

Welcome to ITKPythonPackage’s documentation!

This project provides a setup.py script to build ITK Python wheels and
infrastructure to build ITK external module Python wheels.

ITK [https://www.itk.org/] is an open-source, cross-platform system that provides developers with an extensive suite of software tools for image analysis.

To install the stable ITK Python package:

$ pip install itk

For more information on ITK’s Python wrapping, see an introduction in the
Book 1, Chapter 3 of the ITK Software Guide [https://itk.org/ItkSoftwareGuide.pdf].
There are also many downloadable examples documented in Sphinx [https://itk.org/ITKExamples/search.html?q=Python].

Contents

	Quick start guide
	Installation

	Usage

	Examples

	Prerequisites

	Create the module

	GitHub automated CI package builds
	Upload the packages to PyPI

	Automate PyPI Package Uploads

	Automated platform scripts
	Linux

	macOS

	Windows

	Build ITK Python packages
	Prerequisites

	Automated platform scripts

	Manual builds

	Miscellaneous

Indices and tables

	Index

	Module Index

	Search Page

Quick start guide

Installation

To install the ITK Python package:

$ pip install itk

Usage

Basic example

Here is a simple python script that reads an image, applies a median image filter (radius of 2 pixels), and writes the resulting image in a file.

#!/usr/bin/env python3

import itk
import sys

input_filename = sys.argv[1]
output_filename = sys.argv[2]

image = itk.imread(input_filename)

median = itk.median_image_filter(image, radius=2)

itk.imwrite(median, output_filename)

ITK and NumPy

A common use case for using ITK in Python is to mingle NumPy and ITK operations on raster data. ITK provides a large number of I/O image formats and several sophisticated image processing algorithms not available in any other packages. The ability to intersperse that with the SciPy ecosystem provides a great tool for rapid prototyping.

The following script shows how to integrate NumPy and ITK:

import itk
import numpy as np

Read input image
itk_image = itk.imread(input_filename)

Run filters on itk.Image

View only of itk.Image, pixel data is not copied
np_view = itk.array_view_from_image(itk_image)

Copy of itk.Image, pixel data is copied
np_copy = itk.array_from_image(itk_image)
Equivalent
np_copy = np.asarray(itk_image)

Do NumPy stuff...

Convert back to ITK, view only, data is not copied
itk_np_view = itk.image_view_from_array(np_copy)

Convert back to ITK, data is copied
itk_np_copy = itk.image_from_array(np_copy)

Similar functions are available to work with itk.Matrix, VNL vectors and matrices:

itk.imwrite(itk_np_view, output_filename)

VNL matrix from np.ndarray
arr = np.zeros([3,3], np.uint8)
matrix = itk.vnl_matrix_from_array(arr)

Array from VNL matrix
arr = itk.array_from_vnl_matrix(matrix)

VNL vector from np.ndarray
vec = np.zeros([3], np.uint8)
vnl_vector = itk.vnl_vector_from_array(vec)

Array from VNL vector
vec = itk.array_from_vnl_vector(vnl_vector)

itk.Matrix from np.ndarray
mat = itk.matrix_from_array(np.eye(3))

np.ndarray from itk.Matrix
arr = itk.array_from_matrix(mat)

ITK and Xarray

An itk.Image can be converted to and from an xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html] while
preserving metadata:

da = itk.xarray_from_image(image)

image = itk.image_from_xarray(da)

ITK and VTK

An itk.Image can be converted to and from a vtk.vtkImageData [https://vtk.org/doc/nightly/html/classvtkImageData.html] while
preserving metadata:

vtk_image = itk.vtk_image_from_image(image)

image = itk.image_from_vtk_image(vtk_image)

ITK and napari

An itk.Image can be converted to and from a napari.layers.Image [https://napari.org/api/stable/napari.layers.Image.html#napari.layers.Image] while
preserving metadata with the itk-napari-conversion package [https://github.com/InsightSoftwareConsortium/itk-napari-conversion].

