

Overview

The Isuma Media Players project is a fully free and open source
software project to create a two-way, distributed content distribution
network for communities with limited bandwidth to the larger internet.

Note

This documentation covers the 3.x generation of media players. For
older media players, see the 2.x branch [http://isuma-media-players.readthedocs.org/en/2.x/].

	Installation
	BIOS configuration

	Naming convention

	Install Debian

	More in-depth OS installation instruction

	Configure Puppet

	Stretch Fixes

	Configuring and Running Git Annex

	Old Installation Details
	Puppet

	Git-annex

	Git-annex configuration

	Other configurations

	Testing
	Backend

	CableTV

	Git-annex sync

	Isuma.tv

	Maintenance
	Changing preferred content

	Unused and deleted files

	Metadata

	Settings

	External synchronisation drives

	Creating user accounts

	Upgrading git-annex

	User guides
	How to setup a playlist

	Hardware platforms
	Rugged specification

	Lightweight specification

	Shuttle XPC small desktops

	Logic Supply desktops (v2.5 series)

	Advantech rugged servers (1.0 series)

	Troubleshooting
	Test procedure

	Basics

	Git-annex

	S3 diagnostics

	Development
	Git-annex internals

	Git-annex Drupal integration

	Metadata sync script

	Metadata purge script

	Debian packages

	Configuration Management
	Installing the puppet master

	Setting up git repositories to ease up modification

	Managing modules

	Configuring a dashboard

	Design
	Context

	Requirements

	Technical decisions

	Architecture overview

	Transcoding

	Metadata

	Schedules

	Bandwith limits

	File deletion and garbage collection

	Server-specific metadata

	Remaining issues

	Security issues

	Transition plan
	General principles

	Timeline

	Metrics and communication

	Implementation

	Similar projects
	Commercial CDNs

	Debian mirrors network

	Git annex

	Camlistore

	Terminology

	About this document
	License

Installation

This describes how to set up a media player from scratch. You may be
able to install the components on an existing system, but this is
currently not supported.

BIOS configuration

The BIOS should be configured so the machines power up after a power
outage instead of just staying powered off. This varies according to
the device being provisionned. It could be something like: Restore
on AC Power Loss and it should be set to reset or on.

Naming convention

Media players should adhere to a strict naming and labeling
convention. A media player’s hostname (the first part of the
“fully-qualified domain name” or fqdn) should be named mpYYYYMMDD-N, where
YYYY is the year, MM is the month and DD is the day the
machine was installed. N designates the number of the machine,
e.g. 1 for the first machine created. So mp20150508-1
designates the first machine created on may 8th 2015. -0 or lower
are invalid version numbers.

The remaining part of the fqdn (the domain) should always be
mp.isuma.tv. So the fqdn will always be something like
mp20150508-1.mp.isuma.tv.

Every media player should be labeled with their fully-qualified domain
name in the front and the back.

Install Debian

Media players run on Debian “stable”.
We are now installing new media players on Debian 9 “Stretch”.

The regular Debian install manual [http://www.debian.org/releases/stretch/installmanual] can be
followed, with those exceptions:

	mount the largest partition as /var/isuma

	use the UTC timezone

	use an American keyboard layout

	hostname: use the Naming convention

	do not enter a root password (we use sudo)

	create yourself an account for diagnostic purposes during the
install (Puppet will create the other accounts as needed)

	use the “CDN redirector” mirror, so that APT uses the mirror
closest to the machine

	On the software selection screen, select the “standard system” and
“Web server” software collections.

More in-depth OS installation instruction

Create bootable Debian USB

Download latest (stretch in 2019) small/netinst amd64 image: https://www.debian.org/distrib/netinst

Write iso image to USB stick: https://www.debian.org/releases/stretch/amd64/ch04s03.html.en

[b@tt43 Downloads]$ sudo cp debian-9.8.0-amd64-netinst.iso /dev/sdb
[b@tt43 Downloads]$ sync

Installation Parameters

	Localization: English, Canada, American English

	No to loading non-free firmware for wifi from local media.

	Choose Ethernet Controller for network interface.

	A media player’s hostname (the first part of the “fully-qualified domain name” or fqdn) should be named mpYYYYMMDD-N, where YYYY is the year, MM is the month and DD is the day the machine was installed. N designates the number of the machine, e.g. 1 for the first machine created. So mp20150508-1 designates the first machine created on May 8th 2015.

	The domain (the remaining part of the fqdn) should always be mp.isuma.tv. So the fqdn will always be something like mp20150508-1.mp.isuma.tv.

	

	Leave root password empty

	Initial user: nursery (give it a throwaway password you remember for the duration of this install)

	Eastern time zone

	UEFI installation?

Partition disk

	Manual partitioning:

	Choose 6TB HDD, yes to new partition table

	Choose 6GB FREE SPACE, create a new partition, 128MB, Beginning, Use as: EFI System Partition, Done

	Configure the Logical Volume Manager, Yes, Create volume group: vgroup, select 6TB partition (/dev/sda2) w/ spacebar, Continue

	Create logical volume, on vgroup, name: swap, size: 16GB, continue

	Create logical volume, on vgroup, name: root, size: 64GB, continue

	Create logical volume, on vgroup, name: isuma, size: remaining space (5921174MB, 5.9TB), continue, Finish

	Select 5.9TB partition LV, Use as: Ext4, mount point: enter manually: /var/isuma, done

	Select 64GB partition LV, Use as: Ext4, mount point: /, done

	Selection 16GB partition LV, Use as: swap area, done

	Scroll down to Finishing partitioning and write changes to disk, Yes

Install system services

	Choose package manager: Canada, deb.debian.org, no proxy, no to popularity survey

	Use spacebar to disable all options except “SSH server” and “standard system utilities” which should be enabled with the * symbol.

	Now wait while it does the install…(~8mins) and then it automatically reboots (remove the USB stick as soon as it shuts down so that it boots from disk).

Initial login

	It should boot to a console session login prompt, login with user nursery and your password.

	Use the “ip a” command to find the local ip address of the media player 192.168.#.###

	On a different computer on the same LAN as the new media player, connect with ssh nursery@192.168.#.### (this makes it much easier to copy-paste commands from these instructions into your console session!)

Configure Puppet

Puppet Master

The puppet master needs to be have the new media player added as a node:

	Clone the puppet repository onto your local machine:

$ git clone cs.isuma.tv:/srv/git/puppet.git

	cd into the puppet dir and edit /manifests/nodes.pp

	Copy last node and replace old hostname with new one.

	Commit and push the changes:

$ git commit -a
$ git push

	SSH into the puppet master and run puppet as root:

puppet agent -t

On the media player

SSH into the nursery user on the new media player.

Add an apt GPG key:

wget https://github.com/puppetlabs/puppetlabs-debbuilder/raw/master/files/puppetlabs-keyring.gpg -O /etc/apt/trusted.gpg.d/puppetlabs-keyring.gpg
apt-key add /etc/apt/trusted.gpg.d/puppetlabs-keyring.gpg

Add some apt sources:

cat > /etc/apt/sources.list.d/puppetlabs.list <<EOF
Puppetlabs products
deb http://apt.puppetlabs.com precise main
deb-src http://apt.puppetlabs.com precise main
Puppetlabs dependencies
deb http://apt.puppetlabs.com precise dependencies
deb-src http://apt.puppetlabs.com precise dependencies
EOF

cat > /etc/apt/sources.list.d/jessie.list <<EOF
Jessie repo for older ruby dependencies for puppet precise
deb http://deb.debian.org/debian/ jessie main
EOF

cat > /etc/apt/preferences.d/puppet_from_precise.pref << EOG
Package: puppet puppet-common facter hiera
Pin: release n=precise
Pin-Priority: 1500
EOG

cat > /etc/apt/preferences.d/ruby_from_jessie.pref << EOG
Package: libaugeas-ruby libruby libruby2.1:amd64 ruby ruby-augeas ruby-json ruby-shadow ruby2.1 rubygems-integration rake
Pin: release n=jessie
Pin-Priority: 1500
EOG

Install packages:

apt update
apt install puppet
apt install util-linux lsb-release ntp alsa-utils htop iotop iftop screen

Running puppet

On the media player as root:

puppet agent --no-stringify_facts -t --server cs.isuma.tv --waitforcert 10

On the puppet master as root:

puppet cert -l

Compare the two fingerprints. If they match, on the puppet master run the following (with the correct hostname of the new player):

puppet cert -s mp2019####-1.mp.isuma.tv

Back on the media player, puppet will run and then fail.

	First run, get an error like “Parameter hour failed on Cron[git-annex_start]: undef is not a valid hour” go to cs.isuma.tv:3000

	Open two tabs, one with the node page of the hostname of the new MP, and the other with the node page of a different MP.

	Click “Edit” in the top right corner of both.

	Copy-paste the six Parameter key and values from the old MP to the new one, clicking “Add Parameter” for each new one, then click “Save changes”.

	Run puppet again (451 seconds, ~7.5 minutes)

	Run puppet a third time, less than a minute.

	chown www-data:www-data /var/www

	Run puppet a fourth time with no errors (except now monkeysphere but we can ignore those)

Stretch Fixes

These are fixes for Debian Stretch, which have not yet been incorporated into the puppet run:

sudo usermod -a -G tty isuma
chmod ug+s /usr/lib/xorg/Xorg

sudo update-rc.d git-annex defaults
sudo update-rc.d isuma-kiosk defaults
sudo update-rc.d autossh defaults

Enure the following line is present in /etc/modprobe.d/default.conf:

options snd_hda_intel index=1

	Reboot::

	sudo reboot now

Configuring and Running Git Annex

su to the www-data user on media player, and go to /var/isuma/git-annex.
Get the UUID for the media player:

git-annex info --fast | grep here

Give the media player the proper name in git-annex metadata:

git-annex describe $UUID host-$HOSTNAME.mp.isuma.tv

Do the preferred content configs:

git-annex group . mediaplayer
git-annex wanted . groupwanted
git-annex groupwanted mediaplayer 'include=* and (exclude=video/original/*)'

Do an initial sync. This takes a while, so you might want to use a screen:

git-annex sync

Do some S3 configs:

git-annex enableremote s3
git config remote.s3.annex-verify false

Plug in the syncdisk (An external harddrive).
Check /media/isuma_sneakernet to see if it is mounted (if it is empty it is not mounted).
If it is not, then use lsblk to confirm the partition identifier for the syncdisk, and then do the mount manually:

sudo mount /dev/sdb1 /media/isuma_sneakernet/

Run screen as regular user, and then su to www-data.
Run the syncdisk sync!:

cd /var/isuma/git-annex
git-annex sync --content sneakernet --jobs=4

Finally, when the syncdisk run is done, run a manual network sync:

git-annex sync --content --jobs=4

Old Installation Details

Puppet

Note

This assumes you already have configured a Puppet Master server to
serve and manage all the configurations of the media players. See
Configuration Management if you haven’t done so yet.

The media players are now configured through the Puppet configuration
management system. (They used to be configured through Debian packages,
but that made non-code changes hard to deploy and maintained.)

First, on the Puppet Master server, we want to create a node resource in the file nodes.pp that
represents the server (here we assume that we have checked out the
puppet-manifests directory and are working in that copy:

cat >> nodes.pp <<EOF
node 'cs.isuma.tv' {
 user { 'someadmin':
 ensure => present,
 uid => 1001,
 gid => 1001,
 groups => ['admin', 'puppetadmin'],
 comment => 'Some admin',
 home => '/home/someadmin',
 managehome => false,
 shell => '/bin/bash',
 password => '...',
 }
}
EOF

Then, on the media player, since we’re using various versions of Debian derivatives that
doesn’t necessarily have access to
the latest puppet version (3.7) yet, we’ll add an apt source to download
packages directly from puppetlabs. Before that we need to add the PGP key that
signs all packages in that repository so we can verify their integrity:

cd /etc/apt/trusted.gpg.d
curl https://downloads.puppetlabs.com/puppetlabs-gpg-signing-key.pub \
 | gpg --no-default-keyring --keyring ./puppetlabs-gpg-signing-key.gpg --import

Now we can add the source:

cat > /etc/apt/sources.list.d/puppetlabs.list <<EOF
Puppetlabs main
deb http://apt.puppetlabs.com precise main
deb-src http://apt.puppetlabs.com precise main
EOF
apt-get update

Next we need to install puppet and required tools (this was already done for
the master):

apt-get install puppet tzdata util-linux lsb-release

Now we can attach the client to the master (for the puppet master itself, since
it is using the same certificate as the puppet master, we don’t need to
authenticate it, so we can directly run puppet agent -t):

puppet agent -t --server cs.isuma.tv --waitforcert 10

If all goes well it should generate a certificate, send a signing request to
the master and then display that it still hasn’t gotten the certificate from
the master. For signing the certificate, we need to go on the puppet master and
issue the following command in order to list requests:

puppet cert -l

This will display host names of machines that requested access and a
certificate signature that looks like multiple blocks of hexadecimal values
separated by colons. It is strongly encouraged to verify this signature to the
same signature that was displayed when the certificate was created on the
client with the previous command. Once you are certain the fingerprints match
for the host name, you can ask puppet to sign the certificate:

puppet cert -s client.domain.tld

Now after a short delay the client should be able to download the catalog (the
list of operations that need to be done) and files.

For further information on the process, see PuppetLabs’ documentation on what
to do after install [https://docs.puppetlabs.com/guides/install_puppet/post_install.html#configure-a-puppet-agent-node]
.

Git-annex

The section describes how to install, or “deploy” git-annex in various
ways. We try to privilege installing it through Debian packages and
Puppet, but this is not always possible so instructions are also
provided for manual installation.

We currently require version 5.20150610 for the public Amazon S3
support [http://git-annex.branchable.com/tips/public_Amazon_S3_remote/]

Puppet deployment

If the machine is managed by the central Puppetmaster, one can install
the git-annex software with:

class { 'gitannex': method => 'package' }

This will install the standalone git-annex package from NeuroDebian [http://neuro.debian.net/install_pkg.html?p=git-annex-standalone].

Note

We can also install git-annex on any Linux distribution
with:

class { 'gitannex': method => 'gitannex' }

This will install and maintain git-annex with…
git-annex! That is, it will use git to keep an
updated copy of the upstream standalone images [http://downloads.kitenet.net/git-annex/] and will
download the right tarball associated with the release, and
deploy it to /opt. We do not, however, use this
mechanism because upgrades a harder to perform.

We also need to deploy the assistant, with:

class { 'gitannex::daemon':
 repository => '/var/isuma/git-annex',
 user => 'www-data',
}

This will deploy the git-annex assistant over a given directory. By
default, that directory is /var/lib/gitannex/repo, but on media
players we use the old non-standard partition /var/isuma to avoid
having to reconfigure all older media players. Files are also assigned
to the www-data user.

Also note the above gitannex::metadata
class which takes care of deploying the Custom metadata script to update the IP addresses of the
media players.

Debian package installation

The official Git annex installation instructions [http://git-annex.branchable.com/install/] can also be used here. On
Debian, however, the packages are too out of date for our needs so we
use the standalone git-annex package from NeuroDebian [http://neuro.debian.net/install_pkg.html?p=git-annex-standalone]. This works
only on Debian derivatives.

To install the Debian standalone package [http://neuro.debian.net/pkgs/git-annex-standalone.html] from the
NeuroDebian [http://neuro.debian.net/] distribution:

wget -O- http://neuro.debian.net/lists/wheezy.us-nh.libre | sudo tee /etc/apt/sources.list.d/neurodebian.sources.list
gpg --recv-keys DD95CC430502E37EF840ACEEA5D32F012649A5A9
sudo gpg --export DD95CC430502E37EF840ACEEA5D32F012649A5A9 > /etc/apt/trusted.gpg.d/neurodebian.gpg
sudo apt-get update
sudo apt-get install git-annex-standalone

At the second step above, when receiving the key, its validity can be
checked using:

gpg --check-sigs DD95CC430502E37EF840ACEEA5D32F012649A5A9

The key should be signed by a few Debian developpers, one of which
should be signed by Antoine Beaupré <anarcat@koumbit.org>.

