focus = focus
 self.fixed = fixed

Bugs can only seen by admins but everyone can submit one.

Getting current userid(getid(self)):

cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (current_user.username,))
usernum=cursor.fetchone()

Getting admin userid(getadmin(self)):

name='admin'
cursor.execute("""SELECT ID FROM USERS WHERE USERNAME=%s""", (name,))

Function below is code for one bug(get_bug(self, bugid)):

cursor.execute("""SELECT
 bugs.bugid,
 bugs.bugcause,
 users.username,
 bugs.focus,
 bugs.fixed
 FROM BUGS
 LEFT JOIN users ON users.id = bugs.userid
 WHERE bugs.bugid=%s""", (bugid,))
bugid, bugcause, username, focus, fixed=cursor.fetchone()
bugs=Bug(bugid, bugcause, username, focus, fixed)

Same function but gets all bugs(get_bugs(self)):

cursor.execute("""SELECT
 bugs.bugid,
 bugs.bugcause,
 users.username,
 bugs.focus,
 bugs.fixed
 FROM BUGS
 LEFT JOIN users ON users.id = bugs.userid
 ORDER BY focus DESC, bugs.bugid DESC """)
bugs = [(Bug(bugid, bugcause, username, focus, fixed))
 for bugid, bugcause, username, focus, fixed in cursor]
return bugs

Adding bugs to the system(add_bug(self, bug)):

cursor.execute("""INSERT INTO BUGS (bugcause, userid)
VALUES (%s, %s)""", (bug.bugcause, bug.userid))

Since ever bug has three stages Normal, Focused and fixed admin can set thoose stages.

Setting Focus On a Bug(set_focus(self, bugid)):

cursor.execute("""UPDATE BUGS SET FOCUS=%s WHERE bugid=%s""", (1, bugid))

DeFocus On a Bug(defocus(self, bugid)):

cursor.execute("""UPDATE BUGS SET FOCUS=%s WHERE bugid=%s""", (0, bugid))

Setting Fixed a Bug(setfixed(self, bugid)):

cursor.execute("""UPDATE BUGS SET FIXED=%s WHERE bugid=%s""", (1, bugid))

 Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

 _images/afterlike.png
g _ [rAm— ek Qur Lt sesings

Update Profle Nofiicatons Polls Mylikes Applicaionsefings Gifs Logout

First Tweet seaancetr
First Content
Likes(1) RT(0)

=ED

©2016, itucsdb1616
Report A Bug

_images/gifts.png
Q

mybluemix.net

Gifts

Send Gift

Newyeargift v

admin v

Send Gift

Received gifts Sent gifts

‘Sent by: yusufekiz (@yusurekiz)
Gift: Birthday gift

Description: Happy birthday!
Sent: 29 Dec 2016, 06:00

Sent by: serkanbekir (@serkanbeki)
Gift: New year gift

Description: Happy new year!

Sent: 29 Dec 2016, 06:00

Home-cetineris MyTweets FollowlUnfollow Messages Media Quiz

Notcatons Polls My Lkes Applcatonsettings - fr

©2016, itucsdb1616
Report A Bug

Lists

Settings

Update Profile

_images/reportadmin.png
Welcome Admin

Post A Bug

Report A Bug

Reported Bugs

©2016, itucsdb1616
Report A Bug

_images/visitor.png
Home sekartmldc Wy Teeets Follotioli Messages Meda Guix -

Update Profle Nofifcaions Polls My Likes Applica

Listname:Third List

©2016, itucsdb1616
Report A Bug

_images/homepage.png
itucsdb1616.mybluemix.net/home

Wlwests Folowinfolow Messages Meda Quz Lists Settngs Update roile

Notifications Polls MyLikes Application seftings Gifts Logout

Welcome cetineris

Your Twitter Feed...