ITK Python types

	C++ type

	Python type

	NumPy dtype

	float

	itk.F

	np.float32

	double

	itk.D

	np.float64

	unsigned char

	itk.UC

	np.uint8

	std::complex<float>

	itk.complex[itk.F]

	np.complex64

This list is not exhaustive and is only presented to illustrate the type names. The complete list of types can be found in the ITK Software Guide [https://itk.org/ItkSoftwareGuide.pdf].

Types can also be obtained from their name in the C programming language:

itk.F == itk.ctype('float') # True

To cast the pixel type of an image, use .astype:

image = itk.imread(input_filename)

Cast to an unsigned char pixel type
cast_image = image.astype(itk.UC)

Equivalent
cast_image = image.astype(np.uint8)

itk.imwrite(cast_image, output_filename)

Metadata dictionary

An itk.Image has a metadata dict of key: value pairs.

The metadata dictionary can be retrieved with:

meta_dict = dict(image)

For example:

In [3]: dict(image)
Out[3]:
{'0008|0005': 'ISO IR 100',
 '0008|0008': 'ORIGINAL\\PRIMARY\\AXIAL',
 '0008|0016': '1.2.840.10008.5.1.4.1.1.2',
 '0008|0018': '1.3.12.2.1107.5.8.99.484849.834848.79844848.2001082217554549',
 '0008|0020': '20010822',

Individual dictionary items can be accessed or assigned:

print(image['0008|0008'])

image['origin'] = [4.0, 2.0, 2.0]

In the Python dictionary interface to image metadata, keys for the spatial
metadata, the ‘origin’, ‘spacing’, and ‘direction’, are reversed in
order from image.GetOrigin(), image.GetSpacing(), image.GetDirection()
to be consistent with the NumPy array index order [https://scikit-image.org/docs/dev/user_guide/numpy_images.html#notes-on-the-order-of-array-dimensions]
resulting from pixel buffer array views on the image.

Access pixel data with NumPy indexing

Array views of an itk.Image provide a way to set and get pixel values with NumPy indexing syntax, e.g.:

In [6]: image[0,:2,4] = [5,5]

In [7]: image[0,:4,4:6]
Out[7]:
NDArrayITKBase([[5, -997],
 [5, -1003],
 [-993, -999],
 [-996, -994]], dtype=int16)

Input/Output (IO)

Convenient functions are provided read and write from ITK’s many supported
file formats:

image = itk.imread('image.tif')

Read in with a specific pixel type.
image = itk.imread('image.tif', itk.F)

Read in an image series.
Pass a sorted list of files.
image = itk.imread(['image1.png', 'image2.png', 'image3.png'])

Read in a volume from a DICOM series.
Pass a directory.
Only a single series, sorted spatially, will be returned.
image = itk.imread('/a/dicom/directory/')

Write an image.
itk.imwrite(image, 'image.tif')

Read a mesh.
mesh = itk.meshread('mesh.vtk')

Write a mesh.
itk.meshwrite(mesh, 'mesh.vtk')

Read a spatial transform.
transform = itk.transformread('transform.h5')

Write a spatial transform.
itk.transformwrite(transform, 'transform.h5')

Image filters and Image-like inputs and outputs

All itk functional image filters operate on an itk.Image but also:

	xarray.DataArray [https://xarray.pydata.org/en/stable/generated/xarray.DataArray.html] *

	numpy.ndarray [https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html]

	dask.array.Array [https://docs.dask.org/en/latest/array.html]

	Preserves image metadata

Filter parameters

ITK filter parameters can be specified in the following ways:

Pythonic snake case keyword arguments:
#
number_of_iterations
#
smoothed = itk.anti_alias_binary_image_filter(image, number_of_iterations=3)

CamelCase keyword arguments:
#
NumberOfIterations
#
smoother = itk.AntiAliasBinaryImageFilter.New(image, NumberOfIterations=3)
smoother.Update()
smoothed = smoother.GetOutput()

CamelCase Set method:
#
SetNumberOfIterations
#
smoother = itk.AntiAliasBinaryImageFilter.New(image)
smoother.SetNumberOfIterations(3)
smoother.Update()
smoothed = smoother.GetOutput()

Filter types

In itk, filters are optimized at compile time for each image pixel type and
image dimension. There are two ways to instantiate these filters with the itk
Python wrapping:

