

 Navigation

 	
 next

 	DBall 0.5.7 documentation

Welcome to Dball’s documentation!

	Team:	ITUCSDB1515

	Members:	
	Oğuz Kerem Tural (150130125)

	Umut Can Özyar (150130022)

	Mert Şeker (150130119)

	Furkan Akgün (150130106)

DBall Database Application is prepared for baseball, a branch of sport especially popular in American culture with more
than 300 hundred years of history. It can hold many of the statistical data that represents baseball as whole. It is
easy to use, simple yet also give much more flexibility than any other application. In other terms, it directly responds
to user. If user wants it complex it become like one. And more importantly it is multi functional and open source.

How to Install?

Just follow the following steps in order to install application.

	First go to the www.python.org and grab python (preferably version 3.4.3).

	Then install flask, psycopg2, passlib and requests packages through pip.
	PS. You can use pip install flask psycopg2 passlib requests if pip is declared in your environment path.

	Then install PostgreSQL through www.postgresql.org

	Setup database, then import init.sql file into database through recovery.

	Fire up server.py and you are ready to roll!

Contents:

	User Guide

	Developer Guide

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

User Guide

DBall Application is designed to become user friendly, simple and clean. Any type of user no matter what level of their
computer skills is targeted for this application. Addition to its simple design, it is designed to be multi-functional.
More of its functions such as altering and registering new record available through registration. Still all of the record
can be accessible through front view. DBall also provides a abstract interface for developers. With its robust REST API,
developers can use our services in their programs easily. For further information about this topic please advance
to Developer Guide.

	Parts Implemented by Oğuz Kerem Tural
	Main Area
	Navigation Bar

	User System
	Login Using Interface

	Management Area
	Sidebar

	People Records
	Add Operation

	Update Operation

	Delete Operation

	Penalty Records
	Add Operation

	Update Operation

	Delete Operation

	Popularity Records
	Add Operation

	Update Operation

	Delete Operation

	City Records
	Add Operation

	Update Operation

	Delete Operation

	Parts Implemented by Umut Can Ozyar
	Sponsorships
	Add Sponsorship

	Update Sponsorship

	Delete Sponsorship

	Team Statistics
	Add Team Statistics

	Update Team Statistics

	Delete Team Statistics

	Stadiums
	Add Stadium

	Update Stadium

	Delete Stadium

	Parts Implemented by Mert Şeker
	Teams
	Add Operation

	Update Operation

	Delete Operation

	Players
	Add Operation

	Update Operation

	Delete Operation

	Tournaments
	Add Operation

	Update Operation

	Delete Operation

	Parts Implemented by Furkan Akgün
	Change Log

	Country
	Add Operation

	Update Operation

	Delete Operation

	Match
	Add Operation

	Update Operation

	Delete Operation

	League
	Add Operation

	Update Operation

	Delete Operation

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

 	User Guide

Parts Implemented by Oğuz Kerem Tural

Main Area

Upon entering the application, user faces with this screen. It contains a navigation bar on top, a search box and
two columns. Search box is not yet active. Still user can search each table from their singular views. From top
navigation bar user can move across table views and login if it is not yet logged in. Also from right side column,
user can be able to see latest changes on records have done by registered users.

[image: main screen]
Main screen of the application.

Navigation Bar

From this area users can move thorough table views of front area. Also from right corner, where a door symbol seen,
user can login to the application. If user already logged in, it can enter management area using drop down menu which
replaces login button after log in operation. Using drop down menu user can advance between management and front pages
and sign out when it is needed.

[image: navbar without login]
Navigation bar before user logs in.

[image: navbar with login]
Navigation bar after user logs in

[image: navbar use_menu]
This menu will appears when user logs in, instead of login button.

User System

User system in application is very basic and an abstract system that aims to prevent anonymous changes could have been done
to database records. Every registered user has right to add, update or delete records where as unregistered users can only
view, search and filter the records. Both user login and register operations are done using an Auth API service that has
been provided by application itself. For further information about API please reference to Developer Guide.

Login Using Interface

To login using interface, user should click the button provided in navigation bar’s top right corner with the door symbol on it.
After click, a modal window will be shown which provides user name and password fields to user for log in operation.

[image: navbar login]
Login modal screen.

If user enters wrong credentials, an error message will appear and warns user about wrong credentials.

[image: navbar login error]
The message that appears when user enters wrong credentials.

Management Area

Registered users have privileges to change the records that stored in database. After user logged in, it can redirect here
using drop down user menu in navigation bar. In same way, it can go back to front area using drop down menu in navigation bar.
In here user greeted with change history again. But difference between the main screen change log and manager screen change log is
in manager screen user can be able to see all changes has been done from beginning of the application. User can move to the
management areas for different tables from sidebar.

[image: manager main]
Manager main screen.

Sidebar

From this section, user can navigate through different tables easily. Active page will be highlighted.

[image: manager sidebar]
Side navigation bar in management area.

People Records

In application each person stored in people table. From front view both unregistered and registered user can see the
view front page.

[image: people front]
Front view for people table.

User can search records that are listed in table. To search user should just type keywords into search box in right corner
of the table. Also user can order tables by clicking the header of column whose elements would order the table accordingly.
User can order table in ascending or descending order.

[image: people search]
Searching in people table.

Also user can change number of elements that are shown in pages.

[image: people list]
Number of elements that are going to shown in page.

From top button right next to title user can advance into management area. If user not logged in it would give an error
and asks user to login.

[image: manager login error]
Error that occurs when unregistered user tries to advance in manager area.

When user advances into management area, three button would appear in the bottom of the table. First of them is for adding
operation, second of them is for update and the last one is for delete operation.

[image: people buttons]
Buttons that appear in management area.

If operations are successful a success message will appear on top of the table, if not then an error message will appear.

[image: success message]
Success message.

[image: error message]
Error message.

Add Operation

User can add both person information and person type. Still be warned, person types cannot be deleted from database so
add them wisely and only when its necessary.

From ‘’Add New Data’’ button, open drop down menu. After that user can select either to add new person or person type.
When clicked the selected button, a modal which would provide inputs will appear.

	PS. If you are not using Chromium-based browser please enter the date in ISO format (YYYY-mm-dd).

[image: people buttons]
Add person modal.

[image: people buttons]
Add person type modal.

User should fill all necessary inputs. If it skips any of them a warning will appear and prevent user to send data.

[image: user warning]
User warning.

Update Operation

User can update records easily first selecting which record will be updated and then clicking ‘’Update Selected Row’’ button.
Still, only one record can be updated at time. If user selects more record and hits the update button an error message different from
other will be appear.

[image: update selection error]
Error which appears when user select many records to update.

[image: row selection]
Selecting a row.

After selecting one record, user can hit update button. When user clicks the update button a modal which provides
pre-filled inputs would appear. After that user can change any value as it would like.

[image: people update]
Person update modal.

Delete Operation

User can delete multiple records at one time. User only needs to select which records to be deleted and hit the
delete button. If operation successful the success message will appear and page will reload.

Penalty Records

In penalty records most of the table functionality are the same as people table since all tables derived from a generic
table design. Hence, user can search, filter and move across table pages in same way. For those operations please refer to
People Records.

[image: penalty main]
Penalty records table.

Add Operation

When user clicks the ‘’Add New Data’’ button a drop down similar in people records will appear. From there user can add
either a new penalty record or penalty type record.

	PS. Beware penalty type records cannot be deleted

	PPS. If user not using Chromium-based browser, it should enter the date in ISO format (YYYY-mm-dd).

[image: penalty add]
Penalty add modal.

[image: penalty type add]
Penalty type add modal.

Update Operation

User can update one record at a time. If more rows selected, user will encounter with an error same as in people records.
Again user should click ‘’Update Selected Row’’ button to reveal update modal which provides necessary inputs for operation.

[image: penalty update]
Penalty update modal.

Delete Operation

User can delete selected rows. First it should select every rows that need to be deleted then it should hit
‘’Delete Selected Row(s)’’ button. If operation successful, success message will appear and page will be reloaded.

Popularity Records

Again in same fashion, popularity records also uses generic table view for user end. User can do all operations that can
be done in people record. For further information please refer to People Records.

[image: popularity main]
Popularity main screen.

Add Operation

When user clicks the ‘’Add New Data’’ button this time add modal directly appears and provides input for record. User
should fill all necessary input or a warning will warn the user and prevent submitting info.

[image: popularity add]
Popularity add modal.

Update Operation

Again in here, user can update one record at a time. If more rows selected, user will encounter with an error same as in people records.
Again user should click ‘’Update Selected Row’’ button to reveal update modal which provides necessary inputs for operation.

[image: popularity update]
Popularity update modal.

Delete Operation

User can delete selected rows. First it should select every rows that need to be deleted then it should hit
‘’Delete Selected Row(s)’’ button. If operation successful, success message will appear and page will be reloaded.

City Records

In city records, user again can do the same operations as described in people records section. For more information about
that operations please refer to People Records. Additionally, user can see the location of city on map using
‘’Show Location’’ button. When user hits this button after selecting a city record, a extra modal which contains a map and a marker that show location
will appear. Still, user can only see one location at a time. If it selects more an error will appear.

[image: city main]
City main screen.

[image: city location]
City location modal.

Add Operation

Again as it before, when user clicks ‘’Add New Data’’ button, a modal which provides necessary inputs for record will
appear.

[image: city add]
City add modal.

Update Operation

User can update one record at a time. If more rows selected, user will encounter with an error same as in people records.
Again user should click ‘’Update Selected Row’’ button to reveal update modal which provides necessary inputs for operation.

[image: city update]
City update modal.

Delete Operation

User can delete selected rows. First it should select every rows that need to be deleted then it should hit
‘’Delete Selected Row(s)’’ button. If operation successful, success message will appear and page will be reloaded.

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

 	User Guide

Parts Implemented by Umut Can Ozyar

Sponsorships

The sponsorships data is stored in the database. Using the navigation bar located at the top of the front page sponsorships
table can be accessed.

[image: navigation front]
Navigation Bar For Selecting Pages

This table displays the sponsorships data in the database.

[image: sponsorship front page]
Front Page For Sponsorships

Several alterations can be made by the user to change the way the data is displayed on the table. The amount of entries
desired to be shown can be changed from the drop down list located at the top left of the table. The selected number
corresponds to the amount of rows displayed by the table. In case the selected number exceeds the amount of sponsorships
data, only the existing data will be displayed with no empty rows.

[image: show entity amount]
Menu for Shown Entity Amount Selection

There are also page control buttons located at the bottom right side of the table. These buttons are used to navigate
through different table pages if perchance there are more data in the database than the amount selected to be shown.

[image: table navigation]
Buttons For Table Navigation

The ordering of the data throughout the table can be changed by clicking on the sort buttons located at each table header.
This feature allows user to sort the data depending on various attributes of the table in descending or ascending order.

[image: table sort]
Sorting Table

If there is no data in the database about sponsorships, “No data available in table” message is displayed on the
table to notify the user.

[image: empty table]
Empty Table

The manage button located on top of the table directs to user to the manager of the sponsorship table. This page is limited
for registered users only. Guest users will be notified to login using the login button located at the top right side of
the page.

[image: login alert]
Login Alert

Manager page allows user to add new data, update existing data or delete existing data.

[image: sponsorship manager]
Manager For Sponsorships

Add Sponsorship

“Add New Data” button allows the user to add a new sponsorship for league, team and person entities in any combination.
Then a modal for adding new data will appear. This modal contains several fields corresponding to different attributes
of the table.

[image: sponsorship add]
Modal For Adding Sponsorships

First input field is for the name of the sponsor. The second field brings out a calender for sponsorship start date selection.
Third field is for selecting the sponsored league. Fourth field is for selecting the sponsored team and the last field is
for the sponsored person. Some of the last three fields can be left blank as a sponsor doesn’t have to sponsor a league,
a team and a person at the same time. After the necessary fields are filled submit button is used to add the data to the
table.

Some of these fields like the name and the start date cannot be left blank and will warn the user if submit button is
clicked without filling these fields.

[image: validation]
Validation For Required Fields

Alerts will appear on top of the table to notify the user about the outcome of the add operation. This can either be a
success message with a green background which means that data is added to the database successfully or it can be a failure
message with a red background which means that a problem has occurred and the operation is unsuccessful.

[image: success alert]
Success Alert

[image: failure alert]
Failure Alert

Update Sponsorship

“Update Selected Row” button allows the user to update a sponsorship entity on the table. If a row is not selected or
multiple rows are selected, an error message notifies the user to select a single row.

If a single row is selected a modal for updating data will appear. This modal contains several fields corresponding to
different attributes of the table filled with the existing data.

[image: sponsorship update]
Modal For Updating Sponsorships

Several attributes can be updated using this modal at the same time. Some fields like the name and start date will still
be required to be filled. Submit button will update the data on the database.

Please refer to Add Sponsorship for more detail about the fields and all encountered alerts.

Delete Sponsorship

“Delete Selected Row(s)” button allows the user to delete sponsorship entities from the table. At least one row has to be
selected to perform this operation.

[image: sponsorship delete]
Delete Operation For Sponsorships

Team Statistics

The team statistics data is stored in the database. Using the navigation bar located at the top of the front page team
statistics table can be accessed. This table displays the sponsorships data in the database.

[image: team_stat front page]
Front Page For Team Statistics

The manage button located on top of the table directs to user to the manager of the team statistics table. This page is
limited for registered users only. Manager page allows user to add new data, update existing data or delete existing data.

[image: team_stat manager]
Manager For Team Statistics

Add Team Statistics

“Add New Data” button allows the user to add team statistics for an existing team. Then a modal for adding new data will
appear. This modal contains several fields corresponding to different attributes of the table. Wins, draws and losses are
automatically calculated according to the matches data.

[image: team_stats add]
Modal For Adding Team Statistics

First input field is a drop down menu for team selection. The rest of the fields are inputs for batting runs, batting hits,
pitching saves respectively. After the necessary fields are filled submit button is used to add the data to the
table.

Please refer to Add Sponsorship for instructions about validation or alerts, and Sponsorships for navigation.

Update Team Statistics

“Update Selected Row” button allows the user to update a team statistics entity on the table. If a row is not selected or
multiple rows are selected, an error message notifies the user to select a single row.

If a single row is selected a modal for updating data will appear. This modal contains several fields corresponding to
different attributes of the table filled with the existing data.

[image: team_stats update]
Modal For Updating Team Statistics

Several attributes can be updated using this modal at the same time. Some fields like hits, runs and saves date will still
be required to be filled. Submit button will update the data on the database.

Please refer to Add Team Statistics for more detail about the fields and Add Sponsorship for all encountered alerts.

Delete Team Statistics

“Delete Selected Row(s)” button allows the user to delete team statistics entities from the table. At least one row has
to be selected to perform this operation.

[image: team_stats delete]
Delete Operation For Team Statistics

Stadiums

The stadium data is stored in the database. Using the navigation bar located at the top of the front page stadiums table
can be accessed. This table displays the stadiums data in the database.

[image: stadium front page]
Front Page For Stadiums

The manage button located on top of the table directs to user to the manager of the stadium table. This page is limited
for registered users only. Manager page allows user to add new data, update existing data or delete existing data.

[image: stadium manager]
Manager For Stadiums

Add Stadium

“Add New Data” button allows the user to add a new stadium for an existing team. Then a modal for adding new data will
appear. This modal contains several fields corresponding to different attributes of the table.

[image: stadiums add]
Modal For Adding Stadiums

First input field is the name of the stadium. Second input field is a drop down menu for team selection. Third input field
is another drop down menu for location selection which indicates the city the stadium is located in. The last field is a
numerical value representing the capacity of the stadium. After the necessary fields are filled submit button is used to
add the data to the table.

Please refer to Add Sponsorship for instructions about validation or alerts, and Sponsorships for navigation.

