
DBall Documentation
Release 0.5.7

ITUCSDB1515

January 14, 2016

Contents

1 How to Install? 3
1.1 User Guide . 3
1.2 Developer Guide . 36

i

ii

DBall Documentation, Release 0.5.7

Team ITUCSDB1515

Members

• Oğuz Kerem Tural (150130125)

• Umut Can Özyar (150130022)

• Mert Şeker (150130119)

• Furkan Akgün (150130106)

DBall Database Application is prepared for baseball, a branch of sport especially popular in American culture
with more than 300 hundred years of history. It can hold many of the statistical data that represents baseball as
whole. It is easy to use, simple yet also give much more flexibility than any other application. In other terms, it
directly responds to user. If user wants it complex it become like one. And more importantly it is multi functional
and open source.

Contents 1

DBall Documentation, Release 0.5.7

2 Contents

CHAPTER 1

How to Install?

Just follow the following steps in order to install application.

• First go to the www.python.org and grab python (preferably version 3.4.3).

• Then install flask, psycopg2, passlib and requests packages through pip.

– PS. You can use pip install flask psycopg2 passlib requests if pip is declared
in your environment path.

• Then install PostgreSQL through www.postgresql.org

• Setup database, then import init.sql file into database through recovery.

• Fire up server.py and you are ready to roll!

Contents:

1.1 User Guide

DBall Application is designed to become user friendly, simple and clean. Any type of user no matter what level
of their computer skills is targeted for this application. Addition to its simple design, it is designed to be multi-
functional. More of its functions such as altering and registering new record available through registration. Still
all of the record can be accessible through front view. DBall also provides a abstract interface for developers.
With its robust REST API, developers can use our services in their programs easily. For further information about
this topic please advance to Developer Guide.

1.1.1 Parts Implemented by Oğuz Kerem Tural

Main Area

Upon entering the application, user faces with this screen. It contains a navigation bar on top, a search box and
two columns. Search box is not yet active. Still user can search each table from their singular views. From top
navigation bar user can move across table views and login if it is not yet logged in. Also from right side column,
user can be able to see latest changes on records have done by registered users.

Navigation Bar

From this area users can move thorough table views of front area. Also from right corner, where a door symbol
seen, user can login to the application. If user already logged in, it can enter management area using drop down
menu which replaces login button after log in operation. Using drop down menu user can advance between
management and front pages and sign out when it is needed.

3

DBall Documentation, Release 0.5.7

Fig. 1.1: Main screen of the application.

Fig. 1.2: Navigation bar before user logs in.

Fig. 1.3: Navigation bar after user logs in

Fig. 1.4: This menu will appears when user logs in, instead of login button.

4 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

User System

User system in application is very basic and an abstract system that aims to prevent anonymous changes could
have been done to database records. Every registered user has right to add, update or delete records where as
unregistered users can only view, search and filter the records. Both user login and register operations are done
using an Auth API service that has been provided by application itself. For further information about API please
reference to Developer Guide.

Login Using Interface

To login using interface, user should click the button provided in navigation bar’s top right corner with the door
symbol on it. After click, a modal window will be shown which provides user name and password fields to user
for log in operation.

Fig. 1.5: Login modal screen.

If user enters wrong credentials, an error message will appear and warns user about wrong credentials.

Fig. 1.6: The message that appears when user enters wrong credentials.

Management Area

Registered users have privileges to change the records that stored in database. After user logged in, it can redirect
here using drop down user menu in navigation bar. In same way, it can go back to front area using drop down
menu in navigation bar. In here user greeted with change history again. But difference between the main screen
change log and manager screen change log is in manager screen user can be able to see all changes has been done
from beginning of the application. User can move to the management areas for different tables from sidebar.

1.1. User Guide 5

DBall Documentation, Release 0.5.7

Fig. 1.7: Manager main screen.

Sidebar

From this section, user can navigate through different tables easily. Active page will be highlighted.

Fig. 1.8: Side navigation bar in management area.

People Records

In application each person stored in people table. From front view both unregistered and registered user can see
the view front page.

User can search records that are listed in table. To search user should just type keywords into search box in right
corner of the table. Also user can order tables by clicking the header of column whose elements would order the
table accordingly. User can order table in ascending or descending order.

Also user can change number of elements that are shown in pages.

6 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.9: Front view for people table.

Fig. 1.10: Searching in people table.

From top button right next to title user can advance into management area. If user not logged in it would give an
error and asks user to login.

When user advances into management area, three button would appear in the bottom of the table. First of them is
for adding operation, second of them is for update and the last one is for delete operation.

If operations are successful a success message will appear on top of the table, if not then an error message will
appear.

Add Operation

User can add both person information and person type. Still be warned, person types cannot be deleted from
database so add them wisely and only when its necessary.

From ‘’Add New Data” button, open drop down menu. After that user can select either to add new person or
person type. When clicked the selected button, a modal which would provide inputs will appear.

• PS. If you are not using Chromium-based browser please enter the date in ISO format (YYYY-
mm-dd).

User should fill all necessary inputs. If it skips any of them a warning will appear and prevent user to send data.

Update Operation

User can update records easily first selecting which record will be updated and then clicking ‘’Update Selected
Row” button. Still, only one record can be updated at time. If user selects more record and hits the update button

Fig. 1.11: Number of elements that are going to shown in page.

1.1. User Guide 7

DBall Documentation, Release 0.5.7

Fig. 1.12: Error that occurs when unregistered user tries to advance in manager area.

Fig. 1.13: Buttons that appear in management area.

Fig. 1.14: Success message.

Fig. 1.15: Error message.

Fig. 1.16: Add person modal.

Fig. 1.17: Add person type modal.

Fig. 1.18: User warning.

8 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

an error message different from other will be appear.

Fig. 1.19: Error which appears when user select many records to update.

Fig. 1.20: Selecting a row.

After selecting one record, user can hit update button. When user clicks the update button a modal which provides
pre-filled inputs would appear. After that user can change any value as it would like.

Fig. 1.21: Person update modal.

Delete Operation

User can delete multiple records at one time. User only needs to select which records to be deleted and hit the
delete button. If operation successful the success message will appear and page will reload.

Penalty Records

In penalty records most of the table functionality are the same as people table since all tables derived from a
generic table design. Hence, user can search, filter and move across table pages in same way. For those operations
please refer to People Records.

Add Operation

When user clicks the ‘’Add New Data” button a drop down similar in people records will appear. From there user
can add either a new penalty record or penalty type record.

• PS. Beware penalty type records cannot be deleted

• PPS. If user not using Chromium-based browser, it should enter the date in ISO format (YYYY-
mm-dd).

1.1. User Guide 9

DBall Documentation, Release 0.5.7

Fig. 1.22: Penalty records table.

Fig. 1.23: Penalty add modal.

Fig. 1.24: Penalty type add modal.

10 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Update Operation

User can update one record at a time. If more rows selected, user will encounter with an error same as in people
records. Again user should click ‘’Update Selected Row” button to reveal update modal which provides necessary
inputs for operation.

Fig. 1.25: Penalty update modal.

Delete Operation

User can delete selected rows. First it should select every rows that need to be deleted then it should hit ‘’Delete
Selected Row(s)” button. If operation successful, success message will appear and page will be reloaded.

Popularity Records

Again in same fashion, popularity records also uses generic table view for user end. User can do all operations
that can be done in people record. For further information please refer to People Records.

Fig. 1.26: Popularity main screen.

Add Operation

When user clicks the ‘’Add New Data” button this time add modal directly appears and provides input for record.
User should fill all necessary input or a warning will warn the user and prevent submitting info.

Update Operation

Again in here, user can update one record at a time. If more rows selected, user will encounter with an error
same as in people records. Again user should click ‘’Update Selected Row” button to reveal update modal which
provides necessary inputs for operation.

1.1. User Guide 11

DBall Documentation, Release 0.5.7

Fig. 1.27: Popularity add modal.

Fig. 1.28: Popularity update modal.

Delete Operation

User can delete selected rows. First it should select every rows that need to be deleted then it should hit ‘’Delete
Selected Row(s)” button. If operation successful, success message will appear and page will be reloaded.

City Records

In city records, user again can do the same operations as described in people records section. For more information
about that operations please refer to People Records. Additionally, user can see the location of city on map using
‘’Show Location” button. When user hits this button after selecting a city record, a extra modal which contains a
map and a marker that show location will appear. Still, user can only see one location at a time. If it selects more
an error will appear.

Fig. 1.29: City main screen.

12 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.30: City location modal.

Add Operation

Again as it before, when user clicks ‘’Add New Data” button, a modal which provides necessary inputs for record
will appear.

Fig. 1.31: City add modal.

Update Operation

User can update one record at a time. If more rows selected, user will encounter with an error same as in people
records. Again user should click ‘’Update Selected Row” button to reveal update modal which provides necessary
inputs for operation.

Fig. 1.32: City update modal.

1.1. User Guide 13

DBall Documentation, Release 0.5.7

Delete Operation

User can delete selected rows. First it should select every rows that need to be deleted then it should hit ‘’Delete
Selected Row(s)” button. If operation successful, success message will appear and page will be reloaded.

1.1.2 Parts Implemented by Umut Can Ozyar

Sponsorships

The sponsorships data is stored in the database. Using the navigation bar located at the top of the front page
sponsorships table can be accessed.

Fig. 1.33: Navigation Bar For Selecting Pages

This table displays the sponsorships data in the database.

Fig. 1.34: Front Page For Sponsorships

Several alterations can be made by the user to change the way the data is displayed on the table. The amount
of entries desired to be shown can be changed from the drop down list located at the top left of the table. The
selected number corresponds to the amount of rows displayed by the table. In case the selected number exceeds
the amount of sponsorships data, only the existing data will be displayed with no empty rows.

Fig. 1.35: Menu for Shown Entity Amount Selection

There are also page control buttons located at the bottom right side of the table. These buttons are used to navigate
through different table pages if perchance there are more data in the database than the amount selected to be
shown.

The ordering of the data throughout the table can be changed by clicking on the sort buttons located at each table
header. This feature allows user to sort the data depending on various attributes of the table in descending or
ascending order.

If there is no data in the database about sponsorships, “No data available in table” message is displayed on the
table to notify the user.

14 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.36: Buttons For Table Navigation

Fig. 1.37: Sorting Table

The manage button located on top of the table directs to user to the manager of the sponsorship table. This page
is limited for registered users only. Guest users will be notified to login using the login button located at the top
right side of the page.

Manager page allows user to add new data, update existing data or delete existing data.

Add Sponsorship

“Add New Data” button allows the user to add a new sponsorship for league, team and person entities in any
combination. Then a modal for adding new data will appear. This modal contains several fields corresponding to
different attributes of the table.