You then need to manually configure the assistant (see below).

Manual installation on any Linux system

The official Git annex installation instructions [http://git-annex.branchable.com/install/] also feature a standalone
tarball distribution, which works across all Linux distributions.

To install using the standalone tarball distributions:

wget https://downloads.kitenet.net/git-annex/linux/current/git-annex-standalone-amd64.tar.gz
tar -C /opt -zxf git-annex-standalone-amd64.tar.gz
ln -s /opt/git-annex.linux/git /usr/local/bin/
ln -s /opt/git-annex.linux/git-annex /usr/local/bin/
ln -s /opt/git-annex.linux/git-annex-shell /usr/local/bin
ln -s /opt/git-annex.linux/git-annex-webapp /usr/local/bin

Manually configuring the assistant

In manual installs, we need also to enable the daemon to start. We can deploy the init
script that we coded for this in Puppet, and also available upstream [https://git-annex.branchable.com/todo/server-level_daemon__63__/]. Install
the script in /etc/init.d/git-annex and enable it:

wget -O /etc/init.d/git-annex https://redmine.koumbit.net/projects/media-players-3/repository/revisions/master/raw/files/init.d
chmod +x /etc/init.d/git-annex
update-rc.d git-annex defaults

It can be configured in a /etc/defaults/git-annex file like this:

DAEMON=/usr/bin/git-annex
ANNEX=/var/lib/git-annex/isuma-files
USER=www-data

The path to git-annex will of course change depending on the
installation method. The standalone install we did above will install
it in /usr/local/bin/git-annex while the Debian package will
install it in /usr/bin/git-annex.

Git-annex configuration

Whether git-annex is installed through Puppet, Debian or standalone
distributions, some more steps need to be performed before the
installation is complete.

Repository name

When created, a given git-annex repository should be given a short,
descriptive name. There is a default description provided by git-annex
that is formatted like user@hostname:path, for example, on my
desktop:

anarcat@desktop008:~/src/isuma/isuma-files

This is fine for test repositories, or repositories used to control
git-annex remotely. However, for media players, we want to reuse the
hostname convention we defined earlier, so we need to set a proper
name that reflects the canonical hostname of the machine. For this,
use the git annex describe command. For example, the Koumbit media
player was renamed this way:

git annex describe 2d61a8de-a24e-44e3-9aa0-54f033fec1e9 host-mp20120507-1.mp.isuma.tv

Notice how we omit the username and path parts: we assume to be
standard or specific to the machine so irrelevant for day to day
operation. The location of the repository can be found in
/etc/default/git-annex in any case.

Preferred content configuration

For now, only the group setting need to be set, to avoid
downloading original files on the media players. This can be done
within the git-annex repository with:

git annex group . mediaplayer
git annex wanted . groupwanted

New groups can also be defined as necessary, see Changing preferred content.

Central server configuration

The central server has a fairly special configuration as well. The
package was installed using Puppet, with:

class { 'gitannex':
 method => 'package',
}

	the git-annex repository was created in
/var/lib/git-annex/isuma-files:

git init /var/lib/git-annex/isuma-files
cd /var/lib/git-annex/isuma-files
git annex init

	then it was configured to allow shared access [http://git-annex.branchable.com/tips/shared_git_annex_directory_between_multiple_users/]:

git config core.sharedrepository group
chmod g+rwX -R .
chgrp -R isuma-files .
find -type d -exec chmod g+s {} \;

	then an S3 remote was initialized with the isuma-files bucket:

export AWS_ACCESS_KEY_ID="CENSORED"
export AWS_SECRET_ACCESS_KEY="CENSORED"
git annex initremote s3 type=S3 encryption=none public=yes bucket=isuma-files
initremote cloud (checking bucket...) (creating bucket in US...) ok
(Recording state in git...)

Note

The S3 bucket name was chosen without a dot (.) to
avoid problems with HTTPS.

Note

The bucket was actually created through the AWS web
interface originally, and was granted public read access
using the instructions provided in the “publishing your
files to the public” tip [http://git-annex.branchable.com/tips/publishing_your_files_to_the_public/],
with a configuration like:

{
 "Version": "2008-10-17",
 "Statement": [
 {
 "Sid": "AllowPublicRead",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::public-annex/*"
 }
]
}

With newer versions of git-annex (after 5.20150610)
the public=yes argument configures this
automatically.

Caution

For a while, some files were added in the git-annex
repository with git annex addurl as git-annex
didn’t support downloading files anonymously from
S3. So some of the files have old URLs attached to
them which may yield some weird results. See Redmine issue #17958 [https://redmine.koumbit.net/issues/17958]
for the
cleanup issue.

Those URLs were originally imported with:

git annex find --in s3 | while read file ; do
 key=$(git annex lookupkey $file)
 echo $key https://public-annex.s3.amazonaws.com/$key
done | git annex registerurl

Note

The S3 credentials were originally stored on the main
website, but were moved to the central server because it
is the only one that all servers (transcoding server,
main website, media players) have direct access to. By
using it as a central point for S3 uploads, we avoid a
“mesh” topology that may have problems transfering files
down a chain of machines. See Redmine issue #18170 [https://redmine.koumbit.net/issues/18170]
for a
discussion about this. To add the credentials to the
already existing git-annex repository on the central
server, the following commands were ran:

cs:/var/lib/git-annex/isuma-files$ export AWS_ACCESS_KEY_ID="CENSORED"
cs:/var/lib/git-annex/isuma-files$ export AWS_SECRET_ACCESS_KEY="CENSORED"
cs:/var/lib/git-annex/isuma-files$ git annex enableremote s3 type=S3 encryption=none public=yes bucket=isuma-files
enableremote s3 (checking bucket...) ok
(recording state in git...)

This ensures that the credentials for the S3 remote are
available (locally only!) in .git/annex/creds/*.

When the credentials were on the main website, files were
all sent to the S3 remote with the following commands:

nice ionice -c3 git annex add .
git commit -m"first import of all files"
git annex move --to s3

	prefered content was set to not inallgroup=backup because files
shouldn’t be staying on the server longer than necessary:

git annex wanted . "not inallgroup=backup"

Note

We are not using the transfer group because that
standard group assumes that use client groups on the
other side, which is not the case.

	the assistant was configured through Puppet, using:

class { 'gitannex::daemon':
 repository => $central_repo,
 groups => ['isuma-files'],
}

This repository can then be used as a regular git-annex remote to
exchange metadata, as long as all users created are within the
isuma-files group. This is taken care of by the Puppet recipes,
by properly calling the site_sshd::sandbox with the right
remote_group, as such:

site_sshd::sandbox { 'www-data':
 remote_user => 'host-mp20120507-1.mp.isuma.tv',
 remote_group => ['isuma-files'],
 tag => 'sshd-cs.isuma.tv',
 path => '/var/www/.ssh/id_rsa',
}

Those users are then collected on the central server with the
following Puppet class:

class { 'site_sshd::collector':
 group => 'isuma-files',
}

Those users are also used to create the autossh tunnels on the media
players, used to remotely access the media players for
diagnostics. See Remote login to media players for
more information.

Main website configuration

The main website has a set of special configurations that are
documented here.

	git-annex was installed with the Debian packages, as explained in
Debian package installation

	we run the remaining commands as the www-data user:

sudo -u www-data -i

	the git-annex repository was created in /mnt/media:

git init /mnt/media
cd /mnt/media
git annex init

Note

Notice how the git-annex repository is not directly in
the Drupal filesystem
(/persistent/www/isumatv/sites/default/files) because
the file layout there is completely different than the
old S3 bucket or the media players layout. The workaround
we used is that git-annex is in a separate location the
the Drupal modules (media mover, presumably) take care of
copying files over.

In the Drupal filesystem, original files are in the
video-original directory and transcoded files in the
media_mover/isuma directory.

See Redmine issue #17653 [https://redmine.koumbit.net/issues/17653] for the gory details of that transition.

Note

This was originally setup in the NFS-shared
/persistent/media directory, but was changed because
of compatibility problems between NFS and git-annex. See
Redmine issue #18170 [https://redmine.koumbit.net/issues/18170]
and related
for more information.

	a remote was added for the central server:

git remote add origin host-isuma.tv@cs.isuma.tv:/var/lib/git-annex/isuma-files/

	a first sync was performed:

git annex sync origin

	on the central server, a user was created for the server to sync,
with the right group:

cs$ sudo adduser --force-badname --disabled-password host-isuma.tv
cs$ sudo adduser host-isuma.tv isuma-files

	And the SSH key of the www-data user was added to the account:

sudo -u host-isuma.tv -i tee .ssh/authorized_keys # paste the key then "control-d"

Note

the last two steps should probably have been done through
Puppet.

	prefered content was set to source because files shouldn’t be
staying on the server longer than necessary:

git annex group . source
git annex wanted . standard

	the assistant was configured by setting up the startup script in
/etc/init.d/git-annex, as documented in Manually configuring the assistant,
and with the following config in /etc/default/git-annex:

DAEMON=/usr/bin/git-annex
ANNEX=/mnt/media
USER=www-data

	the assistant was started with:

service git-annex restart

Note

the following need to be created for proper assistant
operation, for some reason:

sudo mkdir .kde .local .config
sudo chown www-data .kde .local .config

	the Drupal website has the gitannnex Drupal module installed
and configured with the path to the git-annex repository setup
above

Note

Files were imported from the other buckets as well here, the
complete process is not relevant here but was documented
partly in Redmine issue #16729 [https://redmine.koumbit.net/issues/16729].

Encoding server configuration

This is almost exactly like the Main website configuration, except the
username is host-encoding.isuma.tv.

	git-annex was installed with the Debian packages, as explained in
Debian package installation

	we run the remaining commands as the www-data user:

sudo -u www-data -i

	the git-annex repository was created in /mnt/media:

git init /mnt/media
cd /mnt/media
git annex init

	a remote was added for the central server:

git remote add origin host-encoding.isuma.tv@cs.isuma.tv:/var/lib/git-annex/isuma-files/

	on the central server, a user was created for the server to sync,
with the right group:

cs$ sudo adduser --force-badname --disabled-password host-encoding.isuma.tv
cs$ sudo adduser host-encoding.isuma.tv isuma-files

	And the SSH key of the www-data user was added to the account:

sudo -u host-encoding.isuma.tv -i tee .ssh/authorized_keys # paste the key then "control-d"

Note

the last two steps should probably have been done through
Puppet.

	then, back on the encoding server, a first sync was performed:

git annex sync origin

	prefered content was set to source because files shouldn’t be
staying on the server longer than necessary:

git annex group . source
git annex wanted . standard

	the assistant was configured by setting up the startup script in
/etc/init.d/git-annex, as documented in Manually configuring the assistant,
and with the following config in /etc/default/git-annex:

DAEMON=/usr/bin/git-annex
ANNEX=/mnt/media
USER=www-data

	the assistant was started with:

service git-annex restart

Note

the following need to be created for proper assistant
operation, for some reason:

sudo mkdir .kde .local .config
sudo chown www-data .kde .local .config

Other configurations

There are more configuration tasks done in Puppet or manually when installing a
media player that are not directly related to git-annex or the media
players code.

Most of this happens in the roles::common Puppet class, unless
otherwise noted below.

User creation

A common set of users is created by Puppet in the user::admins
class.

Puppet auto-configuration

Puppet itself is managed through Puppet, using the puppet::agent
class using the Puppet module [https://github.com/stephenrjohnson/puppetmodule].

SSH and Monkeysphere

SSH is also configured through Puppet, through the site_sshd
class. This sets up a few basic SSH configurations like enabling
password authentication and port forwarding.

It also enables the monkeysphere::sshserver modules which uses
Monkeysphere [http://web.monkeysphere.info/] to distribute the
public SSH keys of users.

Note

In older versions of Debian (including Ubuntu Precise), the
version of SSH precludes having multiple authorized_keys
files, which means that, with Monkeysphere, manual changes
to that file may seem ineffective. In fact, they will take
effect only when the next monkeysphere cron job runs,
which is by default every hour.

To force the regeneration of authorized_keys files, the
job can be run by hand with:

monkeysphere-authentication update-users

Automated upgrades

As with most Koumbit servers, we setup automated upgrades with:

class { 'apt::unattended_upgrades': }

Warning

Note that, on Debian 7 “Wheezy” and earlier, it is
somewhat dangerous as the resulting configuration may
automatically upgrade to the next major release once
Debian 9 “Stretch” is released. This is an issue with the
upstream unattended-upgrades package (bug report
#762965 [https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=762965]). We
are also tracking this issue in our own tracker (Redmine issue #17964 [https://redmine.koumbit.net/issues/17964]).

First content synchronisation

The new media player needs to have all the new content before it is
shipped. For this, a synchronisation drive needs to be connected to
the media player, at which point it will start syncing all the
content from the sync drive onto the media player.

Such a sync can take up to 24 hours right now (June 2015). The
procedure is the same as the regular synchronisation procedure described in
the maintenance manual.

Testing

Backend

Puppet agent provision is running without blocking errors:

sudo puppet agent -t

Autossh (for remote login and VLC web interface) is working, starting on its own after reboot, staying up for days.:

Locally: sudo service autossh status
ssh user@cs.isuma.tv -p 22###
http://cs.isuma.tv:28###

CableTV

	VLC appears on local monitor

	VLC web interface appears at http://cs.isuma.tv:28###

	Playlists load using the Add Playlist button on the web interface

	Videos play fullscreen on the local monitor

	Sound works though headphone-out when video play (test sound with speaker-test command, use alsamixer to make adjustments)

Git-annex sync

Git-annex works at all. Try:

git-annex info --fast

Git-annex daemon is running:

sudo service git-annex status
ps aux | grep assistant

Videos are syncing (in a normal user screen session, run as www-data user):

git-annex sync --content

Latest videos are synced, by comparing latest videos on MP versus CS and encoding servers (check if daemon is running on these as well:

ls -lart /var/isuma/git-annex/video/mp4_sd | tail

Check total media size to see if it is similar to other MPs:

df -h #media is in /var/isuma partition

Shut down the MP via the UPS battery after nut is configured (to avoid git-annex repo corruption):

sudo upsmon -c fsd

Isuma.tv

	Check for UUID of MP (from git-annex info –fast) on http://www.isuma.tv/git-annex

	Check status of MP on puppet dashboard cs.isuma.tv:3000

Maintenance

Changing preferred content

Every git-annex repository has a “preferred content” expression that
defines which part of the main git-annex repository will be
downloaded.

For example, by default we setup new media players with the following
preferred content:

include=* and (exclude=video/original/*)

This means the media player will fetch all files but the files in the
video/original directory. This is implemented through a group [http://git-annex.branchable.com/git-annex-groupwanted/] setting
called mediaplayer. New groups can be defined. For example, here
is how the mediaplayer group was created:

git annex groupwanted mediaplayer 'include=* and (exclude=video/original/*)'

Note

Groups are global across different media players and cannot
be erased once created, so make sure the name is good before
creating it. It should be a singular, descriptive name.

This created the new mediaplayer group, which can be used
similarly to the standard groups [https://git-annex.branchable.com/preferred_content/standard_groups/]. Then
the repository can be added to that group and then configured to
follow the configured preferred content expression from the group, as
is done during the installation process:

git annex group . mediaplayer
git annex wanted . groupwanted

You can also assign any other media player to a given group. So say
you have created an audio group with:

git annex groupwanted audio 'include=audio/*'

You could assign the host-mp20120507-1.mp.isuma.tv git annex
repository to the group with:

git annex group host-mp20120507-1.mp.isuma.tv audio
git annex wanted host-mp20120507-1.mp.isuma.tv groupwanted

Group configuration is also available to remote operators through the
web interface.