Update Stadium

“Update Selected Row” button allows the user to update a stadium entity on the table. If a row is not selected or
multiple rows are selected, an error message notifies the user to select a single row.

If a single row is selected a modal for updating data will appear. This modal contains several fields corresponding to
different attributes of the table filled with the existing data.

[image: stadiums update]
Modal For Updating Stadiums

	Several attributes can be updated using this modal at the same time. None of the fields can be left blank. Submit button

	will update the data on the database.

Please refer to Add Stadium for more detail about the fields and Add Sponsorship for all encountered alerts.

Delete Stadium

“Delete Selected Row(s)” button allows the user to delete stadium entities from the table. At least one row has to be
selected to perform this operation.

[image: stadium delete]
Delete Operation For Stadiums

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

 	User Guide

Parts Implemented by Mert Şeker

Teams

All team data is kept in database. A front page to change or represent this data is used. First page is
on /teams route and it represents the data in the database in a simple and understandable way and provides some functionality.

[image: team front page]

As it can be seen in the above figure, data is divided into 2 columns; team name, team’s coach.

Second page is for both displaying and editing the data for teams and it is on the /manager/teams route
and only users that have authority can access this page. In this manager page, all data is shown in data table structure.
Even though the team id column is not shown on the front page, it is shown here.

On the top left side of the screen you can select how many entities are shown in a single page. You can search for a team
by using the search bar on the top right side of the screen. You can sort all tuples by clicking on a column with respect
to the clicked column.

The three buttons at the bottom of the page are buttons for add, update and delete operations.

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new record.

[image: Add Team]
Team Add Screen

First box is a textbox for entering the team name. Second box is a drop down menu to choose a team coach; it is only
possible to choose a person that have the person type as coach. None of these fields can be null.
After entering the data to the fields and clicking the “Submit” button, if there are no problems in the back end,
new team data will be added to the database and it can be seen in the front and manager pages.

Update Operation

Clicking on a row will select that team and clicking the “Update Selected Data” button will show up the update screen
if only one row have been selected. If more than one row have been selected, an error message will be shown on the screen.

After user selects one row and clicks the update button a modal will show up for updating the team data.

[image: team update screen]
Team Update Screen

After user enters the new data in the fields and submits the form , selected team will be updated accordingly.
After the update operation is successful, all references to the previous data will also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can can select one or more teams. After the user have selected
the rows, clicking the button will delete all the chosen rows from the team table.

[image: team delete]
Team Delete

Players

All player data is kept in database. A front page to change or represent this data is used. First page is
on /players route and it represents the data in the database in a simple and understandable way and provides some functionality.

[image: player front page]

As it can be seen in the above figure, data is divided into 3 columns; player name, player’s team and number of goals that
the player have scored.

Second page is for both displaying and editing the data for players and it is on the /manager/players route
and only users that have authority can access this page. In this manager page, all data is shown in data table structure.
Even though the player id column is not shown on the front page, it is shown here.

On the top left side of the screen you can select how many entities are shown in a single page. You can search for a player
by using the search bar on the top right side of the screen. You can sort all tuples by clicking on a column with respect
to the clicked column.

The three buttons at the bottom of the page are buttons for add, update and delete operations.

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new record.

[image: Add Team]
Player Add Screen

First box is a textbox for entering the player’s name. Second box is a drop down menu to choose the player’s team; it is only
possible to choose a team from the teams table. Third box is for entering the number of goals that the player have scored
and it is entered as integer. None of these fields can be null.
After entering the data to the fields and clicking the “Submit” button, if there are no problems in the back end,
new player data will be added to the database and it can be seen in the front and manager pages.

Update Operation

Clicking on a row will select that team and clicking the “Update Selected Data” button will show up the update screen
if only one row have been selected. If more than one row have been selected, an error message will be shown on the screen.

After user selects one row and clicks the update button a modal will show up for updating the player data.

[image: player update screen]
Player Update Screen

After user enters the new data in the fields and submits the form , selected player will be updated accordingly.
After the update operation is successful, all references to the previous data will also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can can select one or more players. After the user have selected
the rows, clicking the button will delete all the chosen rows from the player table.

[image: player delete]
Player Delete

Tournaments

All tournament data is kept in database. A front page to change or represent this data is used. First page is
on /tournaments route and it represents the data in the database in a simple and understandable way and provides some functionality.

[image: tournament front page]

As it can be seen in the above figure, data is divided into 6 columns; tournament name, number of matches, start date, end date,
country and prize.

Second page is for both displaying and editing the data for tournaments and it is on the /manager/tournaments route
and only users that have authority can access this page. In this manager page, all data is shown in data table structure.
Even though the tournament id column is not shown on the front page, it is shown here.

On the top left side of the screen you can select how many entities are shown in a single page. You can search for a tournament
by using the search bar on the top right side of the screen. You can sort all tuples by clicking on a column with respect
to the clicked column.

The three buttons at the bottom of the page are buttons for add, update and delete operations.

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new record.

[image: Add Tournament]
Tournament Add Screen

First box is a textbox for entering the tournament’s name. Second box is for entering the number of matches.
Third box is for entering the start date. Fourth box is for entering the end date. Fifth box is for choosing a country
from the countries table, it is also possible to see the country’s location on the map by clicking the pin icon next to it.
Sixth box is for entering the prize that will be given to the winner.None of these fields can be null.
After entering the data to the fields and clicking the “Submit” button, if there are no problems in the back end,
new tournament data will be added to the database and it can be seen in the front and manager pages.

Update Operation

Clicking on a row will select that team and clicking the “Update Selected Data” button will show up the update screen
if only one row have been selected. If more than one row have been selected, an error message will be shown on the screen.

After user selects one row and clicks the update button a modal will show up for updating the tournament data.

[image: tournament update screen]
Tournament Update Screen

After user enters the new data in the fields and submits the form , selected tournament will be updated accordingly.
After the update operation is successful, all references to the previous data will also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can can select one or more tournaments. After the user have selected
the rows, clicking the button will delete all the chosen rows from the tournament table.

[image: tournament delete]
Tournament Delete

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

 	User Guide

Parts Implemented by Furkan Akgün

Change Log

When you first enter the site, you will realize that there is a column showing the last five operations done in the site.
When an authenticated user perform an operation, last five operations always be showing up in main page. If that is the
first time user entered the site, by checking both columns in the home page and examining last changes user can get an
idea of the website. On the other hand if it is not user’s first time, then instead of checking all tables to see what changed;
user can simply look on the last changes column.

[image: last changes]
Last Changes Column in Home Page

Change Log serves two main ideas; to track down which operations are done and by whom, and by some chance if database
operations fails as a means of debugging. In the home page we represent only the last five changes, but in manager screen
all logs are stored.

[image: change log]
All Stored Log Data

As can seen in the above figure, logs are all divided into 3 different columns; first column to explain what is done,
second to tell by whom and the third for date of the operation. In the main change log it is easy to differentiate users
from the description because table structure make their positions clear. But in the home page in last changes column,
in some cases it may not be easy to see user in first glance. So to emphasize some keywords in log like user, we used bold
font for users.

Country

All country data are stored in database.So we have basically a front page to represent or change this data. First page is simply
on /country route and its purpose to represent data we have in an elegant way and providing some functionality.

[image: country front page]
Front Page For Countries

As can seen in the above figure, data simply divided into 3 columns; country name, country’s capital and the population.
Also table is striped table meaning that if you have your cursor over a row, that row will be focused and will be easy to see.
There are location markers next to city and country names, as you can guess by clicking those icons user can see location
of clicked name on GoogleMaps Api.

[image: browse location]
Country Locations

In this example I have clicked on Paris and the results can be seen as in the figure above. Right after clicking the location
marker, a modal with location map shows up by taking all the focus.
Also at the top of the table you can see “Manage” button. By clicking this button, if user have sufficient permission, user
will be directed to manager page for countries where he/she can change data.

Second page for both representing and changing data for countries is on the /manager/country route
and only users with sufficient permissions can locate the page. In this page, all data represented in data table structure.
Also any columns for country such as id are shown here while it was not showing in the front page.

[image: country manager screen]
Country Manager Page

On the top left side of the table you can select how many records to show in a single page. And on the top right side of the table
you can search for any records. By clicking on the column name you can sort all records by the clicked column.

And finally the last three buttons in the bottom of the page are add, update and delete buttons respectively.

Add Operation

By clicking the “Add New Data” button on the bottom of the page, a modal shows up prompting data for new record.

[image: Add Country]
Country Add Screen

First is country name which is simply a textbox and user can enter a country name in mind. Second is city name; users can
only select cities currently on the database which are available in the selection. Third is population and users can enter
an integer value.
Right after completing the input and clicking the “Submit” button at the buttom of page. If there is no problem in backend
new country data will be added to database and now can be seen in both front and manager pages.

Update Operation

By clicking the “Update Selected Data” button a modal will show up if the user have selected only one row. If selected row count
exceeds one, then right after user clicked update button an error will show up on the top of table warning users about number
of selected items.

[image: can not update many rows at once]
A Warning Appears if User Tries to Update Many Rows in an Operation

After user selected only one row and clicked update button a modal for updating data will show up.

[image: country update screen]
Country Update Screen

Right after user fill the inputs and submit the form ,if nothing prevents in the backend, selected row of country table
will be updated. After update operation all links of previous data also be changed by the new data.

Delete Operation

By clicking the “Delete Selected Row(s)” button user can delete either one entry or multiple entries. After user selected
the rows he/she wish to delete, clicking the button will delete all selected rows from the table.

Match

As like the country, match table also have two different pages on purpose. One again for to represent data in an elegant way,
the other for changing the data. First page is to represent data and any user can locate this page on route /matches.

[image: match page]
Front Match Page

As can seen in the above figure, data is represented in a table structure and have several columns which are date, results,
referee and stadium. Date, simply as the name says, shows the date when the match took place and formatted as D/M/Y. Results
column shows teams and their scores with scores emphasized. And so stadium shows which stadium match took place and referee
shows who was the referee in the match.

After user clicked “Manage Button” on the top of table, user will be directed to /manager/matches page if he/she have
sufficient permission.

Second page is for both representation and modifying data and can be accessed only by authenticated users.

[image: manager match page]
Manager Page For Matches

Add Operation

Just like in the country page, when clicking “Add New Data” a modal shows up and asks for data for entry to be added.

[image: add new match]
Add Screen for Matches

Here you can choose two teams registered in database in dropdown menus and set score values for each of them. Score value
must be between 0 and 100. Next choose a stadium from database and assign it to this match. You can also select a referee
and specify date of the match in this add screen.

Update Operation

After clicking “Update Data” Button after selection row to be updated, a modal shows up asks for user to enter new data.
In every page, just like in country page, user should select only one row to update. If user, by any change, try to update
two or more row at the same time, a warning message will be created.

[image: update match]
Update Screen for Matches

You can simply change any value of the match without damaging integrity of database.

Delete Operation

Just like in country page, you can select one or multiple entries and then hit delete button to delete them from the
database.

League

All league data are stored in database. League data just like the other tables have two pages with different purposes;
one for representing the data in a way appropriate to content and the other for editing data.

[image: league front page]
League Front Page

In this page, user can see all the leagues registered in database. User can see a league’s country and start date. What’s
more is that by clicking the “Leaderboard” button, user can access leaderboard for that league easily.

[image: league leaderboards]
League Leaderboards

Manager page of leagues is also identical to the other class manager pages. All data are in datatable and ready to modify.

[image: league manager]
Manager Page for League

Add Operation

Just like previous classes, after clicking add button a modal for league shows up and prompts for entry. After submitting
new entry will be added to the database.

[image: league add]
Add Screen for League

Here user can name the league anything he wants and can select a registered country from the database in dropdown menu.
Also user can specify start date of the league.

Update Operation

User first select one row to be updated by clicking on rows. However only one row at a time allowed to be updated, meaning
if user ever try to update two or more selected items, a warning will appear in top of the table just like in country and match
page.

[image: league update]
Update Screen for League

Delete Operation

User must first select the rows he/she wish to delete. After selecting the one or multiple rows to be deleted just hitting
delete button will delete all selected data from the database.

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

Developer Guide

Database Design

Our database relations has been designated to be use power of relations as much as possible. All possible repeated data
amount has been reduced in order to reduce used storage amount. More detailed information has been explained by each group
member.

[image: entity-relation diagram]
Entity-Relation Diagram for Database

Git Workflow

Git workflow thorough development process has been visualized with open source software called gource.

[image: git workflow]

Code

For code structure, model-view-controller hierarchy has been used. Where model methods and control methods has been seperated.
For each entity a class has been created. These classes used as models which have done the database operations. Routes has been
connected to views and if user enters an input, entered data went through view to controller and then model. Also an API has been
created to made possible the abstract operations which is free from user interface. In reality, models has been designed as
API, thus it increases technical capabilities of our code. Each group member has been explained their parts in more detail.

	Parts Implemented by Oğuz Kerem Tural
	Front End Design

	Configuration File

	REST API Skeleton
	Get Operation

	Add Operation

	Update Operation

	Delete Operation

	User Login and Register System
	User Login

	User Register

	People Records
	Get Operation

	Add Operation

	Update Operation

	Delete Operation

	Penalty Records
	Get Operation

	Add Operation

	Update Operation

	Delete Operation

	Popularity Records
	Get Operation

	Add Operation

	Update Operation

	Delete Operation

	City Records
	Get Operation

	Add Operation

	Update Operation

	Delete Operation

	Parts Implemented by Umut Can Ozyar
	Sponsorships
	Get Sponsorship

	Add Sponsorship

	Delete Sponsorship

	Update Sponsorship

	Team Statistics
	Get Team Statistics

	Add Team Statistics

	Delete Team Statistics

	Update Team Statistics

	Stadiums
	Get Stadium

	Add Stadium

	Delete Stadium

	Update Stadium

	Parts Implemented by Mert Şeker
	Database Operations for Each Entity
	Team

	Get Team By Id

	Add Team To Database

	Delete Team From Database

	Update Team
	Player

	Get Player By Id

	Add Player To Database

	Delete Player From Database

	Update Player
	Tournament

	Get Tournament By Id

	Add Tournament To Database

	Delete Tournament From Database

	Update Tournament

	Parts Implemented by Furkan Akgün
	Change Log
	Adding a Log to the Database

	Getting Log(s)

	Deleting a Log

	Creating Logs After an Operation

	Displaying Last 5 Changes in Home Page

	Displaying All Changes in Manager Main Page

	Generic Function Bodies

	Country
	INSERT INTO QUERY

	DELETE FROM QUERY

	SELECT QUERY

	UPDATE QUERY

	Matches
	INSERT INTO QUERY

	DELETE FROM QUERY

	SELECT QUERY

	UPDATE QUERY

	League
	INSERT INTO QUERY

	DELETE FROM QUERY

	SELECT QUERY

	UPDATE QUERY

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

 	Developer Guide

Parts Implemented by Oğuz Kerem Tural

Front End Design

Application user interface uses Bootstrap framework for responsive UI, jQuery framework for much more dynamic design and
DataTables framework for glorious tables. Main aim for the design was simplicity. Any type of user could easily use the
application without losing its way. Thus, color scheme selection and content placement has been done accordingly.
On top of the Bootstrap, a hand written CSS file has been added to extend both its responsivity and design.

Different enhancements has been applied on both front body and manager body classes. Pagination has been fixed, columns
in front page has been hidden in smaller screens. Also navigation bar and sidebar has been changed in smaller screens.

.sidebar {
 display: none;
}

@media (min-width: 768px) {
 .sidebar {
 background-color: #f5f5f5;
 position: fixed;
 top: 31px;
 left: 0;
 bottom: 0;
 display: block;
 padding: 20px;
 }
}

For show sidebar minimum screen width has been selected as 768px. If screen width is smaller than this, sidebar
will be hidden and a navigation bar on top would be displayed. Both navigation bar and sidebar uses Jinja2‘s
variable switching ability. Both front and manager layout contains a Jinja2 block that contains all menu items.