First input field is for the name of the sponsor. The second field brings out a calender for sponsorship start date
selection. Third field is for selecting the sponsored league. Fourth field is for selecting the sponsored team and the
last field is for the sponsored person. Some of the last three fields can be left blank as a sponsor doesn’t have to
sponsor a league, a team and a person at the same time. After the necessary fields are filled submit button is used
to add the data to the table.

Some of these fields like the name and the start date cannot be left blank and will warn the user if submit button is
clicked without filling these fields.

Alerts will appear on top of the table to notify the user about the outcome of the add operation. This can either
be a success message with a green background which means that data is added to the database successfully or it
can be a failure message with a red background which means that a problem has occurred and the operation is
unsuccessful.

Update Sponsorship

“Update Selected Row” button allows the user to update a sponsorship entity on the table. If a row is not selected
or multiple rows are selected, an error message notifies the user to select a single row.

If a single row is selected a modal for updating data will appear. This modal contains several fields corresponding
to different attributes of the table filled with the existing data.

Fig. 1.38: Empty Table

1.1. User Guide 15

DBall Documentation, Release 0.5.7

Fig. 1.39: Login Alert

Fig. 1.40: Manager For Sponsorships

Fig. 1.41: Modal For Adding Sponsorships

Fig. 1.42: Validation For Required Fields

Fig. 1.43: Success Alert

16 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.44: Failure Alert

Fig. 1.45: Modal For Updating Sponsorships

Several attributes can be updated using this modal at the same time. Some fields like the name and start date will
still be required to be filled. Submit button will update the data on the database.

Please refer to Add Sponsorship for more detail about the fields and all encountered alerts.

Delete Sponsorship

“Delete Selected Row(s)” button allows the user to delete sponsorship entities from the table. At least one row has
to be selected to perform this operation.

Fig. 1.46: Delete Operation For Sponsorships

Team Statistics

The team statistics data is stored in the database. Using the navigation bar located at the top of the front page team
statistics table can be accessed. This table displays the sponsorships data in the database.

The manage button located on top of the table directs to user to the manager of the team statistics table. This
page is limited for registered users only. Manager page allows user to add new data, update existing data or delete
existing data.

1.1. User Guide 17

DBall Documentation, Release 0.5.7

Fig. 1.47: Front Page For Team Statistics

Fig. 1.48: Manager For Team Statistics

Add Team Statistics

“Add New Data” button allows the user to add team statistics for an existing team. Then a modal for adding new
data will appear. This modal contains several fields corresponding to different attributes of the table. Wins, draws
and losses are automatically calculated according to the matches data.

Fig. 1.49: Modal For Adding Team Statistics

First input field is a drop down menu for team selection. The rest of the fields are inputs for batting runs, batting
hits, pitching saves respectively. After the necessary fields are filled submit button is used to add the data to the
table.

Please refer to Add Sponsorship for instructions about validation or alerts, and Sponsorships for navigation.

Update Team Statistics

“Update Selected Row” button allows the user to update a team statistics entity on the table. If a row is not selected
or multiple rows are selected, an error message notifies the user to select a single row.

If a single row is selected a modal for updating data will appear. This modal contains several fields corresponding
to different attributes of the table filled with the existing data.

Several attributes can be updated using this modal at the same time. Some fields like hits, runs and saves date will
still be required to be filled. Submit button will update the data on the database.

Please refer to Add Team Statistics for more detail about the fields and Add Sponsorship for all encountered alerts.

18 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.50: Modal For Updating Team Statistics

Delete Team Statistics

“Delete Selected Row(s)” button allows the user to delete team statistics entities from the table. At least one row
has to be selected to perform this operation.

Fig. 1.51: Delete Operation For Team Statistics

Stadiums

The stadium data is stored in the database. Using the navigation bar located at the top of the front page stadiums
table can be accessed. This table displays the stadiums data in the database.

Fig. 1.52: Front Page For Stadiums

The manage button located on top of the table directs to user to the manager of the stadium table. This page is
limited for registered users only. Manager page allows user to add new data, update existing data or delete existing
data.

Add Stadium

“Add New Data” button allows the user to add a new stadium for an existing team. Then a modal for adding new
data will appear. This modal contains several fields corresponding to different attributes of the table.

1.1. User Guide 19

DBall Documentation, Release 0.5.7

Fig. 1.53: Manager For Stadiums

Fig. 1.54: Modal For Adding Stadiums

First input field is the name of the stadium. Second input field is a drop down menu for team selection. Third
input field is another drop down menu for location selection which indicates the city the stadium is located in. The
last field is a numerical value representing the capacity of the stadium. After the necessary fields are filled submit
button is used to add the data to the table.

Please refer to Add Sponsorship for instructions about validation or alerts, and Sponsorships for navigation.

Update Stadium

“Update Selected Row” button allows the user to update a stadium entity on the table. If a row is not selected or
multiple rows are selected, an error message notifies the user to select a single row.

If a single row is selected a modal for updating data will appear. This modal contains several fields corresponding
to different attributes of the table filled with the existing data.

Fig. 1.55: Modal For Updating Stadiums

Several attributes can be updated using this modal at the same time. None of the fields can be left blank. Submit button
will update the data on the database.

Please refer to Add Stadium for more detail about the fields and Add Sponsorship for all encountered alerts.

20 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Delete Stadium

“Delete Selected Row(s)” button allows the user to delete stadium entities from the table. At least one row has to
be selected to perform this operation.

Fig. 1.56: Delete Operation For Stadiums

1.1.3 Parts Implemented by Mert Şeker

Teams

All team data is kept in database. A front page to change or represent this data is used. First page is on /teams route
and it represents the data in the database in a simple and understandable way and provides some functionality.

As it can be seen in the above figure, data is divided into 2 columns; team name, team’s coach.

Second page is for both displaying and editing the data for teams and it is on the /manager/teams route and only
users that have authority can access this page. In this manager page, all data is shown in data table structure. Even
though the team id column is not shown on the front page, it is shown here.

On the top left side of the screen you can select how many entities are shown in a single page. You can search for
a team by using the search bar on the top right side of the screen. You can sort all tuples by clicking on a column
with respect to the clicked column.

The three buttons at the bottom of the page are buttons for add, update and delete operations.

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new
record.

First box is a textbox for entering the team name. Second box is a drop down menu to choose a team coach; it
is only possible to choose a person that have the person type as coach. None of these fields can be null. After

1.1. User Guide 21

DBall Documentation, Release 0.5.7

Fig. 1.57: Team Add Screen

entering the data to the fields and clicking the “Submit” button, if there are no problems in the back end, new team
data will be added to the database and it can be seen in the front and manager pages.

Update Operation

Clicking on a row will select that team and clicking the “Update Selected Data” button will show up the update
screen if only one row have been selected. If more than one row have been selected, an error message will be
shown on the screen.

After user selects one row and clicks the update button a modal will show up for updating the team data.

Fig. 1.58: Team Update Screen

After user enters the new data in the fields and submits the form , selected team will be updated accordingly. After
the update operation is successful, all references to the previous data will also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can can select one or more teams. After the user have
selected the rows, clicking the button will delete all the chosen rows from the team table.

22 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.59: Team Delete

Players

All player data is kept in database. A front page to change or represent this data is used. First page is on /players
route and it represents the data in the database in a simple and understandable way and provides some functionality.

As it can be seen in the above figure, data is divided into 3 columns; player name, player’s team and number of
goals that the player have scored.

Second page is for both displaying and editing the data for players and it is on the /manager/players route and only
users that have authority can access this page. In this manager page, all data is shown in data table structure. Even
though the player id column is not shown on the front page, it is shown here.

On the top left side of the screen you can select how many entities are shown in a single page. You can search for
a player by using the search bar on the top right side of the screen. You can sort all tuples by clicking on a column
with respect to the clicked column.

The three buttons at the bottom of the page are buttons for add, update and delete operations.

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new
record.

First box is a textbox for entering the player’s name. Second box is a drop down menu to choose the player’s
team; it is only possible to choose a team from the teams table. Third box is for entering the number of goals that
the player have scored and it is entered as integer. None of these fields can be null. After entering the data to the
fields and clicking the “Submit” button, if there are no problems in the back end, new player data will be added to
the database and it can be seen in the front and manager pages.

Update Operation

Clicking on a row will select that team and clicking the “Update Selected Data” button will show up the update
screen if only one row have been selected. If more than one row have been selected, an error message will be
shown on the screen.

1.1. User Guide 23

DBall Documentation, Release 0.5.7

Fig. 1.60: Player Add Screen

After user selects one row and clicks the update button a modal will show up for updating the player data.

Fig. 1.61: Player Update Screen

After user enters the new data in the fields and submits the form , selected player will be updated accordingly.
After the update operation is successful, all references to the previous data will also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can can select one or more players. After the user have
selected the rows, clicking the button will delete all the chosen rows from the player table.

24 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.62: Player Delete

Tournaments

All tournament data is kept in database. A front page to change or represent this data is used. First page is on
/tournaments route and it represents the data in the database in a simple and understandable way and provides
some functionality.

As it can be seen in the above figure, data is divided into 6 columns; tournament name, number of matches, start
date, end date, country and prize.

Second page is for both displaying and editing the data for tournaments and it is on the /manager/tournaments
route and only users that have authority can access this page. In this manager page, all data is shown in data table
structure. Even though the tournament id column is not shown on the front page, it is shown here.

On the top left side of the screen you can select how many entities are shown in a single page. You can search for
a tournament by using the search bar on the top right side of the screen. You can sort all tuples by clicking on a
column with respect to the clicked column.

The three buttons at the bottom of the page are buttons for add, update and delete operations.

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new
record.

First box is a textbox for entering the tournament’s name. Second box is for entering the number of matches. Third
box is for entering the start date. Fourth box is for entering the end date. Fifth box is for choosing a country from
the countries table, it is also possible to see the country’s location on the map by clicking the pin icon next to it.
Sixth box is for entering the prize that will be given to the winner.None of these fields can be null. After entering
the data to the fields and clicking the “Submit” button, if there are no problems in the back end, new tournament
data will be added to the database and it can be seen in the front and manager pages.

Update Operation

Clicking on a row will select that team and clicking the “Update Selected Data” button will show up the update
screen if only one row have been selected. If more than one row have been selected, an error message will be

1.1. User Guide 25

DBall Documentation, Release 0.5.7

Fig. 1.63: Tournament Add Screen

shown on the screen.

After user selects one row and clicks the update button a modal will show up for updating the tournament data.

After user enters the new data in the fields and submits the form , selected tournament will be updated accordingly.
After the update operation is successful, all references to the previous data will also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can can select one or more tournaments. After the user have
selected the rows, clicking the button will delete all the chosen rows from the tournament table.