Currently, only the mediaplayer group is defined, when new groups
are defined, they should be documented here.

Unused and deleted files

When a file is deleted from the git repository, git-annex still has a
copy. This is also the case when a file is modified with git annex
edit: the previous version stays around for a while. Those are
called unused files.

Caution

Those files should be scheduled for removal
automatically, but for safety reasons, this is not
currently enabled. See Redmine issue #17493 [https://redmine.koumbit.net/issues/17493]
for
followup.

Unused files can be inspected with:

git annex unused

Those unused files can then be completely destroyed with:

git annex drop --unused

If, however, there are no more copies of the file anywhere, git-annex
will refuse to remove those old copies. In this case, you need to use
--force:

git annex drop --unused --force

Unused files may also exist on the S3 repository. Add --from s3 to
the above commands to operate on the S3 remote from the main website.

Finally, in some cases, files remain in the current repository when
they are supposed to have been moved to a different repository. For
example, this can happen with transfers to S3 that failed to
complete. In this case, this command will drop the local files that
have been transfered:

git annex drop --auto .

Metadata

The media players communicate various metadata about their status
through two different channels: a Custom metadata script
and Puppet facts.

Generic Puppet facts

Puppet gives us a bunch of facts which provide information about the machines.

	hostname

	short name of the machine (mpYYYYMMDD-N, see the
Naming convention for more information)

	domain

	domain name of the machine (should always be mp.isuma.tv, see
the Naming convention for more information)

	fqdn

	concatenation of hostname and domain
(e.g. mp20150508-1.mp.isuma.tv)

	memoryfree, memoryfree_mb

	the amount of RAM memory available on the machine in a variable
unit or in MiB, e.g. 2.15 GB or 2198.61

	memorysize, memorysize_mb

	the total amount of RAM on the machine in a variable unit or in
MiB, e.g. 3.48 GB or 3562.93

	operatingsystem, operatingsystemrelease, os

	those describe the operating system of the machine, including the
version and code name. Example:

operatingsystem => Debian
operatingsystemmajrelease => 8
operatingsystemrelease => 8.0
os => {"name"=>"Debian", "family"=>"Debian", "release"=>{"major"=>"8", "minor"=>"0", "full"=>"8.0"}, "lsb"=>{"distcodename"=>"jessie", "distid"=>"Debian", "distdescription"=>"Debian GNU/Linux 8.0 (jessie)", "distrelease"=>"8.0", "majdistrelease"=>"8", "minordistrelease"=>"0"}}
osfamily => Debian

	blockdevice*

	those facts describe the disks installed in the machine. example:

blockdevice_sda_model => M4-CT128M4SSD2
blockdevice_sda_size => 128035676160
blockdevice_sda_vendor => ATA
blockdevices => sda

the sizes are in bytes.

	uptime, uptime_seconds, uptime_hours, uptime_days

	the time since the last reboot of the machine, as a human-readable
timestamp (e.g. 50 days), seconds (4343990), hours
(1206) and days (50).

	processor*

	those fields describe the processors (or CPU) installed on
this machine. Example:

processor0 => AMD E-350 Processor
processor1 => AMD E-350 Processor

	ipaddress

	the private IP address of this media player. we do not currently
ship the public IP address through Puppet.

	boardmanufacturer, boardproductname, boardserialnumber

	hardware information about the motherboard of the machine

The last check-in time is not per se a fact but is kept by the Puppet
dashboard separately. The last checkin time is currently in
UTC. We are using the universal time zone (UTC) to avoid
confusion if media players are deployed across multiple time zones.
That way we always have uniform timezone regardless of where the media
player is located.

Custom Puppet facts

The following facts have been implemented (Redmine issue #16706 [https://redmine.koumbit.net/issues/16706]
to provide us with a
better overview of the situation in the Puppetmaster dashboard.

	mp_autossh_ssh_port

	The port that should be used while connecting to the central server to
connect to a mediaplayer with SSH.

	mp_autossh_vnc_port

	The port that should be used while connecting to the central server to
reach a mediaplayer’s VNC server.

The following facts are generated by the gitannex_info.py script
in the gitannex Puppet module.

	gitannex_disk_space_available

	the amount of disk space available for git-annex to download new
files. units vary: may be in Gigabytes, Megabytes, depending on
the size available.

	gitannex_transfers_in_progress

	the list of files currently being transfered. If no transfer in is
progress, an empty list, [], will be shown. Otherwise, a list of file
names will be shown. For example:
['video/mp4_sd/779.mp4','video/mp4_sd/781.mp4']

	gitannex_files_present_count, gitannex_files_present_size

	the size and number of files already present in the git-annex
repository. this is equivalent to the local annex keys and
local annex size fields in the git annex info output.

	gitannex_files_total_count, gitannex_files_total_size

	the total size and number of files, missing or present the git-annex
repository. this is equivalent to the annexed files in working
tree and size of annexed files in working tree fields in the
git annex info output.

Note

The missing and total counts currently exclude the
originals directory as to avoid confusion because the media
players do not sync that content. The actual total
repository size is larger.

	gitannex_files_missing_count, gitannex_files_missing_size

	the size and number of files missing from the git-annex
repository. this is calculated from the different between the
total and present facts.

	gitannex_master_age

	this holds the relative date (e.g. “one week ago”) of the last commit on the master branch of
the git-annex repository. this branch holds the last changes to
the file repository (adding, renaming, removing files) that the
local git-annex repository is aware of and is a good description
of how up to date the media player is. this is equivalent to git
log -1 --format=%ct.

	gitannex_master_age_days, gitannex_master_age_hours, gitannex_master_age_minutes, gitannex_master_age_seconds

	same as the above, but rounded up to days, hours, minutes or seconds. that
is, if the commit is 2 days and 3 hours long,
gitannex_master_age_hours is 51 hours.

The following facts are generated from the network_stats.py script
in the vnstat Puppet module.

	vnstat_bandwidth_usage_up_5_seconds, vnstat_bandwidth_usage_up_day, vnstat_bandwidth_usage_up_yesterday, vnstat_bandwidth_usage_up_month, vnstat_bandwidth_usage_up_year

	the upload bandwidth usage in the last 5 seconds, the current and
previous day, the current month and year.

	vnstat_bandwidth_usage_down_5_seconds, vnstat_bandwidth_usage_down_day, vnstat_bandwidth_usage_down_yesterday, vnstat_bandwidth_usage_down_month, vnstat_bandwidth_usage_down_year

	same for download bandwith

Note that the total amount of disk space allocated for downloading
files can be somewhat deduced from the total
git_annex_files_present_size and
gitannex_disk_space_available. It will be accurate insofar that
all the files in the partition are managed by git-annex.

Settings

There are various “settings” available in the Puppet dashboard. They
are arbitrary key/value pairs that get passed down in the Puppet
configurations and can affect (or not) the behavior of media players.

Do not use fields that are not explicitely documented here, as it
may make a media player unreachable or unusable.

Configuration settings

Those are settings that control various operations of git-annex on the
media player.

	gitannex_sync_start_hour, gitannex_sync_start_minute, gitannex_sync_stop_hour, gitannex_sync_stop_minute

	time (hour and minute) at which the git-annex assistant should
start and stop syncing the media player. none or both fields need
to be specified. if no field is specified, the media player is
always on.

	gitannex_sync_upload_limit

	Upload bandwidth limit. If no units are specified, the provided
number is in kibibytes, that is 1024 bytes per second. A unit
should be provided to avoid confusion.

This is passed verbatim to to the --bwlimit option of rsync [https://rsync.samba.org/]. Here’s an excerpt of the rsync
manual [http://manpages.debian.org/cgi-bin/man.cgi?query=rsync]
explaining the how the units are interpreted and the limit
implemented:

The RATE value can be suffixed with a string to indicate a size
multiplier, and may be a fractional value (e.g.
"--bwlimit=1.5m"). If no suffix is specified, the value will be
assumed to be in units of 1024 bytes (as if "K" or "KiB" had
been appended).

For backward-compatibility reasons, the rate limit will be
rounded to the nearest KiB unit, so no rate smaller than 1024
bytes per second is possible.

Rsync writes data over the socket in blocks, and this option
both limits the size of the blocks that rsync writes, and tries
to keep the average transfer rate at the requested limit. Some
"burstiness" may be seen where rsync writes out a block of data
and then sleeps to bring the average rate into compliance.

[...]

The suffixes are as follows: "K" (or "KiB") is a kibibyte
(1024), "M" (or "MiB") is a mebibyte (1024*1024), and "G" (or
"GiB") is a gibibyte (1024*1024*1024). If you want the
multiplier to be 1000 instead of 1024, use "KB", "MB", or "GB".
(Note: lower-case is also accepted for all values.) Finally, if
the suffix ends in either "+1" or "-1", the value will be offset
by one byte in the indicated direction.

Examples: [...] 1.5mb-1 is 1499999 bytes, and [...] 2g+1 is
2147483649 bytes.

	gitannex_sync_download_limit

	Download bandwidth limit. If no units are specified, the provided
number is in bytes per second. A unit should be provided to
avoid confusion.

This is passed verbatim to the --limit-rate option of wget [https://www.gnu.org/software/wget/]. Here’s an excerpt of the
wget manual [http://manpages.debian.org/cgi-bin/man.cgi?query=wget]
explaining how the units are interpreted and how the limit is
implemented:

Limit the download speed to amount bytes per second. Amount may
be expressed in bytes, kilobytes with the k suffix, or megabytes
with the m suffix. For example, --limit-rate=20k will limit the
retrieval rate to 20KB/s. This is useful when, for whatever
reason, you don't want Wget to consume the entire available
bandwidth.

This option allows the use of decimal numbers, usually in
conjunction with power suffixes; for example, --limit-rate=2.5k
is a legal value.

Note that Wget implements the limiting by sleeping the
appropriate amount of time after a network read that took less
time than specified by the rate. Eventually this strategy
causes the TCP transfer to slow down to approximately the
specified rate. However, it may take some time for this balance
to be achieved, so don't be surprised if limiting the rate
doesn't work well with very small files.

Informative settings

Those fields are not necessarily used by Puppet for anything, but
are used by Isuma operators to add information about the
machine. Fields may or may not be available.

	isuma_mp_address

	Location (address, street, city, country) of this media player.

	isuma_mp_site

	Free-form description of the site where the media player is
(e.g. “Isuma Office, Cara’s desk”)

	isuma_mp_location

	Geographic coordinates of this media player, if address is missing
or irrelevant (e.g. 45° 30’ 0” N, 73° 34’ 0” W)

	isuma_mp_operator_name, isuma_mp_operator_phone, isuma_mp_operator_email, isuma_mp_operator_address

	name, phone number, email and city address of the last known
local operator of the media player.

	isuma_mp_notes

	random notes about the media player.

New fields may be added, but they must have the prefix
isuma_mp_.

External synchronisation drives

Content can be synchronised to media players using an external
synchronisation drive. That drive, when connected to a media player,
will add all the missing content to the media player, and all content
only on the media player will be added to the drive as well.

Syncing a media player

This is the standard procedure to synchronise a media player with an
external synchronisation drive.

	connect the drive

	observe the led start flashing

	wait for the led to stop flashing

	disconnect the drive

The media player should now be synced with the drive, and the drive should have the latest content from the media player.

Debugging information is sent to syslog, in
/var/log/daemon.log. Here’s an example logfile excerpt:

Jun 24 15:52:12 koumbit-mp-test logger: starting mediaplayers /lib/udev/mediaplayers-syncdrive on sdc, looking for label isuma_sneakernet
Jun 24 15:52:13 koumbit-mp-test logger: starting mediaplayers /lib/udev/mediaplayers-syncdrive on sdc1, looking for label isuma_sneakernet
Jun 24 15:52:13 koumbit-mp-test logger: mounting sdc1 on /media/isuma_sneakernet
Jun 24 15:52:13 koumbit-mp-test logger: synchronizing git-annex repository /var/isuma/git-annex with remote sneakernet as www-data

Updating a synchronisation drive

Just connecting a synchronisation drive on a media player should
download all the content from the media player and update the
synchronisation drive to that content.

To see which transfers are in progress, you can use the following
command:

antoine@koumbit-mp-test:/var/isuma/git-annex$ sudo -u www-data -H git annex info --fast
repository mode: indirect
trusted repositories: 0
semitrusted repositories: 7
 00000000-0000-0000-0000-000000000002 -- bittorrent
 2d61a8de-a24e-44e3-9aa0-54f033fec1e9 -- host-mp20120507-1.mp.isuma.tv [here]
 36d2cb94-e0a2-446a-87c9-02f73135b302 -- anarcat@desktop008:~/src/isuma/isuma-files
 9401d7b3-44d2-48ab-a9f1-c77fac469a1a -- [s3]
 c510ddad-24cd-4353-b5f4-03581f6f9dca -- cs.isuma.tv [origin]
 d2a7d4ff-1dbf-4bfa-bb97-ae593626daf6 -- [sneakernet]
 e747d5c8-ea47-480f-8c5d-2986ce65ed89 -- isuma.tv
untrusted repositories: 1
 00000000-0000-0000-0000-000000000001 -- web
transfers in progress:
 uploading video/mp4_sd/strata_may15_hd.mp4.mp4 to sneakernet
available local disk space: 929.96 gigabytes (+1 megabyte reserved)

Above we see that a video file
(video/mp4_sd/strata_may15_hd.mp4.mp4) is being uploaded from
the media player to the sneakernet, that is, the synchronisation
drive. This file was downloaded on the media player after the
synchronisation drive was created, so git-annex is updating the drive.

If synchronisation would be complete, you would see transfers in
progress: none.

Note

Note that git-annex may wait a little between two transfers,
so you may want to run the command multiple times to make
sure the transfer is complete.

To make sure no content is missing, compared to a media player, you
can use:

git annex find --not --in sneakernet --in here

Manual updates of synchronisation drives

However, if the media player isn’t up to date, it’s still possible to
synchronise the drive by hand in one shot, with:

cd /media/isuma_sneakernet/git-annex
git annex sync
git annex get --exclude 'video/original/*'

There may be bandwidth limits on the sync drive. Use the
annex.web-download-command setting to control that. For example,
to disable bandwidth limits by hand, use:

git config --unset annex.web-download-command

To see the current setting, use:

git config --get annex.web-download-command

Design notes

This was originally implemented using rsync in the 2.x series (see
Redmine issue #181 [https://redmine.koumbit.net/issues/181] for background) but
we now use the git annex sync [http://git-annex.branchable.com/git-annex-sync/] command with the
--content argument to synchronise the contents. This is
implemented in the /lib/udev/mediaplayers-syncdrive, deployed
through Puppet in the mediaplayers module. It is configured to
automatically start when a properly formatted hard drive is connected
in /etc/udev/rules.d/010_mediaplayers_syncdrive.rules.

The synchronisation script will automatically mount (and then unmount,
when finished) the drive on /media/isuma_sneakernet then run the
git annex sync --content command. Puppet is assumed to have
already properly configured the remote in the main git repository for
that sync to work properly.

External drive format

A drive is identified as carrying Isuma content if it has the
isuma_sneakernet filesystem label (all lowercase). The git-annex
repository should be in a git-annex subdirectory on the filesystem
(all lowercase).

This folder is further subdivided by content and file format. So, one
should find a file structure like this on the drive:

isuma_sneakernet/
 git-annex/
 picture/small
 picture/large
 picture/xlarge
 album/small
 album/large
 album/xlarge
 video/small
 video/large
 video/xlarge
 attachment/normal
 vod/normal
 video/mp4_low
 video/mp4_sd
 video/mp4_hd
 video/mp4_hd2
 video/webm_low
 video/webm_sd
 video/webm_hd
 video/webm_hd2
 video/original
 audio/aac
 audio/ogg
 uvanga/image
 uvanga/video

Some of those files may not be synced with the media player based on
prefered content settings. For example, usually the video/original
content is not synced to the media players.