©2016, itucsdb1616
Report A Bug

_images/beforelike.png
g _ Folowniolon Messages Meda Guz Lst Sefings

Update Profle Nofiicatons Polls Mylikes Applicaionsefings Gifs Logout

First Tweet seaancetr
First Content
Likes(0) RT(0)

©2016, itucsdb1616
Report A Bug

_images/followlist.png
mybluemix.net

Q

Follow/Unfollow

Follow/Unfollow a user

-Selectuser- v

Followed users are written in bold and italic

Follow Unfollow
Your followers You are following
serkanbekir (@serkanbekir) serkanbekir (@serkanbekir)

Home-cetineris

Notifications

My Tweets

Polls

My Likes

Messages Media Quiz

Application settings Gifts Logout

©2016, itucsdb1616
Report A Bug

Lists

Settings

Update Profile

_images/signin.png
A
Q
®

mybluemix.net/log

Home MyTweets FollowlUnfollow ~Messages Media Quiz Lists Seftings Update Profile

Notifications ~ Polls MyLikes Application seftings Gifts Register

Please log in to access this page.

Sign in

©2016, itucsdb1616
Report A Bug

_images/beforeaddchoice.png
Homeserianbekir MyTweets FollowUnollow Messages Media Qui Lists Setings

[P — Mylikes Applicaton setings Gific Logout

Question:Where are you from?

0 [harse uesin
Delete The Poll

There are no choices i this poll

©2016, itucsdb1616

_images/adminpanel.png
A
Q

mybluemix.net

Homeadmin MyTweets FollowlUnfollow ~ Messages Media Quiz Lists Settings Update Profile

Notifications Polls MyLikes Application seftings Gifts Reported Bugs Logout

Admin Panel

Manage applications
Manage gifts

Delete user

©2016, itucsdb1616
itucsdb1616.mybluemix.net/manageapps Report A Bug

_images/send_question.png
Home-seranbekit Wy Tests FollowUntolow Messages Med - TRE—

Update Profile Notifications Polls ~ MyLikes Applicationsettings Gifts Logout

Send Question

cetineris v

What is the capital of Italy?
Madrid
® Rome
Istanbul

Amsterdam

©2016, itucsdb1616
Report A Bug

_images/view_points.png
Home-cstners My Tweets FollowUnfolow Nessages Media - Lsts settings Update rofe

Notifications ~ Polls ~ MyLikes Application settings Gifts Logout

Quiz
Total points: 5

ubmi Clear All Questions

©2016, itucsdb1616
Report A Bug

_images/report_footer.png
m Wwests Folowtmollow Messsges Meda Quz Lists Setings Updat roie

Notifications ~ Polls MyLikes Application seftings ~ Gifts Adminpanel Reported Bugs Logout

Welcome admin

Your Twitter Feed...

©2016, itucsdb1616
Report A Bug

_images/mytweetpage.png
Post A Tweet

Here is Your Tweets

©2016, itucsdb1616
Report A Bug

_images/ownerlist.png
Home yusufekiz My Tweets Followil

Update Profle Nofifcaions Polls

Listname:Third List

Change Name | Add Insider

©2016, itucsdb1616
Report A Bug

_images/aftermylikespage.png
Homeyusulekiz MyTweets FollowiUnollow Messages Media Quiz Lists

i Application setings Gifis L

©2016, itucsdb1616
Report A Bug

_images/navbar.png
EEE o oo e i i e e re

Notifications Polls MyLikes Application settings Gifts Logout

_images/addgift.png
A
Q

mybluemix.net

Homeadmin MyTweets FollowlUnfollow ~ Messages Media Quiz Lists Settings Update Profile

Notifications Polls MyLikes Application seftings Gifts Reported Bugs Logout

Manage Gifts

Add Gift
Agit

Anewgitt

Add

Update/delete gifts

New year gift v

Update Delete

©2016, itucsdb1616
Report A Bug

_images/appsettings.png
mybluemixnet w06 @)

Home-cetineris MyTweets Follow/Unfollow Messages Media Quiz Lists Seftings Update Profile

Notifications ~ Polls My Likes Gifts Logout

Application Settings

Instagram

[] Enabled/Disabled

Snapchat

[] Enabled/Disabled

Periscope.

[] Enabled/Disabled

Facebook

[] Enabled/Disabled

©2016, itucsdb1616
Report A Bug

_images/last_media.png
Me

Q
o

Add Photo

Update Photo

Tag!