1.1.4 Parts Implemented by Furkan Akgün

Change Log

When you first enter the site, you will realize that there is a column showing the last five operations done in the
site. When an authenticated user perform an operation, last five operations always be showing up in main page. If
that is the first time user entered the site, by checking both columns in the home page and examining last changes
user can get an idea of the website. On the other hand if it is not user’s first time, then instead of checking all
tables to see what changed; user can simply look on the last changes column.

Change Log serves two main ideas; to track down which operations are done and by whom, and by some chance
if database operations fails as a means of debugging. In the home page we represent only the last five changes, but
in manager screen all logs are stored.

As can seen in the above figure, logs are all divided into 3 different columns; first column to explain what is done,
second to tell by whom and the third for date of the operation. In the main change log it is easy to differentiate

26 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.64: Tournament Update Screen

Fig. 1.65: Tournament Delete

Fig. 1.66: Last Changes Column in Home Page

Fig. 1.67: All Stored Log Data

1.1. User Guide 27

DBall Documentation, Release 0.5.7

users from the description because table structure make their positions clear. But in the home page in last changes
column, in some cases it may not be easy to see user in first glance. So to emphasize some keywords in log like
user, we used bold font for users.

Country

All country data are stored in database.So we have basically a front page to represent or change this data. First
page is simply on /country route and its purpose to represent data we have in an elegant way and providing some
functionality.

Fig. 1.68: Front Page For Countries

As can seen in the above figure, data simply divided into 3 columns; country name, country’s capital and the
population. Also table is striped table meaning that if you have your cursor over a row, that row will be focused
and will be easy to see. There are location markers next to city and country names, as you can guess by clicking
those icons user can see location of clicked name on GoogleMaps Api.

Fig. 1.69: Country Locations

In this example I have clicked on Paris and the results can be seen as in the figure above. Right after clicking the
location marker, a modal with location map shows up by taking all the focus. Also at the top of the table you can
see “Manage” button. By clicking this button, if user have sufficient permission, user will be directed to manager
page for countries where he/she can change data.

Second page for both representing and changing data for countries is on the /manager/country route and only users
with sufficient permissions can locate the page. In this page, all data represented in data table structure. Also any
columns for country such as id are shown here while it was not showing in the front page.

On the top left side of the table you can select how many records to show in a single page. And on the top right
side of the table you can search for any records. By clicking on the column name you can sort all records by the
clicked column.

And finally the last three buttons in the bottom of the page are add, update and delete buttons respectively.

28 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.70: Country Manager Page

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new
record.

Fig. 1.71: Country Add Screen

First is country name which is simply a textbox and user can enter a country name in mind. Second is city name;
users can only select cities currently on the database which are available in the selection. Third is population and
users can enter an integer value. Right after completing the input and clicking the “Submit” button at the buttom
of page. If there is no problem in backend new country data will be added to database and now can be seen in both
front and manager pages.

Update Operation

By clicking the “Update Selected Data” button a modal will show up if the user have selected only one row. If
selected row count exceeds one, then right after user clicked update button an error will show up on the top of
table warning users about number of selected items.

After user selected only one row and clicked update button a modal for updating data will show up.

1.1. User Guide 29

DBall Documentation, Release 0.5.7

Fig. 1.72: A Warning Appears if User Tries to Update Many Rows in an Operation

Fig. 1.73: Country Update Screen

30 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Right after user fill the inputs and submit the form ,if nothing prevents in the backend, selected row of country
table will be updated. After update operation all links of previous data also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can delete either one entry or multiple entries. After user
selected the rows he/she wish to delete, clicking the button will delete all selected rows from the table.

Match

As like the country, match table also have two different pages on purpose. One again for to represent data in an
elegant way, the other for changing the data. First page is to represent data and any user can locate this page on
route /matches.

Fig. 1.74: Front Match Page

As can seen in the above figure, data is represented in a table structure and have several columns which are
date, results, referee and stadium. Date, simply as the name says, shows the date when the match took place and
formatted as D/M/Y. Results column shows teams and their scores with scores emphasized. And so stadium shows
which stadium match took place and referee shows who was the referee in the match.

After user clicked “Manage Button” on the top of table, user will be directed to /manager/matches page if he/she
have sufficient permission.

Second page is for both representation and modifying data and can be accessed only by authenticated users.

Fig. 1.75: Manager Page For Matches

Add Operation

Just like in the country page, when clicking “Add New Data” a modal shows up and asks for data for entry to be
added.

1.1. User Guide 31

DBall Documentation, Release 0.5.7

Fig. 1.76: Add Screen for Matches

32 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Here you can choose two teams registered in database in dropdown menus and set score values for each of them.
Score value must be between 0 and 100. Next choose a stadium from database and assign it to this match. You
can also select a referee and specify date of the match in this add screen.

Update Operation

After clicking “Update Data” Button after selection row to be updated, a modal shows up asks for user to enter
new data. In every page, just like in country page, user should select only one row to update. If user, by any
change, try to update two or more row at the same time, a warning message will be created.

Fig. 1.77: Update Screen for Matches

You can simply change any value of the match without damaging integrity of database.

Delete Operation

Just like in country page, you can select one or multiple entries and then hit delete button to delete them from the
database.

League

All league data are stored in database. League data just like the other tables have two pages with different purposes;
one for representing the data in a way appropriate to content and the other for editing data.

1.1. User Guide 33

DBall Documentation, Release 0.5.7

Fig. 1.78: League Front Page

In this page, user can see all the leagues registered in database. User can see a league’s country and start date.
What’s more is that by clicking the “Leaderboard” button, user can access leaderboard for that league easily.

Fig. 1.79: League Leaderboards

Manager page of leagues is also identical to the other class manager pages. All data are in datatable and ready to
modify.

Fig. 1.80: Manager Page for League

Add Operation

Just like previous classes, after clicking add button a modal for league shows up and prompts for entry. After
submitting new entry will be added to the database.

Here user can name the league anything he wants and can select a registered country from the database in drop-
down menu. Also user can specify start date of the league.

Update Operation

User first select one row to be updated by clicking on rows. However only one row at a time allowed to be updated,
meaning if user ever try to update two or more selected items, a warning will appear in top of the table just like in
country and match page.

34 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.81: Add Screen for League

Fig. 1.82: Update Screen for League

1.1. User Guide 35

DBall Documentation, Release 0.5.7

Delete Operation

User must first select the rows he/she wish to delete. After selecting the one or multiple rows to be deleted just
hitting delete button will delete all selected data from the database.

1.2 Developer Guide

1.2.1 Database Design

Our database relations has been designated to be use power of relations as much as possible. All possible repeated
data amount has been reduced in order to reduce used storage amount. More detailed information has been
explained by each group member.

Fig. 1.83: Entity-Relation Diagram for Database

1.2.2 Git Workflow

Git workflow thorough development process has been visualized with open source software called gource.

36 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

1.2.3 Code

For code structure, model-view-controller hierarchy has been used. Where model methods and control methods
has been seperated. For each entity a class has been created. These classes used as models which have done the
database operations. Routes has been connected to views and if user enters an input, entered data went through
view to controller and then model. Also an API has been created to made possible the abstract operations which
is free from user interface. In reality, models has been designed as API, thus it increases technical capabilities of
our code. Each group member has been explained their parts in more detail.

Parts Implemented by Oğuz Kerem Tural

Front End Design

Application user interface uses Bootstrap framework for responsive UI, jQuery framework for much more dynamic
design and DataTables framework for glorious tables. Main aim for the design was simplicity. Any type of user
could easily use the application without losing its way. Thus, color scheme selection and content placement
has been done accordingly. On top of the Bootstrap, a hand written CSS file has been added to extend both its
responsivity and design.

Different enhancements has been applied on both front body and manager body classes. Pagination has been fixed,
columns in front page has been hidden in smaller screens. Also navigation bar and sidebar has been changed in
smaller screens.

.sidebar {
display: none;

}

@media (min-width: 768px) {
.sidebar {

background-color: #f5f5f5;
position: fixed;
top: 31px;
left: 0;
bottom: 0;
display: block;
padding: 20px;

}
}

For show sidebar minimum screen width has been selected as 768px. If screen width is smaller than this, sidebar
will be hidden and a navigation bar on top would be displayed. Both navigation bar and sidebar uses Jinja2‘s
variable switching ability. Both front and manager layout contains a Jinja2 block that contains all menu items.

{% set navigation_bar = [
('/manage', 'main', 'Main'),
('/manage/people', 'people', 'People'),
('/manage/penalties', 'penalties', 'Penalties'),
('/manage/popularity', 'popularity', 'Popularity'),
('/manage/cities', 'cities', 'Cities'),
('/manage/teams', 'teams', 'Teams'),
('/manage/team_stats', 'team_stats', 'Team Statistics'),
('/manage/players', 'players', 'Players'),
('/manage/sponsorships', 'sponsorships', 'Sponsorships'),
('/manage/stadiums', 'stadiums', 'Stadiums'),
('/manage/countries', 'countries', 'Countries'),
('/manage/tournaments', 'tournaments', 'Tournaments'),
('/manage/matches', 'matches', 'Matches'),
('/manage/leagues', 'leagues', 'Leagues')] -%}

{% set active_page = active_page|default('main') -%}

1.2. Developer Guide 37

DBall Documentation, Release 0.5.7

This code block creates links, names, alternatives and also determines which page is active. Design also gives
extreme importance to the dynamism. To create dynamic pages, design utilizes jQuery and JavaScript’s AJAX
capabilities. All submit operations handled with an AJAX handler that written for operation-specific purposes.
This will be discussed in later parts.

Configuration File

Configuration file hs been written in order to maintain simplicity when implementing other methods. All configu-
ration methods has been stored in config.py file. It contains two methods one for parsing database parameters and
another one is for creating a connection to database.

def db_connect():
Connecting db by checking VCAP credentials. By courtesy of Turgut Hoca.
VCAP_SERVICES = os.getenv('VCAP_SERVICES')
if VCAP_SERVICES is not None:

dsn = get_elephantsql_dsn(VCAP_SERVICES)
else:

Change this line according to your local db credentials
dsn = """user='postgres' password='password'

host='localhost' port=5432 dbname='itucsdb1515'"""

try:
db_connection = connect(dsn)
return db_connection

except Error as error:
print(error)
return None

First this method checks for OS environment for environment variable called ‘’VCAP_SERVICES‘’. If this
variable exists then it takes and parses the connection information from deployment server. If it is not exists then
it works on localhost, thus it takes local information to connect the database.