	Implicit (recommended): Type information is automatically detected from the data. Typed filter objects and images are implicitly created.

image = itk.imread(input_filename)

Use ITK's functional, Pythonic interface. The filter type is implied by the
type of the input image. The filter is eagerly executed, and the output image
is directly returned.
smoothed = itk.median_image_filter(image)

Alternatively, create filter objects. These filter objects can be connected in
a pipeline to stream-process large datasets. To generate the output of the
pipeline, .Update() must explicitly be called on the last filter of the
pipeline.
#
We can implicitly instantiate the filter object based on the type
of the input image in multiple ways.

Use itk.ImageFileReader instead of the wrapping function,
itk.imread to illustrate this example.
ImageType = itk.Image[itk.UC, 2]
reader = itk.ImageFileReader[ImageType].New(FileName=input_filename)
Here we specify the filter input explicitly
median = itk.MedianImageFilter.New(Input=reader.GetOutput())
Same as above but shortened. Input does not have to be specified.
median = itk.MedianImageFilter.New(reader.GetOutput())
Same as above. .GetOutput() does not have to be specified.
median = itk.MedianImageFilter.New(reader)

median.Update()
smoothed = median.GetOutput()

	Explicit: This can be useful if an appropriate type cannot be determined implicitly or when a different filter type than the default is desired.

To specify the type of the filter, use the ttype keyword argument. Explicit instantiation of a median image filter:

An apriori ImageType
PixelType = itk.F
ImageType = itk.Image[PixelType,2]
image = itk.imread(input_filename, PixelType)

An image type dynamically determined from the type on disk
image = itk.imread(input_filename)
ImageType = type(image)

Functional interface
The `ttype` keyword argument specifies the filter type.
smoothed = itk.median_image_filter(image, ttype=(ImageType, ImageType))

Object-oriented interface
reader = itk.ImageFileReader[ImageType].New(file_name=input_filename)
median = itk.MedianImageFilter[ImageType, ImageType].New()
median.SetInput(reader.GetOutput())
median.Update()
smoothed = median.GetOutput()

Instantiate an ITK object

There are two types of ITK objects. Most ITK objects, such as images, filters, or adapters, are instantiated the following way:

InputType = itk.Image[itk.F,3]
OutputType = itk.Image[itk.F,3]
median = itk.MedianImageFilter[InputType, OutputType].New()

Some objects, like a Matrix, Vector, or RGBPixel, do not require the attribute .New() to be added to instantiate them:

pixel = itk.RGBPixel[itk.UC]()

In case of doubt, look at the attributes of the object you are trying to instantiate.

Examples

Examples can be found in the ITKSphinxExamples project [https://itk.org/ITKExamples/src/index.html].

 ITK is organized into modules. Modules for ITK can be developed outside the
ITK source tree as remote modules. The remote module can be made
available in ITK’s CMake [https://www.cmake.org] configuration by
contributing it [https://github.com/InsightSoftwareConsortium/ITKModuleTemplate#remote-module]
as a remote module. Python packages can also be generated for remote
modules and uploaded to the Python Package Index (PyPI) [https://pypi.org]

This section describes how to create, build, and upload ITK remote
module Python packages to PyPI.

Prerequisites

Building wheels requires:

	CMake

	Git

	C++ Compiler - Platform specific requirements are summarized in scikit-build documentation.

	Python

Create the module

To create an ITK module with Python wrapping, first run cookiecutter:

python -m pip install cookiecutter
python -m cookiecutter gh:InsightSoftwareConsortium/ITKModuleTemplate
Fill in the information requested at the prompts

Then, add your classes. Reference documentation on how to populate the module [https://itk.org/ITKSoftwareGuide/html/Book1/ITKSoftwareGuide-Book1ch9.html#x50-1430009]
can be found in the ITK Software Guide [https://itk.org/ITKSoftwareGuide/html/].

GitHub automated CI package builds

Freely available GitHub Action continous integration (CI) build and test
services for open source repositories are provided by
GitHub [https://github.com/]. These services will build and test the C++
code for your module and also generate Linux, macOS, and Windows Python
packages for your module.