Creating a new synchronisation drive

This is usually done from an existing media player, but can actually
be done from anywhere that has a network connection. But that will
mean a lot of data will be downloaded over the wire, which will be
slow or worse, may end up imposing extra bandwidth costs with your
Internet Service Provider.

	connect the drive

	find the drive identifier:

$ dmesg | tail
[1373209.300987] scsi 18:0:0:0: Direct-Access OEM Ext Hard Disk 0000 PQ: 0 ANSI: 5
[1373209.301912] sd 18:0:0:0: Attached scsi generic sg3 type 0
[1373209.427839] sd 18:0:0:0: [sdd] Spinning up disk...
[1373211.584051] .ready
[1373211.615951] sd 18:0:0:0: [sdd] 3907029168 512-byte logical blocks: (2.00 TB/1.81 TiB)
[1373211.640576] sd 18:0:0:0: [sdd] Write Protect is off
[1373211.640580] sd 18:0:0:0: [sdd] Mode Sense: 10 00 00 00
[1373211.664833] sd 18:0:0:0: [sdd] Write cache: enabled, read cache: enabled, doesn't support DPO or FUA
[1373211.776849] sdd: sdd1
[1373211.926204] sd 18:0:0:0: [sdd] Attached SCSI disk

or:

$ cat /proc/partitions
major minor #blocks name

 8 0 488386584 sda
 8 1 248832 sda1
 8 2 1 sda2
 8 5 488134656 sda5
 254 0 479952896 dm-0
 254 1 8179712 dm-1
 8 48 1953514584 sdd
 8 49 1953512001 sdd1

In both examples above, the new partition discovered is
/dev/sdd1.

Warning

The following can destroy data if not followed
properly. In particular, we are using the device
/dev/sdd1 from here on, if that device is in use
for some other filesystem, it will be destroyed at
the next step. You can use the df command to see
mounted filesystems.

	format it with an ext4 filesystem with the magic label:

mkfs -t ext4 -L isuma_sneakernet /dev/sdd1

	mount the drive:

mkdir /media/isuma_sneakernet
mount /dev/sdd1 /media/isuma_sneakernet

	clone the git-annex repository:

git clone /var/isuma/git-annex /media/isuma_sneakernet/git-annex

Note

If you are not on a media player, the
/var/isuma/git-annex repository will not be
available. Not all is lost however! You can still
clone from any other git-annex repo, including the one on
the central server. For example, this should also work:

git clone antoine@cs.isuma.tv:/var/lib/git-annex/isuma-files /media/isuma_sneakernet/git-annex

You may need to create a new SSH key pair and install it
on the central server. Since it is running an old version
of Monkeysphere, you will also need to run:

monkeysphere-authentication u antoine

For the change to be effective.

Once the repository is cloned, however, you will likely
want to ensure the synchronisation drive doesn’t require
SSH keys to synchronise the metadata on media players. So
change the URL to the internal repository, even if it
doesn’t exist yet:

git remote set-url origin /var/isuma/git-annex

	make sure repository is readable by the webserver, for uploads:

chown -R www-data /media/isuma_sneakernet/git-annex

Note

If you are running this on a non-Debian system, this user
may not exist. For the record, the current UID for
www-data is 33, so this would be equivalent:

chown -R 33 /media/isuma_sneakernet/git-annex

See also the Debian base-passwd package [https://tracker.debian.org/pkg/base-passwd] for more
information about those identifiers.

	launch the sync script:

umount /dev/sdd1
/lib/udev/mediaplayers-syncdrive sdd1

Note

If you are not running this on a media player, the above
will fail because it will not find the git-annex
repository. You can still synchronise data directly
from S3 using the following commands:

sudo -u www-data git annex enableremote s3
sudo -u www-data git annex get

This can take up to 24 hours right now (June 2015), depending on the
data set size.

Note

Creating a completely new sync drive from scratch, at the
Koumbit datacenter, took around 30 hours with connexion
rate-limited to 5MB/s. The dataset was about 860GB in June
2015, see Redmine issue #17834 [https://redmine.koumbit.net/issues/17834]
for details.

Creating user accounts

Access to the media player is granted on a per-user basis. Users need
to be created in Puppet, in the user::admins class. For example,
this grants access to the antoine user:

user {
 'antoine':
 ensure => present,
 gid => $gid,
 groups => $groups,
 comment => 'Antoine Beaupre',
 managehome => false,
 shell => '/bin/bash',
 password => '6[...censored..]';
}

A new block like this needs to be added to the
site/user/manifests/admins.pp file for every user we want to give
access to.

Warning

Note that this grants access to all machines managed
through Puppet, including sudo access. Some
rearchitecturing of the Puppet classes would need to be
performed to have access specific to the media players,
but this was not a requirement at first.

Note

The previous access system was based on the root
account, which is now locked down.

Upgrading git-annex

Depending on the git annex installation method, there are various ways of updating
git-annex when a new release comes out.

As a rule of thumb, as long as the first part of the git-annex version
number doesn’t change, upgrades are non-destructive and will be
forward- and backward-compatible. For example, right now the version
number is 5.20150409, which means it is basically Git annex 5. A
major upgrade including a data migration would come if the next
release is something like 6.x.

Those changes are documented upstream in the upgrades page [https://git-annex.branchable.com/upgrades/] and are not very
common. Keep in mind that git-annex “will always support upgrades from
all past versions”, so upgrading is usually a painless process, which
only requires running git annex upgrade after deploying the new
codebase.

Since we are usually deploying with Debian packages from NeuroDebian,
only that method is documented here. You can see the latest versions
available from NeuroDebian in their package page [http://neuro.debian.net/pkgs/git-annex-standalone.html]. To perform
an upgrade by hand, you can simply do:

apt-get install git-annex-standalone

With Puppet, it is also possible to specify the desired version with:

class { 'gitannex':
 method => 'package',
 ensure => '5.20150819+gitgc587698-1~ndall+1',
}

The downside of using a specific version in Puppet is that it needs to
be updated every time a new release comes up.

Note

Hopefully, git-annex will eventually be part of the standard
backports, issue #760787 [https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=760787]
was opened about this in Debian. That way, git-annex will be
part of the regular unattended-upgrades process.

User guides

How to setup a playlist

(once the cabletv package is completed this will all be possible to do remotely through a web interface, and parts of it will be automated)

	Open www.isuma.tv on your browser.

	Make sure that you are connected to your IsumaTV Media Player:

[image: _images/1_make_sure_connected.png]

	Sign in with your username and password.

[image: _images/2_sign_in.png]

	Go to your playlist by entering this URL: www.isuma.tv/DID/tv/name of your community and click on your playlist at the bottom of the page to open it.

[image: _images/4_go_to_playlist_top.png]
[image: _images/5_go_to_playlist_middle.png]
[image: _images/3_go_to_playlist.png]

	Click on “EDIT THIS” under the DASHBOARD

[image: _images/6_click_on_edit_this.png]
[image: _images/7_click_on_edit_this_bottom.png]

	Edit your playlist by adding and removing videos as well as changing their order.

Note: Make sure to only select videos that are currently available on the MP and not videos still in the process of being downloaded to the Media Player.
Note: Don’t forget to save your playlist regularly, even if you have not yet finished (the save button is at the bottom of the page).

	Make a note of the node number for your playlist in the address bar (in this example www.isumatv/node/56706)

	[image: _images/8_make_a_note_top.png]
[image: _images/9_make_a_note_bottom.png]

	You can now save this new playlist to the Media Player for local broadcast.

Note: The playlist can be modified from any computer but then needs to be saved on the Media Player in order to be broadcasted.

In the address bar type www.isuma.tv/playlist/playlist/node number for your playlist
In this example http://www.isuma.tv/playlist/playlist/56706

[image: _images/10_in_the_address_bar.png]

	Make sure you see the IP address of your local Media Player. In this example: 192.168.0.110

If instead of reading numbers like this one, you see isuma.tv or amazon this means you are not connected to the Media Player. In this case, return to www.isuma.tv and make
sure you have connected to the Media Player and can see the message “You are connected to an IsumaTV Media Player”.

[image: _images/11_make_sure_you_see_the_IP.png]

	Right-click in the middle of the page. Select “Save Page as”.

[image: _images/12_middle_of_the_page.png]

10. Change the file name to playlist.xspf (Your file can have any name but it is essential to save it as an .xspf file).
Select “WebPage, HTML only” option at the bottom right of the window. Then click “Save”.

[image: _images/13_change_the_file_name.png]

11. You will then return to the www.isuma.tv/playlist/playlist page. Press the “Ctrl” and “Q” keys on the keyboard to quit this page.
The page will close and a VLC Player window will automatically pop up. Click the Play button, then select “Add…”

[image: _images/14_return_to_vlc.png]

	Select your playlist (playlist.xspf). Click “Open”.

[image: _images/15_select_your_playlist.png]

	Click the Loop button and the Full Screen button on the VLC Player. Then Click the Play button to begin playing the playlist.

[image: _images/16_click_the_loop.png]

You are now done!

To stop the playlist:

	Press the “Esc” (escape) key on the keyboard.

	Under the “Media” menu at the top left of the Player, select “Quit”.

	The VLC Player will close and the web browser will reopen automatically on www.isuma.tv after a short delay.

Hardware platforms

The media players project doesn’t require any special hardware to run,
although we do expect the usual:

	network interface

	display and sound card (to play videos)

	storage

However, since we are storing videos, we are aiming for large storage
specifications. As of July 2014, the Isuma.tv store is around 1 TB
(terabyte, or 0.9 TiB, tebibyte), so we currently deploy 2TB hard
drives.

The rest of this section is dedicated to current and previous platform
specifications.

Rugged specification

This specification was built in 2015 in order to set strict
requirements of durability and availability for tough
environments. The list of requirements is sorted by priority, with
more important items first.

	Durability

The MPs may be subject to dust, humidity, low temperatures, high
temperatures and general user abuse: dropping, pulling out wires,
etc. The MPs are to be operating in extreme conditions like the
Canadian Arctic or the Brazilian Amazon. For example, Nunavut
temperatures vary from -50°C to 10°C but humidity is low. In Olinda
Brazil, temperatures vary from 20°C to 30°C and humidity is on
average at 70%.

So ideally, we would like a tough piece of hardware that could take
anything. But, if this just to unrealistic in regards to all our
other requirements, we may need to think about having different MP
models for different climates.

SSD storage devices may be prioritized over HDD for
their greater resistance to shocks.

The machines should self-heal as much as possible. For example, the
device should be able to automatically restart after a power
outage, which is usually just a configuration in the BIOS.

	Storage capacity

Media players should have a capacity of at least 1 TB (10^12
bytes).

	Ports

there should be at least the following ports on the media players:

	1 Ethernet (internet from modem)

	2 USB (keyboard and mouse)

	1 VGA (we currently connect a VGA splitter to the only VGA port
on the current model, to carry the video signal from the MP to a
scan convertor where it is converted for television broadcast,
and to a TV monitor to access the MP to save a playlist for
broadcast)

	2 auxiliary stereo sound (one port to send the sound to the video
modulator for television broadcast, and the other port to send
the sound to the TV monitor)

	1 user-friendly power adapter (it can be internal or external, as
long as the user doesn’t have too much opportunity for mistakenly
inserting the power adapter the wrong way or touching what seem
to be exposed wires)

This is a minimum. Having extra ports is not an issue.

	Expandability - field upgradeable storage

Media Players may need to be setup with some sort of RAID
technology to allow for future storage expansion. In short, the
expandability requirement requires that we setup some sort of
stripping configuration, but this may threaten its stability so
it’s a trade-off.

Some machines have hot-swappable “trays” of hard drives that can
make swapping in and out multiple redundant drives easier, and that
is what we use in the datacenter. But unfortunately, those devices
are usually not sealed against the environment, so it conflicts
with the durability requirement. Regular users with little
technical ability should be able to perform storage swaps in the
field. This will require special storage enclosures,
ideally hot-swappable screw-less drives.

One big concern here is that people can learn how to remove and
install disks, but the hard part is which disk to add/remove and
when. We could make LED displays for this, but in our experience,
software control for those LEDs has been limited, so this is the
biggest hurdle here.

Also, it should be possible to add content to the media players by
shipping storage devices that would be somewhat attached to the
Media Player in the field. The extra device would be used to sync
new content in and out of the Media Player, but also, and ideally,
used to expand the storage capacity of the media player.

	Availability

Perhaps from supplier in Montreal to decrease delivery times and
eliminate any customs delays.

	Size

As small and as light as possible to reduce shipping costs and for
easier handling.

Lightweight specification

Those specifications were designed for lighter models that do not have
the same strict environmental requirements as the rugged model, but
that should be small, lighter and cheaper.

	Price

Less than 1000$ CAD, shipping and hard drives included.

	Size

As small and as light as possible to reduce shipping costs and for
easier handling. Should be no bigger than the current solid logic
2.5 version: 11”(W) x 11.5” (D) x 2.5”(H) and approx. 10lb (drives
included).

	Availability

Perhaps from supplier in Montreal to decrease delivery times and
eliminate any customs delays.

	Storage capacity

Media players should have a capacity of at least 6 TB (6 x 10^12
bytes).

	Ports

there should be at least the following ports on the media players:

	1 Ethernet (internet from modem)

	3 USB (keyboard, mouse, sync drive)

	1 DVI (monitor and scan convertor for cable TV)

	1 extra VGA a plus

	1 stereo sound port, extra auxiliary a plus

	1 user-friendly power adapter (it can be internal or external, as
long as the user doesn’t have too much opportunity for mistakenly
inserting the power adapter the wrong way or touching what seem
to be exposed wires)

This is a minimum. Having extra ports is not an issue.

Note that this is similar to the rugged setup except the following
requirements are gone:

	durability

	expandability

The “ports” requirements is also slightly different.

Shuttle XPC small desktops

We have one Shuttle machine in the office, in the XPC series [http://global.shuttle.com/products/productsList?categoryId=19],
there isn’t much to say about it other than its peculiar form factor
is not very convenient.

Logic Supply desktops (v2.5 series)

Around 10 machines were built with some Logic Supply Mini-ITX [http://www.logicsupply.com/components/cases/mini-itx/] cases,
although the original product link [http://www.logicsupply.com/products/ci57_2766] is now dead. We also
had trouble with shipping and delivery to Canada. Finally, some hard
drive sockets were damaged during travel, which makes us doubt of the
viability of this platform on the long term.

Advantech rugged servers (1.0 series)

We have deployed some Advantech UNO-3282 [http://buy.advantech.com/UNO+3282+S/UNO-3282-S/system-2926.htm]
servers on the field.

[image: _images/UNO-3282-front_B.jpg]

Two of those servers were provisionned for Isuma and are still running
after years of service. They have sealed cases that are very solid.

Advantages:

	very sturdy

	sealed, so it won’t collect dust

	power button protected from accidental tripping

Disadvantages:

	heavy

	power supply is external

Troubleshooting

Test procedure

When a new media player is installed, it needs to be thoroughly
tested. This procedure can also be used on existing media players to
diagnose problems.

	ping/pong test

	new videos are downloaded on media players

	URL rewriting for recent and old videos is performed correctly on
the website

	upload videos larger than 8MB without errors

	git-annex syncs metadata (files added, removed) with website

	git-annex uploads files to central server, and eventually to S3

	files uploaded by a media player are eventually transcoded and
redistributed to other media players

Basics

Queue is full but media player sees it empty

If the queue is full of good stuff to download but the media player
sees it as empty, it could be that the schedule is too
restrictive. Try to disable the schedule in the central server and try
again.

Password resets

If the password for the media player is lost, it can be recovered by
rebooting in a special Linux mode. See Koumbit’s documentation [https://wiki.koumbit.net/PasswordReset#Linux_init.3D.2BAC8-bin.2BAC8-sh]
for that purpose.