REST API Skeleton

All operations have done through the REST API that has written from scratch. The power of REST API is
flexibility. It creates an abstract layer for all operations that needed to be done. By this way, without using any
interface all operations can be completed through API. Application’s user interface utilizes this ability and uses
AJAX handlers for completing operations. API can be accessible through /api route. If user send request to
the route http://localhost/api the answer will be in JSON format. All information in REST APIs are
handled in JSON format. This makes it easier for AJAX handlers to understand data.

$ curl http://localhost:5000/api

{
"welcome_message": "Welcome to the DBall API v1.0"

}

Example API usage.

Even though application has user interface, it also serves as a REST server. User interface connects API through
AJAX handlers which handles the data that came from inputs. It formats the data in JSON and passes data to
API. Then API methods does operation from the data which has been taken from request and sends a respond.
According to this respond AJAX handler either creates an error message or shows the changes.

$('#modal-submit-form').submit(function() {
var user_data = {

// User data in dictionary form
};

$.ajax({

38 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

url: "/api/login",
contentType: 'application/json',
data: JSON.stringify(user_data),
type: "POST",
dataType : "json",
success: function(json) {

if (json.result) {
// Operation Success.

} else {
// Operation Failure

}
console.log(json);

},
error: function() {

console.log("TROUBLE!");
}

});
return false;

});

Skeleton for all AJAX handlers which has been used as a template on all AJAX handlers.

Get Operation API can both pull and push information to the application. To pull information, users should use
specific routes that has been designed for that record. Users can either pull information for specific ID or they can
pull all the records that has been stored in database. All responses will be in JSON format. GET routes are only
allows GET method. Thus if it encounters with a POST request it would give a 405 error.

$ curl http://localhost:5000/api/<record_name>/<id>

Example request for GET operation.

Add Operation To complete add operation through API, user must be logged in. In other words, it should have
a session in computer. This prevents unauthorized users to alter records. After login operation user can add using
/api/<record_name>/add route to add new record to the system. It only accepts POST method.

$ curl -X POST -d "{...}" http://localhost:5000/api/<record_name>/add

Example request for ADD operation.

Update Operation Again to complete update operation user should be logged in. After logged in, user can use
/api/<record_name>/update route to update records that have been stored in database. It only accepts
POST method.

$ curl -X POST -d "{...}" http://localhost:5000/api/<record_name>/update

Example request for UPDATE operation.

Delete Operation After login operation user can delete records on database from the route
/api/<record_name>/delete. It only accepts POST method.

$ curl -X POST -d "{...}" http://localhost:5000/api/<record_name>/delete

Example request for DELETE operation.

User Login and Register System

Another ability of API is handling user operations for application. User system something that relies on Auth API
a lot. It uses sessions in order to recognize user and store its data. Login operation can be done thorough either

1.2. Developer Guide 39

DBall Documentation, Release 0.5.7

from user interface or through API. Further, add, delete and update operations need authorization to complete
thorough API. On the other hand register operations only can be done through API.

class User(object):
def __init__(self, user_alias=None, user_email=None, user_pass=None,

is_admin=False, user_id=None):
self.id = user_id
self.alias = user_alias
self.email = user_email

if user_pass is not None:
self.password_hash = bcrypt.encrypt(user_pass)

else:
self.password_hash = user_pass

self.user_type = is_admin

def get_user(self, email=None):
pass

def add_user_to_db(self):
pass

Class hierarchy in User class.

User Login User login is secure and critical process for users to alter records that have been stored in database.
Since API is open, we had to require users to login before done any operation on records to prevent data persis-
tence. When user tries to login through user interface data which user entered, gathered by AJAX and formatted
into JSON notation. From here AJAX handler generates a request to the API. API gets JSON-formatted data and
creates a respond again in JSON format. According to respond message AJAX handler either generates an error
message or reloads the window.

def api_user_login():
Get request header
json_user_data = request.get_json()

Get user object
user_info = user.User()
user_info.get_user(json_user_data['user_email'])

Check user credentials
if user_info is not None and user_info.password_hash is not None:

if bcrypt.verify(json_user_data['user_password'],
user_info.password_hash) is True:
Create session for user
session['logged_in'] = True
session['email'] = json_user_data['user_email']
session['alias'] = user_info.alias

status = True
else:

status = False
else:

status = False

return jsonify({'result': status})

API method for user login.

API is heavily dependent on User class which has multiple methods for completing database operations. API
method first creates an User class object. Then it gets data from database and compares entered password with
stored salt. If they match it returns success message, otherwise error message.

40 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

$ curl -X POST -d '{"user_email":"test@test.com", "user_password":"ali"}' http://localhost:5000/api/login

Example request for user login operation through.

User Register User registration has been only implemented in API level. From user interface there is not
possible to register a new user. When user creates and sends a request to API path, API generates a new User
class object. Then it invokes add_user_to_db() method to store record in database. Before it stores data to
database, it encrypts user password with bcrypt key derivation function to increase security.

def api_user_register():
Get request header
json_user_info = request.json

Convert it into user
user_info = user.User(

user_alias=json_user_info['alias'],
user_email=json_user_info['user_email'],
user_pass=json_user_info['user_password']

)

Add user to database
status = user_info.add_user_to_db()

return jsonify({'result': status})

API method for user register.

"""INSERT INTO users (user_name, password_hash, user_email, is_admin)
VALUES (%s, %s, %s, %s);"""

SQL Query used to store user information to database.

$ curl -X POST -d '{"alias":"tester", "user_name":"test", "user_password":"ali"}'
http://localhost:5000/api/register

Example request for user register operation through.

People Records

People records are again completed in the same way. Request generated by AJAX handler, comes into API. API
parses request gets data, and then it invokes add_to_db() method to store record in database.

As in terms of database design, it has a foreign key in person_birth_place column which is designated as
city. Also it has another foreign key to person_type table. This table has only add operation and it makes
possible user to add and thus select an type of person such as players, coaches, sponsors etc.

class Person(object):
def __init__(self, name=None, birth_date=None, birth_place=None, user_type=None, user_id=None):

self.id = user_id
self.name = name
self.birth_date = birth_date
self.birth_place = birth_place
self.type = user_type

def get_person_by_id(self, get_id=None):
pass

def add_to_db(self):
pass

def delete_from_db(self):

1.2. Developer Guide 41

DBall Documentation, Release 0.5.7

pass

def update_db(self):
pass

class PersonType(object):
def __init__(self, type_name=None, type_id=None):

self.id = type_id
self.type = type_name

def get_person_type(self, type_id=None):
pass

def add_to_db(self):
pass

Class hierarchy for Person class.

Get Operation Because of foreign keys, when getting person information JOIN SQL operation has been used.
Tables has been joined where their keys has been intersect and data derived according to resulted table.

Get person type
type_obj = people.PersonType()
type_obj.get_person_type(type_id)
Create a dict
data = {

'id': type_obj.id,
'type': type_obj.type

}

return jsonify(data)

API method for get operation

"""SELECT * FROM person
JOIN city ON city.city_id = person.person_birth_location
JOIN person_types ON person_types.id = person.person_type
WHERE person_id = %s"""

SQL query used for get operation.

Add Operation Since person table has two foreign keys, thus before saving record into database it should have
take foreign ids from city_id attribute from City table and id attribute from person type table. After it got
the city_id and id it can store data to database. It uses name attribute for both foreign keys as search point
because it is unique.

def api_add_person():
Prevent unauthorized access from API
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

Get json request from AJAX Handler
json_post_data = request.get_json()
print(json_post_data)
Create an person object
person_info = people.Person(json_post_data['person_name'], json_post_data['person_birth_date'],

json_post_data['person_birth_place'], json_post_data['person_type'])

Add it to db and send result
result = person_info.add_to_db()

if result:

42 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

description = "Added " + json_post_data['person_name'] + " to Persons"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

API method for person add operation.

"""SELECT id FROM person_types WHERE person_type_name = %s"""
"""SELECT city_id FROM city WHERE city_name = %s"""
"""INSERT INTO person(person_name, person_birth_date, person_birth_location, person_type)

VALUES (%s, %s, %s, %s)"""

SQL Queries used to store information to database.

Update Operation Update operation is rather similar to add operation. After data passes from AJAX handler,
API invokes update_db() method.

def api_update_person():
Get request from AJAX
json_data = request.get_json()
Get person from db
person_obj = people.Person()
person_obj.get_person_by_id(json_data['person_id'])

Update person object's values
person_obj.name = json_data['person_name']
person_obj.birth_date = json_data['person_birth_date']
person_obj.birth_place = json_data['person_birth_place']
person_obj.type = json_data['person_type']

Update db
result = person_obj.update_db()

Log operations

return jsonify({'result': result})

API method for person update operation.

"""SELECT city_id FROM city WHERE city_name=%s"""
"""SELECT id FROM person_types WHERE person_type_name=%s"""
"""UPDATE person

SET person_name=%s, person_birth_date=%s, person_birth_location=%s, person_type=%s
WHERE person_id=%s"""

SQL Queries used to update stored information on database.

Delete Operation Delete operation is relatively simple when comparing the other operations. API gets a list of
ids that wanted to be deleted from request and just invokes delete_from_db() method for each.

def api_delete_person():
Prevent unauthorized access
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

status = False
Get request
person_id_json = request.get_json()
print(person_id_json)
Delete every requested id
for person_id in person_id_json:

1.2. Developer Guide 43

DBall Documentation, Release 0.5.7

person_obj = people.Person()
person_obj.get_person_by_id(person_id)
print(person_id)
status = person_obj.delete_from_db()

if status:
description = "Deleted " + person_obj.name + " from Persons"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': status})

API method for person delete operation.

"""DELETE FROM person WHERE person_id = %s"""

SQL Query used to delete stored information from database.

Penalty Records

Penalty records table is relatively same as person table. It has again two foreign keys one for person and another
for penalty type. Again user can add and select which types it wants but cannot delete or update it.

class Penalty(object):
def __init__(self, given_person=None, given_date=None, penalty_type=None, penalty_id=None):

self.id = penalty_id
self.person = given_person
self.given_date = given_date
self.type = penalty_type

def get_penalty_by_id(self, get_id=None):
pass

def add_to_db(self):
pass

def delete_from_db(self):
pass

def update_db(self):
pass

class PenaltyType(object):
def __init__(self, type_name=None, type_id=None):

self.id = type_id
self.type = type_name

def get_penalty_type(self, type_id=None):
pass

def add_to_db(self):
pass

Class hierarchy for Penalty class.