For every pull request and push to the GitHub repository, a GitHub Action will
run that builds and runs the repository’s C++ tests and reports the results to
the ITK CDash Dashboard [https://open.cdash.org/index.php?project=Insight].
Python packages are also generated for every commit. Packages for a commit’s
build can be downloaded from the GitHub Action result page in the Artifacts
Section.

[image: GitHub Action Artifacts]

Upload the packages to PyPI

First, register for an account on PyPI [https://pypi.org].

Next, create a ~/.pypirc file with your login credentials:

[distutils]
index-servers =
 pypi
 pypitest

[pypi]
username=<your-username>
password=<your-password>

[pypitest]
repository=https://test.pypi.org/legacy/
username=<your-username>
password=<your-password>

where <your-username> and <your-password> correspond to your PyPI account.

Then, upload wheels to the testing server. The wheels of dist/* are those that
you have built locally or have downloaded from a recent build listed at
https://github.com/InsightSoftwareConsortium/<your-long-module-name>/actions.

python -m pip install twine
python -m twine upload -r pypitest dist/*

Check out the packages on https://test.pypi.org/ the testing server.

Finally, upload the wheel packages to the production PyPI server:

python -m twine upload dist/*

Congratulations! Your packages can be installed with the commands:

python -m pip install --upgrade pip
python -m pip install itk-<your-short-module-name>

where itk-<your-short-module-name> is the short name for your module that is
specified in your setup.py file.

Automate PyPI Package Uploads

Automated uploads of Python packages to the Python package index, PyPI [https://pypi.org] will occur after adding a PyPI upload token to GitHub and
creating a Git tag. Create a PyPI API token by logging in to
https://pypi.org/manage/account/token/. Generally, for the token name
use:

itk-<your-short-module-name>-github-action

and for the scope use:

itk-<your-short-module-name>

where <your-short-module-name> is the short name for your module that is
specified in your setup.py file. That scope will be available if you have
already uploaded a first set of wheels via twine as described above; and that
is the recommended approach. Otherwise, if you are creating the project at
this time, choose an unlimited scope, but be careful with the created token.

[image: PyPI Token]

Then, add the API token to the GitHub repository
https://github.com/InsightSoftwareConsortium/<your-long-module-name>. Choose
the Settings -> Secrets page and add a key called pypi_password, setting
the password to be the token string that begins with pypi-. Note that this
will be a token instead of a password. Limit the scope of the token to the
individual package as a best practice.

[image: GitHub PyPI token secret]

To push packages to PyPI, first, make sure to update the version for your
package in the setup.py file. The initial version might be 0.1.0 or
1.0.0. Subsequent versions should follow
semantic versioning [https://semver.org/].

Then, create a Git tag corresponding to the version. A Git tag can be created
in the GitHub user interface via Releases -> Draft a new release.

[image: GitHub Release Tag]

Automated platform scripts

Automated scripts are available in this repository to build Python packages
that are binary compatible with the Python distributions provided by
Python.org, Anaconda, and package managers like apt or Homebrew.
The following sections outline how to use the associated scripts for Linux,
macOS, and Windows.

Once the builds are complete, Python packages will be available in the dist
directory.

Linux

To build portable Python packages on Linux, first install Docker [https://docs.docker.com/engine/installation/].

For the first local build, clone the ITKPythonPackage repository inside your
and download the required ITK binary builds:

cd ~/ITKMyModule
git clone https://github.com/InsightSoftwareConsortium/ITKPythonPackage
./ITKPythonPackage/scripts/dockcross-manylinux-download-cache-and-build-module-wheels.sh

For subsequent builds, just call the build script:

./ITKPythonPackage/scripts/dockcross-manylinux-build-module-wheels.sh

macOS

First, install the Python.org macOS Python distributions. This step requires sudo:

cd ~/ITKMyModule
git clone https://github.com/InsightSoftwareConsortium/ITKPythonPackage
./ITKPythonPackage/scripts/macpython-install-python.sh

Then, build the wheels:

./ITKPythonPackage/scripts/macpython-build-wheels.sh

Windows

First, install Microsoft Visual Studio 2015, Git, and CMake, which should be added to the system PATH environmental variable.