This technique is complicated and should be considered last resort, if
other techniques do not work or are unavailable, as it is difficult
and prone to errors.

This technique is known as “booting into /bin/sh as init(8)”.

	reboot the machine (by doing control-alt-delete or by holding
the power button for 5 seconds and then clicking it again)

	you will then see the BIOS screen flash by quickly, then the
GRUB menu, which should be shown for a few seconds, quickly
hit the shift key to disable the timeout.

	hit the e key to edit the menu item

	you are now in an editor, with the arrow keys, navigate to the end
of the line starting with linux

	append init=/bin/sh to the line

	hit control-x to boot the resulting configuration

	you should end up at a commandline prompt, enter the following
command in order (do not type what is after the # symbol):

mount -w -n -o remount / # -w read/write, -n don't write /etc/mtab
mount /usr # in case passwd is on /usr/bin
/usr/bin/passwd #
sync
umount /usr
sync
sync # it cannot hurt
umount -a # will mount / read only
reboot -nf # -n don't sync or write anything, -f don't call shutdown

	the machine should reboot with the new root password

Logging in to media players on the console

Some media players are in “Kiosk” mode by default, which makes it
difficult to diagnose or see what is going on. A Linux console should
be available if you type control-alt-F2. Then login with your user
account.

Note

See Creating user accounts for information on
how to grant access to users.

Remote login to media players

Note

This system replaces the old isuma-autossh package. Some
media players may still use the old system. Refer to the 2.x
documentation for those.

Each media player is configured to automatically login to the central
server with a reverse SSH tunnel. The tunnel should always be up if
the media player is online, as it is supervised by the autossh
command (which we are looking at replacing, see Redmine issue #17967 [https://redmine.koumbit.net/issues/17967]).

This tunnel allows operators to login through SSH into the media
player, regardless of the firewall rules or network configuration at
the other end.

By default, each media player has a random port assigned, but one can
also be defined in the Puppet manifests. In any case, the most
reliable way to find the port of a given media player is with
lsof:

antoine@cs:~$ sudo lsof -c ssh -a -i 4TCP:22000-23000 -s TCP:LISTEN -P -a -u host-mp20120507-1.mp.isuma.tv
COMMAND PID USER FD TYPE DEVICE SIZE/OFF NODE NAME
sshd 5025 host-mp20120507-1.mp.isuma.tv 7u IPv4 70526409 0t0 TCP *:22529 (LISTEN)

Note

The above media player name is from the standard hostname
configuration. You may need to login to the Puppet Dashboard
or look in the Puppet manifests to find that name.

In the above example, you can connect to the media player
host-mp20120507-1.mp.isuma.tv on port
22529 on cs.isuma.tv. So let’s try that:

$ ssh -p 22529 -l antoine cs.isuma.tv
antoine@localhost's password:

The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

Debian GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent
permitted by applicable law.
Could not chdir to home directory /home/antoine: No such file or directory
antoine@koumbit-mp-test:/$

The last warning is not important: it just indicates that my user has
no home directory. Also note that you can login to the media player
from anywhere, not just from the central server.

I am now logged into the media player and can do various maintenance tasks.

Note

See the Creating user accounts for information on
how to grant access to users.

Inspecting status from the commandline

Note

This section is kept for historical purposes only.

There used to be a way to list media players from the commandline, but
this has not been ported to the new system. Access the Puppet
Dashboard to see a listing of media players.

Git-annex

Git-annex [http://git-annex.branchable.com/] is an extension to the
Git source control management software [http://git-scm.com/] that
allows you to store large files into git, but also to manage multiple
repositories on many different storage. It was chosen because it
supports S3, metadata and lots of other things, see the similar
projects section for more information about why
git-annex was chosen.

It is used in the media players project to keep track of files across
all media players, sync them to S3, but also to minimally track the
media players locations so that the main website can determine if a
given file can be served through S3 or a local media player. See the
Architecture overview for more information
about this.

In a git-annex :repository:, files are stored as symbolic links,
pointers to the real file that resides in the .git/annex/objects
directory. The .git/annex directory is well described in the
upstream “internals” documentation [http://git-annex.branchable.com/internals/] but basically, a file
can be present on some or all repositories, and git-annex tracks
where the files are actually located in a special git branch called
the git-annex branch.

The git-annex assistant is used to automatically manage the files
(addition, removals, synchronisation to S3, etc).

Caveats

Note that recent git-annex releases need fairly recent version of git,
at least 1.8.1. If you are running the git-annex binary directly,
this is not a problem as the standalone version ships with its own
copy of git, and the Debian package ensure dependencies are properly
satisfied. But if you run git annex (ie. first call git and
use the annex subcommand), you will end up with an older version
of git, which may cause problems.

The workaround is to use the absolute path to the git binary
distributed in the standalone package. It can be in
/usr/lib/git-annex.linux/exec/git, /opt/git-annex.linux/git or
/usr/local/bin/git. Use the following command to figure out the
git version:

$ git --version
git version 2.1.4

Above, the git version is 2.1.4, which is after 1.8.1, so no problems.

Troubleshooting stuck queues

	login to the server (using the above procedure)

	become the proper user (su www-data -s /bin/bash)

	look at the git-annex logfiles (/var/isuma/git-annex/.git/annex/daemon.log*)

	if nothing comes to mind, run git annex sync by hand

Diagnostics on the git-annex assistant

The assistant is ran automatically on the media players. It is
configured through Puppet in the gitannex::daemon class. It can be
stopped and restarted using a fairly standard system-level startup
script:

service git-annex stop
service git-annex start
service git-annex status

When it is running, the logs are in the git annex repository, for
example in /var/isuma/media/video/.git/annex/daemon.log.

A rough idea of the state of the assistant can also be found in
.git/annex/daemon.status, for example, while the assistant is
starting up, it will look like this:

root@koumbit-mp-test:/var/isuma/git-annex# cat .git/annex/daemon.status
lastRunning:1434577176.692046s
scanComplete:False
sanityCheckRunning:False
lastSanityCheck:

Stopping transfers

To make the assistant stop doing transfers, you can use the
annex-ignore setting for a given remote. For example, to stop
downloading from S3, you can use:

git config remote.s3.annex-ignore true

Also note that some old URLs are still stuck in the git history, so
you will probably need to disable the web remote as well:

git config remote.web.annex-ignore true

See Redmine issue #17958 [https://redmine.koumbit.net/issues/17958] for
more information about this.

The assistant may need to be restarted for those changes to take
effect.

Media player not detected

If a media player running git-annex is not detected when visiting the
website, it will not load the videos locally. Everything will be very
slow or unusable for the users of the media players and the green ball
confirming that the media player is detected will not show on the main
website.

Note

	Note that you may want to start this list from the bottom

	for more trivial cases.

	To diagnose this, first make sure the media player has the cronjob
configured:

crontab -u www-data -l
HEADER: This file was autogenerated at 2015-07-22 16:08:27 -0400 by puppet.
HEADER: While it can still be managed manually, it is definitely not recommended.
HEADER: Note particularly that the comments starting with 'Puppet Name' should
HEADER: not be deleted, as doing so could cause duplicate cron jobs.
Puppet Name: metadata
*/5 * * * * /usr/local/bin/save_repo_metadata --repository /var/isuma/git-annex

The above is the cron job deployed by Puppet in the
gitannex::metadata class.

	Then you can try to run the cron job by
hand:

sudo -u www-data /usr/local/bin/save_repo_metadata --repository /var/isuma/git-annex

And see if any errors shows up. You can add --verbose for more
information:

sudo -u www-data /usr/local/bin/save_repo_metadata --repository /var/isuma/git-annex --verbose
no change detected in IP addresses ({'external_ip': u'70.83.139.100', 'internal_ip': '192.168.20.227'}), nothing committed

Note

In the above example, the IP address hasn’t changed since the last
run. If the IP address changed, you would get something like this:

sudo -u www-data /usr/local/bin/save_repo_metadata --repository /var/isuma/git-annex -v
saved metadata {'external_ip': u'70.83.139.100', 'internal_ip': '192.168.20.227'} into git-annex commit 2a152045d43630c60595a27c557344350960d6f1

--verbose --verbose will also output debugging information,
including the IP address discovery, the changes to the content of
the remote.log file and so on.

You can use the --external-ip and --internal-ip arguments
to bypass the detection code if that is the piece that is missing.

	Those changes should show up in the remote.log file in the
git-annex branch. You can inspect the branch on the media
player with the command:

cd /var/isuma/git-annex
git cat-file -p git-annex:remote.log

You should see a line like:

2d61a8de-a24e-44e3-9aa0-54f033fec1e9 external_ip=70.83.139.100 internal_ip=192.168.20.227

	Then run the same command on the central server, which should be
synchronised automatically by the assistant on both sides:

cd /var/lib/git-annex/isuma-files
git cat-file -p git-annex:remote.log

	Finally, also run this on the main website:

cd /persistent/media
git cat-file -p git-annex:remote.log

	All files should be the same. If not, run git annex sync to
force a synchronisation of the branches on the machine that
doesn’t have the right version.

Offline media player not detected

If a media player is offline, but still seen as offline, it is
possible that the purge script has not timed out yet. To purge it,
use:

/usr/local/sbin/purge_stale_mps --repository /var/lib/git-annex/isuma-files/ -v --uuid a23c90e1-baf5-42d8-9bdf-c367eba3a4a8 --timeout 0

See Metadata purge script for more details.

Unblocking the assistant

It seems the assistant on the main website sometimes stops
adding and moving files to S3. This procedure bypasses the assistant
and manages files by hand on the main website.

Note

Permissions are important here! Run this as the user that
owns the git-annex repository, for example:

sudo -u www-data -H <command>

or:

sudo -u www-data -i

	inspect the status of the git repository:

www-data@ip-10-87-135-88:/persistent/media$ git status
On branch master
Changes to be committed:
(use "git reset HEAD <file>..." to unstage)
#
new file: video/original/ruth_mc_5_revisited.mov
new file: video/small/nitvyouthshow.mov.jpg
#
Untracked files:
(use "git add <file>..." to include in what will be committed)
#
video/large/2005kaugjajjuk.mov.jpg
video/large/2005kaugjajjuk2.mov.jpg
video/large/cofounderthoughtsfrance.mov.jpg
video/large/essakaneroughedit.mov.jpg
video/large/essakaneroughedit2.mov.jpg
video/large/europeartcirqfounders.mov.jpg
video/large/fibonaccimexicoandessakane.mov.jpg
video/large/fibonaccimexicoroughedit.mov.jpg
video/large/highschoolchristmasfoodbank.mov.jpg
video/large/igloolikhighschoolchristmasconcert.mov.jpg
video/large/iglooliktofrance.mov.jpg
[...]

here you can see files were added to the git staging area (the
“index”), presumably by git annex add, but were never
committed. you can inspect those changes with:

$ git diff --cached
diff --git a/video/original/ruth_mc_5_revisited.mov b/video/original/ruth_mc_5_revisited.mov
new file mode 120000
index 0000000..9834110
--- /dev/null
+++ b/video/original/ruth_mc_5_revisited.mov
@@ -0,0 +1 @@
+../../.git/annex/objects/wK/Gp/SHA256E-s151210348--f43d44e93d6523728baee2acfce6a3a7a819e68a05299e28bd3c9b60522ed2ca.mov/SHA256E-s151210348--f4
\ No newline at end of file

	the untracked files need to be inspected, sometimes we have seen
files that are symlinks like in git-annex but that were not
staged for commit. run this to list the files:

 $ git status --porcelain | sed 's/?? //' | xargs ls -l
 -rw-rw-r-- 1 www-data www-data 26857 Jun 22 13:51 video/large/2005kaugjajjuk2.mov.jpg
 -rw-rw-r-- 1 www-data www-data 24108 Jun 22 14:25 video/large/2005kaugjajjuk.mov.jpg
 -rw-rw-r-- 1 www-data www-data 23231 Jun 22 15:26 video/large/cofounderthoughtsfrance.mov.jpg
 -rw-rw-r-- 1 www-data www-data 17567 Jun 22 17:30 video/large/essakaneroughedit2.mov.jpg
 [...]

here you see the files are *not* symlink, which is fine.

.. note:: If symlinks were found above, we could have added them
 directly with::

 git add <symlink>

 Do be careful here: adding a *non* symlinked file *will*
 create major performance issues, so make sure the file
 is a symlink if you ``git add`` it by hand.

	all untracked files (after symlink cleanup, above) can be then
added with git-annex add:

git annex add .

	then all of this can be committed into git:

git commit -m"add uncommitted files by hand"

	files should then be moved to S3 by hand, since the assistant may
not pick them up properly:

git annex move --to s3

Now the files are copied over properly to S3. You will probably want
to restart the assistant to fix whatever was broken there:

sudo service git-annex restart

You should also file a bug on the upstream bugtracker [http://git-annex.branchable.com/bugs/] to describe the problem that
caused this in the first place.

Changing files in git-annex

By default, git-annex doesn’t allow file modification. It is, however,
possible to make modifications with a special set of commands.

	To edit a file, you first unlock it:

git annex unlock <file>

	Then you can replace the file or edit it directly

	When done, add the file back into git-annex:

git annex add <file>

Note

To cancel changes on the file instead of saving the new
version, use:

git annex lock <file>

Errors running git-annex

If you get an error like this:

/opt/git-annex.linux/runshell: 51: /opt/git-annex.linux/runshell: cannot create /.ssh/git-annex-wrapper: Directory nonexistent

It is likely that your $HOME directory isn’t setup
properly. Ensure the $HOME variable is set to something reasonable
(e.g. /var/www for www-data) or use sudo -u <user> -H
<command> or sudo -i -u <user> when using sudo.

Evaluating disk usage

Because everything is a symlink in git-annex, traditionnal tools like
du will not work as expected. This is a known issue with
git-annex [http://git-annex.branchable.com/forum/__34__du__34___equivalent_on_an_annex__63__/]
with various workarounds. The one we use is the git annex info
command, like this:

www-data@koumbit-mp-test:/var/isuma/git-annex/video$ git annex info --fast *
directory: large
local annex keys: 15700
local annex size: 486.52 megabytes
annexed files in working tree: 15700
size of annexed files in working tree: 486.52 megabytes
directory: mp4_sd
local annex keys: 7977
local annex size: 897.83 gigabytes
annexed files in working tree: 7977
size of annexed files in working tree: 897.83 gigabytes
directory: original
local annex keys: 0
local annex size: 0 bytes
annexed files in working tree: 15800
size of annexed files in working tree: 582.74 gigabytes
directory: small
local annex keys: 15698
local annex size: 48.51 megabytes
annexed files in working tree: 15698
size of annexed files in working tree: 48.51 megabytes
directory: xlarge
local annex keys: 6213
local annex size: 207.93 megabytes
annexed files in working tree: 6213
size of annexed files in working tree: 207.93 megabytes

The local annex * lines are the files available locally and the
annexed files are the files available globally on that branch of
git.

Dealing with files committed by mistake

It can happen that files get committed into git (instead of
git-annex) by mistake. In this case we absolutely want to remove
those files from the whole git history. For this we use a tool called
bfg [https://rtyley.github.io/bfg-repo-cleaner/] because it can
easily remove files larger than a certain threshold.

We need to do the following for every git repository:

	install a java runtime:

sudo apt-get install default-jre-headless

	download a copy of bfg [https://search.maven.org/remote_content?g=com.madgag&a=bfg&v=LATEST]
(unless it becomes available in Debian directly [http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=781546])

	run this command in the repository:

git clone --mirror /path/to/repo repo.git
java -jar bfg-1.12.3.jar --strip-blobs-bigger-than 1M repo.git

	examine the output

	run this if you are satisfied and want to delete the remaining data:

git reflog expire --expire=now --all && \
git gc --prune=now --aggressive

This needs to be repeated for every repository.