{% set navigation_bar = [
 ('/manage', 'main', 'Main'),
 ('/manage/people', 'people', 'People'),
 ('/manage/penalties', 'penalties', 'Penalties'),
 ('/manage/popularity', 'popularity', 'Popularity'),
 ('/manage/cities', 'cities', 'Cities'),
 ('/manage/teams', 'teams', 'Teams'),
 ('/manage/team_stats', 'team_stats', 'Team Statistics'),
 ('/manage/players', 'players', 'Players'),
 ('/manage/sponsorships', 'sponsorships', 'Sponsorships'),
 ('/manage/stadiums', 'stadiums', 'Stadiums'),
 ('/manage/countries', 'countries', 'Countries'),
 ('/manage/tournaments', 'tournaments', 'Tournaments'),
 ('/manage/matches', 'matches', 'Matches'),
 ('/manage/leagues', 'leagues', 'Leagues')] -%}
{% set active_page = active_page|default('main') -%}

This code block creates links, names, alternatives and also determines which page is active.
Design also gives extreme importance to the dynamism. To create dynamic pages, design utilizes jQuery and JavaScript’s
AJAX capabilities. All submit operations handled with an AJAX handler that written for operation-specific purposes.
This will be discussed in later parts.

Configuration File

Configuration file hs been written in order to maintain simplicity when implementing other methods.
All configuration methods has been stored in config.py file. It contains two methods one for parsing
database parameters and another one is for creating a connection to database.

def db_connect():
 # Connecting db by checking VCAP credentials. By courtesy of Turgut Hoca. #
 VCAP_SERVICES = os.getenv('VCAP_SERVICES')
 if VCAP_SERVICES is not None:
 dsn = get_elephantsql_dsn(VCAP_SERVICES)
 else:
 # Change this line according to your local db credentials #
 dsn = """user='postgres' password='password'
 host='localhost' port=5432 dbname='itucsdb1515'"""

 try:
 db_connection = connect(dsn)
 return db_connection
 except Error as error:
 print(error)
 return None

First this method checks for OS environment for environment variable called ‘’VCAP_SERVICES‘’. If this variable exists
then it takes and parses the connection information from deployment server. If it is not exists then it works on localhost,
thus it takes local information to connect the database.

REST API Skeleton

All operations have done through the REST API that has written from scratch. The power of REST API is flexibility. It
creates an abstract layer for all operations that needed to be done. By this way, without using any interface all operations
can be completed through API. Application’s user interface utilizes this ability and uses AJAX handlers for completing operations.
API can be accessible through /api route. If user send request to the route http://localhost/api the answer will be in
JSON format. All information in REST APIs are handled in JSON format. This makes it easier for AJAX handlers to understand data.

$ curl http://localhost:5000/api

{
 "welcome_message": "Welcome to the DBall API v1.0"
}

Example API usage.

Even though application has user interface, it also serves as a REST server. User interface connects API through AJAX
handlers which handles the data that came from inputs. It formats the data in JSON and passes data to API. Then API methods
does operation from the data which has been taken from request and sends a respond. According to this respond AJAX handler
either creates an error message or shows the changes.

$('#modal-submit-form').submit(function() {
 var user_data = {
 // User data in dictionary form
 };

 $.ajax({
 url: "/api/login",
 contentType: 'application/json',
 data: JSON.stringify(user_data),
 type: "POST",
 dataType : "json",
 success: function(json) {
 if (json.result) {
 // Operation Success.
 } else {
 // Operation Failure
 }
 console.log(json);
 },
 error: function() {
 console.log("TROUBLE!");
 }
 });
 return false;
});

Skeleton for all AJAX handlers which has been used as a template on all AJAX handlers.

Get Operation

API can both pull and push information to the application. To pull information, users should use specific routes that has been designed
for that record. Users can either pull information for specific ID or they can pull all the records that has been stored in
database. All responses will be in JSON format. GET routes are only allows GET method. Thus if it encounters with a POST
request it would give a 405 error.

$ curl http://localhost:5000/api/<record_name>/<id>

Example request for GET operation.

Add Operation

To complete add operation through API, user must be logged in. In other words, it should have a session in computer.
This prevents unauthorized users to alter records. After login operation user can add using /api/<record_name>/add
route to add new record to the system. It only accepts POST method.

$ curl -X POST -d "{...}" http://localhost:5000/api/<record_name>/add

Example request for ADD operation.

Update Operation

Again to complete update operation user should be logged in. After logged in, user can use /api/<record_name>/update
route to update records that have been stored in database. It only accepts POST method.

$ curl -X POST -d "{...}" http://localhost:5000/api/<record_name>/update

Example request for UPDATE operation.

Delete Operation

After login operation user can delete records on database from the route /api/<record_name>/delete.
It only accepts POST method.

$ curl -X POST -d "{...}" http://localhost:5000/api/<record_name>/delete

Example request for DELETE operation.

User Login and Register System

Another ability of API is handling user operations for application. User system something that relies on Auth API a lot.
It uses sessions in order to recognize user and store its data. Login operation can be done thorough either from user
interface or through API. Further, add, delete and update operations need authorization to complete thorough API. On the
other hand register operations only can be done through API.

class User(object):
 def __init__(self, user_alias=None, user_email=None, user_pass=None,
 is_admin=False, user_id=None):
 self.id = user_id
 self.alias = user_alias
 self.email = user_email

 if user_pass is not None:
 self.password_hash = bcrypt.encrypt(user_pass)
 else:
 self.password_hash = user_pass

 self.user_type = is_admin

 def get_user(self, email=None):
 pass

 def add_user_to_db(self):
 pass

Class hierarchy in User class.

User Login

User login is secure and critical process for users to alter records that have been stored in database. Since API is open,
we had to require users to login before done any operation on records to prevent data persistence. When user tries to login
through user interface data which user entered, gathered by AJAX and formatted into JSON notation. From here AJAX handler
generates a request to the API. API gets JSON-formatted data and creates a respond again in JSON format. According to respond
message AJAX handler either generates an error message or reloads the window.

def api_user_login():
Get request header
json_user_data = request.get_json()

Get user object
user_info = user.User()
user_info.get_user(json_user_data['user_email'])

Check user credentials
if user_info is not None and user_info.password_hash is not None:
 if bcrypt.verify(json_user_data['user_password'],
 user_info.password_hash) is True:
 # Create session for user #
 session['logged_in'] = True
 session['email'] = json_user_data['user_email']
 session['alias'] = user_info.alias

 status = True
 else:
 status = False
else:
 status = False

return jsonify({'result': status})

API method for user login.

API is heavily dependent on User class which has multiple methods for completing database operations. API method
first creates an User class object. Then it gets data from database and compares entered password with stored salt.
If they match it returns success message, otherwise error message.

$ curl -X POST -d '{"user_email":"test@test.com", "user_password":"ali"}' http://localhost:5000/api/login

Example request for user login operation through.

User Register

User registration has been only implemented in API level. From user interface there is not possible to register a new user.
When user creates and sends a request to API path, API generates a new User class object. Then it invokes add_user_to_db()
method to store record in database. Before it stores data to database, it encrypts user password with bcrypt key derivation
function to increase security.

def api_user_register():
 # Get request header #
 json_user_info = request.json

 # Convert it into user #
 user_info = user.User(
 user_alias=json_user_info['alias'],
 user_email=json_user_info['user_email'],
 user_pass=json_user_info['user_password']
)

 # Add user to database #
 status = user_info.add_user_to_db()

 return jsonify({'result': status})

API method for user register.

"""INSERT INTO users (user_name, password_hash, user_email, is_admin)
 VALUES (%s, %s, %s, %s);"""

SQL Query used to store user information to database.

$ curl -X POST -d '{"alias":"tester", "user_name":"test", "user_password":"ali"}'
 http://localhost:5000/api/register

Example request for user register operation through.

People Records

People records are again completed in the same way. Request generated by AJAX handler, comes into API. API parses request
gets data, and then it invokes add_to_db() method to store record in database.

As in terms of database design, it has a foreign key in person_birth_place column which is designated as city.
Also it has another foreign key to person_type table. This table has only add operation and it makes possible user to
add and thus select an type of person such as players, coaches, sponsors etc.

class Person(object):
 def __init__(self, name=None, birth_date=None, birth_place=None, user_type=None, user_id=None):
 self.id = user_id
 self.name = name
 self.birth_date = birth_date
 self.birth_place = birth_place
 self.type = user_type

 def get_person_by_id(self, get_id=None):
 pass

 def add_to_db(self):
 pass

 def delete_from_db(self):
 pass

 def update_db(self):
 pass

class PersonType(object):
 def __init__(self, type_name=None, type_id=None):
 self.id = type_id
 self.type = type_name

 def get_person_type(self, type_id=None):
 pass

 def add_to_db(self):
 pass

Class hierarchy for Person class.

Get Operation

Because of foreign keys, when getting person information JOIN SQL operation has been used. Tables has been joined where
their keys has been intersect and data derived according to resulted table.

Get person type
type_obj = people.PersonType()
type_obj.get_person_type(type_id)
Create a dict
data = {
 'id': type_obj.id,
 'type': type_obj.type
}

return jsonify(data)

API method for get operation

"""SELECT * FROM person
 JOIN city ON city.city_id = person.person_birth_location
 JOIN person_types ON person_types.id = person.person_type
 WHERE person_id = %s"""

SQL query used for get operation.

Add Operation

Since person table has two foreign keys, thus before saving record into database it should have take foreign ids
from city_id attribute from City table and id attribute from person type table. After it got the city_id and id
it can store data to database. It uses name attribute for both foreign keys as search point because it is unique.

def api_add_person():
 # Prevent unauthorized access from API #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 # Get json request from AJAX Handler #
 json_post_data = request.get_json()
 # print(json_post_data)
 # Create an person object #
 person_info = people.Person(json_post_data['person_name'], json_post_data['person_birth_date'],
 json_post_data['person_birth_place'], json_post_data['person_type'])

 # Add it to db and send result #
 result = person_info.add_to_db()

 if result:
 description = "Added " + json_post_data['person_name'] + " to Persons"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

API method for person add operation.

"""SELECT id FROM person_types WHERE person_type_name = %s"""
"""SELECT city_id FROM city WHERE city_name = %s"""
"""INSERT INTO person(person_name, person_birth_date, person_birth_location, person_type)
 VALUES (%s, %s, %s, %s)"""

SQL Queries used to store information to database.

Update Operation

Update operation is rather similar to add operation. After data passes from AJAX handler, API invokes update_db() method.

def api_update_person():
 # Get request from AJAX #
 json_data = request.get_json()
 # Get person from db #
 person_obj = people.Person()
 person_obj.get_person_by_id(json_data['person_id'])

 # Update person object's values #
 person_obj.name = json_data['person_name']
 person_obj.birth_date = json_data['person_birth_date']
 person_obj.birth_place = json_data['person_birth_place']
 person_obj.type = json_data['person_type']

 # Update db #
 result = person_obj.update_db()

 # Log operations #

 return jsonify({'result': result})

API method for person update operation.

"""SELECT city_id FROM city WHERE city_name=%s"""
"""SELECT id FROM person_types WHERE person_type_name=%s"""
"""UPDATE person
 SET person_name=%s, person_birth_date=%s, person_birth_location=%s, person_type=%s
 WHERE person_id=%s"""

SQL Queries used to update stored information on database.

Delete Operation

Delete operation is relatively simple when comparing the other operations. API gets a list of ids that wanted to be deleted
from request and just invokes delete_from_db() method for each.

def api_delete_person():
 # Prevent unauthorized access #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 status = False
 # Get request #
 person_id_json = request.get_json()
 # print(person_id_json)
 # Delete every requested id #
 for person_id in person_id_json:
 person_obj = people.Person()
 person_obj.get_person_by_id(person_id)
 # print(person_id)
 status = person_obj.delete_from_db()

 if status:
 description = "Deleted " + person_obj.name + " from Persons"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': status})

API method for person delete operation.

"""DELETE FROM person WHERE person_id = %s"""

SQL Query used to delete stored information from database.

Penalty Records

Penalty records table is relatively same as person table. It has again two foreign keys one for person and another for
penalty type. Again user can add and select which types it wants but cannot delete or update it.

class Penalty(object):
 def __init__(self, given_person=None, given_date=None, penalty_type=None, penalty_id=None):
 self.id = penalty_id
 self.person = given_person
 self.given_date = given_date
 self.type = penalty_type

 def get_penalty_by_id(self, get_id=None):
 pass

 def add_to_db(self):
 pass

 def delete_from_db(self):
 pass

 def update_db(self):
 pass

class PenaltyType(object):
 def __init__(self, type_name=None, type_id=None):
 self.id = type_id
 self.type = type_name

 def get_penalty_type(self, type_id=None):
 pass

 def add_to_db(self):
 pass

Class hierarchy for Penalty class.

Get Operation

Again JOIN operation has been used for getting all data in same manner as people table.

def api_get_penalty(data_id):
 # Create empty penalty and fill it from db #
 penalty_obj = penalties.Penalty()
 penalty_obj.get_penalty_by_id(data_id)

 # Create a dict for jsonify #
 data = {
 'id': penalty_obj.id,
 'person': penalty_obj.person,
 'given_date': penalty_obj.given_date.strftime('%d/%m/%Y'),
 'penalty_type': penalty_obj.type
 }

 return jsonify(data)

API method for get operation

"""SELECT * FROM penalty
 JOIN person ON penalty_given_person = person.person_id
 JOIN penalty_type ON penalty_type = penalty_type.id
 WHERE penalty_id = %s"""

SQL query used for get operation.

Add Operation

Add operation also in same way as person table. But differently, this time it takes person id directly from user, thus
no additional query is needed for penalty add operation.

def api_add_penalty():
 # Prevent unauthorized access from API #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 # Get json request from AJAX Handler #
 json_post_data = request.get_json()
 # print(json_post_data)
 # Create an penalty object #
 penalty_info = penalties.Penalty(json_post_data['person_name'], json_post_data['penalty_given_date'],
 json_post_data['penalty_type'])

 # Add it to db and send result #
 result = penalty_info.add_to_db()

 if result:
 log_person = people.Person().get_person_by_id(json_post_data['person_name'])
 description = "Added Penalty For " + log_person.name + " to Penalties"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

API method for add operation.

"""SELECT id FROM penalty_type WHERE penalty_type_name = %s"""
 """INSERT INTO penalty(penalty_type, penalty_given_person, penalty_given_date)
 VALUES (%s, %s, %s)"""

SQL Queries used to store information to database.

Update Operation

Again it is similar to add operation when updating record.

def api_update_penalty():
 # Get request from AJAX #
 json_data = request.get_json()
 # Get penalty from db #
 penalty_obj = penalties.Penalty()
 penalty_obj.get_penalty_by_id(json_data['penalty_id'])

 # Update penalty object's values #
 penalty_obj.person = json_data['person_name']
 penalty_obj.given_date = json_data['penalty_given_date']
 penalty_obj.type = json_data['penalty_type']

 # Update db #
 result = penalty_obj.update_db()

 if result:
 description = "Updated Element With id=" + json_data['penalty_id'] + " in Penalties"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

API method for update operation.

"""SELECT id FROM penalty_type WHERE penalty_type_name=%s"""
"""UPDATE penalty
 SET penalty_given_date=%s, penalty_given_person=%s, penalty_type=%s
 WHERE penalty_id=%s"""

SQL Queries used to update stored information on database.

Delete Operation

As it was in person table, API invokes delete_from_db() method to delete given ids.

def api_delete_penalty():
 # Prevent unauthorized access #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 status = False
 # Get request #
 penalty_id_json = request.get_json()
 # Delete every requested id #
 for penalty_id in penalty_id_json:
 penalty_obj = penalties.Penalty()
 penalty_obj.get_penalty_by_id(penalty_id)
 # print(penalty_id)
 status = penalty_obj.delete_from_db()

 if status:
 description = "Deleted Penalty For " + penalty_obj.person + " from Penalties"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': status})

API method for delete operation.