Delete

Taged users: cetineris

©2016, itucsdb1616
Report A Bug

_images/register.png
A
Q
®

mybluemix.net/registes

Home MyTweets FollowlUnfollow ~Messages Media Quiz Lists Seftings Update Profile

Notifications ~ Polls MyLikes Application seftings Gifts Register

Register
[

©2016, itucsdb1616
Report A Bug

_images/reportbg_user.png
Home-duhanc M Unfollow q Media Quiz Update Profile

Notifications m Applicatio Gifts Logout

Report A Bug

Bug: Bug123

port A Bug

Thanks For Helping Us Out

©2016, itucsdb1616
Report A Bug

_images/addapplication.png
A
Q

mybluemix.net

Homeadmin MyTweets FollowlUnfollow ~ Messages Media Quiz Lists Settings Update Profile

Notifications Polls MyLikes Application seftings Gifts Reported Bugs Logout

Manage Applications

Add Application

‘ Twitter for Android ‘

Add and activate | Add

Delete/Dectivate applications

Instagram ~

Delete
O Deactivate

Delete/Activate applications

Vine v

©2016, itucsdb1616
Report A Bug

search.html

 Navigation

 		itucsdb1616 1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Team Name.
 Created using Sphinx 1.3.5.

_images/activateapp.png
A
Q

mybluemix.net

Homeadmin MyTweets FollowlUnfollow ~ Messages Media Quiz Lists Settings Update Profile

Notifications Polls MyLikes Application seftings Gifts Reported Bugs Logout

Manage Applications

Add Application

Add and activate m

Delete/Dectivate applications

Instagram ~

Delete
O Deactivate

Delete/Activate applications

Twitter for Android v

O Delete
(® Activate

Delete/Activate

©2016, itucsdb1616
Report A Bug

_images/deleteuser1.png
Q

Delete User

-Selectuser- v

Select user -

demoz

‘tugba
duhane

Serkanbekir
cetineremre
yusufekiz

mybluemix.net

Home-admin

Notifications

My Tweets

Polls

FollowlUnfollow Messages Media

My Likes

Application seftings Gifts

©2016, itucsdb1616
Report A Bug

Quiz

Lists

Settings Update Profile

Reported Bugs

Logout

_images/initiallikepage.png
Homeyusulkiz MyTweets Followinollow Messages Media Quiz Lists Setings Updsie Profie

Nofiicaons P Application sefings Gifis Logout

You haven'tliked any tweets yet

©2016, itucsdb1616
Report A Bug

_images/changepass.png
mybluemix.net

Eenm Qe Koabon (oo (Go Gn D S m

Notifications ~ Polls My Likes

Update Profile

Change Password

Change Password

Edit Profile Info

cetineremre

Istanbul, 23

Update Profile

Application settings Gifts Logout

©2016, itucsdb1616
Report A Bug

_images/giftsent.png
Q

mybluemix.net

Gift 'New year gift has sent to ‘serkanbekir' Gift description: Happy new year!

Gifts

Send Gift

Newyeargift v

admin v

Send Gift

Received gifts

‘Sent by: yusufekiz (@yusurekiz)
Gift: Birthday gift

Description: Happy birthday!
Sent: 29 Dec 2016, 06:00

Sent by: serkanbekir (@serkanbeki)
Gift: New year gift

Description: Happy new year!

Sent: 29 Dec 2016, 06:00

Delete all gifts

Sent gifts

Sent to: serkanbekir (@serkanbekir)
Gift: New year gift

Description: Happy new year!

Sent: 29 Dec 2016, 06:01

Home-cetineris MyTweets FollowlUnfollow Messages Media Quiz

Notcatons Polls My Lkes Applcatonsettings - fr

©2016, itucsdb1616
Report A Bug

Lists

Settings

Update Profile

_static/up.png

_images/show_photo.png
<
o
&

e

Add Photo
Update Photo
Tag!

Delete

o L

©2016, itucsdb1616
Report A Bug

_static/minus.png

_images/navbar_admin.png
Homeadmin MyTweets FollowlUnfollow Messages Media Quiz Lists Sefings Update Profile

[P [

_images/beforevote.png
Homeyusulkiz MyTweets FollowtUnollow Messages Media Quz Lists Sefings Update Profie

e — o Mylikes Applicaton setings Gific Logout

Question:Where are you from?