Get Operation Again JOIN operation has been used for getting all data in same manner as people table.

def api_get_penalty(data_id):
Create empty penalty and fill it from db
penalty_obj = penalties.Penalty()
penalty_obj.get_penalty_by_id(data_id)

44 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Create a dict for jsonify
data = {

'id': penalty_obj.id,
'person': penalty_obj.person,
'given_date': penalty_obj.given_date.strftime('%d/%m/%Y'),
'penalty_type': penalty_obj.type

}

return jsonify(data)

API method for get operation

"""SELECT * FROM penalty
JOIN person ON penalty_given_person = person.person_id
JOIN penalty_type ON penalty_type = penalty_type.id
WHERE penalty_id = %s"""

SQL query used for get operation.

Add Operation Add operation also in same way as person table. But differently, this time it takes person id
directly from user, thus no additional query is needed for penalty add operation.

def api_add_penalty():
Prevent unauthorized access from API
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

Get json request from AJAX Handler
json_post_data = request.get_json()
print(json_post_data)
Create an penalty object
penalty_info = penalties.Penalty(json_post_data['person_name'], json_post_data['penalty_given_date'],

json_post_data['penalty_type'])

Add it to db and send result
result = penalty_info.add_to_db()

if result:
log_person = people.Person().get_person_by_id(json_post_data['person_name'])
description = "Added Penalty For " + log_person.name + " to Penalties"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

API method for add operation.

"""SELECT id FROM penalty_type WHERE penalty_type_name = %s"""
"""INSERT INTO penalty(penalty_type, penalty_given_person, penalty_given_date)

VALUES (%s, %s, %s)"""

SQL Queries used to store information to database.

Update Operation Again it is similar to add operation when updating record.

def api_update_penalty():
Get request from AJAX
json_data = request.get_json()
Get penalty from db
penalty_obj = penalties.Penalty()
penalty_obj.get_penalty_by_id(json_data['penalty_id'])

1.2. Developer Guide 45

DBall Documentation, Release 0.5.7

Update penalty object's values
penalty_obj.person = json_data['person_name']
penalty_obj.given_date = json_data['penalty_given_date']
penalty_obj.type = json_data['penalty_type']

Update db
result = penalty_obj.update_db()

if result:
description = "Updated Element With id=" + json_data['penalty_id'] + " in Penalties"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

API method for update operation.

"""SELECT id FROM penalty_type WHERE penalty_type_name=%s"""
"""UPDATE penalty

SET penalty_given_date=%s, penalty_given_person=%s, penalty_type=%s
WHERE penalty_id=%s"""

SQL Queries used to update stored information on database.

Delete Operation As it was in person table, API invokes delete_from_db() method to delete given ids.

def api_delete_penalty():
Prevent unauthorized access
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

status = False
Get request
penalty_id_json = request.get_json()
Delete every requested id
for penalty_id in penalty_id_json:

penalty_obj = penalties.Penalty()
penalty_obj.get_penalty_by_id(penalty_id)
print(penalty_id)
status = penalty_obj.delete_from_db()

if status:
description = "Deleted Penalty For " + penalty_obj.person + " from Penalties"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': status})

API method for delete operation.

"""DELETE FROM penalty WHERE penalty_id = %s"""

SQL Query used to delete stored information from database.

Popularity Records

Popularity table one of the weakest relations in the database. It has three foreign keys to other tables for team,
player and match and also an integer value for supporters.

class Popularity(object):
def __init__(self, team=None, match=None, player=None, supporters=None, popularity_id=None):

self.id = popularity_id

46 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

self.team = team
self.match = match
self.player = player
self.supporters = supporters

def get_popularity_by_id(self, get_id=None):
pass

def add_to_db(self):
pass

def delete_from_db(self):
pass

def update_db(self):
pass

Class hierarchy for Popularity class.

Get Operation Again JOIN operation has been used for getting all data in same manner as people table. But
this time it as more joins.

def api_get_popularity(data_id):
Create empty popularity and fill it from db
popularity_obj = popularity.Popularity()
popularity_obj.get_popularity_by_id(data_id)

Create a dict for jsonify
data = {

'id': popularity_obj.id,
'team': popularity_obj.team,
'match': popularity_obj.match,
'player': popularity_obj.player,
'supporters': popularity_obj.supporters

}

return jsonify(data)

API method for get operation

"""SELECT * FROM popularity
JOIN team AS team1 ON popularity.team_name = team1.team_id
JOIN matches ON popularity.most_popular_match = matches.match_id
JOIN team AS team2 ON matches.match_team_1 = team2.team_id
JOIN team AS team3 ON matches.match_team_2 = team3.team_id
JOIN person ON popularity.most_popular_player = person.person_id"""

SQL query used for get operation.

In order to display multiple teams there has been multiple joins on teams used.

Add Operation Add operation takes foreign key values directly from the user in order to optimize queries.

def api_add_popularity():
Prevent unauthorized access from API
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

Get json request from AJAX Handler
json_post_data = request.get_json()
print(json_post_data)
Create an popularity object

1.2. Developer Guide 47

DBall Documentation, Release 0.5.7

popularity_info = popularity.Popularity(json_post_data['team'], json_post_data['match'],
json_post_data['player'], json_post_data['supporters'])

Add it to db and send result
result = popularity_info.add_to_db()

if result:
description = "Added Popularity Info for " + json_post_data['team'] + " to Popularity"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

API method for add operation.

"""INSERT INTO popularity(team_name, most_popular_match, most_popular_player, supporters)
VALUES (%s, %s, %s, %s)"""

SQL Queries used to store information to database.

Update Operation Again it is similar to add operation when updating record.

def api_update_popularity():
Get request from AJAX
json_data = request.get_json()
Get person from db
popularity_obj = popularity.Popularity()
popularity_obj.get_popularity_by_id(json_data['popularity_id'])

Update person object's values
popularity_obj.team = json_data['team']
popularity_obj.match = json_data['match']
popularity_obj.player = json_data['player']
popularity_obj.supporters = json_data['supporters']

Update db
result = popularity_obj.update_db()

if result:
description = "Updated Element With id=" + json_data['popularity_id'] + " in Popularity"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

API method for update operation.

"""UPDATE popularity
SET team_name=%s, most_popular_match=%s, most_popular_player=%s, supporters=%s
WHERE popularity_id=%s"""

SQL Query used to update stored information on database.

Delete Operation As it was in person table, API invokes delete_from_db() method to delete given ids.

def api_delete_popularity():
Prevent unauthorized access
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

status = False
Get request

48 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

popularity_id_json = request.get_json()
Delete every requested id
for popularity_id in popularity_id_json:

popularity_obj = popularity.Popularity()
popularity_obj.get_popularity_by_id(popularity_id)
print(penalty_id)
status = popularity_obj.delete_from_db()

if status:
description = "Deleted Popularity Info For " + popularity_obj.team + " from Penalties"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': status})

API method for delete operation.

"""DELETE FROM popularity WHERE popularity_id = %s"""

SQL Query used to delete stored information from database.

City Records

City table does not contain any foreign key. It uses Google Maps Geocode API in order to store location informa-
tion.

class City(object):
def __init__(self, city_name=None, city_population=None, city_coordinates=None, city_id=None):

self.id = city_id
self.name = city_name
self.coordinates = city_coordinates
self.population = city_population

def get_city_by_id(self, get_id=None):
pass

def add_to_db(self):
pass

def delete_from_db(self):
pass

def update_db(self):
pass

Class hierarchy for City class.

Get Operation Get operation is simple for city table. There is no joins since it does not have any foreign key.

def api_get_city(city_id):
Create empty city and fill it from db
city_obj = cities.City()
city_obj.get_city_by_id(city_id)

Create a dict for jsonify
data = {

'id': city_obj.id,
'city_name': city_obj.name,
'city_coordinates': city_obj.name,
'city_population': city_obj.name

}

1.2. Developer Guide 49

DBall Documentation, Release 0.5.7

return jsonify(data)

API method for get operation

"""SELECT * FROM city WHERE city_id = %s"""

SQL Queries used for get operation

Add Operation Add operation get city nme and population as input, then sends city name to Maps API and gets
geolocation to store.

def api_add_city():
Prevent unauthorized access
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

Get request
json_post_data = request.get_json()
print(json_post_data)

city_info = cities.City(json_post_data['city_name'],
json_post_data['city_population'])

Add it to db
result = city_info.add_to_db()

if result:
description = "Added " + json_post_data['city_name'] + " to Cities"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

API method for add operation

"""INSERT INTO city (city_name, city_population, city_coordinates)
VALUES (%s, %s, %s)"""

SQL Queries used for add operation

Update Operation

Again update operation also does same thing as ha been done in add operation.

def api_update_city():
Get request from AJAX
json_data = request.get_json()
Get city from db
city_obj = cities.City()
city_obj.get_city_by_id(json_data['city_id'])

Update city object's values
city_obj.name = json_data['city_name']
city_obj.population = json_data['city_population']

Update db
result = city_obj.update_db()

if result:
description = "Updated Element With id=" + json_data['city_id'] + " in Cities"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

50 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

return jsonify({'result': result})

API method for update operation

"""UPDATE city
SET city_name=%s, city_population=%s, city_coordinates=%s
WHERE city_id=%s"""

SQL Queries used for update operation

Delete Operation Delete operation directly deletes data from database.

def api_delete_city():
Prevent unauthorized access
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

status = False

Get request
city_id_json = request.get_json()

for city_id in city_id_json:
city_obj = cities.City()
city_obj.get_city_by_id(city_id)
status = city_obj.delete_from_db()

if status:
description = "Deleted " + city_obj.name + " from Cities"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': status})

API method for delete operation

"""DELETE FROM city WHERE city_id = %s"""

SQL Queries used for delete operation

Parts Implemented by Umut Can Ozyar

Sponsorships

All the sponsorships data interaction with the database happens with queries send to the server from the objects
created by the sponsorship class. This table has three foreign keys, sponsorship_league, sponsorship_team and
sponsorship_person, which refers to leagues, teams and people table respectively. Id is in type serial, therefore it’s
generated automatically, with each new entry. The rest of the fields requires new user input.

class Sponsorship(object):
def __init__(self, sponsorship_name=None, sponsorship_start_date=None, sponsorship_league=None,

sponsorship_team=None, sponsorship_person=None, sponsorship_id=None):
self.id = sponsorship_id
self.name = sponsorship_name
self.start_date = sponsorship_start_date
self.league = sponsorship_league
self.team = sponsorship_team
self.person = sponsorship_person

1.2. Developer Guide 51

DBall Documentation, Release 0.5.7

Get Sponsorship This operation is the most essential one as it’s used for several key actions. Either by sending
an id to get a specific tuple or to get the whole table get_sponsorshop_by_id method is called by the API. Then
the SELECT queries found below, will be called with the only difference of WHERE sponsorship_id = %s which
indicates that a unique id is specified. Three different OUTER JOIN operations are made to get the league, team
and person names by joining these tables over their ids.