"""DELETE FROM penalty WHERE penalty_id = %s"""

SQL Query used to delete stored information from database.

Popularity Records

Popularity table one of the weakest relations in the database. It has three foreign keys to other tables for team, player
and match and also an integer value for supporters.

class Popularity(object):
 def __init__(self, team=None, match=None, player=None, supporters=None, popularity_id=None):
 self.id = popularity_id
 self.team = team
 self.match = match
 self.player = player
 self.supporters = supporters

 def get_popularity_by_id(self, get_id=None):
 pass

 def add_to_db(self):
 pass

 def delete_from_db(self):
 pass

 def update_db(self):
 pass

Class hierarchy for Popularity class.

Get Operation

Again JOIN operation has been used for getting all data in same manner as people table. But this time it as more joins.

def api_get_popularity(data_id):
 # Create empty popularity and fill it from db #
 popularity_obj = popularity.Popularity()
 popularity_obj.get_popularity_by_id(data_id)

 # Create a dict for jsonify #
 data = {
 'id': popularity_obj.id,
 'team': popularity_obj.team,
 'match': popularity_obj.match,
 'player': popularity_obj.player,
 'supporters': popularity_obj.supporters
 }

 return jsonify(data)

API method for get operation

"""SELECT * FROM popularity
 JOIN team AS team1 ON popularity.team_name = team1.team_id
 JOIN matches ON popularity.most_popular_match = matches.match_id
 JOIN team AS team2 ON matches.match_team_1 = team2.team_id
 JOIN team AS team3 ON matches.match_team_2 = team3.team_id
 JOIN person ON popularity.most_popular_player = person.person_id"""

SQL query used for get operation.

In order to display multiple teams there has been multiple joins on teams used.

Add Operation

Add operation takes foreign key values directly from the user in order to optimize queries.

def api_add_popularity():
 # Prevent unauthorized access from API #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 # Get json request from AJAX Handler #
 json_post_data = request.get_json()
 # print(json_post_data)
 # Create an popularity object #
 popularity_info = popularity.Popularity(json_post_data['team'], json_post_data['match'],
 json_post_data['player'], json_post_data['supporters'])

 # Add it to db and send result #
 result = popularity_info.add_to_db()

 if result:
 description = "Added Popularity Info for " + json_post_data['team'] + " to Popularity"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

API method for add operation.

"""INSERT INTO popularity(team_name, most_popular_match, most_popular_player, supporters)
 VALUES (%s, %s, %s, %s)"""

SQL Queries used to store information to database.

Update Operation

Again it is similar to add operation when updating record.

def api_update_popularity():
 # Get request from AJAX #
 json_data = request.get_json()
 # Get person from db #
 popularity_obj = popularity.Popularity()
 popularity_obj.get_popularity_by_id(json_data['popularity_id'])

 # Update person object's values #
 popularity_obj.team = json_data['team']
 popularity_obj.match = json_data['match']
 popularity_obj.player = json_data['player']
 popularity_obj.supporters = json_data['supporters']

 # Update db #
 result = popularity_obj.update_db()

 if result:
 description = "Updated Element With id=" + json_data['popularity_id'] + " in Popularity"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

API method for update operation.

"""UPDATE popularity
 SET team_name=%s, most_popular_match=%s, most_popular_player=%s, supporters=%s
 WHERE popularity_id=%s"""

SQL Query used to update stored information on database.

Delete Operation

As it was in person table, API invokes delete_from_db() method to delete given ids.

def api_delete_popularity():
 # Prevent unauthorized access #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 status = False
 # Get request #
 popularity_id_json = request.get_json()
 # Delete every requested id #
 for popularity_id in popularity_id_json:
 popularity_obj = popularity.Popularity()
 popularity_obj.get_popularity_by_id(popularity_id)
 # print(penalty_id)
 status = popularity_obj.delete_from_db()

 if status:
 description = "Deleted Popularity Info For " + popularity_obj.team + " from Penalties"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': status})

API method for delete operation.

"""DELETE FROM popularity WHERE popularity_id = %s"""

SQL Query used to delete stored information from database.

City Records

City table does not contain any foreign key. It uses Google Maps Geocode API in order to store location information.

class City(object):
 def __init__(self, city_name=None, city_population=None, city_coordinates=None, city_id=None):
 self.id = city_id
 self.name = city_name
 self.coordinates = city_coordinates
 self.population = city_population

 def get_city_by_id(self, get_id=None):
 pass

 def add_to_db(self):
 pass

 def delete_from_db(self):
 pass

 def update_db(self):
 pass

Class hierarchy for City class.

Get Operation

Get operation is simple for city table. There is no joins since it does not have any foreign key.

def api_get_city(city_id):
 # Create empty city and fill it from db #
 city_obj = cities.City()
 city_obj.get_city_by_id(city_id)

 # Create a dict for jsonify #
 data = {
 'id': city_obj.id,
 'city_name': city_obj.name,
 'city_coordinates': city_obj.name,
 'city_population': city_obj.name
 }

 return jsonify(data)

API method for get operation

"""SELECT * FROM city WHERE city_id = %s"""

SQL Queries used for get operation

Add Operation

Add operation get city nme and population as input, then sends city name to Maps API and gets geolocation to store.

def api_add_city():
 # Prevent unauthorized access #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 # Get request #
 json_post_data = request.get_json()
 # print(json_post_data)

 city_info = cities.City(json_post_data['city_name'],
 json_post_data['city_population'])
 # Add it to db #
 result = city_info.add_to_db()

 if result:
 description = "Added " + json_post_data['city_name'] + " to Cities"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

API method for add operation

"""INSERT INTO city (city_name, city_population, city_coordinates)
 VALUES (%s, %s, %s)"""

SQL Queries used for add operation

Update Operation

	Again update operation also does same thing as ha been done in add operation.

	def api_update_city():
 # Get request from AJAX #
 json_data = request.get_json()
 # Get city from db #
 city_obj = cities.City()
 city_obj.get_city_by_id(json_data['city_id'])

 # Update city object's values #
 city_obj.name = json_data['city_name']
 city_obj.population = json_data['city_population']

 # Update db #
 result = city_obj.update_db()

 if result:
 description = "Updated Element With id=" + json_data['city_id'] + " in Cities"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

API method for update operation

"""UPDATE city
 SET city_name=%s, city_population=%s, city_coordinates=%s
 WHERE city_id=%s"""

SQL Queries used for update operation

Delete Operation

Delete operation directly deletes data from database.

def api_delete_city():
 # Prevent unauthorized access #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 status = False

 # Get request #
 city_id_json = request.get_json()

 for city_id in city_id_json:
 city_obj = cities.City()
 city_obj.get_city_by_id(city_id)
 status = city_obj.delete_from_db()

 if status:
 description = "Deleted " + city_obj.name + " from Cities"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': status})

API method for delete operation

"""DELETE FROM city WHERE city_id = %s"""

SQL Queries used for delete operation

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

 	Developer Guide

Parts Implemented by Umut Can Ozyar

Sponsorships

All the sponsorships data interaction with the database happens with queries send to the server from the objects created
by the sponsorship class. This table has three foreign keys, sponsorship_league, sponsorship_team and sponsorship_person,
which refers to leagues, teams and people table respectively. Id is in type serial, therefore it’s generated automatically,
with each new entry. The rest of the fields requires new user input.

class Sponsorship(object):
 def __init__(self, sponsorship_name=None, sponsorship_start_date=None, sponsorship_league=None,
 sponsorship_team=None, sponsorship_person=None, sponsorship_id=None):
 self.id = sponsorship_id
 self.name = sponsorship_name
 self.start_date = sponsorship_start_date
 self.league = sponsorship_league
 self.team = sponsorship_team
 self.person = sponsorship_person

Get Sponsorship

This operation is the most essential one as it’s used for several key actions. Either by sending an id to get a specific
tuple or to get the whole table get_sponsorshop_by_id method is called by the API. Then the SELECT queries found below,
will be called with the only difference of WHERE sponsorship_id = %s which indicates that a unique id is specified. Three
different OUTER JOIN operations are made to get the league, team and person names by joining these tables over their ids.

@app.route('/api/sponsorship/<int:data_id>', methods=['GET'])
def api_get_sponsorship(data_id):
 # Create empty sponsorship and fill it from db #
 sponsorship_obj = sponsorships.Sponsorship()
 sponsorship_obj.get_sponsorship_by_id(data_id)

 # Create a dict for jsonify #
 data = {
 'id': sponsorship_obj.id,
 'name': sponsorship_obj.name,
 'start_date': sponsorship_obj.start_date.strftime('%d/%m/%Y'),
 'league': sponsorship_obj.league,
 'team': sponsorship_obj.team,
 'person': sponsorship_obj.person
 }

 return jsonify(data)

def get_sponsorship_by_id(self, get_id=None):
 connection = db_connect()
 cursor = connection.cursor()

 if get_id is not None:
 statement = """SELECT sponsorship.sponsorship_id, sponsorship.sponsorship_name, sponsorship.sponsorship_start_date,
 sponsorship.sponsorship_league, sponsorship.sponsorship_team, sponsorship.sponsorship_person,
 person.person_name FROM sponsorship
 LEFT OUTER JOIN league ON league.league_id = sponsorship.sponsorship_league
 LEFT OUTER JOIN team ON team.team_id = sponsorship.sponsorship_team
 LEFT OUTER JOIN person ON person.person_id = sponsorship.sponsorship_person
 WHERE sponsorship_id = %s"""
 try:
 cursor.execute(statement, (get_id,))
 connection.commit()
 except connection.Error:
 connection.rollback()

 data = cursor.fetchone()
 if data is not None:
 self.id = data[0]
 self.name = data[1]
 self.start_date = data[2]
 self.league = data[3]
 self.team = data[4]
 self.person = data[5]
 cursor.close()
 connection.close()
 return self
 else:
 cursor.close()
 connection.close()
 return None

 else:
 statement = """SELECT sponsorship.sponsorship_id, sponsorship.sponsorship_name,
 sponsorship.sponsorship_start_date, sponsorship.sponsorship_league,
 sponsorship.sponsorship_team, sponsorship.sponsorship_person,
 league.league_id, league.league_name,
 team.team_id, team.team_name,
 person.person_id, person.person_name FROM sponsorship
 LEFT OUTER JOIN league ON league.league_id = sponsorship.sponsorship_league
 LEFT OUTER JOIN team ON team.team_id = sponsorship.sponsorship_team
 LEFT OUTER JOIN person ON person.person_id = sponsorship.sponsorship_person"""
 try:
 cursor.execute(statement, (get_id,))
 connection.commit()
 except connection.Error:
 connection.rollback()

 sponsorship_array = []
 data = cursor.fetchall()
 for sponsorship in data:
 sponsorship_array.append(
 {
 'id': sponsorship[0],
 'name': sponsorship[1],
 'start_date': sponsorship[2].strftime('%d/%m/%Y'),
 'league': sponsorship[7],
 'team': sponsorship[9],
 'person': sponsorship[11]
 }
)

 cursor.close()
 connection.close()
 return sponsorship_array

Add Sponsorship

After the forms on the modal for adding sponsorship are submitted, first the authorization process is made for the user by
the API. If the authorization is successful, the API gets the json request from the AJAX handler. This data is then used
to create a sponsorship object by calling the sponsorship constructor. Then add_to_db function is called on this object
to perform the insertion query for sponsorship that can be found below. Note that the INSERT query is called by using
foreign keys to league, team and person tables ids. Thus their ids should be fetched by using provided names.

@app.route('/api/sponsorship/add', methods=['POST'])
def api_add_sponsorship():
 # Prevent unauthorized access from API #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 # Get json request from AJAX Handler #
 json_post_data = request.get_json()
 # print(json_post_data)
 # Create a sponsor object #
 sponsorship_info = sponsorships.Sponsorship(json_post_data['sponsorship_name'],
 json_post_data['sponsorship_start_date'],
 json_post_data['sponsorship_league'],
 json_post_data['sponsorship_team'],
 json_post_data['sponsorship_person'])

 # Add it to db and send result #
 result = sponsorship_info.add_to_db()

 if result:
 description = "Added " + json_post_data['sponsorship_name'] + " to Sponsorships"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

def add_to_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 new_league = None
 new_team = None
 new_person = None

 select_league = """SELECT league_id FROM league WHERE league_name = %s"""
 select_team = """SELECT team_id FROM team WHERE team_name = %s"""
 select_person = """SELECT person_id FROM person WHERE person_name = %s"""

 statement = """INSERT INTO sponsorship (sponsorship_name, sponsorship_start_date,
 sponsorship_league, sponsorship_team, sponsorship_person)
 VALUES (%s, %s, %s, %s, %s)"""
 try:
 cursor.execute(select_league, (self.league,))
 connection.commit()
 new_league = cursor.fetchone()

 cursor.execute(select_team, (self.team,))
 connection.commit()
 new_team = cursor.fetchone()

 cursor.execute(select_person, (self.person,))
 connection.commit()
 new_person = cursor.fetchone()

 cursor.execute(statement, (self.name, self.start_date, new_league, new_team, new_person))
 connection.commit()
 status = True
 except connection.Error:
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Delete Sponsorship

Delete operation is a single DELETE query. delete_from_db function is called after the id of the selected rows’ data is
fetched and corresponding objects are found.

@app.route('/api/sponsorship/delete', methods=['POST'])
def api_delete_sponsorship():
 # Prevent unauthorized access #
 if not session.get('logged_in'):
 return jsonify({"result": "Unauthorized Access. Please identify yourself"})

 status = False
 # Get request #
 sponsorship_id_json = request.get_json()
 # print(sponsorship_id_json)
 # Delete every requested id #
 for sponsorship_id in sponsorship_id_json:
 sponsorship_obj = sponsorships.Sponsorship()
 sponsorship_obj.get_sponsorship_by_id(sponsorship_id)
 status = sponsorship_obj.delete_from_db()

 if status:
 description = "Deleted " + sponsorship_obj.name + " from Sponsorships"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': status})

def delete_from_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 statement = """DELETE FROM sponsorship WHERE sponsorship_id = %s"""

 try:
 cursor.execute(statement, (self.id,))
 connection.commit()
 status = True
 except connection.Error:
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Update Sponsorship

Update operation works similar to the add operation except the fact that there is existing data. The AJAX handler provides
the data to the API which assigns them to corresponding data members. Finally the UPDATE query is executed to apply the
changes to the database

@app.route('/api/sponsorship/update', methods=['POST'])
def api_update_sponsorship():
 # Get request from AJAX #
 json_data = request.get_json()
 # Get sponsorship from db #
 sponsorship_obj = sponsorships.Sponsorship()
 sponsorship_obj.get_sponsorship_by_id(json_data['sponsorship_id'])

 # Update sponsorship object's values #
 sponsorship_obj.name = json_data['sponsorship_name']
 sponsorship_obj.start_date = json_data['sponsorship_start_date']
 sponsorship_obj.league = json_data['sponsorship_league']
 sponsorship_obj.team = json_data['sponsorship_team']
 sponsorship_obj.person = json_data['sponsorship_person']

 # Update db #
 result = sponsorship_obj.update_db()

 if result:
 description = "Updated element with id=" + json_data['sponsorship_id'] + " in Sponsorships"
 log_info = log.Log(description, session['alias'], datetime.datetime.now())
 log_status = log_info.add_to_db()

 return jsonify({'result': result})

def update_db(self):
 connection = db_connect()
 cursor = connection.cursor()
 status = False

 new_league = None
 new_team = None
 new_person = None

 select_league = """SELECT league_id FROM league WHERE league_name = %s"""
 select_team = """SELECT team_id FROM team WHERE team_name = %s"""
 select_person = """SELECT person_id FROM person WHERE person_name = %s"""

 statement = """UPDATE sponsorship
 SET sponsorship_name=%s, sponsorship_start_date=%s, sponsorship_league=%s,
 sponsorship_team=%s, sponsorship_person=%s
 WHERE sponsorship_id=%s"""

 try:
 cursor.execute(select_league, (self.league,))
 connection.commit()
 new_league = cursor.fetchone()

 cursor.execute(select_team, (self.team,))
 connection.commit()
 new_team = cursor.fetchone()

 cursor.execute(select_person, (self.person,))
 connection.commit()
 new_person = cursor.fetchone()

 cursor.execute(statement, (self.name, self.start_date, new_league, new_team, new_person, self.id))
 connection.commit()
 status = True
 except connection.Error:
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Team Statistics

Team statistics class functions are mostly given as prototypes except for their queries and class data members as they
are constructed in a relatively simple manner. The API functions are also omitted for the sake of simplicity since the
only meaningful difference is the table names.