Inspecting the git-annex branch

It can be that we need to look into the git-annex branch for some
reason. There is good documentation upstream [http://git-annex.branchable.com/internals/] about how that branch
is laid out, but this may not be immediately useful for git
beginners. A few tricks:

	to list the files in that branch, you can use the
.git/annex/index file like this:

$ GIT_INDEX_FILE=.git/annex/index git ls-files | tail -3
schedule.log
trust.log
uuid.log

	to read a specific file (already demonstrated above):

$ git cat-file -p git-annex:uuid.log
31912b57-62a5-475c-87a7-582b5492a216 WD green 1.5TB backup drive timestamp=1400246214.443942s
31912b57-62a5-475c-87a7-582b5492a216 green_crypt timestamp=1400246182.491768s
5adbab10-0f7a-467b-b0d8-5d7af2223103 anarcat@marcos:/srv/video timestamp=1397883325.873598s
5adbab10-0f7a-467b-b0d8-5d7af2223103 main (anarcat@marcos:/srv/video) timestamp=1400245511.126472s

in this case, we see the list of remotes and their recorded
descriptions.

Removing refused commits

It is possible that the central server refuses to sync with a media
player because it did an illegal modification. In this case you would
see something like this:

www-data@koumbit-mp-test:/var/isuma/git-annex$ git push
Counting objects: 5, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (3/3), done.
Writing objects: 100% (3/3), 365 bytes, done.
Total 3 (delta 2), reused 0 (delta 0)
remote: WARNING: protected files modified, refusing commit: set(['trust.log'])
To host-mp20120507-1.mp.isuma.tv@cs.isuma.tv:/var/lib/git-annex/isuma-files
! [remote rejected] git-annex -> git-annex (pre-receive hook declined)
error: failed to push some refs to 'host-mp20120507-1.mp.isuma.tv@cs.isuma.tv:/var/lib/git-annex/isuma-files'

The way to recover from this is to reset the git-annex branch to a
previously known good state. The commits that need to be removed can
be found with:

$ git log --oneline --stat git-annex
2f682fc update
trust.log | 1 +
1 file changed, 1 insertion(+)
9a7b6b1 update
trust.log | 1 +
1 file changed, 1 insertion(+)
0326e0e update
c1d/68a/SHA256E-s368747492--2c1d01a79e8366e1d8ef12d14aeae8b941648f5853666fd09b95af7657d8c63d.mov.mp4.log | 3 ++-
1 file changed, 2 insertions(+), 1 deletion(-)

In the above we see the changes to the trust.log file which were
refused. We also see a previous commit to a track log. We will try to
reset to that commit, assuming that it is safe. First we backup the
current position, just in case we want to jump back:

git tag git-annex-bak 2f682fc

Then we update the git-annex branch to the older commit and try to
push. Notice how we pass the current commit as well, to avoid updating
the wrong branch or losing commits that may have been added in
between:

$ git update-ref refs/heads/git-annex 0326e0e 2f682fc
$ git push
Everything up-to-date

It worked! It also seems that were reset to the same commit as what
was already on the remote server as well, otherwise the push would
have send other commits up as well. We can now remove our backup:

git tag -d git-annex-bak

Caution

It is possible that good commits become tangled up with
bad commits, and just reseting the branch like the above
will lose those commits. In this case, you will need to
clone the repository aside and rebase on a new
branch. First, tag the known good version (we take the
origin remote branch, but you can also use git
log to find a better, closer, one):

git tag good origin/git-annex

Then clone the repository:

cd ..
git clone isuma-files isuma-files-fixup

Then rebase interactively [https://help.github.com/articles/about-git-rebase/]
against the good version:

cd isuma-files-fixup
git rebase -i good

That will start an editor where you can drop the bad
commits. Use git log --stat in another window to find
which commits are problematic. When done, push the
changes back in the other repository:

git push origin git-annex:git-annex-fixup

Then backup the current git-annex branch and push the new
one:

git tag git-annex-bak git-annex
git update-ref refs/heads/git-annex git-annex-fixup
git push

Once this works, delete the backup tag:

git tag -d git-annex-bak

Note

If the above rescue procedure is too complicated, try to
checkout the git-annex branch in a clone and revert the
commits:

cd ..
git clone isuma-files isuma-files-fixup
cd isuma-files-fixup
git checkout git-annex
git revert <bad>
git push origin git-annex:git-annex
cd ../isuma-files
git push

Known issues

During this project, we have filed a number of issues upstream, some
of which were fixed and some that are still pending. This documents
the known problems with git-annex we have documented so far.

Bugs

	s3 InternalIOException [http://git-annex.branchable.com/bugs/s3_InternalIOException__63__/]

	Resource temporarily unavailable when running enableremote [http://git-annex.branchable.com/bugs/Resource_temporarily_unavailable_when_running_enableremote/]

	high memory usage in assistant [http://git-annex.branchable.com/bugs/assistant_memory_leak/]
(workaround: restart the assistant)

	sync problems between the remotes [http://git-annex.branchable.com/bugs/sync-git-annex_branch_not_syncing_in_the_assistant/]
(work around: with www-data a cronjob on the main site server or
running git annex sync by hand, see also Redmine issue #16727 [https://redmine.koumbit.net/issues/16727]

	NFS problems (and workarounds) [http://git-annex.branchable.com/tips/git-annex_on_NFS/]

Missing features

	easy way to reproduce normal download command [http://git-annex.branchable.com/todo/easy_way_to_reproduce_normal_download_command/]

	S3 fsck support [http://git-annex.branchable.com/todo/S3_fsck_support/]

	git annex du command [http://git-annex.branchable.com/todo/git-annex_info___34__du__34___remote_support/]

	removing remote.log information completely [http://git-annex.branchable.com/forum/removing_remote.log_information_completely/] -
for the offline detection, see Redmine issue #18262 [https://redmine.koumbit.net/issues/18262]

Note that this list was basically created from anarcat’s
contributions to git-annex [http://git-annex.branchable.com/users/anarcat/]. And of course,
more bugs specific to Isuma are documented in the Redmine issue
tracker [https://redmine.koumbit.net/projects/media-players-3/issues].

Resolved issues

Those issues have been filed by the Koumbit team but have been
resolved, either by upstream or by Koumbit.

Bugs

	git annex log fails with -raw error [http://git-annex.branchable.com/bugs/log_fails_with_-raw_error/]
(pending deployment of 5.20150710 or later)

	trouble with SSH caching on NFS [http://git-annex.branchable.com/bugs/git-annex-shell_doesn__39__t_work_as_expected/]

	weird entry in process list [http://git-annex.branchable.com/bugs/weird_entry_in_process_list/]

	mesh issues [http://git-annex.branchable.com/forum/mesh_configurations] -
problem was a simple configuration problem, to use the proper
preferred content expressions

Features

	transfer in progress not present in json output [http://git-annex.branchable.com/bugs/transfer_in_progress_not_present_in_json_output/]
(pending deployment of 5.20150617 or later, see Redmine issue #16706 [https://redmine.koumbit.net/issues/16706]

	credentials-less access to S3 [http://git-annex.branchable.com/todo/credentials-less_access_to_s3/]

	server-level daemon [http://git-annex.branchable.com/todo/server-level_daemon__63__/]

	git-hook to sanity-check git-annex branch pushes [http://git-annex.branchable.com/todo/git-hook_to_sanity-check_git-annex_branch_pushes/]

	disabling a special remote [http://git-annex.branchable.com/tips/disabling_a_special_remote/]

	sharing a git-annex repository between multiple users [http://git-annex.branchable.com/tips/shared_git_annex_directory_between_multiple_users/]

	s3 bandwidth limitations and next release [http://git-annex.branchable.com/forum/s3_bandwidth_limitations_and_next_release/]

	how do automated upgrades work? [http://git-annex.branchable.com/forum/how_do_automated_upgrades_work__63__/]

	how to edit the git-annex branch? [http://git-annex.branchable.com/forum/how_to_edit_the_git-annex_branch__63__/]

	remote-specific meta-data [http://git-annex.branchable.com/forum/remote-specific_meta-data/]

	optimising lookupkey [http://git-annex.branchable.com/forum/optimising_lookupkey/]

	original filename on s3 [http://git-annex.branchable.com/forum/original_filename_on_s3/]

	canceling wrong repository merge [http://git-annex.branchable.com/forum/canceling_wrong_repository_merge/]

	scalability with lots of files [http://git-annex.branchable.com/forum/scalability_with_lots_of_files/]

Note that this list was basically created from anarcat’s
contributions to git-annex [http://git-annex.branchable.com/users/anarcat/].

S3 diagnostics

You can access the S3 buckets directly if you ever need some
diagnostics. You can find the credentials on the main server in
/persistent/media/.git/annex/creds/<UUID> where <UUID> is the
UUID of the S3 remote, as shown in git annex info --fast. The
first line is access key, and the second one is the secret key.

Those credentials can then be used with the s3cmd software [http://s3tools.org/s3cmd] to do various operations on the
repository. For example, you can list the contents of a bucket:

$ s3cmd ls s3://isuma.misc.test
2015-02-13 00:37 10441 s3://isuma.misc.test/SHA256E-s10441--533128ceb96cb2a6d8039453c3ecf202586c0e001dce312ecbd6a7a356b201dc.jpg

Development

Koumbit developped several components to make this project
work. Here’s an overview of the components:

	Git-annex Drupal integration

	Metadata sync script

	Metadata purge script

	Git-annex Puppet module and facts

	Hard drive sync script

	Git-annex integrity check script [http://git-annex.branchable.com/todo/git-hook_to_sanity-check_git-annex_branch_pushes/],
also in the git-annex puppet module

	http-parser and libgit2 official Debian 7 “Wheezy” backports [https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=786341] to have
python-git2 working properly in Wheezy (required for the
metadata sync script)

	vnstat Puppet facts

	improvements to the monkeysphere, sshd and apt shared modules

Some of those components are more thoroughly described below.

Git-annex internals

This section shows some of the internals of git-annex and through
that, explains some implementation decisions we have made regarding the
way we use git-annex and how we communicate with it.

Fetching key names

We are optimising key lookups by bypassing the git-annex bootstrap
and directly getting the information from git. So the command:

$ time git annex lookupkey films/Une\ contrehistoire\ de\ linternet.webm
SHA256E-s370358233--502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.webm
0.01user 0.01system 0:00.97elapsed 2%CPU (0avgtext+0avgdata 16288maxresident)k
26856inputs+0outputs (111major+1103minor)pagefaults 0swaps

simply becomes, with only git:

$ time basename $(readlink Une\ contrehistoire\ de\ linternet.webm)
SHA256E-s370358233--502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.webm
0.00user 0.00system 0:00.00elapsed ?%CPU (0avgtext+0avgdata 1576maxresident)k
0inputs+0outputs (0major+77minor)pagefaults 0swaps

This is much faster than the original and can be used directly on the
website without caching. It is used to generate the S3 URL for remote
viewing, by prefixing it with the S3 bucket name, to give, for
example, the following URL:

http://s3.amazonaws.com/test/SHA256E-s370358233--502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.webm

Location tracking

Next up is trying to figure out if a given remote has a copy of the
file or not. Here git-annex’ performance isn’t so great:

$ time git annex find --in 2f90b958-95e4-44e3-8d3b-e780b63936d1 Une\ contrehistoire\ de\ linternet.webm
Une contrehistoire de linternet.webm
0.18user 0.20system 0:07.19elapsed 5%CPU (0avgtext+0avgdata 31736maxresident)k
48336inputs+5952outputs (724major+10599minor)pagefaults 0swaps

It’s doing much more work here. What we do instead of the above is to
first lookup the git-annex key using the previous procedure, then grep
the git-annex branch just using git:

$ time sh -c "file=SHA256E-s370358233--502d2cdbe609299f483c6172d7cc93a3be6e9057e007fd910da1f4f752a2ce27.webm ; pref=$(printf $file | md5sum| sed 's/^\(...\)\(...\).*$/\1\/\2/'); git cat-file -p refs/heads/git-annex:$pref/$file.log | grep 2f90b958-95e4-44e3-8d3b-e780b63936d1"
1407511627.234161s 1 2f90b958-95e4-44e3-8d3b-e780b63936d1
0.00user 0.00system 0:00.00elapsed 80%CPU (0avgtext+0avgdata 5788maxresident)k
0inputs+0outputs (0major+463minor)pagefaults 0swaps

Both this approach and the lookupkey mechanism have been reviewed
upstream [http://git-annex.branchable.com/forum/optimising_lookupkey/].

Git-annex Drupal integration

We have built a Drupal module to integrate with git-annex. It is
currently available for download at the Koumbit Redmine [https://redmine.koumbit.net/projects/media-players-3/repository/drupal-gitannex]
or:

git clone git://git.koumbit.net/drupal-gitannex.git

There is builtin documentation, mostly in the gitannex.module file
that should be good to get people started. The goal of the module is
to allow Drupal to build URLs to the best location of a file. It does
not handle adding or removing files into git-annex itself: this
should be taken care of by an assistant running in the
background. That assistant can be deployed as described in the
Git-annex manual.

The module shouldn’t need any special configuration, once
installed. There are two main entry points that should prove useful:

	gitannex_get_internal_ip()

	gitannex_get_preferred_url($file)

A copy of the module’s documentation is available below. More
information is available directly in the source of the module, as PHP
documentation strings.

gitannex_get_internal_ip

Find the internal IP of a media player

This is mainly used to determine if there is a media player available
to the client.

This function will search the IP of the currently connected client in
the git-annex repository and find which remote has this IP mentionned
in its remote.log file. it returns FALSE if there is no media
player present, otherwise it will return an array of metadata about
the remote server.

Wrapper around gitannex_get_remote() to easily get the internal IP
of a given media player.

This more or less replaces the cachingserver_get_localserver()
function in the previous API, but this talks to git-annex instead of
the central server and returns only the IP address instead of a
list. Use gitannex_get_remote() to get an associative array of media
players properties (including unique identifier and so on).

gitannex_get_preferred_url

Construct a valid URL for the given filename

This function will generate the best possible URL for a given uploaded
file. it will look in the git-annex tracking information to see if the
file is available in a nearby media player

This replaces the cachingserver_get_url() function in the old 2.x
API, with the difference that it treats all files equally and doesn’t
accept restrictions such as “type” or “option”.

Metadata sync script

There is a metadata sync script that sends IP address information to
the central server with a custom Python script. The script is
available in the gitannex Puppet module described above and can be
easily deployed with the gitannex::metadata class.

The script writes the data in the remote.log file of the git-annex
branch. A discussion also took place upstream [http://git-annex.branchable.com/forum/remote-specific_meta-data],
where the remote.log location was suggested. That file then gets
synced all aroud by the assistant, along with the other changes on the
git-annex branch. The data currently synced is:

	public IP address (external_ip_address field)

	private IP address (internal_ip_address field)

This information is synced automatically by the git-annex assistant
without around a minute after it is changed by the script, which runs
every five minute in a cron job configured by Puppet in the
gitannex::metadata class.

The git-annex branch is written directly using the libgit2 Python
bindings (pygit2) [http://www.pygit2.org/]. pygit2 was not available
in Debian 7 “Wheezy” so required a significant backporting effort [http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=786341], including
libgit2 and http-parser. pygit2 itself ended up not being
backportable to “wheezy” at all and is currently installed with
pip through Puppet. See Redmine issue #17091 [https://redmine.koumbit.net/issues/17091]
for more details.

The public IP is gleaned from public services, currently httpbin.org [http://httpbin.org/], ip.42.pl [http://ip.42.pl/] and
ifconfig.me [http://ifconfig.me/] (in that order), with a one
second timeout. If more privacy is desired or we get throttled, we can
easily implement our own script to do this on the central server, but
this is considered premature optimisation at this point. The script
can be easily extended to change the source of the public IP address,
by editing the script right now. A static IP can also be provided on
the commandline.