@app.route('/api/sponsorship/<int:data_id>', methods=['GET'])
def api_get_sponsorship(data_id):

Create empty sponsorship and fill it from db
sponsorship_obj = sponsorships.Sponsorship()
sponsorship_obj.get_sponsorship_by_id(data_id)

Create a dict for jsonify
data = {

'id': sponsorship_obj.id,
'name': sponsorship_obj.name,
'start_date': sponsorship_obj.start_date.strftime('%d/%m/%Y'),
'league': sponsorship_obj.league,
'team': sponsorship_obj.team,
'person': sponsorship_obj.person

}

return jsonify(data)

def get_sponsorship_by_id(self, get_id=None):
connection = db_connect()
cursor = connection.cursor()

if get_id is not None:
statement = """SELECT sponsorship.sponsorship_id, sponsorship.sponsorship_name, sponsorship.sponsorship_start_date,

sponsorship.sponsorship_league, sponsorship.sponsorship_team, sponsorship.sponsorship_person,
person.person_name FROM sponsorship
LEFT OUTER JOIN league ON league.league_id = sponsorship.sponsorship_league
LEFT OUTER JOIN team ON team.team_id = sponsorship.sponsorship_team
LEFT OUTER JOIN person ON person.person_id = sponsorship.sponsorship_person
WHERE sponsorship_id = %s"""

try:
cursor.execute(statement, (get_id,))
connection.commit()

except connection.Error:
connection.rollback()

data = cursor.fetchone()
if data is not None:

self.id = data[0]
self.name = data[1]
self.start_date = data[2]
self.league = data[3]
self.team = data[4]
self.person = data[5]
cursor.close()
connection.close()
return self

else:
cursor.close()
connection.close()
return None

else:
statement = """SELECT sponsorship.sponsorship_id, sponsorship.sponsorship_name,

sponsorship.sponsorship_start_date, sponsorship.sponsorship_league,
sponsorship.sponsorship_team, sponsorship.sponsorship_person,
league.league_id, league.league_name,

52 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

team.team_id, team.team_name,
person.person_id, person.person_name FROM sponsorship
LEFT OUTER JOIN league ON league.league_id = sponsorship.sponsorship_league
LEFT OUTER JOIN team ON team.team_id = sponsorship.sponsorship_team
LEFT OUTER JOIN person ON person.person_id = sponsorship.sponsorship_person"""

try:
cursor.execute(statement, (get_id,))
connection.commit()

except connection.Error:
connection.rollback()

sponsorship_array = []
data = cursor.fetchall()
for sponsorship in data:

sponsorship_array.append(
{

'id': sponsorship[0],
'name': sponsorship[1],
'start_date': sponsorship[2].strftime('%d/%m/%Y'),
'league': sponsorship[7],
'team': sponsorship[9],
'person': sponsorship[11]

}
)

cursor.close()
connection.close()
return sponsorship_array

Add Sponsorship After the forms on the modal for adding sponsorship are submitted, first the authorization
process is made for the user by the API. If the authorization is successful, the API gets the json request from the
AJAX handler. This data is then used to create a sponsorship object by calling the sponsorship constructor. Then
add_to_db function is called on this object to perform the insertion query for sponsorship that can be found below.
Note that the INSERT query is called by using foreign keys to league, team and person tables ids. Thus their ids
should be fetched by using provided names.

@app.route('/api/sponsorship/add', methods=['POST'])
def api_add_sponsorship():

Prevent unauthorized access from API
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

Get json request from AJAX Handler
json_post_data = request.get_json()
print(json_post_data)
Create a sponsor object
sponsorship_info = sponsorships.Sponsorship(json_post_data['sponsorship_name'],

json_post_data['sponsorship_start_date'],
json_post_data['sponsorship_league'],
json_post_data['sponsorship_team'],
json_post_data['sponsorship_person'])

Add it to db and send result
result = sponsorship_info.add_to_db()

if result:
description = "Added " + json_post_data['sponsorship_name'] + " to Sponsorships"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

1.2. Developer Guide 53

DBall Documentation, Release 0.5.7

def add_to_db(self):
connection = db_connect()
cursor = connection.cursor()

new_league = None
new_team = None
new_person = None

select_league = """SELECT league_id FROM league WHERE league_name = %s"""
select_team = """SELECT team_id FROM team WHERE team_name = %s"""
select_person = """SELECT person_id FROM person WHERE person_name = %s"""

statement = """INSERT INTO sponsorship (sponsorship_name, sponsorship_start_date,
sponsorship_league, sponsorship_team, sponsorship_person)
VALUES (%s, %s, %s, %s, %s)"""

try:
cursor.execute(select_league, (self.league,))
connection.commit()
new_league = cursor.fetchone()

cursor.execute(select_team, (self.team,))
connection.commit()
new_team = cursor.fetchone()

cursor.execute(select_person, (self.person,))
connection.commit()
new_person = cursor.fetchone()

cursor.execute(statement, (self.name, self.start_date, new_league, new_team, new_person))
connection.commit()
status = True

except connection.Error:
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Delete Sponsorship Delete operation is a single DELETE query. delete_from_db function is called after the id
of the selected rows’ data is fetched and corresponding objects are found.

@app.route('/api/sponsorship/delete', methods=['POST'])
def api_delete_sponsorship():

Prevent unauthorized access
if not session.get('logged_in'):

return jsonify({"result": "Unauthorized Access. Please identify yourself"})

status = False
Get request
sponsorship_id_json = request.get_json()
print(sponsorship_id_json)
Delete every requested id
for sponsorship_id in sponsorship_id_json:

sponsorship_obj = sponsorships.Sponsorship()
sponsorship_obj.get_sponsorship_by_id(sponsorship_id)
status = sponsorship_obj.delete_from_db()

if status:
description = "Deleted " + sponsorship_obj.name + " from Sponsorships"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

54 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

return jsonify({'result': status})

def delete_from_db(self):
connection = db_connect()
cursor = connection.cursor()

statement = """DELETE FROM sponsorship WHERE sponsorship_id = %s"""

try:
cursor.execute(statement, (self.id,))
connection.commit()
status = True

except connection.Error:
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Update Sponsorship Update operation works similar to the add operation except the fact that there is existing
data. The AJAX handler provides the data to the API which assigns them to corresponding data members. Finally
the UPDATE query is executed to apply the changes to the database

@app.route('/api/sponsorship/update', methods=['POST'])
def api_update_sponsorship():

Get request from AJAX
json_data = request.get_json()
Get sponsorship from db
sponsorship_obj = sponsorships.Sponsorship()
sponsorship_obj.get_sponsorship_by_id(json_data['sponsorship_id'])

Update sponsorship object's values
sponsorship_obj.name = json_data['sponsorship_name']
sponsorship_obj.start_date = json_data['sponsorship_start_date']
sponsorship_obj.league = json_data['sponsorship_league']
sponsorship_obj.team = json_data['sponsorship_team']
sponsorship_obj.person = json_data['sponsorship_person']

Update db
result = sponsorship_obj.update_db()

if result:
description = "Updated element with id=" + json_data['sponsorship_id'] + " in Sponsorships"
log_info = log.Log(description, session['alias'], datetime.datetime.now())
log_status = log_info.add_to_db()

return jsonify({'result': result})

def update_db(self):
connection = db_connect()
cursor = connection.cursor()
status = False

new_league = None
new_team = None
new_person = None

select_league = """SELECT league_id FROM league WHERE league_name = %s"""
select_team = """SELECT team_id FROM team WHERE team_name = %s"""
select_person = """SELECT person_id FROM person WHERE person_name = %s"""

1.2. Developer Guide 55

DBall Documentation, Release 0.5.7

statement = """UPDATE sponsorship
SET sponsorship_name=%s, sponsorship_start_date=%s, sponsorship_league=%s,
sponsorship_team=%s, sponsorship_person=%s
WHERE sponsorship_id=%s"""

try:
cursor.execute(select_league, (self.league,))
connection.commit()
new_league = cursor.fetchone()

cursor.execute(select_team, (self.team,))
connection.commit()
new_team = cursor.fetchone()

cursor.execute(select_person, (self.person,))
connection.commit()
new_person = cursor.fetchone()

cursor.execute(statement, (self.name, self.start_date, new_league, new_team, new_person, self.id))
connection.commit()
status = True

except connection.Error:
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Team Statistics

Team statistics class functions are mostly given as prototypes except for their queries and class data members as
they are constructed in a relatively simple manner. The API functions are also omitted for the sake of simplicity
since the only meaningful difference is the table names.

Team_stat table also has an id as its primary key. The rest of the data members are all in integer type and required
to be provided by the user.

class Team_stat(object):
def __init__(self, team_stat_name=None, team_stat_run=None, team_stat_hit=None,

team_stat_save=None, team_stat_win=None, team_stat_draw=None,
team_stat_loss=None, team_stat_id=None):

self.id = team_stat_id
self.name = team_stat_name
self.run = team_stat_run
self.hit = team_stat_hit
self.save = team_stat_save
self.win = team_stat_win
self.draw = team_stat_draw
self.loss = team_stat_loss

def get_team_stat_by_id():

def add_to_db():

def delete_from_db():

def update_db():

Please refer to Sponsorships for examples of the omitted parts of the team statistics class and API functions.

56 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Get Team Statistics Fetching a team’s statistics is done when def get_team_stat_by_id function is called by
the API which executes the following query. It’s a select query that gets the only tuple from the database for the
provided id since all ids are unique.

statement = """SELECT team_stat.team_stat_id, team_stat.team_stat_name, team_stat.team_stat_run,
team_stat.team_stat_hit, team_stat.team_stat_save, team_stat.team_stat_win,
team_stat.team_stat_draw, team_stat.team_stat_loss
FROM team_stat
WHERE team_stat_id = %s"""

Add Team Statistics Adding team statistics can be cumbersome since the matches data is not structured taking
total wins, draws and losses into consideration. Therefore a few SELECT queries should be executed prior to the
main insertion query. Extra queries for draws and losses as well as the foreign key related queries are omitted for
the sake of simplicity. The different tables are counted to get home and away wins. These values are then summed
before inserted into the table. Draws and losses are calculated in the same manner. Each team’s total matches are
also counted with a simple SELECT count query.

count_win1 = """SELECT COUNT(*) FROM matches
LEFT OUTER JOIN team ON team.team_id = matches.match_team_1
WHERE (matches.match_team1_score > matches.match_team2_score AND team.team_name = %s)
GROUP BY team.team_name"""

count_win2 = """SELECT COUNT(*) FROM matches
LEFT OUTER JOIN team ON team.team_id = matches.match_team_2
WHERE (matches.match_team1_score < matches.match_team2_score AND team.team_name = %s)
GROUP BY team.team_name"""

total_wins = count_win1 + count_win2

statement = """INSERT INTO team_stat (team_stat_name, team_stat_run,
team_stat_hit, team_stat_save, team_stat_win,
team_stat_draw, team_stat_loss)
VALUES (%s, %s, %s, %s, %s, %s, %s)"""

count_matches = """SELECT count(match_id) FROM matches"""

Delete Team Statistics Deletion is a simple operation which is executed after getting the ids of the selected rows
from the table.

statement = """DELETE FROM team_stat WHERE team_stat_id = %s"""

Update Team Statistics Update also has several extra queries like the add function which calculates total wins,
draws and losses. Runs, hits and saves fields can also be updated when provided with new data.

statement = """UPDATE team_stat
SET team_stat_name=%s, team_stat_run=%s, team_stat_hit=%s, team_stat_save=%s,
team_stat_win=%s, team_stat_draw=%s, team_stat_loss=%s
WHERE team_stat_id=%s"""

Stadiums

Stadiums class functions are mostly given as prototypes except for their queries and class data members as they
are constructed in a relatively simple manner with the sponsorship class. The API functions are also omitted for
the sake of simplicity since the only meaningful difference is the table names.