Team_stat table also has an id as its primary key. The rest of the data members are all in integer type and required to
be provided by the user.

class Team_stat(object):
 def __init__(self, team_stat_name=None, team_stat_run=None, team_stat_hit=None,
 team_stat_save=None, team_stat_win=None, team_stat_draw=None,
 team_stat_loss=None, team_stat_id=None):
 self.id = team_stat_id
 self.name = team_stat_name
 self.run = team_stat_run
 self.hit = team_stat_hit
 self.save = team_stat_save
 self.win = team_stat_win
 self.draw = team_stat_draw
 self.loss = team_stat_loss

 def get_team_stat_by_id():

 def add_to_db():

 def delete_from_db():

 def update_db():

Please refer to Sponsorships for examples of the omitted parts of the team statistics class and API functions.

Get Team Statistics

Fetching a team’s statistics is done when def get_team_stat_by_id function is called by the API which executes the following
query. It’s a select query that gets the only tuple from the database for the provided id since all ids are unique.

statement = """SELECT team_stat.team_stat_id, team_stat.team_stat_name, team_stat.team_stat_run,
 team_stat.team_stat_hit, team_stat.team_stat_save, team_stat.team_stat_win,
 team_stat.team_stat_draw, team_stat.team_stat_loss
 FROM team_stat
 WHERE team_stat_id = %s"""

Add Team Statistics

Adding team statistics can be cumbersome since the matches data is not structured taking total wins, draws and losses into
consideration. Therefore a few SELECT queries should be executed prior to the main insertion query. Extra queries for draws
and losses as well as the foreign key related queries are omitted for the sake of simplicity. The different tables are counted
to get home and away wins. These values are then summed before inserted into the table. Draws and losses are calculated
in the same manner. Each team’s total matches are also counted with a simple SELECT count query.

count_win1 = """SELECT COUNT(*) FROM matches
 LEFT OUTER JOIN team ON team.team_id = matches.match_team_1
 WHERE (matches.match_team1_score > matches.match_team2_score AND team.team_name = %s)
 GROUP BY team.team_name"""

count_win2 = """SELECT COUNT(*) FROM matches
 LEFT OUTER JOIN team ON team.team_id = matches.match_team_2
 WHERE (matches.match_team1_score < matches.match_team2_score AND team.team_name = %s)
 GROUP BY team.team_name"""

total_wins = count_win1 + count_win2

statement = """INSERT INTO team_stat (team_stat_name, team_stat_run,
 team_stat_hit, team_stat_save, team_stat_win,
 team_stat_draw, team_stat_loss)
 VALUES (%s, %s, %s, %s, %s, %s, %s)"""

count_matches = """SELECT count(match_id) FROM matches"""

Delete Team Statistics

Deletion is a simple operation which is executed after getting the ids of the selected rows from the table.

statement = """DELETE FROM team_stat WHERE team_stat_id = %s"""

Update Team Statistics

Update also has several extra queries like the add function which calculates total wins, draws and losses. Runs, hits and
saves fields can also be updated when provided with new data.

statement = """UPDATE team_stat
 SET team_stat_name=%s, team_stat_run=%s, team_stat_hit=%s, team_stat_save=%s,
 team_stat_win=%s, team_stat_draw=%s, team_stat_loss=%s
 WHERE team_stat_id=%s"""

Stadiums

Stadiums class functions are mostly given as prototypes except for their queries and class data members as they
are constructed in a relatively simple manner with the sponsorship class. The API functions are also omitted for the sake
of simplicity since the only meaningful difference is the table names.

Stadium table also has an id as its primary key. The rest of the data members are all in integer type and required to
be provided by the user. Location is a foreign key to the city_id column of the city table. Another foreign key is
stadium_team which points to the team table.

class Stadium(object):
 def __init__(self, stadium_name=None, stadium_team=None, stadium_location=None,
 stadium_capacity=None, stadium_id=None):
 self.id = stadium_id
 self.name = stadium_name
 self.team = stadium_team
 self.location = stadium_location
 self.capacity = stadium_capacity

 def get_team_stat_by_id():

 def add_to_db():

 def delete_from_db():

 def update_db():

Please refer to Sponsorships for examples of the omitted parts of the stadium class and API functions.

Get Stadium

Fetching a team’s stadium is done when def get_stadium_by_id function is called by the API which executes the following
query. It’s a select query that gets the only tuple from the database for the provided id since all ids are unique.

statement = """SELECT stadium.stadium_id, stadium.stadium_name, stadium.stadium_team,
 stadium.stadium_location, stadium.stadium_capacity,
 team.team_id, team.team_name,
 city.city_id, city.city_name
 FROM stadium
 LEFT OUTER JOIN team ON team.team_id = stadium.stadium_team
 LEFT OUTER JOIN city ON city.city_id = stadium.stadium_location
 WHERE stadium_id = %s"""

Add Stadium

There are only two foreign keys for stadium table which are teams and locations. Id is automatically generated for each
new entry therefore the rest of the fields like name and capacity should be provided by the user. After the API gets the
data from the AJAX handler add_to_db function of the stadium is called which executes the following query to add the new
stadium to the database.

statement = """INSERT INTO stadium (stadium_name, stadium_team,
 stadium_location, stadium_capacity)
 VALUES (%s, %s, %s, %s)"""

Delete Stadium

Deletion is just a single query which is executed after getting the ids of the selected rows from the table.

statement = """DELETE FROM stadium WHERE stadium_id = %s"""

Update Stadium

After selecting the correct team_id for the chosen team and city_id for the chosen city name, all the inputs are passed
to the UPDATE query which applies the changes to the database.

statement = """UPDATE stadium
 SET stadium_name=%s, stadium_team=%s, stadium_location=%s, stadium_capacity=%s
 WHERE stadium_id=%s"""

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 next

 	
 previous |

 	DBall 0.5.7 documentation

 	Developer Guide

Parts Implemented by Mert Şeker

Database Operations for Each Entity

For each database operations of entities, appropriate SQL queries are written and
they are executed within the functions in the .py class files.

Team

Team tuples have three columns; id, name and coach. Coach is a foreign key to the person table.

Get Team By Id

In order to get teams and use them in functions, the primary key(team_id) is used.
A dictionary is created with the chosen team’s data and it is returned.
You can see how this operation is done in the code below:

def get_team_by_id(self, get_id=None):
 connection = db_connect()
 cursor = connection.cursor()

 if get_id is not None:
 query = """SELECT t.team_id, t.team_name, t.team_couch,person.person_name
 FROM team AS t
 LEFT OUTER JOIN person ON person.person_id = t.team_couch
 WHERE team_id = %s"""
 try:
 cursor.execute(query, (get_id,))
 connection.commit()

 data = cursor.fetchone()
 if data is not None:
 self.id = data[0]
 self.name = data[1]
 self.couch = data[2]
 cursor.close()
 connection.close()
 return self

 else:
 cursor.close()
 connection.close()
 return None

 except connection.Error as error:
 print(error)
 connection.rollback()

 else:
 query = """SELECT team.team_id, team.team_name,team.team_couch,person.person_id,person.person_name FROM team
 LEFT OUTER JOIN person ON person.person_id = team.team_couch"""
 try:
 cursor.execute(query, (get_id,))
 connection.commit()

 array = []
 data = cursor.fetchall()
 for team in data:
 array.append(
 {
 'id': team[0],
 'name': team[1],
 'couch': team[4]
 }
)
 cursor.close()
 connection.close()

 return array

 except connection.Error as error:
 print(error)
 connection.rollback()

Add Team To Database

In order to add team tuples to the database, INSERT INTO queries are used and executed.
The foreign keys are selected from the referenced tables by id.You can see it in the code below:

def add_to_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 select_person = """SELECT person_id FROM person WHERE person_name = %s"""

 # query to add given team tuple to database
 query = """INSERT INTO team (team_name, team_couch)
 VALUES (%s, %s)"""

 try:
 cursor.execute(select_person, (self.couch,))
 connection.commit()
 new_person = cursor.fetchone()

 cursor.execute(query, (self.name, new_person))
 connection.commit()
 status = True

 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Delete Team From Database

The team to be deleted is selected by id and deleted by using DELETE FROM query.
You can see it in the code below:

def delete_from_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 query = """DELETE FROM team WHERE team_id = %s"""

 try:
 cursor.execute(query, (self.id,))
 connection.commit()
 status = True

 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Update Team

The team to be updated is selected by id and updated by the UPDATE query. Just like in add operation,the foreign
keys are selected from the referenced table by id.
You can see it in the code below:

def update_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 select_person = """SELECT person_id FROM person WHERE person_name = %s"""

 query = """UPDATE team
 SET team_name=%s, team_couch=%s
 WHERE team_id=%s"""

 try:
 cursor.execute(select_person, (self.couch,))
 connection.commit()
 person_id = cursor.fetchone()

 cursor.execute(query, (self.name, person_id, self.id))
 connection.commit()
 status = True
 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Player

Player tuples have four columns; id,name, team and number of goals. Team is a foreign key to the teams table.

Get Player By Id

In order to get players and use them in functions, the primary key(player_id) is used.
A dictionary is created with the chosen player’s data and it is returned.
You can see how this operation is done in the code below:

def get_player_by_id(self, get_id=None):
 connection = db_connect()
 cursor = connection.cursor()

 if get_id is not None:
 query = """SELECT *
 FROM player
 JOIN team ON team.team_id = player.player_team
 WHERE player_id = %s"""
 try:
 cursor.execute(query, (get_id,))
 connection.commit()
 data = cursor.fetchone()
 if data is not None:
 self.id = data[0]
 self.name = data[1]
 self.goals = data[3]
 self.team = data[5]

 cursor.close()
 connection.close()
 return self

 else:
 cursor.close()
 connection.close()
 return None

 except connection.Error as error:
 print(error)
 connection.rollback()

 else:
 query = """SELECT * FROM player
 JOIN team ON team.team_id = player.player_team"""
 try:
 cursor.execute(query)
 connection.commit()
 except connection.Error as error:
 print(error)
 connection.rollback()

 array = []
 data = cursor.fetchall()

 for player in data:
 array.append(
 {
 'id': player[0],
 'name': player[1],
 'goals': player[3],
 'team': player[5]
 }
)
 print(array)

 cursor.close()
 connection.close()

 return array

Add Player To Database

In order to add player tuples to the database, INSERT INTO queries are used and executed.
The foreign keys are selected from the referenced tables by id.You can see it in the code below:

def add_to_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 # query to get referenced team by its id
 query_team = """SELECT team_id FROM team
 WHERE team_name = %s"""

 # query to add given player tuple to database
 query = """INSERT INTO player (player_name, player_team, player_goals)
 VALUES (%s, %s, %s)"""

 try:
 cursor.execute(query_team, (self.team,))
 connection.commit()
 team_id = cursor.fetchone()

 cursor.execute(query, (self.name, team_id, self.goals,))
 connection.commit()
 status = True

 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False

 cursor.close()
 connection.close()

 return status

Delete Player From Database

The player to be deleted is selected by id and deleted by using DELETE FROM query.
You can see it in the code below:

def delete_from_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 query = """DELETE FROM player WHERE player_id = %s"""

 try:
 cursor.execute(query, (self.id,))
 connection.commit()
 status = True

 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Update Player

The player to be updated is selected by id and updated by the UPDATE query. Just like in add operation,the foreign
keys are selected from the referenced table by id.
You can see it in the code below:

def update_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 query_team = """SELECT team_id FROM team WHERE team_name=%s"""
 query = """UPDATE player
 SET player_name=%s, player_team=%s, player_goals=%s
 WHERE player_id=%s"""

 try:
 cursor.execute(query_team, (self.team,))
 connection.commit()
 team_id = cursor.fetchone()

 cursor.execute(query, (self.name, team_id, self.goals, self.id,))
 connection.commit()
 status = True
 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False
 finally:
 cursor.close()
 connection.close()
 return status

Tournament

Tournament tuples have seven columns; id,name,number of matches,start date,end date,country and prize.
Country is a foreign key to the countries table.

Get Tournament By Id

In order to get tournaments and use them in functions, the primary key(tournament_id) is used.
A dictionary is created with the chosen tournament’s data and it is returned.
You can see how this operation is done in the code below:

def get_tournament_by_id(self, get_id=None):
 connection = db_connect()
 cursor = connection.cursor()

 if get_id is not None:
 query = """SELECT * FROM tournament
 JOIN country ON country.country_id = tournament.tournament_country
 WHERE tournament_id = %s"""
 try:
 cursor.execute(query, (get_id,))
 connection.commit()
 data = cursor.fetchone()
 if data is not None:
 self.id = data[0]
 self.name = data[1]
 self.matches = data[2]
 self.start_date = data[3]
 self.end_date = data[4]
 self.country = data[8]
 self.prize = data[6]

 cursor.close()
 connection.close()
 return self

 else:
 cursor.close()
 connection.close()
 return None

 except connection.Error as error:
 print(error)
 connection.rollback()

 else:
 query = """SELECT * FROM tournament
 JOIN country ON country.country_id = tournament.tournament_country"""
 try:
 cursor.execute(query)
 connection.commit()
 except connection.Error as error:
 print(error)
 connection.rollback()

 array = []
 data = cursor.fetchall()
 for tournament in data:
 array.append(
 {
 'id': tournament[0],
 'name': tournament[1],
 'matches': tournament[2],
 'start_date': tournament[3].strftime('%d/%m/%Y'),
 'end_date': tournament[4].strftime('%d/%m/%Y'),
 'country': tournament[8],
 'prize': tournament[6]
 }
)
 cursor.close()
 connection.close()

 return array

Add Tournament To Database

In order to add tournament tuples to the database, INSERT INTO queries are used and executed.
The foreign keys are selected from the referenced tables by id.You can see it in the code below:

def add_to_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 # query to get referenced country by its id
 query_country = """SELECT country_id FROM country
 WHERE country_name = %s"""

 # query to add given tournament tuple to database
 query = """INSERT INTO tournament (tournament_name, tournament_matches, tournament_start_date, tournament_end_date,
 tournament_country, tournament_prize)
 VALUES (%s, %s, %s, %s, %s, %s)"""

 try:
 cursor.execute(query_country, (self.country,))
 connection.commit()
 country_id = cursor.fetchone()

 cursor.execute(query, (self.name, self.matches, self.start_date, self.end_date, country_id, self.prize))
 connection.commit()
 status = True

 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False

 cursor.close()
 connection.close()

 return status

Delete Tournament From Database

The tournament to be deleted is selected by id and deleted by using DELETE FROM query.
You can see it in the code below:

def delete_from_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 query = """DELETE FROM tournament WHERE tournament_id = %s"""

 try:
 cursor.execute(query, (self.id,))
 connection.commit()
 status = True

 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False

 cursor.close()
 connection.close()
 return status

Update Tournament

The tournament to be updated is selected by id and updated by the UPDATE query. Just like in add operation,the foreign
keys are selected from the referenced table by id.
You can see it in the code below:

def update_db(self):
 connection = db_connect()
 cursor = connection.cursor()

 query_country = """SELECT country_id FROM country WHERE country_name=%s"""
 query = """UPDATE tournament
 SET tournament_name=%s, tournament_matches=%s, tournament_start_date=%s, tournament_end_date=%s, tournament_country=%s, tournament_prize=%s
 WHERE tournament_id=%s"""

 try:
 cursor.execute(query_country, (self.country,))
 connection.commit()
 country_id = cursor.fetchone()

 cursor.execute(query, (self.name, self.matches, self.start_date, self.end_date, country_id, self.prize, self.id,))
 connection.commit()
 status = True
 except connection.Error as error:
 print(error)
 connection.rollback()
 status = False
 finally:
 cursor.close()
 connection.close()
 return status

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 Navigation

 	
 previous

 	DBall 0.5.7 documentation

 	Developer Guide

Parts Implemented by Furkan Akgün

Change Log

We created log class to be able to track user activities and also debug the site when a problem occurs. Log class simply
consists of three major columns excluding id; first is the description and generated right after an operation is performed,
second is the user logged in when given operation performed , this way we are able to track any user activites, and finally
third one is the date of operation.