An IP address change should look something like this in the git
history:

antoine@cs:/srv/gitannex-test$ git show git-annex
commit 7b21e94b8af7f914f65b3c9addad8a1f61f9be69
Author: Antoine Beaupré <anarcat@koumbit.org>
Date: Mon Apr 6 17:29:20 2015 -0400

 saving metadata fields

diff --git a/remote.log b/remote.log
index 62d49da..7ad8d40 100644
--- a/remote.log
+++ b/remote.log
@@ -1 +1 @@
-d57de23d-0f38-4bef-b743-a9567beb853d external_ip=70.83.139.100 interna
+d57de23d-0f38-4bef-b743-a9567beb853d external_ip=127.0.0.1 internal_ip
antoine@cs:/srv/gitannex-test$ stat .git/objects/7b/21e94b8af7f914f65b3c9addad8a1f61f9be69
 File: `.git/objects/7b/21e94b8af7f914f65b3c9addad8a1f61f9be69'
 Size: 174 Blocks: 8 IO Block: 4096 regular file
Device: ca01h/51713d Inode: 274888 Links: 1
Access: (0444/-r--r--r--) Uid: (999/gitannex) Gid: (999/gitannex)
Access: 2015-04-06 21:30:12.506830065 +0000
Modify: 2015-04-06 21:30:06.646904510 +0000
Change: 2015-04-06 21:30:06.646904510 +0000
 Birth: -

Notice how the change took less than a minute (46 seconds) to
propagate to the central server. It is so fast because the media
players and the central server are both running the assistant, so are
in a “connected” mode.

Then the presence of a media player on a given IP address can then be
found with:

$ git cat-file -p git-annex:remote.log | grep 70.83.139.100
d57de23d-0f38-4bef-b743-a9567beb853d external_ip=70.83.139.100 internal_ip=192.168.20.108

This is effectively what the Drupal module does, more or less.

Metadata purge script

The metadata purge script, described in
Offline detection, is a Python script residing on the
central server, in /usr/local/sbin/purge_stale_mps. It is ran
every minute through a cronjob. Both the cron job and the script are
deployed through the mediaplayers::purge Puppet class.

The script uses the same pygit2 library as the other metadata
script, so the above comments about the backports and pip also apply
here.

By default, the script looks in the remote.log file for entries
having IP address information (the string external_ip=, more
specifically) and then looks up the UUIDs of the media player
through the PuppetDB REST API in order to find the last
checkin time of the media player in Puppet. If the last check in time
is older than a certain timeout, the entries for the media player are
removed from remote.log completely. The timeout is by default set
to 35 minutes, to cover the regular 30 minute delay at which Puppet is
ran, plus 5 minutes for slower Puppet runs.

The script can be run in --dryrun mode to simulate what it would
do, during tests. An example run should look like this:

antoine@cs:~$ /usr/local/sbin/purge_stale_mps --repository /var/lib/git-annex/isuma-files/ --dryrun -v
found uuids in remote.log: ['a23c90e1-baf5-42d8-9bdf-c367eba3a4a8', '2d61a8de-a24e-44e3-9aa0-54f033fec1e9']
Starting new HTTP connection (1): localhost
Starting new HTTP connection (1): localhost
host koumbit-mp-test.office.koumbit.net age: 1:11:46.820404
Starting new HTTP connection (1): localhost
host mediaplayerv25n6.office.koumbit.net age: 0:01:28.489461
found expired remotes: [(u'2d61a8de-a24e-44e3-9aa0-54f033fec1e9', u'koumbit-mp-test.office.koumbit.net')]
rewriting remote.log to remove: [u'2d61a8de-a24e-44e3-9aa0-54f033fec1e9']
not generating commit because running in --drymode, expired: [(u'2d61a8de-a24e-44e3-9aa0-54f033fec1e9', u'koumbit-mp-test.office.koumbit.net')]

In the above case, it found the koumbit-mp-test.office.koumbit.net
media player that is out of date (but didn’t remove its entry because
of the --dryrun flag).

We could also have restricted the run to the other media player and
changed the timeout to force a timeout:

antoine@cs:~$ /usr/local/sbin/purge_stale_mps --repository /var/lib/git-annex/isuma-files/ --dryrun -v --uuid a23c90e1-baf5-42d8-9bdf-c367eba3a4a8 --timeout 0
found uuids in remote.log: ['a23c90e1-baf5-42d8-9bdf-c367eba3a4a8']
Starting new HTTP connection (1): localhost
Starting new HTTP connection (1): localhost
host mediaplayerv25n6.office.koumbit.net age: 0:03:17.836652
found expired remotes: [(u'a23c90e1-baf5-42d8-9bdf-c367eba3a4a8', u'mediaplayerv25n6.office.koumbit.net')]
rewriting remote.log to remove: [u'a23c90e1-baf5-42d8-9bdf-c367eba3a4a8']
not generating commit because running in --drymode, expired: [(u'a23c90e1-baf5-42d8-9bdf-c367eba3a4a8', u'mediaplayerv25n6.office.koumbit.net')]

The commits are generated on the git-annex branch, and git annex
sync is then called to make sure the synced/git-annex branch.

Caution

We have sometimes had problems with the changes not
propagating properly here, with the “union merge” driver
of git-annex overriding our changes. This is a known
issue, documented partly in Redmine issue #18262 [https://redmine.koumbit.net/issues/18262] and the
upstream issue removing remote.log information
completely [http://git-annex.branchable.com/forum/removing_remote.log_information_completely/].

Debian packages

Caution

This entire section is deprecated. We are phasing out the use of
Debian packages for now and progressively replacing them with
Puppet manifests. Only the isuma-kiosk package remains now and
will also eventually be replaced.

The Isuma Media Players make an extensive use of Debian packaging to
deploy software but also configuration and policy. This section
describes how the packages are built and maintained.

Automated package build system

Isuma Debian packages are automatically built by Koumbit’s [http://koumbit.org] Jenkins server [https://jenkins.koumbit.net]. The complete documentation about this
server is available in the Koumbit wiki [https://wiki.koumbit.net/JenkinsService], this is only a summary
applicable to Isuma packages.

When a change is pushed to one of the Debian packages git repository,
they are automatically rebuilt within an intervall of around 15
minutes. The package is built within a Debian Wheezy environment and
then uploaded into the Koumbit Debian archive [http://debian.koumbit.net/], which is automatically signed.

Packages are uploaded to unstable by default. To migrate them to
testing or stable, a manual operation [https://wiki.koumbit.net/JenkinsGuide#Migrating_a_package_down_into_stable]
must be performed on the Debian archive, a server only Koumbit
personnel currently has the access to.

Automated package upgrades

Since isuma-local-servers 2.5.0, upgrades are automatically
performed on all Media Players. This is done through the use of the
unattend-upgrades package [https://help.ubuntu.com/community/AutomaticSecurityUpdates#Using_the_.22unattended-upgrades.22_package]. Packages
from the Koumbit archive and the main Debian archive are automatically
updated. To update more packages automatically, create a new file in
/etc/apt/apt.conf.d the specify a new Origins-Pattern that is
appended to the existing list.

See /etc/apt/apt.conf.d/50unattended-upgrades or
/usr/share/doc/unattended-upgrades/README for more information
about this software.

Manually building a package

To build the current Debian packages by hand:

git clone gitolite@git.koumbit.net:isuma-local-servers.git
cd isuma-local-servers
git-buildpackage

To issue a new version, edit files, commit them, then bump the package version and rebuild:

edit file/foo.txt
git commit -m"update foo" file/foo.txt
dch -r -i "updating foo" # increments the version number and inserts a commit in debian/changelog
git-buildpackage # or debuild

Make sure you use -D stable, if you want to make a hotfix for
stable. Package is now in .. or ../build-area.

To upload the package:

scp isuma-local-servers_* antoine@cs.isuma.tv:/var/www/debian/incoming

then on the central server:

sudo -u www-data reprepro -b /var/www/debian/ processincoming incoming

kind of klunky but works.

Manually installing a package

Copy the package to the local server and run:

dpkg -i isuma-local-servers_<version>_all.deb

If it complains about some dependencies not being installed, run:

apt-get install

to install them.

After installing the package, you will need to perform a few additional steps:

get the ssh private key for the site server and place it in ISUMA_ROOT with the name .id_dsa.
scp cachingserver@isuma.tv:/home/cachingserver/.ssh/id_rsa /var/isuma/.id_rsa
(password in issue #187)

At this point you can check the logs in /var/isuma/log and make sure things are running properly.

Manually upgrading Media Players

Mass upgrades or installs can be performed with our scripts:

mp_ssh_config | grep Online
for s in mediaplayerv25n3 mediaplayerv25n4 mediaplayerv25n5; do mp_ssh_into $s apt-get update; done
for s in mediaplayerv25n3 mediaplayerv25n4 mediaplayerv25n5; do mp_ssh_into $s apt-get install isuma-local-servers; done

This should normally not be necessary as the Media Players are
automatically upgraded.

Configuration Management

All players can be controlled by a central configuration management system, a
Puppet master, to ensure that some utility packages are installed everywhere
and that access is configured right on all computers.

Important

Note that Puppet was not systematically deployed on all
media players originally, so it may not be deployed on media
players that were not online at the time of conversion (February 2015). At the time of
writing (June 2015), the central server and most online media players have been
converted to Puppet. See Redmine issue #15587 [https://redmine.koumbit.net/issues/15587] for more
information.

For more information on Puppet, see the project’s official
documentation [https://docs.puppetlabs.com/puppet/].

Here’s how one can set up a puppet master server and then to hook up clients to
it. This guide was largely inspired by the puppet official install
manual [https://docs.puppetlabs.com/guides/install_puppet/pre_install.html].

Installing the puppet master

First, we’ll install some tools that are required for puppet and some modules
that we’ll use with it:

apt-get install ntp lsb-release augeas-tools

Next, since we’re using a stable version of Ubuntu that doesn’t have access to
the latest puppet version (3.7) yet, we’ll add an apt source to download
packages directly from puppetlabs. Before that we need to add the PGP key that
signs all packages in that repository so we can verify their integrity:

cd /etc/apt/trusted.gpg.d
curl https://downloads.puppetlabs.com/puppetlabs-gpg-signing-key.pub \
 | gpg --no-default-keyring --keyring ./puppetlabs-gpg-signing-key.gpg --import

Now we can add the source:

cat > /etc/apt/sources.list.d/puppetlabs.list <<EOF
Puppetlabs main
deb http://apt.puppetlabs.com precise main
deb-src http://apt.puppetlabs.com precise main
EOF
apt-get update

With this in place we can now install the puppet master package. This package
will install puppet master itself, plus apache2 and an apache module called
passenger that is used to run puppet’s ruby code through apache:

apt-get install puppetmaster-passenger

We now want to configure the puppet master so that it can respond to different
host names. This step is optional if the configuration management server
already has the hostname puppet.yourdomain.tld. Edit the file
/etc/puppet/puppet.conf and in the section of the file below [main] add the
following line (adjust it to reflect which hostnames you want your server to
respond to. This step is important since all clients will be verifying that the
encryption certificate they receive when establishing connection does match the
puppet master’s host name):

dns_alt_names = puppet,puppet.isuma.tv,cs.isuma.tv,puppetdb,puppetdb.isuma.tv

In the same file, comment out (put a # sign at the beginning of the line) the
line that starts with the text templatedir =.

Still in the same file, add the following line in the [main] section:

environmentpath = $confdir/environments

We should create the main environment directory so that we can put our files in
it later on:

mkdir -p /etc/puppet/environments/production
cat > /etc/puppet/environments/production/environment.conf <<EOF
Get modules from two directories:
modules/ should contain generic service configuration blocks
#
site/ should contain anything specific to your infrastructre: overrides
on generic modules, glue between modules, user management, etc.
modulepath=site:modules
EOF
mkdir /etc/puppet/environments/production/{modules,site,manifests}

Then since we changed the information about which hostnames should be added to
the certificates, we need to regenerate the certificates. Stop apache, delete
the current set of certificates (don’t do this step for already existing puppet
masters. in that case it’s better to use puppet cert to clear the current
certificate but since we’re setting up a new server it’s ok to remove the whole
directory), and run the master attached to the terminal so that it creates its
TLS certificate files. Once the puppet master shows that it’s running version
3.x.y, hit ctrl-c:

service apache2 stop
rm -rf /var/lib/puppet/ssl
puppet master --verbose --no-daemonize

Let’s add some basic configuration that’ll be usefull for all further puppet
manifests. In /etc/puppet/environments/production/manifests/site.pp add the
following:

filebucket { 'server': server => $servername }
File { backup => server, owner => 0, group => 0, mode => '0644' }
Exec {
 path => '/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin',
}

Now let’s start apache back up:

service apache2 start

Setting up git repositories to ease up modification

Now that we have the most minimal puppet master setup, we’d like to put files
inside git repositories so that we can backtrack to an older version of the
files if something goes wrong. This will also make it easier to change files if
multiple people need to be working on them at the same time.

Later we’ll have all the modules inside git repositories, too, but for now
since we don’t have any module, we’ll setup repositories for the /etc/puppet
and the /etc/puppet/environments/production/manifests directories:

cd /etc/puppet
git init .
cat > .gitignore <<EOF
*~
*.dpkg-dist
/puppet.conf
/fileserver.conf
/auth.conf
environments
files
manifests
modules
site
EOF
git add .gitignore
git commit -m "initial commit"

cd /etc/puppet/environments/production/manifests
git init .
git add site.pp
git commit -m "initial configuration"

Now we can add a script to automate creation of a repository for modules. Create the file /etc/puppet/create_repo.sh with the following contents:

#! /bin/sh -e
#
Create a repository for a puppet module with the right permissions so that a
group can collectively push commits to it.
#
This script must be run on the puppet master, not on your own computer
#

GITGROUP=puppetadmin
PUPPET_ENVT=production

usage() {

 cat <<EOF
Usage: $0 name [modules | site]

$name is the name of the module to create, use site_ prefix if it is a 'site'
module

second argument is the path to put it in (only modules/ and site/ supported
now). defaults to modules/

This script must be run on the puppet master, not on your own computer.
EOF
 exit 1
}

set -- `getopt hv $*`

for i; do
 case "$i" in
 -h) shift; usage;;
 -v) shift; set -x;;
 --) shift; break;;
 esac
done

if [$# -lt 1] ; then
 usage
fi

umask 002

cd /srv/git
module=$1
type=${2:-modules}

echo Creating $type in $module

if [-e puppet-$module.git]; then
 echo /srv/git/puppet-$module.git already exists, aborting
 exit 2
fi

git init --bare puppet-$module.git
ln -s /etc/puppet/environments/$PUPPET_ENVT/$type/$module puppet-$module
cd puppet-$module.git
git config core.sharedRepository true
chown -R :$GITGROUP .
chmod g+ws . -R
ln -s ../../git-hooks/post-receive-checkout-copy hooks/post-receive

cd /etc/puppet/environments/$PUPPET_ENVT/$type/
git clone /srv/git/puppet-$module.git $module
cd $module
git config core.sharedRepository true
chown -R :$GITGROUP .
chmod g+ws . -R

To facilitate operations on multiple repositories, we’ll also add a
configuration file for the application mr:

cat > /etc/puppet/.mrconfig <<EOF
#
PLEASE KEEP THIS FILE IN ALPHABETICAL ORDER. IT MAKES IT EASIER TO GET RID OF
DUPLICATES AND ADD MISSING PIECES
#
[DEFAULT]

lib =
 isuma_prod='cs.isuma.tv:/srv/git'
 koumbit='git://git.koumbit.net/'
 default=${isuma_prod}
 git_assure_remote() {
 remote="$1"
 url="$2"
 git remote | grep -q "^$remote$" || {
 echo I: Adding remote $remote
 git remote add "$remote" "$url"
 git fetch "$remote"
 }
 git remote -v | grep "^$remote" | grep -q "$url" || {
 echo I: Changing remote URL for $remote
 git remote set-url $remote $url
 git fetch "$remote"
 }
 }

[manifests]
checkout = git clone ${default}/puppet-manifests.git manifests
EOF

Then commit it to the repository. We also want to ensure that the script is
executable:

cd /etc/puppet
chmod a+x create_repo.sh
git add create_repo.sh
git commit -m "add a helper script for setting up repositories for new modules"
git add .mrconfig
git commit -m "add a configuration file for mr"

Next step is to add some hooks that we’ll use with all module repositories:

cd /srv
mkdir git
cd git
git clone git://git.koumbit.net/git-hooks.git

Now we have mimic what the create_repo.sh script would have done if we had
used it to initiate two modules, except for /etc/puppet and
/etc/puppet/environments/production/manifests. For that we’ll create
bare repositories and a symlink for each repository to the original directory
that they’re referring to. The symlinks could be avoided in theory, but they
make it easier to maintain a hook script that works for every repository:

cd /srv/git
git init --bare puppet.git
ln -s /etc/puppet puppet
cd puppet
git remote add origin /srv/git/puppet.git
git push -u origin master
cd ..
cd puppet.git/hooks
ln -s ../../git-hooks/post-receive-checkout-copy post-receive
cd ..
same process for the other repository:
git init --bare puppet-manifests.git
ln -s /etc/puppet/environments/production/manifests puppet-manifests
cd puppet-manifests
git remote add origin /srv/git/puppet-manifests.git
git push -u origin master
cd ..
cd puppet-manifests.git/hooks
ln -s ../../git-hooks/post-receive-checkout-copy post-receive

Finally we want to ensure that the permissions on those repositories are
correct. We need to let users of the group puppetadmin change and create
files in them. For that, we need to create the group, change the permissions
for the repostories we’ve already created, and add desired users in the
puppetadmin group:

cd /srv/git
addgroup puppetadmin
chgrp -R puppetadmin /srv/git/*.git
chmod -R g+ws puppet.git puppet-manifests.git
adduser someadminuser puppetadmin

And with this fairly complicated procedure, we’re done with bootstrapping our
puppet master!