Choices
* England (0 users voted)
Turkey (0 users voted)

©2016, itucsdb1616
Report A Bug

_static/comment-close.png

_images/updategift.png
Q

Manage Gifts

Add Gift

Update/delete gifts

Agit v

‘ A new gift from admin

Update Delete

mybluemix.net

Home-admin

Notifications

My Tweets

Polls

FollowlUnfollow Messages Media

My Likes

Application seftings Gifts

©2016, itucsdb1616
Report A Bug

Quiz

Lists

Settings Update Profile

Reported Bugs

Logout

_images/afteradd.png
Home yusuiiis Wy Twsets Folowtnollon Messages Media Gz - setngs

Update Profle Nofiicatons Polls Mylikes Applicaionsefings Gifs Logout

T —

Subscribed to Member of Created

Second List

Third List

©2016, itucsdb1616
Report A Bug

_images/appchanged.png
A
Q

mybluemix.net

Home-cetineris MyTweets Follow/Unfollow Messages Media Quiz Lists Seftings Update Profile

Notifications ~ Polls My Likes Gifts Logout

‘Your application settings are updated

Application Settings

Instagram

Enabled/Disabled

Snapchat

Enabled/Disabled

Periscope.

[] Enabled/Disabled

Facebook

Enabled/Disabled

©2016, itucsdb1616
Report A Bug

_images/mytweets.png
Update Pro

Welcome to Your Tweets

Post A Tweet
Title: Hello
Content: My First Tweet!

Add Tweet

Here is Your Tweets

Notifications

Polls

Media

Mylikes Application settings

©2016, itucsdb1616
Report A Bug

Lists

Logou

_images/elsetwit.png
Home.dunan - " ’ e auiz

Update Profile Nofifications Polls My Lik

Admin Tweet -samin
First Tweet By Admins
Likes(1) RT(0)

©2016, itucsdb1616
Report A Bug

_images/view_question.png
Home-cstners | My Tweets FollowUnfolow Nessages Media - Lsts settings Update rofe

Notifications ~ Polls ~ MyLikes Application settings Gifts Logout

Quiz
Total points: 0

Send Questi

What s the capital of Italy?
Madrid
Rome
Istanbul
Amsterdam

Clear All Questions

©2016, itucsdb1616
Report A Bug

_images/update_photo.png
Home-seranbekit 1ty Twests _ FollowUntoliow _ essags - quz Lsts Setings

Update Profile Notifications Polls MyLikes Application settings Gifts Logout

Update

Update

updated photo

* new photo

©2016, itucsdb1616
Report A Bug

_static/comment-bright.png

_images/beforeaddpoll.png
Home serkanbekir My Tweets FollowUnfollow Mes: Meda Quz Lt Setings

Update Profle Nosiicasons (I8 Mylikes Applicaton setings Gific Logout

Where are you from? ‘ Add A Poll

There is no pollin application

©2016, itucsdb1616
Report A Bug

_static/up-pressed.png

_static/file.png

_static/plus.png

_images/followoperation.png
A
Q

mybluemix.net

. Messges Meda Qui Lsts Setings Updato Protle

Notifications Polls MyLikes Application seftings Gifts Logout

Follow/Unfollow

Follow/Unfollow a user

cetineris

- Select user -
admin
demoz
Aaaaa
tugba
duhanc
cetineris

itten in boid and italic

Your followers You are following

©2016, itucsdb1616
Report A Bug

_static/down.png

_images/deleteuser2.png
A
Q

mybluemix.net

olle ©)

Homeadmin MyTweets FollowlUnfollow ~ Messages Media Quiz Lists Settings Update Profile

Notfcatons ol MyLkes Applcationsetings Gt Reported Bugs Logout

User ‘Aaaaa’ is deleted

Delete User

-Selectuser- v

Delete user

©2016, itucsdb1616
Report A Bug

_images/media.png
Home-seranbekit 1ty Twests _ FollowUntoliow _ essags quz Lsts Setings

Update Profile Notifications Polls MyLikes Application settings Gifts Logout

Media

Update Photo

© 2016, itucsdb1616

sync.1dmp.io bekleniyor... Report A Bug

_images/navbar_normal.png
EEE o coovvoon e o i e o e e

Notifications Polls MyLikes Application settings Gifts Logout

_static/comment.png

_images/aftervote.png
Homeyusulkiz MyTweets Followinollow Messages Media Quiz Lists Setings

e — o Mylikes Applicaton setings Gific Logout

Question:Where are you from?