[image: log properties]
Log Properties

Inside log class, we have three functions; retrieve a log by passing an id or retrieve all without passing an id,
adding log data to database and deleting log data from the database. Now we will cover these three functions respectively.

Adding a Log to the Database

To be able to show logs in home screen or manager main screen we needed to add them to the database. To add log data to the
database, we simply created an object and then set its properties. After an instance of object have all properties set, we
simply call add_to_db() function. This function basically use insert query, the variables in query are the properties of this
log instance.

[image: log add to database]
Function to Add Logs to Database

In log class, one of the properties was user or author and it is a foreign key to the user table. But we were setting author
or user by its name, so to get user’s id with that name we needed to run a query first to find user id.

If instance of log class have all properties set to appropriate values then the function will add log to the database.

Getting Log(s)

To show all logs or some logs in the front view, we needed a function to return all log data or just a single one with given id.
get_log_by_id(get_id) function simply takes an id parameter; if the id is none (or no parameter entered), the query will be
executed with no specific id parameter and all logs will be returned from query and all will be stored in an array. Thne the
function will just simply return that array.

[image: get logs]
Function to Retrieve All Logs

On the other hand if an id value is entered as a parameter, then the query will be executed with “WHERE id=get_id” and
only the log with specific id will be returned.

[image: get log by id]
Function to Retrieve A Log

Deleting a Log

Deleting a log is not implemented in front view, but is ready in class as a function. Simply we get referenced instance
of log and then call delete_from_db() function.

[image: delete log]
Function to Delete a Log From the Database

Creating Logs After an Operation

Logs are instantly created when user performs an operation in the database. It is generic in all parts of operations,
a description is created right after the operation and a log instance is created with this description, user and date.
After that add_to_db() function on that log instance is called and log is added to the database.

[image: log generate]
Generating a Log After an Operation

As you can see right before function is completed a description is created given the operation. Simply “Added”,
“Updated” or “Deleted” expressions are used for all operations. Here user is passed to the object constructor
as session[‘alias’].

Displaying Last 5 Changes in Home Page

After we have a function to get all logs, it was too easy to select only last five of logs sorted by date. In query of selecting
all logs we did already sorted logs in descended by date column. So it is now reduced only to chose first five rows returned
from SELECT statement.

[image: last 5 logs]
Choosing Last Five Changes

Only five log data are stored in array, and then array is sent to the home page. In home page we can now simply display them
with a for loop.

[image: display last 5 logs]
Displaying Last Five Changes

Displaying All Changes in Manager Main Page

Just like displaying last five logs, but now there is no need to use a constraint. We simply retrieve all data and store them
in an array. Then send the array to manager main page as data.

[image: all logs]
Choose All Logs

Then simply display each of them by a for loop.

[image: display all logs]
Displaying All Logs

Generic Function Bodies

All classes have same function bodies. They differ with only the queries they have. So to reduce explanation for each of them,
I will show generic function bodies.

First is add_to_db() Function,

[image: generic add]
Generic Add Function

All classes share these bodies, only difference is queries. Another thing is just like in the above example some class properties
are set with name values but we instead use id values for them. So first we must call another queries to get their ids.
Then simply execute operational query.

update_db() Function,

[image: generic update]
Generic Update Function

delete_from_db() Function,

[image: generic delete]
Generic Delete Function

get_(classname)_by_id() Function,

[image: generic get]
Generic Retrieve

Functions up to now were only class operations. Each class have four functions above. Next functions are for add, delete,
and update operations done in website. These operation are again same for other classes except some extra operations for
getting referenced objects.

Add Operation,

[image: generic add operation]
Generic Add Operation

As can be seen above, add operation creates an instance of class with json data provided by forms. After an instance is created
that objects is added to the database. After a log will created for this given operation and the operation ends.

Delete Operation,

[image: generic delete operation]
Generic Delete Operation

In delete operation we get all selected item ids in an array, then in a for loop we delete all selected items.

Update Operation,

[image: generic update operation]
Generic Update Operation

Just like in the add operation we get json data from forms and instead creating a new entry, we set properties of
this instance to what we get from the forms and then update the item.

Country

Country object has four properties; id, name, capital and population. Capital is a foreign key to the cities table.

INSERT INTO QUERY

We have already provided bodies of all the functions. Those bodies were all same for all classes. What makes each class
different are their unique queries for operations. These queries are executed in those functions and we complete what we try to
accomplish.

[image: country add query]
Country Insert Into Query

In above queries, first is used to get id of the referenced capital, and then all properties of class are used as parameters
to add this instance to the database.

DELETE FROM QUERY

[image: country delete query]
Country Delete Query

Country with given id is deleted from the database.

SELECT QUERY

[image: country select query]
Country Select Query

In case we pass no parameter to get_country_by_id() function, the query with no “WHERE” clause will be used. Above query
is used when we pass an id parameter.

UPDATE QUERY

[image: country update query]
Country Update Query

Just like in the add operation queries excluding update query gets referenced item ids and then use them as parameter in
the update query.

Matches

Match object has nine properties; id, home team, score of home team, away team, score of away team,
stadium, referee, league and match date. Team, stadium, referee and league are all foreign keys.

INSERT INTO QUERY

We have already provided bodies of all the functions. Those bodies were all same for all classes. What makes each class
different are their unique queries for operations. These queries are executed in those functions and we complete what we try to
accomplish.

[image: match add query]
Match Insert Into Query

In above queries, queries except the last one are used to get ids of the referenced items, and then all properties of class are used as parameters
to add this instance to the database.

DELETE FROM QUERY

[image: match delete query]
Match Delete Query

Match with given id is deleted from the database.

SELECT QUERY

[image: match select query]
Match Select Query

In case we pass no parameter to get_match_by_id() function, the query with no “WHERE” clause will be used. Above query
is used when we pass an id parameter.

UPDATE QUERY

[image: match update query]
Match Update Query

Just like in the add operation queries excluding update query gets referenced item ids and then use them as parameter in
the update query.

League

League object has four properties; id, name, country and start date. Country is a foreign key to the country table.

INSERT INTO QUERY

We have already provided bodies of all the functions. Those bodies were all same for all classes. What makes each class
different are their unique queries for operations. These queries are executed in those functions and we complete what we try to
accomplish.

[image: league add query]
League Insert Into Query

In above queries, first is used to get id of the referenced country, and then all properties of class are used as parameters
to add this instance to the database.

DELETE FROM QUERY

[image: league delete query]
Leauge Delete Query

League with given id is deleted from the database.

SELECT QUERY

[image: league select query]
League Select Query

In case we pass no parameter to get_league_by_id() function, the query with no “WHERE” clause will be used. Above query
is used when we pass an id parameter.

UPDATE QUERY

[image: league update query]
League Update Query

Just like in the add operation queries excluding update query gets referenced item ids and then use them as parameter in
the update query.

 Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

 _images/main_area.png
Welcome to DBall!

You can use our web site to get information about baseball.

How can you use?

« Use login area to access manager area for changing information.
« You can see change history in right panel

« You can see views through nav bar

« Also do not forget to check our REST API

©2015. DBall

DBall

Last Changes

Updated Element With id=12 in Cities by testuser at 16/12/2015
Deleted St. Petersburg from Cities by testuser at 16/12/2015
Added ali to Persons by testuser at 16/12/2015

Deleted Kayseri from Cities by testuser at 16/12/2015

Added Maret Sucuk to Sponsorships by testuser at 13/12/2015

_images/city_main.png
DBall Manager rcities

List of cities registered in database

Show| 10 +|entries Search
City Name City Population

Alabama 1

Brussels 31

Trabzon 6161

Moscow 1231

Ankara 7000

Paris 1234

St Petersburg 5555

Kayseri 5556

London 6661

Alia 4567

Showing 1 to 10 of 16 entries Previous . 2 Next

Add NewData | Update Selected Row | Delete Selected Row(s) | 9 Show Location

_images/team_stat_update.png
Update Team Statistics

Trabzonspor
148

1

Submit

_images/error_manage_not_login.png
List of people registered in database

Oops! You should be logged in to manage database. You can login from upper right comer. (From #J icon)

_images/update_person.png
Update Person

& Aibama

B 01/10/1900

9 | Alabama

& Coach

_images/log_get_log_by_id_2.png
else:

"SELECT + FROM log
JOIN users ON 1og.log_author = users.user_id
ORDER BY 1log_id DESC"

vry:
cursor. execute (query)
connection. commit ()

array = [1
data = cursor. fetchall()
for log in data:
array. append(
{
'id': log[o],
‘aescription’: log[1],
‘tine': log[3].strfvime(kd/im/eY'),
‘author': log[s]
i
)

cursor.close()
connection. close ()

return array
except connection.Error as error:

print (error)
connection. rollback ()

_images/player_front_page.png
DBall | Players

€ itucsdb1515 mybluemix.net/players C || Q Arama wB $¥§$ A 4909 g =

~
Players

List of Players registered in database Manage

Show 10 |v/|entries Search:
Player Name Player Team Player Goals
Russian Soldier 1 Putinspor 5
Russian Soldier 2 Putinspor 8
Russian Soldier 3 Putinspor 4
Russian Commander 1 Putinspor 18
Russian Commander 2 Putinspor 24
Fukran Akgiin Sekerspor 14
Umut Yar Ozcan Sekerspor 6
Oguz Terem Kural Sekerspor 2
Mert Seker Sekerspor 1584
Tilattiovic Tilattespor 31

Showing 1 to 10 of 11 entries

©2015. DBall.

Previous . 2 Next

_images/country_add_q.png
query = """INSERT INTO country (country mame, country population, capital)
| VALUES (85, s, &s)"""

_images/league_front.png
List of Leagues registered in database ~Manage

MlLeague ImCountry £4start Date

Ruski Comrade Russia 05/05/1955 Leaderboard

Le League France 12/0511977 Leaderboard

_images/matches_add.png
Add New Match

& Putinspor

Erdoganspor

Ruski Comrade

Ruski Supreme

Bilbo Baggins

11/12/2015

_images/popularity_update.png
Update Popularity Info

& Albamaspor

™ AibamaSpor - asdasdsd

& | Abama

& s13

Submit

_images/popularity_main.png
DBall Manager /popularity

List of popularity records registered in database

Show| 10 +|entries Search
Popularity ID Team Name Most Popular Match Most Popular Player Number of Supporters

10 AlibamaSpor AlibamaSpor-asdasdsd Al 3131

Showing 1 to 1 of 1 entries Previous . Next

AddNewData | Update Selected Row | Delete Selected Row(s)

_images/matches_update.png
Update Match

& Putinspor

12

Erdoganspor

11

Le League

Ruski Supreme

Yahya Selamii

mm/ddryyyy

Submit

_images/add_team.png
Add New Team

& | Team Name

& Choose Team Couch

_images/front_people.png
List of people registered in database ~ Manage

Show| 10 v entries

Person Name
Al

Alibama

Selami Yediok
Lord Mammoth
Selin Ayranci
Yahya Selamii
Bruce Fellow
Mahmut Oteberi
Haydar Bas

Vladimir Putin

Showing 1 to 10 of 16 entries.

Birth Date

29/05/1995

10/01/1900

01/02/2985

12/05/1993

01/05/1996

11/06/1972

01/05/1982

02/07/1967

05/01/1971

23/12/0121

Birth Place
Alabama
Alabama
Alabama
Kayseri
Ankara
Paris
London
Kayseri
Ankara

Moscow

Search:

Person Type
Al

Coach

Normal Citizen
Onichan
Normal Citizen
Pimp

Criminal
Normal Citizen
Dude

Couch

provous [2 vex

_images/country_update.png
Update Country

& | England

9 | Istanbul

L | Country Population

_images/log_last_5_html.png
<div class="col-md-6">
<div class="panel panel-default">
<div class="panel-heading">
<n2>Last Changes</n2>
</aiv>
<div class="panel-body">
<table class="table horderless’>
{% if log data 3}
{% for log in log data 3}
<tr style=n_..">

<td style="_ ">{{log[*description’]}} by {{log[*author’]}} at {{log['tine]}

</ee>
12 enator 3
(s enait 3
</tabie>
</div>
</div>
</divs

</ea>

_images/team_delete.png
List of Teams registered in database

Show 10 | v |entries

Team ID

6

12
13
15
16
17

19

Showing 1 to 10 of 19 entries

Add N

Team Name
Comrade Putin

All Elizabeth
France Le Baseball
Kayserigtct

Sexy Stylez
Lelele

Russian Nuke

ISIS Paris
Pastirmaspor

Putinspor

ata Update Selected Row Delete Selected Row(s)

Team Couch
Vladimir Putin
Queen Elizabeth
Stephen Olo
Haydar Yangelir
Queen Elizabeth
Stephen Olo
Vladimir Putin
Stephen Olo
Haydar Yangelir

Vladimir Putin

Search:

Previous - 2 Next

List of Teams registered in database

Show 10 | v |entries

Team ID

6

12
15
16
17
19

20

Showing 1 to 10 of 18 entries

Add

Team Name
Comrade Putin

All Elizabeth
France Le Baseball

Kayserigiict

Sexy Stylez
Russian Nuke
ISIS Paris
Pastirmaspor
Putinspor

Erdoganspor

ta Update Selected Row Delete Selected Row(s)

Search:

Team Couch
Vladimir Putin
Queen Elizabeth
Stephen Olo
Haydar Yangelir
Queen Elizabeth
Vladimir Putin
Stephen Olo
Haydar Yangelir
Vladimir Putin

Recep Tayyip Erdogan

Previous - 2 Next

_images/team_update.png
Update Team

& | AllElizabeth

& Queen Elizabeth

_images/country_front_page.png
List of Countries Registered in Database Manage

mCountry
France 9
Russia @
England 9
Serbia 9
Slovakia 9
Azerbaijan 9
Iraq @
Tilatteleroglu 9

Test @

MCapital
Paris 9

Moscow 9
London 9
Belgrade 9
Bratislava 9
Baku 9
Baghdad 9
Tilatte 9

Baghdad 9

Population
456
5555
555
111
4444
4567
11111
9752

11111

_images/generic_delete_op.png
Rapp. route (' /api/country/delete’, methods=['POST'])
Bdet api_delete_country()

if not session.get('logged in
return jsonify({ result

"Onauthorized Access. Please identify yourself'})

country_json = request.get_json()

status = False
for country_id in comntry_json:
country_obj = country.Country ()
‘countzy_obj.get_country by id(country id)
status = country_obj.delete from db()

if status:
description = “Deleted * + country_obj.name + * from Countries
log_info = log.Log(description, session['2liss'], datetime.datetime.now())
= = log_info.add_to_db()

1og]

status})

return jsonify({ result

_images/alert_failure.png
List of stadiums registered in database

Shame! *rings bell* Something went wrong and your process could not be completed

Show 10 |v|entries

Stadium Name
Ruski Supreme
Elizabethenia
ITU Arena

Baby Arena
Stadium Tilatte Arena De Manuela

Rize Yenisehir stadi

Showing 1 to 6 of 6 entries

Stadium Team
Comrade Putin

All Elizabeth
France Le Baseball
Comrade Putin
Tilattespor

All Elizabeth

Stadium Location

Moscow

London

Paris

Istanbul

Tilatte

Rize

Search:

Stadium Capacity
1231
1111
7777
9999
9999

14500

_images/stadium_update.png
Update Stadium

& | stadium Tiatte Arena De Manuela
& Tiattespor
& Tiate

& 9999

Submit

_images/country_update_manyrows.png
List of Countries registered in database

Whoa! You choose too many people or you forgot to choose some one.