Stadium table also has an id as its primary key. The rest of the data members are all in integer type and required
to be provided by the user. Location is a foreign key to the city_id column of the city table. Another foreign key
is stadium_team which points to the team table.

1.2. Developer Guide 57

DBall Documentation, Release 0.5.7

class Stadium(object):
def __init__(self, stadium_name=None, stadium_team=None, stadium_location=None,

stadium_capacity=None, stadium_id=None):
self.id = stadium_id
self.name = stadium_name
self.team = stadium_team
self.location = stadium_location
self.capacity = stadium_capacity

def get_team_stat_by_id():

def add_to_db():

def delete_from_db():

def update_db():

Please refer to Sponsorships for examples of the omitted parts of the stadium class and API functions.

Get Stadium Fetching a team’s stadium is done when def get_stadium_by_id function is called by the API
which executes the following query. It’s a select query that gets the only tuple from the database for the provided
id since all ids are unique.

statement = """SELECT stadium.stadium_id, stadium.stadium_name, stadium.stadium_team,
stadium.stadium_location, stadium.stadium_capacity,
team.team_id, team.team_name,
city.city_id, city.city_name
FROM stadium
LEFT OUTER JOIN team ON team.team_id = stadium.stadium_team
LEFT OUTER JOIN city ON city.city_id = stadium.stadium_location
WHERE stadium_id = %s"""

Add Stadium There are only two foreign keys for stadium table which are teams and locations. Id is automat-
ically generated for each new entry therefore the rest of the fields like name and capacity should be provided by
the user. After the API gets the data from the AJAX handler add_to_db function of the stadium is called which
executes the following query to add the new stadium to the database.

statement = """INSERT INTO stadium (stadium_name, stadium_team,
stadium_location, stadium_capacity)
VALUES (%s, %s, %s, %s)"""

Delete Stadium Deletion is just a single query which is executed after getting the ids of the selected rows from
the table.

statement = """DELETE FROM stadium WHERE stadium_id = %s"""

Update Stadium After selecting the correct team_id for the chosen team and city_id for the chosen city name,
all the inputs are passed to the UPDATE query which applies the changes to the database.

statement = """UPDATE stadium
SET stadium_name=%s, stadium_team=%s, stadium_location=%s, stadium_capacity=%s
WHERE stadium_id=%s"""

58 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Parts Implemented by Mert Şeker

Database Operations for Each Entity

For each database operations of entities, appropriate SQL queries are written and they are executed within the
functions in the .py class files.

Team Team tuples have three columns; id, name and coach. Coach is a foreign key to the person table.

Get Team By Id

In order to get teams and use them in functions, the primary key(team_id) is used. A dictionary is created with the
chosen team’s data and it is returned. You can see how this operation is done in the code below:

def get_team_by_id(self, get_id=None):
connection = db_connect()
cursor = connection.cursor()

if get_id is not None:
query = """SELECT t.team_id, t.team_name, t.team_couch,person.person_name

FROM team AS t
LEFT OUTER JOIN person ON person.person_id = t.team_couch
WHERE team_id = %s"""

try:
cursor.execute(query, (get_id,))
connection.commit()

data = cursor.fetchone()
if data is not None:

self.id = data[0]
self.name = data[1]
self.couch = data[2]
cursor.close()
connection.close()
return self

else:
cursor.close()
connection.close()
return None

except connection.Error as error:
print(error)
connection.rollback()

else:
query = """SELECT team.team_id, team.team_name,team.team_couch,person.person_id,person.person_name FROM team

LEFT OUTER JOIN person ON person.person_id = team.team_couch"""
try:

cursor.execute(query, (get_id,))
connection.commit()

array = []
data = cursor.fetchall()
for team in data:

array.append(
{

'id': team[0],
'name': team[1],
'couch': team[4]

1.2. Developer Guide 59

DBall Documentation, Release 0.5.7

}
)

cursor.close()
connection.close()

return array

except connection.Error as error:
print(error)
connection.rollback()

Add Team To Database

In order to add team tuples to the database, INSERT INTO queries are used and executed. The foreign keys are
selected from the referenced tables by id.You can see it in the code below:

def add_to_db(self):
connection = db_connect()
cursor = connection.cursor()

select_person = """SELECT person_id FROM person WHERE person_name = %s"""

query to add given team tuple to database
query = """INSERT INTO team (team_name, team_couch)

VALUES (%s, %s)"""

try:
cursor.execute(select_person, (self.couch,))
connection.commit()
new_person = cursor.fetchone()

cursor.execute(query, (self.name, new_person))
connection.commit()
status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Delete Team From Database

The team to be deleted is selected by id and deleted by using DELETE FROM query. You can see it in the code
below:

def delete_from_db(self):
connection = db_connect()
cursor = connection.cursor()

query = """DELETE FROM team WHERE team_id = %s"""

try:
cursor.execute(query, (self.id,))
connection.commit()

60 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Update Team

The team to be updated is selected by id and updated by the UPDATE query. Just like in add operation,the foreign
keys are selected from the referenced table by id. You can see it in the code below:

def update_db(self):
connection = db_connect()
cursor = connection.cursor()

select_person = """SELECT person_id FROM person WHERE person_name = %s"""

query = """UPDATE team
SET team_name=%s, team_couch=%s
WHERE team_id=%s"""

try:
cursor.execute(select_person, (self.couch,))
connection.commit()
person_id = cursor.fetchone()

cursor.execute(query, (self.name, person_id, self.id))
connection.commit()
status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Player Player tuples have four columns; id,name, team and number of goals. Team is a foreign key to the teams
table.

Get Player By Id

In order to get players and use them in functions, the primary key(player_id) is used. A dictionary is created with
the chosen player’s data and it is returned. You can see how this operation is done in the code below:

def get_player_by_id(self, get_id=None):
connection = db_connect()
cursor = connection.cursor()

if get_id is not None:
query = """SELECT *

FROM player
JOIN team ON team.team_id = player.player_team

1.2. Developer Guide 61

DBall Documentation, Release 0.5.7

WHERE player_id = %s"""
try:

cursor.execute(query, (get_id,))
connection.commit()
data = cursor.fetchone()
if data is not None:

self.id = data[0]
self.name = data[1]
self.goals = data[3]
self.team = data[5]

cursor.close()
connection.close()
return self

else:
cursor.close()
connection.close()
return None

except connection.Error as error:
print(error)
connection.rollback()

else:
query = """SELECT * FROM player

JOIN team ON team.team_id = player.player_team"""
try:

cursor.execute(query)
connection.commit()

except connection.Error as error:
print(error)
connection.rollback()

array = []
data = cursor.fetchall()

for player in data:
array.append(

{
'id': player[0],
'name': player[1],
'goals': player[3],
'team': player[5]

}
)

print(array)

cursor.close()
connection.close()

return array

Add Player To Database

In order to add player tuples to the database, INSERT INTO queries are used and executed. The foreign keys are
selected from the referenced tables by id.You can see it in the code below:

def add_to_db(self):
connection = db_connect()
cursor = connection.cursor()

62 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

query to get referenced team by its id
query_team = """SELECT team_id FROM team

WHERE team_name = %s"""

query to add given player tuple to database
query = """INSERT INTO player (player_name, player_team, player_goals)

VALUES (%s, %s, %s)"""

try:
cursor.execute(query_team, (self.team,))
connection.commit()
team_id = cursor.fetchone()

cursor.execute(query, (self.name, team_id, self.goals,))
connection.commit()
status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

cursor.close()
connection.close()

return status

Delete Player From Database

The player to be deleted is selected by id and deleted by using DELETE FROM query. You can see it in the code
below:

def delete_from_db(self):
connection = db_connect()
cursor = connection.cursor()

query = """DELETE FROM player WHERE player_id = %s"""

try:
cursor.execute(query, (self.id,))
connection.commit()
status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Update Player

The player to be updated is selected by id and updated by the UPDATE query. Just like in add operation,the
foreign keys are selected from the referenced table by id. You can see it in the code below:

def update_db(self):
connection = db_connect()

1.2. Developer Guide 63

DBall Documentation, Release 0.5.7

cursor = connection.cursor()

query_team = """SELECT team_id FROM team WHERE team_name=%s"""
query = """UPDATE player

SET player_name=%s, player_team=%s, player_goals=%s
WHERE player_id=%s"""

try:
cursor.execute(query_team, (self.team,))
connection.commit()
team_id = cursor.fetchone()

cursor.execute(query, (self.name, team_id, self.goals, self.id,))
connection.commit()
status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

finally:
cursor.close()
connection.close()
return status

Tournament Tournament tuples have seven columns; id,name,number of matches,start date,end date,country
and prize. Country is a foreign key to the countries table.