Choices
England (1 users voted)
Turkey (0 users voted)

You have voted for this poll

©2016, itucsdb1616
Report A Bug

Update Profile

_images/afteraddchoice.png
Homeserianbekir MyTweets FollowUnollow Messages Media Qui Lists Setings

[P — Mylikes Applicaton setings Gific Logout

Question:Where are you from?

\ [harse uesin
Delete The Poll

Choices
* England (0 users voted)
Turkey (0 users voted)

©2016, itucsdb1616
Report A Bug

_images/tag_photo.png
* updated photo
-
»

©2016, itucsdb1616
Report A Bug

_images/updateprofile.png
A
Q

mybluemix.net

Eenm Qe Koabon (oo (Go Gn D S m

Notifications Polls MyLikes Application seftings Gifts Logout

‘Your password has been changed

Update Profile

Change Password

Change Password

Edit Profile Info

cetineremre

Istanbul, 23 ‘

Update Profile

©2016, itucsdb1616
Report A Bug

_static/down-pressed.png

_static/ajax-loader.gif

_images/adminnavbar.png
EE o oo e i i i e e re

Notifications ~ Polls Mylikes Appiication settings ~ Gifts Adminpanel Reported Bugs Logout

_images/linkown.png
Home.dunan - ol ’ Weda Quz Lists

Updat Notificati

NEW LINK

AD LINK

New Link

©2016, itucsdb1616
Report A Bug

_images/beforeaddlist.png
Home yusuiiis Wy Twsets Folowtnollon Messages Media Gz - setngs

Update Profle Nofiicatons Polls Mylikes Applicaionsefings Gifs Logout

Subscribed to Member of Created

First List

Second List

©2016, itucsdb1616
Report A Bug

_images/send_message.png
Home-seranbeldr My Tweets FollowUnfllow - Meds Quz Lsts setings

Update Profile Notifications Polls ~ MyLikes Applicationsettings Gifts Logout

cetineris v

hello

©2016, itucsdb1616
Report A Bug

_images/pollafteradd.png
Homeserianbekir MyTweets FollowUnollow Messages Media Qui Lists Setings

Update Profle Notiications o Mylikes Applicaton setings Gific Logout

e (I

Poll Question: Where are you from? Owner: serkanbekir

©2016, itucsdb1616
Report A Bug

_images/list_message.png
Home-seranbeldr My Tweets FollowUnfllow “ Meds Quz Lsts setings

Update Profile Notifications Polls ~ MyLikes Applicationsettings Gifts Logout

Direct Messages

cetineremre
7 hello

©2016, itucsdb1616
Report A Bug

_images/new_photo.png
Home-seranbekir 1ty Tests _ FollowUnfollow Messages - quz sts setings

Update Profile Notifications Polls ~ MyLikes Applicationsettings Gifts Logout

new photo

https://s13.postimg.org/midtb2gn/GOPR0228.jpg

©2016, itucsdb1616
Report A Bug

_images/final-diagram.png
optionid Options. correctness

Gitts

description

s_time

(=) (=)o)

Creatorld NumberOMembers

) |

userid
followerid

usemame

l

Notifs

usTs

umberOfSubscribers followerid
Follows
LsTD

J

followinaid

Userprofie |
password
POLLS nas likes

subdate usemame
followings
nickname
INumberofchoices Appusers 1 B

userid [
crorces 1 e

i
Messages
Poliid Choiceid s

mtime
recieverid
content senderid

aaia
Ao |

Taos
aine . || vsens JE—

wsercount i J
e ¥ @ ageduseria
TEer

Content T T useria
Bugia
rtouner[Timesamp | Numberond Numberort
Bugs [« cause

Focus Fixed

ur

TweetLid

> s

j S——

Tweetid

Content

_images/linkguest.png
Home.dunan - " ’ e auiz

Update Profile Nofifications Polls My Lik

LINK1

LINK2

LINK3

©2016, itucsdb1616
Report A Bug

_images/owntweet.png
Home.dunan - ol ’ Weda Quz Lists

Updat Notificati

s Hello e

My First Tweet!
Tweet Links
Updated Title Context

©2016, itucsdb1616
Report A Bug