Show

D

8

9

10

12

13

15

16

17

19

10

v entries

Name
France
Russia
England
Serbia
Slovakia
Azerbaijan
Iraq
Tilatteleroglu

Test

Showing 1 to 9 of 9 entries

Add New Data | Update Selected Row | Delete Selected Row(s)

Capital
Paris
Moscow
London
Belgrade
Bratislava
Baku
Baghdad
Tilatte

Baghdad

Search:

Population
456

5555

555

111

4444

4567
1111
9752

1111

provous [vex

_images/city_location.png
Location

X N I mdina ST
51°3026.5'N 0°07'39.9'W. b4 *

Daha bilyik haritays gorintile

Close

_images/add_country.png
Add New Country

| Turk

9 | Istanbul

ld | Population

_images/league_front_collapsed.png
List of Leagues registered in database ~Manage

MLeague mCountry #9Start Date

Ruski Comrade Russia 05/05/1955 Leaderboard

Home Away

Rank Team Played Win Draw Lose Points Rank Team Played Win Draw Lose Points

1 Fukranspor 1 0 0 1 0 1 Russian 1 1 0 0 3
Nuke
2 Comrade 2 0 0 2 0
Putin 2 Kurwaaa 1 1 0 0 3
3 Al 1 1 0 0 3
Elizabeth

Le League France 12/05/1977 Leaderboard

_images/table_no_data.png
List of sponsors registered in database Manage

Show| 10 [v] entries Search:

Sponsor Name Sponsorship Start Date Sponsored League Sponsored Team Sponsored Person

No data available in table

Showing 0 to 0 of 0 entries Previous = Next

_images/log_properties.png
class Log (object):

| def _init_(self, log descriptio
self.id = log_id
se17.description = log_description
self.author = log_author

| self.time = log_time

lone, log_author=None, log time=None, log id=None]

_images/log_generation.png
if not session.get('logged in')
return Jsonify({"result’: "Unauthorized Access. Please identify yourself'})

json_post_data = request.get_json()

person_info = people. Person (json_post._data['person nane'], json_post_data['person birth date'],
3son_post_data['person birth place'], ison_post_datal person type'l)

person_info-add_to_db()

if result:
description = "Added " + json_post_datal'person name'] + ' to Persons”
1log_info = log.Log(description, session['alizs
1og. 1log_info.add_to_db()

return jeonify({ result': result))

_images/country_sel_q.png
'SELECT * FROM country
J0IN city ON country.capital=city.city_id
WHERE country id = s"""

_images/table_next.png
Previous

2

Next

_images/stadium_add.png
Add New Stadium

& | stadium Name

| seferspor

& Istanbul

& | stadium Capacity

Submit

_images/tournament_delete.png
DBall Manager /ournaments

List of Tournaments registered in database

Show 10 |v entries

Tournament Tournament Tournament

D 1 Name Matches

3 The Grand 3
Tournament

4 Russian Warfare 100

Showing 1 to 2 of 2 entries

Add New D Update Selected Row Delete Selected Row(s)

Tournament Start
Date

08/10/2015

10/10/2015

Tournament End
Date

18/12/2015

12/12/2020

Tournament
Country

France

Russia

Search:

Tournament
Prize

15000

500000

Previous . Next

List of Tournaments registered in database

Show 10 |v entries

Tournament Tournament Tournament

D 1 Name Matches

3 The Grand 3
Tournament

Showing 1 to 1 of 1 entries

Add New D Update Selected Row Delete Selected Row(s)

Tournament Start
Date

08/10/2015

Tournament End
Date

18/12/2015

Tournament
Country

France

Search:

Tournament
Prize

15000

Previous . Next

_images/table_sort.png
List of sponsors registered in database Manage

Show| 10 [v] entries

Sponsor Name
Asli Borek

Maret Sucuk

Showing 1 to 2 of 2 entries

Sponsorship Start Date
010112111

10/10/2010

Sponsored League
Ruski Comrade

Le League

Sponsored Team
None

Tilattespor

Search:

Sponsored Person
None

Queen Elizabeth

provous [v

_images/row_selection.png
Ali 29/05/1995 Alabama Ali

Alibama 10/01/1900 Alabama Coach

Selami Yediok 01/02/2985 Alabama Normal Citizen

_images/team_stat_manager.png
DBall Manager /team_stats

List of team statistics registered in database

Show 10 ~ | entries

Team_stat ID Team Name Batting Runs
1 Comrade Putin 2

2 Tilattespor 66

3 Trabzonspor 148

Showing 1 to 3 of 3 entries

Batting Hits
2
66

1"

Pitching Saves
1

66

Total Wins

Total Draws

Search:

Total Losses

2

0

0

_images/sponsorship_update.png
Update Sponsorship

& Redoull

B 2010-10-10
& None

& None

& Ankarall Turgut

Submit

_images/league_sel_q.png
""SELECT * FROM league
J0IN country ON country.country_id
WHERE league id = 8s"""

1eague. league_country

_images/league_del_q.png
query = """DELETE FROM league WHERE league id = &s""

_images/op_error.png
Shame! *rings bell* Something went wrong and your process could not be completed.

_images/add_tournament.png
DBall | Tournaments

€

itucsdb1515.mybluemix.net/manage/tournaments

=]

=]

_images/add_person.png
Add New Person

& | Natalia Poklonskaya

B 03/18/1980

9 | st petersburg

@ Couch

_images/user_login_error.png
Login

Oops! You entered wrong credentials

Email address

test@test.com

Password

Submit

_images/op_bam.png
BAM! Your operation successfully completed

_images/number_of_list.png
Show[10 +|entries

10
25
50
100

Pers|

Ali

AT

_images/match_del_q.png
'DELETE FROM matches WHERE match_id = #s"""

_images/manager_main_area.png
People
Penalties
Popularity
Cities

Teams

Team Statistics
Players
Sponsorships
Stadiums
Countries
Tournaments
Matches

Leagues

DBall Manager /main

Change Log

Description
Updated Element With id=12 in Cities

Deleted St. Petersburg from Cities

Added ali to Persons

Deleted Kayseri from Cities

Added Maret Sucuk to Sponsorships

Added Penalty For Selami Yediok to Penalties

Added Comrade Putin to Team_stats

Added Popularity Info for 6 to Popularity

Added Match Between Putinspor and Sekerspor to Matches
Added Mert Seker to Players

Added Oguz Terem Kural to Players

Added Umut Yar Ozcan to Players

Added Fukran Akgan to Players

Added Sekerspor to Teams.

Added Mert Seker to Persons

Added Russian Commander 2 to Players

Added Russian Commander 1 to Players

Added Russian Soldier 3 to Players

Author

testuser

testuser

testuser

testuser

testuser

testuser

testuser

testuser

sekermer

sekermer

sekermer

sekermer

sekermer

sekermer

sekermer

sekermer

sekermer

sekermer

Time

16/12/2015

16/12/2015

16/12/2015

16/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

13/12/2015

_images/navbar.png
Home

People

Penalties

Cities

Popularity

Teams

Team Statistics

Players

Sponsorships

Stadiums

Matches

Tournaments

Countries

Leagues

_images/validation.png
Add New Sponsorship

& | Bponsorship Name

f Pleasefiloutthisfield. e

& None
& None
& None

Sulgit

_images/sponsorship_manager.png
DBall Manager /sponsorships

List of sponsors registered in database

Show 10 ~ | entries

Sponsorship ID 1: Sponsor Name
9 Maret Sucuk
10 Redbull

Showing 1 to 2 of 2 entries

Sponsorship Start Date
01/01/2111

10/10/2010

Sponsored League
Ruski Comrade

None

Sponsored Team

Tilattespor

None

Search:

Sponsored Person
None

Ankarali Turgut

_images/git.png
alties.niml

_images/update_penalty.png
Update Penalty

& Abama

B3 | 04/20/2015

A | Yelow

Submit

_images/generic_add.png
cursor = connection.cursor()

vry:

cursor. execute (quezy, (pazameters))
pr———}

34 = cursor. fetchone ()

cursor. execute (quezy, (pazameters))
pr——}

status = True

except connection.Error as error:
print (error)
connection. rollback()
status = False

cursor.close()
connection. close ()
return status

_images/generic_get.png
def get_count
connection

by id(self, get_id-None):
db_connect ()

cursor = connection.cursor()

if get_id is not Nome:

ory:
cursor. execute (query, (-
connection. comit ()
data = cursor. fetchone ()
if data 13 not None:
s212.1d = data[0]

cursor.close()
connection. close ()
return self
else:
cursor.close()
connection. close ()
return None
except connection.Error as error:
print (error)
connection. rollback()
else:

vry:

:mx.em:.u:ﬂﬁu

array = [1
data = cursor. fetchall()
for x in data:
array. append(
{
aa: x(o],

¥
)
cursor.close()
connection. close ()
return array
except connection.Error as error:
print (error)
connection. rollback()

_images/match_sel_q.png
'SELECT * FROM matches
JOIN tean ON matches.match team 1 = team.team id
JOIN team AS t ON matches.match team 2 = t.team id
J0IN league ON matches.match league = league.league_id
J0IN stadium ON matches.match stadium = stadium.stadium id
J0IN person ON matches.match referee = person.person id
WHERE match id = és

_images/change_log_main.png
People DBall Manager /main

Penalties
Change Log
Popularity
Ciies Description Author Time
Teams Added cyka to Teams turalog 20112/2015
Deleted Turkey from Countries turalog 1611212015
Team Statistics
Deleted Small Tournament from Tournaments turalog 1611212015
Players
Updated Element With id=8 in Tournaments turalog 1611212015
Sponsorships
Added Medium Tournament to Tournaments turalog 1611212015
Stadiums
Updated Element With id=26 in Players turalog 1611212015
Countries
Deleted Nagehan from Players turalog 1611212015
TEITEIETS Added Nagehan to Players turalog 161212015
Matches Added Nagehan to Players turalog 161212015
Leagues Deleted Urfaspor from Teams turalog 16/12/2015
Updated Element With id=30 in Teams turalog 1611212015
Updated Element With id=30 in Teams turalog 1611212015
Updated Element With id=30 in Teams turalog 1611212015

Added Urfaspor to Teams turalog 16/12/2015

_images/league_add_q.png
'SELECT country_id FROM country
i VEERE country_nane - s

INSERT INTO league (league name, league_country, league_start date)
VALUES (35, 95, 95)"

_images/team_front_page.png
DBall | Teams

€ itucsdb1515.mybluemix.net/teams

List of teams registered in database Manage

Show 10 |v entries

Team Name
Comrade Putin

All Elizabeth
France Le Baseball
Kayserigtct

Sexy Stylez
Lelele

Russian Nuke

ISIS Paris
Pastirmaspor

Putinspor

Showing 1 to 10 of 19 entries

© 2015. DBall.

Couch

Vladimir Putin
Queen Elizabeth
Stephen Olo
Haydar Yangelir
Queen Elizabeth
Stephen Olo
Vladimir Putin
Stephen Olo
Haydar Yangelir

Vladimir Putin

Search:

Previous . 2 Next

_images/country_manager.png
Main

People DBall Manager /countries
Penalties
List of Countries registered in database
Popularity
Show +| entries

Cities
S D Name
Team Statistics 8 France

9 Russia
Players

10 England
Sponsorships

12 Serbia
Stadiums

13 Slovakia

ountries

15 Azerbaijan
Tournaments

16 Iraq
LEEES 17 Tilatteleroglu
Leagues 19 Test

Showing 1 to 9 of 9 entries

Add NewData | Update Selected Row | Delete Selected Row(s)

Capital
Paris
Moscow
London
Belgrade
Bratislava
Baku
Baghdad
Tilatte

Baghdad

Search:

Population
456

5555

555

111

4444

4567
1111
9752

1111

provous [vex

_images/manager_sidebar.png
People

Penalties
Popularity
Cities

Teams

Team Statistics
Players
Sponsorships
Stadiums
Countries
Tournaments
Matches

Leagues

_images/penalty_main.png
DBall Manager /penaties

List of penalty records registered in database

Show| 10 v entries

Penalty ID Person Name
11 Alibama
13 Alibama
17 Selami Yediok

Showing 1 to 3 of 3 entries

Add New Data~ | Update Selected Row | Delete Selected Row(s)

Given Date

20/04/2015

01/01/1995

11/10/2015

Search:

Penalty Type
Red Card
Red Card

Red Card

provous [vex

_images/league_manager.png
Main

— DBall Manager /ieagues
Penalties
List of Leagues registered in database
Popularity
o Show | 10 v entries Search:
fes
S— League ID League Name League Country League Start Date
T S 4 Ruski Comrade Russia 05/05/1955
PI 6 Le League France 12/05/1977
ayers
SRS Showing 1 10 2 of 2 entries Previous . Next
Countries
Tournaments
Matches

_images/league_update.png
Update League

& | Leleague

B | mm/ddryyyy

9 | France

Submit

_images/people_type_add.png
Add New Person

& | Person Type

Submit

_images/league_add.png
Add New League

& | League Name

B | mm/ddryyyy

9 | France

_images/log_delete_from_db.png
def delete_from db(self):
connection = db_connect ()
cursor = connection.cursor()

query = """DELETE FROM log WHERE log id = &s"

vry:
cursor. execute (query, (s=1f.1d,))
connection. commit ()
status = True

except connection.Error as error:
print (error)
connection. rollback()
status = False

cursor.close()
connection. close ()
return status

_images/team_stat_add.png
Add New Team Statistics

@ Fenerbance
| Batting Runs
| satting Hits
L

Pitching Saves

Submit

_images/log_all.png
8app. route (' /manage')
def manage (
if nov session.get('logged in'):
flash("Unauthorized Access. Please identify yourself’)

return redirect (url_for(hoss'))

1og_obj = log.Log()
1og_array = log_obj.get_log by id()

return render_template ("manager/main.htwl?, ~-o - -=log_array)

_images/required_error.png
Person Name ‘

03/18/1980 1B please fill out this field. ‘

_images/stadium_manager.png
DBall Manager sstadiums

List of stadiums registered in database

Show 10 ~ | entries

Stadium Name
Ruski Supreme

Elizabethenia

ITU Arena

Baby Arena

Stadium Tilatte Arena De Manuela

Rize Yenisehir stadi

Showing 1 to 6 of 6 entries

Stadium Team
Comrade Putin

All Elizabeth
France Le Baseball
Comrade Putin

Tilattespor

All Elizabeth

Stadium Location

Moscow

London

Paris

Istanbul

Tilatte

Rize

Search:

Stadium Capacity
1231
1111
7777
9999
9999

14500

_images/stadium_delete.png
List of stadiums registered in database

Show 10 |v|entries

Stadium Name
Ruski Supreme

Elizabethenia

ITU Arena

Baby Arena

Stadium Tilatte Arena De Manuela

Rize Yenisehir stadi

Showing 1 to 6 of 6 entries

cted Row(s)

el

Stadium Team
Comrade Putin

All Elizabeth
France Le Baseball
Comrade Putin

Tilattespor

All Elizabeth

Stadium Location

Moscow

London

Paris

Istanbul

Tilatte

Rize

Search:

Stadium Capacity
1231
1111
7777
9999
9999

14500

_images/add_player.png
Add New Player

_images/match_update_q.png
query_team = ''SELECT team id FROM tean
i VEERE tean nane = 830"

'SELECT league_id FROM league
WHERE league_name = 8"

SELECT stadium id FROM stadium
WHERE stadium name = 8s"""

"SELECT person_id FROM person
WHERE person_name = 8"

query = """UPDATE matches
SET match team 1-ts, match team 2-is, match league=ts,
match_stadium-bs, match referee=és, match date=és,
match_teanl score=és, match team? score=is
WHERE match_id=gs"""

_images/tournament_front_page.png
DBall | Tournaments

€ itucsdb1515.mybluemix.net/tournaments

tatistic

Arama

Tournaments

+ &4 4 9 8 =

List of Tournaments registered in database Manage

Show 10 |v entries

Tournament Name
The Grand Tournament

Russian Warfare

Showing 1 to 2 of 2 entries

© 2015. DBall.