Get Tournament By Id

In order to get tournaments and use them in functions, the primary key(tournament_id) is used. A dictionary is
created with the chosen tournament’s data and it is returned. You can see how this operation is done in the code
below:

def get_tournament_by_id(self, get_id=None):
connection = db_connect()
cursor = connection.cursor()

if get_id is not None:
query = """SELECT * FROM tournament

JOIN country ON country.country_id = tournament.tournament_country
WHERE tournament_id = %s"""

try:
cursor.execute(query, (get_id,))
connection.commit()
data = cursor.fetchone()
if data is not None:

self.id = data[0]
self.name = data[1]
self.matches = data[2]
self.start_date = data[3]
self.end_date = data[4]
self.country = data[8]
self.prize = data[6]

cursor.close()
connection.close()
return self

else:
cursor.close()

64 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

connection.close()
return None

except connection.Error as error:
print(error)
connection.rollback()

else:
query = """SELECT * FROM tournament

JOIN country ON country.country_id = tournament.tournament_country"""
try:

cursor.execute(query)
connection.commit()

except connection.Error as error:
print(error)
connection.rollback()

array = []
data = cursor.fetchall()
for tournament in data:

array.append(
{

'id': tournament[0],
'name': tournament[1],
'matches': tournament[2],
'start_date': tournament[3].strftime('%d/%m/%Y'),
'end_date': tournament[4].strftime('%d/%m/%Y'),
'country': tournament[8],
'prize': tournament[6]

}
)

cursor.close()
connection.close()

return array

Add Tournament To Database

In order to add tournament tuples to the database, INSERT INTO queries are used and executed. The foreign keys
are selected from the referenced tables by id.You can see it in the code below:

def add_to_db(self):
connection = db_connect()
cursor = connection.cursor()

query to get referenced country by its id
query_country = """SELECT country_id FROM country

WHERE country_name = %s"""

query to add given tournament tuple to database
query = """INSERT INTO tournament (tournament_name, tournament_matches, tournament_start_date, tournament_end_date,

tournament_country, tournament_prize)
VALUES (%s, %s, %s, %s, %s, %s)"""

try:
cursor.execute(query_country, (self.country,))
connection.commit()
country_id = cursor.fetchone()

cursor.execute(query, (self.name, self.matches, self.start_date, self.end_date, country_id, self.prize))
connection.commit()

1.2. Developer Guide 65

DBall Documentation, Release 0.5.7

status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

cursor.close()
connection.close()

return status

Delete Tournament From Database

The tournament to be deleted is selected by id and deleted by using DELETE FROM query. You can see it in the
code below:

def delete_from_db(self):
connection = db_connect()
cursor = connection.cursor()

query = """DELETE FROM tournament WHERE tournament_id = %s"""

try:
cursor.execute(query, (self.id,))
connection.commit()
status = True

except connection.Error as error:
print(error)
connection.rollback()
status = False

cursor.close()
connection.close()
return status

Update Tournament

The tournament to be updated is selected by id and updated by the UPDATE query. Just like in add operation,the
foreign keys are selected from the referenced table by id. You can see it in the code below:

def update_db(self):
connection = db_connect()
cursor = connection.cursor()

query_country = """SELECT country_id FROM country WHERE country_name=%s"""
query = """UPDATE tournament

SET tournament_name=%s, tournament_matches=%s, tournament_start_date=%s, tournament_end_date=%s, tournament_country=%s, tournament_prize=%s
WHERE tournament_id=%s"""

try:
cursor.execute(query_country, (self.country,))
connection.commit()
country_id = cursor.fetchone()

cursor.execute(query, (self.name, self.matches, self.start_date, self.end_date, country_id, self.prize, self.id,))
connection.commit()
status = True

except connection.Error as error:

66 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

print(error)
connection.rollback()
status = False

finally:
cursor.close()
connection.close()
return status

Parts Implemented by Furkan Akgün

Change Log

We created log class to be able to track user activities and also debug the site when a problem occurs. Log class
simply consists of three major columns excluding id; first is the description and generated right after an operation
is performed, second is the user logged in when given operation performed , this way we are able to track any user
activites, and finally third one is the date of operation.

Fig. 1.84: Log Properties

Inside log class, we have three functions; retrieve a log by passing an id or retrieve all without passing an id,
adding log data to database and deleting log data from the database. Now we will cover these three functions
respectively.

Adding a Log to the Database To be able to show logs in home screen or manager main screen we needed to
add them to the database. To add log data to the database, we simply created an object and then set its properties.
After an instance of object have all properties set, we simply call add_to_db() function. This function basically
use insert query, the variables in query are the properties of this log instance.

In log class, one of the properties was user or author and it is a foreign key to the user table. But we were setting
author or user by its name, so to get user’s id with that name we needed to run a query first to find user id.

If instance of log class have all properties set to appropriate values then the function will add log to the database.

Getting Log(s) To show all logs or some logs in the front view, we needed a function to return all log data or
just a single one with given id. get_log_by_id(get_id) function simply takes an id parameter; if the id is none (or
no parameter entered), the query will be executed with no specific id parameter and all logs will be returned from
query and all will be stored in an array. Thne the function will just simply return that array.

On the other hand if an id value is entered as a parameter, then the query will be executed with “WHERE
id=get_id” and only the log with specific id will be returned.

1.2. Developer Guide 67

DBall Documentation, Release 0.5.7

Fig. 1.85: Function to Add Logs to Database

68 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.86: Function to Retrieve All Logs

1.2. Developer Guide 69

DBall Documentation, Release 0.5.7

Fig. 1.87: Function to Retrieve A Log

Fig. 1.88: Function to Delete a Log From the Database

70 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Deleting a Log Deleting a log is not implemented in front view, but is ready in class as a function. Simply we
get referenced instance of log and then call delete_from_db() function.

Creating Logs After an Operation Logs are instantly created when user performs an operation in the database.
It is generic in all parts of operations, a description is created right after the operation and a log instance is created
with this description, user and date. After that add_to_db() function on that log instance is called and log is added
to the database.

Fig. 1.89: Generating a Log After an Operation

As you can see right before function is completed a description is created given the operation. Simply “Added”,
“Updated” or “Deleted” expressions are used for all operations. Here user is passed to the object constructor as
session[’alias’].

Displaying Last 5 Changes in Home Page After we have a function to get all logs, it was too easy to select
only last five of logs sorted by date. In query of selecting all logs we did already sorted logs in descended by date
column. So it is now reduced only to chose first five rows returned from SELECT statement.

Only five log data are stored in array, and then array is sent to the home page. In home page we can now simply
display them with a for loop.

Displaying All Changes in Manager Main Page Just like displaying last five logs, but now there is no need to
use a constraint. We simply retrieve all data and store them in an array. Then send the array to manager main page
as data.

Then simply display each of them by a for loop.

1.2. Developer Guide 71

DBall Documentation, Release 0.5.7

Fig. 1.90: Choosing Last Five Changes

Fig. 1.91: Displaying Last Five Changes

Fig. 1.92: Choose All Logs

72 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.93: Displaying All Logs

Generic Function Bodies All classes have same function bodies. They differ with only the queries they have.
So to reduce explanation for each of them, I will show generic function bodies.

First is add_to_db() Function,

All classes share these bodies, only difference is queries. Another thing is just like in the above example some
class properties are set with name values but we instead use id values for them. So first we must call another
queries to get their ids. Then simply execute operational query.

update_db() Function,

delete_from_db() Function,

get_(classname)_by_id() Function,

Functions up to now were only class operations. Each class have four functions above. Next functions are for add,
delete, and update operations done in website. These operation are again same for other classes except some extra
operations for getting referenced objects.

Add Operation,

As can be seen above, add operation creates an instance of class with json data provided by forms. After an
instance is created that objects is added to the database. After a log will created for this given operation and the
operation ends.

Delete Operation,

In delete operation we get all selected item ids in an array, then in a for loop we delete all selected items.

Update Operation,

Just like in the add operation we get json data from forms and instead creating a new entry, we set properties of
this instance to what we get from the forms and then update the item.

Country

Country object has four properties; id, name, capital and population. Capital is a foreign key to the cities table.

1.2. Developer Guide 73

DBall Documentation, Release 0.5.7

Fig. 1.94: Generic Add Function

74 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.95: Generic Update Function

1.2. Developer Guide 75

DBall Documentation, Release 0.5.7

Fig. 1.96: Generic Delete Function

INSERT INTO QUERY We have already provided bodies of all the functions. Those bodies were all same for
all classes. What makes each class different are their unique queries for operations. These queries are executed in
those functions and we complete what we try to accomplish.

In above queries, first is used to get id of the referenced capital, and then all properties of class are used as
parameters to add this instance to the database.

DELETE FROM QUERY

Country with given id is deleted from the database.

SELECT QUERY

In case we pass no parameter to get_country_by_id() function, the query with no “WHERE” clause will be used.
Above query is used when we pass an id parameter.

UPDATE QUERY

Just like in the add operation queries excluding update query gets referenced item ids and then use them as
parameter in the update query.

Matches

Match object has nine properties; id, home team, score of home team, away team, score of away team, stadium,
referee, league and match date. Team, stadium, referee and league are all foreign keys.

76 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.97: Generic Retrieve

1.2. Developer Guide 77

DBall Documentation, Release 0.5.7

Fig. 1.98: Generic Add Operation

Fig. 1.99: Generic Delete Operation

78 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

Fig. 1.100: Generic Update Operation

Fig. 1.101: Country Insert Into Query

Fig. 1.102: Country Delete Query

Fig. 1.103: Country Select Query

Fig. 1.104: Country Update Query

1.2. Developer Guide 79

DBall Documentation, Release 0.5.7

INSERT INTO QUERY We have already provided bodies of all the functions. Those bodies were all same for
all classes. What makes each class different are their unique queries for operations. These queries are executed in
those functions and we complete what we try to accomplish.

Fig. 1.105: Match Insert Into Query

In above queries, queries except the last one are used to get ids of the referenced items, and then all properties of
class are used as parameters to add this instance to the database.

DELETE FROM QUERY

Fig. 1.106: Match Delete Query

Match with given id is deleted from the database.

SELECT QUERY

Fig. 1.107: Match Select Query

In case we pass no parameter to get_match_by_id() function, the query with no “WHERE” clause will be used.
Above query is used when we pass an id parameter.

80 Chapter 1. How to Install?

DBall Documentation, Release 0.5.7

UPDATE QUERY

Fig. 1.108: Match Update Query

Just like in the add operation queries excluding update query gets referenced item ids and then use them as
parameter in the update query.

League

League object has four properties; id, name, country and start date. Country is a foreign key to the country table.

INSERT INTO QUERY We have already provided bodies of all the functions. Those bodies were all same for
all classes. What makes each class different are their unique queries for operations. These queries are executed in
those functions and we complete what we try to accomplish.

Fig. 1.109: League Insert Into Query

In above queries, first is used to get id of the referenced country, and then all properties of class are used as
parameters to add this instance to the database.

DELETE FROM QUERY

League with given id is deleted from the database.

1.2. Developer Guide 81

DBall Documentation, Release 0.5.7

Fig. 1.110: Leauge Delete Query

SELECT QUERY

Fig. 1.111: League Select Query

In case we pass no parameter to get_league_by_id() function, the query with no “WHERE” clause will be used.
Above query is used when we pass an id parameter.

UPDATE QUERY

Fig. 1.112: League Update Query

Just like in the add operation queries excluding update query gets referenced item ids and then use them as
parameter in the update query.

82 Chapter 1. How to Install?

	How to Install?
	User Guide
	Developer Guide