Open a PowerShell terminal as Administrator, and install Python:

PS C:\> Set-ExecutionPolicy Unrestricted
PS C:\> $pythonArch = "64"
PS C:\> iex ((new-object net.webclient).DownloadString('https://raw.githubusercontent.com/scikit-build/scikit-ci-addons/master/windows/install-python.ps1'))

In a PowerShell prompt, run the windows-build-wheels.ps1 script:

PS C:\Windows> cd C:\ITKMyModule
PS C:\ITKMyModule> git clone https://github.com/InsightSoftwareConsortium/ITKPythonPackage.git IPP
PS C:\ITKMyModule> .\ITKPythonPackage\scripts\windows-download-cache-and-build-module-wheels.ps1

Build ITK Python packages

This section describes how to builds ITK’s Python packages. In most cases, the
pre-built ITK binary wheels can be used.

ITK Python packages are built nightly on Kitware build systems and uploaded to
the ITKPythonPackage GitHub releases page [https://github.com/InsightSoftwareConsortium/ITKPythonPackage/releases].

Prerequisites

Building wheels requires:

	CMake

	Git

	C++ Compiler - Platform specific requirements are summarized in scikit-build documentation.

	Python

Automated platform scripts

Steps required to build wheels on Linux, macOS and Windows have been
automated. The following sections outline how to use the associated scripts.

Linux

On any linux distribution with docker and bash installed, running the script dockcross-manylinux-build-wheels.sh will create 64-bit wheels for both python 2.x and python 3.x in the dist directory.

For example:

$ git clone https://github.com/InsightSoftwareConsortium/ITKPythonPackage.git
[...]

$./scripts/dockcross-manylinux-build-wheels.sh
[...]

$ ls -1 dist/
itk-4.11.0.dev20170218-cp27-cp27m-manylinux2014_x86_64.whl
itk-4.11.0.dev20170218-cp27-cp27mu-manylinux2014_x86_64.whl
itk-4.11.0.dev20170218-cp34-cp34m-manylinux2014_x86_64.whl
itk-4.11.0.dev20170218-cp35-cp35m-manylinux2014_x86_64.whl
itk-4.11.0.dev20170218-cp36-cp36m-manylinux2014_x86_64.whl

macOS

First, install the Python.org macOS Python distributions. This step requires sudo:

./scripts/macpython-install-python.sh

Then, build the wheels:

$./scripts/macpython-build-wheels.sh
[...]

$ ls -1 dist/
itk-4.11.0.dev20170213-cp27-cp27m-macosx_10_6_x86_64.whl
itk-4.11.0.dev20170213-cp34-cp34m-macosx_10_6_x86_64.whl
itk-4.11.0.dev20170213-cp35-cp35m-macosx_10_6_x86_64.whl
itk-4.11.0.dev20170213-cp36-cp36m-macosx_10_6_x86_64.whl

Windows

First, install Microsoft Visual Studio 2015, Git, and CMake, which should be added to the system PATH environmental variable.

Open a PowerShell terminal as Administrator, and install Python:

PS C:\> Set-ExecutionPolicy Unrestricted
PS C:\> $pythonArch = "64"
PS C:\> iex ((new-object net.webclient).DownloadString('https://raw.githubusercontent.com/scikit-build/scikit-ci-addons/master/windows/install-python.ps1'))

In a PowerShell prompt:

PS C:\Windows> cd C:\
PS C:\> git clone https://github.com/InsightSoftwareConsortium/ITKPythonPackage.git IPP
PS C:\> cd IPP
PS C:\IPP> .\scripts\windows-build-wheels.ps1
[...]

PS C:\IPP> ls dist
 Directory: C:\IPP\dist

 Mode LastWriteTime Length Name
 ---- ------------- ------ ----
 -a---- 4/9/2017 11:14 PM 63274441 itk-4.11.0.dev20170407-cp35-cp35m-win_amd64.whl
 -a---- 4/10/2017 2:08 AM 63257220 itk-4.11.0.dev20170407-cp36-cp36m-win_amd64.whl

We need to work in a short directory to avoid path length limitations on
Windows, so the repository is cloned into C:IPP.