Number Of Matches

3

100

Tournament Start Date

08/10/2015

10/10/2015

Tournament End Date

18/12/2015

12/12/2020

Tournament Country
France

Russia

Search:

Tournament Prize
15000

500000

Previous - Next

_images/generic_delete.png
def delete_from db(self) :
connection = db_connect ()
cursor = connection.cursor()

ory:
cursor.execute (guery, (:=1.1d,))
connection. comit ()
status =

except connection.Error as error:
print (error)
connection. rollback()
status = False

cursor.close()
connection. close ()
return status

_images/table_show.png
Show

Stad®

_images/sponsorship_front.png
List of sponsors registered in database Manage

Show| 10 [v] entries

Sponsor Name
Maret Sucuk

Redbull

Showing 1 to 2 of 2 entries

Sponsorship Start Date
010112111

10/10/2010

Sponsored League
Ruski Comrade

None

Sponsored Team

Tilattespor

None

Search:

Sponsored Person
None

Ankarali Turgut

provous [v

_images/er.png
e 4 L

match_team_1

person_name

person_birth_date

.
eeon ey — T
league_start_date SRS
AL L—oe sponsorship_league

stadium_name

stadium_team -

stadium_location

stadium_capacity

L@ e

capital “—

country_population

City

city_name.

city_coordinates.

city_population

sponsorship_person L —

sers

e

password_hash
user_email

is_admin

person_birth_location

person_type

.

player_name
player_team

player_goals

Popularity

S team_name

most_popular_match
most_popular_player

supporters

e

log_description
log_author

log_time

@ -

person_type_name

penay

- penalty_type

L& penalty_given_person

penalty_given_date

enalty_type

id

penalty_type_name

_images/team_stat_delete.png
List of team statistics registered in database

Show 10 ~ | entries

Team_stat ID Team Name Batting Runs
1 Comrade Putin 2

2 Tilattespor 66

3 Trabzonspor 148

Showing 1 to 3 of 3 entries

cted Row(s)

Batting Hits
2
66

1

Search:
Pitching Saves Total Wins Total Draws Total Losses
1 0 0 2
66 0 0 0
4 0 0 0

_images/player_delete.png
List of Players registered in database

Show 10 |V entries
Player ID I Player Name
14 Russian Soldier 1
15 Russian Soldier 2
16 Russian Soldier 3
17 Russian Commander 1
18 Russian Commander 2
19 Fukran Akgiin
20 Umut Yar Ozcan
21 Oguz Terem Kural
22 Mert Seker
23 Tilattiovic

Showing 1 to 10 of 11 entries

Add N

ata Update Selected Row Delete Selected Row(s)

Player Team
Putinspor
Putinspor
Putinspor
Putinspor
Putinspor
Sekerspor
Sekerspor
Sekerspor
Sekerspor

Tilattespor

Search:

Player Goals

5

8

4

18

24

14

1584

31

Previous - 2 Next

List of Players registered in database

Show

Player ID

14

15

16

17

19

20

21

22

23

26

Vv | entries

= Player Name

Russian Soldier 1
Russian Soldier 2
Russian Soldier 3
Russian Commander 1
Fukran Akgiin

Umut Yar Ozcan
Oguz Terem Kural
Mert Seker

Tilattiovic

Nagehan

Showing 1 to 10 of 10 entries

Add

ta Update Selected Row Delete Selected Row(s)

Player Team
Putinspor
Putinspor
Putinspor
Putinspor
Sekerspor
Sekerspor
Sekerspor
Sekerspor
Tilattespor

Kayseriguicti

Search:

Player Goals
5

8

4

18

14

1584
31

10

Previous . Next

_images/log_add_to_db.png
def add_to_db(self):
connection = db_connect ()
cursor = connection.cursor()

SELECT user id FROM users
WHERE user_name = 85"""

"INSERT INTO log (log description, log author, log time)
VALUES (85, 8s, 85)

ory:
cursor.execute (query_user, (s=1%.author,))
connection. comit ()
user_1d = cursor. fetchone ()

cursor. execute (query, (<17.description, user_id, 2<17.ime,))
connection. comit ()
status = True

except connection.Error as error:
print (error)
connection. rollback()
status = False

cursor.close()
connection. close ()

return status

_images/last_changes_main.png
Last Changes

Deleted Tilattelerogiu from Countries by testuser at 20/12/2015

Added cyka to Teams by akgunfu at 20/12/2015

Deleted Turkey from Countries by turalog at 16/12/2015

Deleted Small Tournament from Tournaments by turalog at 16/12/2015

Updated Element With id=8 in Tournaments by turalog at 16/12/2015

_images/navbar_notlogin.png
Home People Penalies Cities Popularity ~Teams Team Statistcs Players Sponsorships ~ Stadiums ~ Matches Toumaments — Countries Leagues

search.html

 Navigation

 		DBall 0.5.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, ITUCSDB1515.
 Created using Sphinx 1.3.1.

_images/log_last_5.png
'GET', 'POST'])

@app.route('/', method
det home ()
array - [1
1og_obj = log.Log()
1og_array = log_obj.get_log by id()

i-o
for log_data in log_array:
ir1iss:

break

array.append (log_data)
PR

return render_vemplate('hone htal!, < - -=array)

_images/tournament_update.png
DBall | Tournaments

€ @ itucsdb1515.mybluemix.net/manage/tournaments

Update Tournament

Russian Warfare
101

10/10/2015

12/12/2020

500000

_images/generic_update.png
iate_db(self):
connection = db_connect ()
cursor = connection.cursor()

der

vry:

cursor. execute (quezy, (pazameters))
pr———}
14 = cursor. fetchone ()

cursor. execute (query, (pazameters))

connection. commit ()
status = True

except connection.Error as error:
print (error)
connection. rollback()
status = False

cursor.close()
connection. close ()
return status

_images/stadium_front.png
List of stadiums registered in database ~Manage

Show| 10 [v] entries

Stadium Name
Ruski Supreme

Elizabethenia

ITU Arena

Baby Arena

Stadium Tilatte Arena De Manuela

Rize Yenisehir stadi

Showing 1 to 6 of 6 entries

Stadium Team
Comrade Putin

Al Elizabeth
France Le Baseball
Comrade Putin
Tilattespor

Al Elizabeth

Stadium Location

Moscow

London

Paris

Istanbul

Tilatte

Rize

Search:

Stadium Capacity
1231
1111
777
9999
9999

14500

_images/city_update.png
Update City

9 | London

& | s000000|

o

Submit

_images/city_add.png
Add New City

Q

Viadivostok

333

o

Submit

_images/team_stat_front.png
List of team statistics registered in database ~Manage

Show| 10 [v] entries

Team Name
Comrade Putin
Tilattespor

Trabzonspor

Showing 1 to 3 of 3 entries

Batting Runs
2
66

148

Batting Hits
2
66

"

Pitching Saves
1

66

Total Wins

Total Draws

Search:
Total Losses
2
0
0

_images/navigation_front.png
Home People Penalies Cities Popularity ~Teams Team Stafisics Players Sponsorships ~ Stadiums ~ Matches Tournaments ~ Countries Leagues

_images/player_update.png
' DBall | Players

€ @ itucsdb1515.mybluemix.net/manage/players

Update Player

Submit

_images/match_front.png
List of Matches Registered in Database ~Manage

Date luiResults
01 January 2014 Comrade Putin 1 - 2 All Elizabeth

11 November 2015 Putinspor 10 - 20 Erdoganspor
01 January 1961 Comrade Putin 0 - 31 Russian Nuke

01 January 1111 Fukranspor 11 - 14 Kurwaaa

1 Stadium

ISIS Arena

ISIS Arena

Ruski Supreme

ISIS Arena

iReferee

Lord
Mammoth

Lord
Mammoth

Viadimir Putin

Viadimir Putin

_images/navbar_user_menu.png
test@test.com

Manager

_images/league_update_q.png
query_country = """SELECT country_id FROM country WHERE country name=gs’

"UPDATE league
SET league name=ts, league country=ts, league start date-ts
WHERE league id=8s"""

_images/matches_manager.png
Main

People
Penalties
Popularity
Cities

Teams

Team Statistics
Players
Sponsorships
Stadiums
Countries
Tournaments

ches

Leagues

DBall Manager /matches

List of Matches registered in database

Show | 10 v entries

D Team 1 Score Team 2 Score
7 Comrade Putin 1 Al Elizabeth 2

8 Fukranspor 1 Kurwaaa 14

1 Putinspor 10 Erdoganspor 20

18 Comrade Putin 0 Russian Nuke 31

Showing 1 to 4 of 4 entries

Add New Data | Update Selected Row | Delete Selected Row(s)

League
Ruski Comrade
Ruski Comrade
Le League

Ruski Comrade

Stadium

ISIS Arena
ISIS Arena
ISIS Arena

Ruski Supreme

Search:

Referee

Lord Mammoth

Viadimir Putin

Lord Mammoth

Viadimir Putin

Date

01 January 2014
01 January 1111
11 November 2015

01 January 1961

provous [vex

_images/people_buttons.png
Add NewData - || Update Selected Row | Delete Selected Row(s)

Add New Person
Add New Person Type

_images/user_login.png
Login

Test user credentials: User mail: test@test com Password: test

Email address

test@test.com

Password

_images/match_add_q.png
query_team = """SELECT team id FROM team
i VEERE tean nane = 830"
duery,_league = "ISELECT league_id PR league

i VEERE 1eague nane = 57"

query_referee = *"VSELEOT person 4d FROM person
i VRERE person nane = 857"

"INSERT INTO matches (match team 1, match team 2, match league,
match_stadium, match referee, match date,
match_teanl score, match_team? score)

VALUES (35, 95, 95, 95, 9s, 9s, 95, 95)"7"

_images/popularity_add.png
Add New Popularity Info

& | Aibamaspor v
™ AibamaSpor - asdasdsd v
& Al N
L]

Submit

_static/down.png

_static/plus.png

_static/comment-close.png

_static/minus.png

_static/file.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_images/log_all_html.png
{% if log data 3}
{3 for log in log data 3}
<>
<ca>{{log[*description’]}] </cd>
<ca>{{log[*author']}}</ca>
<ca>{{log["ime"]}}</5d>
</ee>
12 enator 3
15 endis 51

_images/penalty_add.png
Add New Person

& | Natalia Pokionskaya v

By | 01/20/1985

A | RedcCard v

Submit

_images/country_location.png
c
K-
g
3
o
S

_images/country_del_q.png
"DELETE FROM country WHERE country id = 8s"""

_images/country_update_q.png
query_capital = " SELECT city id FROM city
i WEERE city nane - ssvt"

"OPDATE country
SET country_name=ts, country_populatior
WHERE country_id=8s"""

s, capital=is

_images/alert_login.png
List of sponsors registered in database Manage

Oops! You should be logged in to manage database. You can login from upper right corner. (From 3 icon)

Show 10 |v|entries

Sponsor Name
Maret Sucuk

Asli Borek

Showing 1 to 2 of 2 entries

Sponsorship Start Date
1011012010

01/01/2111

Sponsored League

Le League

Ruski Comrade

Sponsored Team

Tilattespor

None

Search:

Sponsored Person

Queen Elizabeth

None

_images/sponsorship_add.png
Add New Sponsorship

& | Sponsorship Name

| Sponsorship Start Date
& None
& None
& None

Submit

_images/search_people.png
Show| 10 v entries Search:

Person Name Birth Date Birth Place Person Type
Ali 29/05/1995 Alabama Ali
Alibama 10/01/1900 Alabama Coach

Showing 1 to 2 of 2 entries (filtered from 16 total entries) Previous . Next

_images/generic_update_op.png
8app. route (' /api/country /update’, =
Jdef api_update_country():

POST'])

if not session.get('logged in'):
return jsonify({"result": "Unauthorized Access. Please identify yourself'})

json_data = request.get_json()

country_obj = country.Country ()
countzy_obj.get_country by id(json data['country id'1)

countey_ob3.name = json_data['country nase']
‘countey_obj population = jaon_data['country_population']
‘country_obj.capital = json_data[capital]

result - country_obj.update_db()

if result:
description = "Updated Element With id=" + json data['country_id'] + " in Countries”

log_info = log.Log(description, session['aliss'], datetime.datetime.now())
1og_status = log_info.add_to_db()

return jsonify({ result': result})

_static/comment.png

_static/up-pressed.png

_static/ajax-loader.gif

_images/selection_many_error.png
Whoa! You choose too many people or you forgot to choose some one

_images/alert_success.png
List of stadiums registered in database

BAM! Your operation successfully completed

Show 10 | entries

Stadium Name
Ruski Supreme

Elizabethenia

ITU Arena

Baby Arena

Stadium Tilatte Arena De Manuela
Rize Yenisehir stadi

Telekom Arena

Showing 1 to 7 of 7 entries

Stadium Team
Comrade Putin

All Elizabeth
France Le Baseball
Comrade Putin
Tilattespor

All Elizabeth

Kayserigucu

Stadium Location

Moscow

London

Paris

Istanbul

Tilatte

Rize

Istanbul

Search:

Stadium Capacity
1231

1111

7777

9999

9999

14500

2343242

_images/log_get_log_by_id_1.png
def get_log by id(self, get_id=None):
connectzon = db_connect ()

cursor = connection. cursor ()

if get_:d is not None:
query = "USELECT # FROM log
01N users ON log.log author = users.user_id

WHERE log id = 8s"

ery:
cursor. execute (query, (get_id,))
connection. commit ()

data = cursor. fecchone)
if data is not None:
se17.1d = data[0]
self.descriprion = data[1]
self.time = datal3]
se17.author = datals]
cursor. close()
conrection.close ()
et self

els

cursor.close()
conrection.close ()
retirn None

except connection.Error as erro
print (error)
connection. rollback()

_images/sponsorship_delete.png
List of sponsors registered in database

Show 10 ~ | entries

Sponsorship ID Sponsor Name

9 Maret Sucuk

1 Redbull

Showing 1 to 2 of 2 entries

Sponsorship Start Date
01/01/2111

10/10/2010

cted Row(s)

Sponsored League
Ruski Comrade

None

Sponsored Team

Tilattespor

None

Search:

Sponsored Person
None

Ankarali Turgut

_images/penalty_type.png
Add New Penalty

A

Faulf

Submit

_images/generic_add_op.png
8app. route (' /api/country/add’, method:
jdef api_add_country() :

POST'])

if not session.get('logged in'

320n_post_data = request.get_json()
country_info = country.Country(jaon post_datal country nane'],
3s0n_post_datal'country population'], json_post_datal'capital'])

result = country_info.add to db()

if result:
description = "Added " + json_post_data['country name'] + ' to Comntries’
1log_info = log.Log(description, session['alics'], datevime.datetime.now())
1og_scatus = log_info.add to_db()

) return jsonify({ result': result})