Also, it is very important to disable antivirus checking on the C:IPP
directory. Otherwise, the build system conflicts with the antivirus when many
files are created and deleted quickly, which can result in Access Denied
errors. Windows 10 ships with an antivirus application, Windows Defender, that
is enabled by default.

sdist

To create source distributions, sdist’s, that will be used by pip to compile a wheel for installation if a binary wheel is not available for the current Python version or platform:

$ python setup.py sdist --formats=gztar,zip
[...]

$ ls -1 dist/
itk-4.11.0.dev20170216.tar.gz
itk-4.11.0.dev20170216.zip

Manual builds

Building ITK Python wheels

Build the ITK Python wheel with the following command:

python3 -m venv build-itk
./build-itk/bin/pip install --upgrade pip
./build-itk/bin/pip install -r requirements-dev.txt numpy
./build-itk/bin/python setup.py bdist_wheel

Build a wheel for a custom version of ITK

To build a wheel for a custom version of ITK, point to your ITK git repository
with the ITK_SOURCE_DIR CMake variable:

./build-itk/bin/python setup.py bdist_wheel -- \
 -DITK_SOURCE_DIR:PATH=/path/to/ITKPythonPackage-core-build/ITK

Other CMake variables can also be passed with -D after the double dash.

Miscellaneous

Written by Jean-Christophe Fillion-Robin and Matt McCormick from Kitware Inc.

It is covered by the Apache License, Version 2.0:

http://www.apache.org/licenses/LICENSE-2.0

For more information about ITK, visit https://itk.org

Index

Prerequisites

Building wheels requires:

	CMake

	Git

	C++ Compiler - Platform specific requirements are summarized in scikit-build documentation.

	Python

 _static/comment-bright.png

_images/PyPIToken.png
Search projects

Your account Add API token

@ vourprojects Token name (eies

I
==

permisions

Uplead packages

e B
Project itkiomeshtl .

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/GitHubActionArtifacts.png
¥ InsghiSofwareConsorium /ITKIOMeShSTL = «

(@ o it 435 o nsighofeConsrs..
bR

e Buld, test, package

© s comviions 1

T

_images/GitHubPyPISecret.png
¥ InsighiSofwareConsortum / TIKIOMESHSTL. = < Oumne 7 Wi 2 Yren

o Secrets
e s

S e ceer s v st i i s A,
[[————————"

S e st o e g b i o o e

r— =3
v

_images/GitHubReleaseTag.png
¥ InsightSoftwareConsortium / ITKIOMeSSTL. » « G- | 7| Wi | 2| Vrow |

oo Omuess Niarepeme Onss Hposcns Useoms v Osews

0 e e Tagging suggestions.
c pistinwuamtel
e | e e s

o e, o
presiebepit

Semantic versioning
e e g .

ey e s

sy g g s g e B
& s sy e e st

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Welcome to ITKPythonPackage’s documentation!

 		
 Quick start guide

 		
 Installation

 		
 Usage

 		
 Basic example

 		
 ITK and NumPy

 		
 ITK and Xarray

 		
 ITK and VTK

 		
 ITK and napari

 		
 ITK Python types

 		
 Metadata dictionary

 		
 Access pixel data with NumPy indexing

 		
 Input/Output (IO)

 		
 Image filters and Image-like inputs and outputs

 		
 Filter parameters

 		
 Filter types

 		
 Instantiate an ITK object

 		
 Examples

 		
 Prerequisites

 		
 Create the module

 		
 GitHub automated CI package builds

 		
 Upload the packages to PyPI

 		
 Automate PyPI Package Uploads

 		
 Automated platform scripts

 		
 Linux

 		
 macOS

 		
 Windows

 		
 Build ITK Python packages

 		
 Prerequisites

 		
 Automated platform scripts

 		
 Linux

 		
 macOS

 		
 Windows

 		
 sdist

 		
 Manual builds

 		
 Building ITK Python wheels

 		
 Build a wheel for a custom version of ITK

 		
 Miscellaneous

_static/up-pressed.png

_static/up.png

_static/plus.png