Managing modules

The last step put in place bare repositories and hooks that will automatically
update files in the right places so that our changes are immediately available
to the puppet master.

To make your puppet master manage more files and services, you will most likely
want to change files in the manifests repository – especially the special
file called node.pp which wasn’t created yet.

Also, to be able to reuse blocks of code (called manifests in the puppet world)
you’ll want to organize things into modules. In the process above, we’ve
created two module directories to be able to separate the blocks that should
only manage and configure one aspect of the system (e.g. install and configure
apache) from those that specify how your organization glues services together.
The former should be placed in the modules directory, and the latter should
go in the site directory.

When you’re ready to create a new module repository, you can use the
create_repo.sh script to ease the operation. You should know in advance in
which if modules or site directory you want your module to be placed. Let’s create a user module in the site directory to manage users for our infrastructure:

/etc/puppet/create_repo.sh user site

You can now push code to the repository in /srv/git/puppet-user.git.

Note that the script should only be run as root, for security.

Configuring a dashboard

Important

The following instructions were taken from the puppet-dashboard manual [https://docs.puppetlabs.com/dashboard/manual/1.2/]
and the puppetdb manual [https://docs.puppetlabs.com/puppetdb/latest/] both of which may
diverge from the instructions here. Also, while we currently use
puppet-dashboard, this may change in the future.

Installing packages:

apt-get install puppet-dashboard mysql-server

Note

it looks like the Puppet Dashboard doesn’t actually require PuppetDB.
it seems there was some confusion with puppetboard during
install. yet things seem to work fine, and the below configuration
should have no adverse effects.

Configure puppetdb:

puppet resource package puppetdb ensure=latest
puppet resource service puppetdb ensure=running enable=true
puppet resource package puppetdb-terminus ensure=latest
echo 127.0.0.1 puppetdb >> /etc/hosts
cat <<EOF > /etc/puppet/routes.yaml

master:
 facts:
 terminus: puppetdb
 cache: yaml
EOF

Make sure you have the following in puppet.conf:

[master]
thin_storeconfigs = false
storeconfigs = true
storeconfigs_backend = puppetdb

And in auth.conf:

path /facts
auth any
method find, search
allow localhost

If the puppetmaster was configured without puppetdb as an alt name,
you’ll need to regenerate the SSL certificates:

/usr/sbin/puppetdb ssl-setup

See also this question for another workaround [http://serverfault.com/questions/400092/puppetdb-failed-to-submit-replace-facts-command]
and the upstream documentation [https://docs.puppetlabs.com/puppetdb/latest/install_from_source.html#step-3-option-a-run-the-ssl-configuration-script].

Configuring the database:

CREATE DATABASE dashboard CHARACTER SET utf8;
CREATE USER 'dashboard'@'localhost' IDENTIFIED BY 'my_password';
GRANT ALL PRIVILEGES ON dashboard.* TO 'dashboard'@'localhost';

Put the proper credentials in the /etc/puppet-dashboard/database.yml
file, in the production section.

Then populate the database:

cd /usr/share/puppet-dashboard
rake RAILS_ENV=production db:migrate

Test run:

sudo -u www-data ./script/server -e production

Real run:

vi /etc/default/puppet-dashboard* # uncomment START=yes
service puppet-dashboard start
service puppet-dashboard-workers start

Then configure the master to send reports to the dashboard, in
/etc/puppet/puppet.conf:

[master]
reports=log,http
reporturl = http://localhost:3000/reports/upload

And restart the puppetmaster:

service apache2 restart

Design

This document is the design document for what is dubbed the “3.0
generation of media players”. It covers and explains
various design decisions made during the design. In doing so, we also explain some of
the design of the previous versions, mostly for historical
reasons. Previous historical specifications are also available in the
2.x branch of the documentation [http://isuma-media-players.readthedocs.org/en/2.x/].

The basis of this document was originally written by John Hodgins in
an email to Antoine Beaupré and has since then been repeatedly
refactored. It should be considered a work in progress in the sense
that the design of the 3.0 media players may change in the future or
that this design document may be out of date. The code available in
the Redmine Koumbit repository [https://redmine.koumbit.net/projects/local-servers] should be
considered the authoritative source in case there’s ambiguity. If such
problem is found with this document, bugs can be reported in the
isuma-doc project [https://redmine.koumbit.net/projects/isuma-doc]
See also the About this document section for more information about how to
maintain this documentation.

Context

The 2.x Media Player code base was a bit of a proof of
concept – it needed to be evaluated and used to imagine what we would
build from the ground up. There are a number of things we want to focus
on for the long term: open sourcing, stability, and
scalability. Decisions we make about these things are being applied to
the 2.x development work we are doing as much as possible.

The basic 2.x design is a filesystem with a server (called the
“central server”) and multiple dispersed
clients (called “media players”). The server tracks the locations of remote clients on
networks, locations of files on remote clients, and other metadata for
files. The remote clients contact the central server in order to
syncronize files and send location data. The central server also
publishes information about files and metadata that can be used
by other systems (such as a Drupal-based website) to access and
control files in the filesystem.

The central server was originally implemented in Drupal with the
Queues module, which was fairly inefficient, but allow for flexibly
requeuing items for download and so on. A set of custom PHP scripts
were also written for the media players to communicate with the
central server over an XML-RPC interface. The main website would also
communicate with the central server over XML-RPC to discover file
locations.

Various media players were built in the history of the project. The
above description covers more or less the original design and 2.x
implementation. The Terminology will be essential to understand the
different names given to the devices as history progressed.

Requirements

Here is the set of
requirements we will hold on to in developping prototypes for the next
generation.
Each requirement has, if relevant, a section about the chosen
implementation.

The 3.0 design is a major rift from the 2.x code base, which is
based on a paradigm of queues. The new paradigm would be files,
keeping track of their locations, storing and making available their
metadata, doing things with them and to them, etc.

Open source

The 2.x code base is too specific to Isuma’s use-case to be valuable
to anyone else. The next generation should be abstracted and
generalized, in order to be useful to a wider variety of projects.

	Implementation

	This is done by reusing existing open-source tools
(mainly Puppet and Git-annex) and documenting the process more
thoroughly, here and in the Koumbit Redmine issue tracker. Some
software is written to glue parts together, mostly Python
scripts and Puppet manifests, and are available in the Puppet
git repositoryies., All software and documentation produced by Koumbit is
released under a GPL-compatible license [https://en.wikipedia.org/wiki/GNU_General_Public_License#Compatibility_and_multi-licensing].

Standard communication API

There should be a well defined API for communication between the
different entities (local servers, central servers, clients fetching
content, other clients fetching metadata). The previous communication
2.x API was through XMLRPC. XMLRPC was quite a pain to deal with, but
it’s RPC and generally works. JSON and REST protocol are also elegant
and much simpler to use than XMLRPC.

	Implementation

	we have settled on using the Puppet and git-annex
protocols as black boxes and expand on this. Puppet does provide
a good REST API, especially through the PuppetDB system. The
git-annex interface is mostly through standard SSH connexions,
but can also communicate with a wide range of third party
services like Amazon S3. We are also thinking of expanding the
current ping/pong test to simply try to fetch files from the
local network, if available, and fallback to the upstream
version otherwise, which would be implemented in a client-side
Javascript library.

Location tracking

The Isuma Media Players project is a geographically distributed
filesystem, with the files on local servers and file metadata on a
central server. One could also describe the local servers and the
central server as a CDN. This includes tracking of local server
locations on the internet, along with files and basic filesystem
functions (add, copy, delete, etc).

	Implementation

	Git-annex features an extensive location tracking
system that allows tracking which device has a copy of which
files and enforcing a minimum number of copies. It will take
care of syncing files according to flexible policies defined
using git-annex’s custom language. Transfer progress will be
implemented using the Puppet inventory, see Monitoring below.

Modularity

Code should be modular so that new functionality could be added and
use existing functionality. Also consider that there are multiple
components that are isolated from each other: the local server,
central server and website codebases are independant from each
other. We should also consider the possibility of supporting other CMS
in the future (e.g. Wordpress).

	Implementation

	Puppet will take care of deploying changes and
monitoring. Git-annex will take care of syncing files and
location tracking. Any website using this infrastructure will
clone the git-annex repository from a central server and use
git-annex to get tracking information. A standard Javascript
library may take care of checking existence of files. Plupload [http://plupload.com/] takes care of one-step uploads, both on
the main website and on media players.

Monitoring

It should be possible to monitor the status of the various media
players easily.

	Implementation

	This is implemented through the Puppet “inventory”
system which makes an inventory of various “facts” collected
from the Puppet clients running on all media players. There is
significant latency in those checks however, Pupppet being run
around once per hour. The exact
parameters to be specified are detailed in Metadata. Monitoring
tools such as Munin, Logstash and/or Kibana could be deployed for more
precise monitoring eventually.

Remote management

it should be possible to remotely manage the media players to debug
problems with them, deploy new software and configuration. Maintenance
should be automated as much as possible, when it’s possible we should
be able to login the machines easily to diagnose problems and
implement solutions. We should also be able to manage video playlists
remotely. Download and upload bandwidth limits should be configurable
remotely. It should also be possible to forbid certain files to be
propagated to certain media players and prioritise the download of
certain files. A link to the dashboard of the currently active media
player should be provided.

	Implementation

	Some parameters can be configured through Puppet,
but remote-control is currently limited to SSH interactions and
thus reserved to developpers. So we will reuse the existing
autossh and auto-upgrade code for now, but it may eventually be
deployed only through Puppet, see Redmine issue #17259 [https://redmine.koumbit.net/issues/17259]
for progress
information on this. A link to the media player configuration is
not currently possible on the main website and remote traffic
prioritisation is not implemented either see Redmine issue #17469 [https://redmine.koumbit.net/issues/17469]
for rationale.

Technical decisions

There are a few decisions to be made about the technical implementation.

Programming language and framework

we favor adopting existing applications as much as possible instead of
writing our own software so in that sense, this question will be
answered by the best software we find for the tools we have. however,
if new software is to be implemented at the server side, Python will
be favored as it supports basic POSIX primitives better than PHP, and
is more stable to implement daemons and servers. The Koumbit team has
sufficient experience with Python to provide support in the future.

Cron or daemons?

so far the cron-based approach has given us a lot of problems, as we
had to implement a locking system that has repeatedly shown its flaws,
thanks to PHP’s poor system-level API. we therefore look towards a
syncing daemon, which git-annex provides. still, some short-lived jobs
like the Custom metadata script and
stopping/starting daemons for Schedules are
implemented using cron jobs.

Architecture overview

This diagram gives a good overview of the system.

[image: _images/design3g.svg]
Caution

The original design above involved having a custom-build
transcoding server. Unfortunately, this implementation
was never completed and therefore the transcoding server
is somewhated treated like a black box. See Redmine issue #17492 [https://redmine.koumbit.net/issues/17492]
for more
details about the transcoding server design.

The transcoding server is built with the Media Mover
Drupal module. It adds files into a git-annex repository
on the transcoding server, where files get transfered to
the central server which, in turn, has the credentials to
send the files up to S3.

Main website

The main website is a source git annex repository, where files are
first added from the website. This is where original files get
“hashed” into their unique “key” storage. Files here are then
transfered to the transcoding server. The repository is also used to
do key lookups to find the keys to each file

The assistant also runs here to pick up (or delete!) files
uploaded by the website and sync files automatically to the
transcoding server.

Transcoding server

The transcoding server runs a source git annex respository. The
files are added to it by the media mover transcoding system, and then
moved to the central server for upload to S3.

The original design expected files to be sent from the main website and central server for
transcoding. Then scripts would have kicked in
to start transcoding the files.

A custom preferred content expression
may be required to avoid removing the file until transcoded copies are
generated.

The assistant runs here to keep the repository up to date and
transfer files to the central server.

More details of this implementation in the Transcoding section.

Central server

The central server is also a transfer git annex repository. All other
git-annex repositories will push and pull from this repo through
key-based SSH authentication, using keys and individual accounts per
media players created by Puppet. Files from the media players, the
main website and the transcoding server are uploaded here and then
uploaded to S3.

Caution

More precisely, the actual preferred content is not
transfer, but more a custom preferred content
expression like not inallgroup=backup, to make sure
it keeps files until they get sent to S3. See
Redmine issue #18170 [https://redmine.koumbit.net/issues/18170] for more details.)

Note

The central server could also be a unwanted repository,
but it seems those may be ignored by git-annex, which is not
what we want.

An assistant is running here to make synchronisation faster, but is
otherwise not really necessary.

The Puppetmaster server is the main configuration server. It will
store Puppet manifests that get managed through git repositories. It
is only accessible to developers through SSH.

The Puppet Dashboard communicates with the Puppetmaster server to
display information about the various media players to Isuma
operators. We use Puppet Dashboard [https://github.com/sodabrew/puppet-dashboard] because it provides
an ENC (External Node Classifier) that will allow us to grant
configuration access to less technical users, something that is not
supported by the alternative, Puppetboard [https://github.com/puppet-community/puppetboard/issues/134].

The dashbaord also provides basic statistics about the status of
Git-annex, disk usage and bandwidth statistics (through vnstat) in
a web interface, which replaces the previously custom-built Drupal
website.

Media players

Media players host are backup git annex repositories. That is:
they hold a copy of all the files they can get their hands on.

The assistant is also running here to download files from S3
storage and synchronize location tracking information with the central
server repository through the SSH tunnel.

Each media player is running a Puppet client which connects to the
central Puppetmaster to deliver facts about the local media player
and git-annex execution.

Each media player also creates a reverse proxy connexion to the
central server using autossh to allow remote management.

Amazon S3

Amazon S3 stores all the files that are known to git-annex. It
therefore behaves as a full backup. The file layout on there is
different than the file layout on the regular git-annex repositories,
as it is only the backend [http://git-annex.branchable.com/backends/] storage. Files there
will look something like:

SHA256E-s31959420--42422ebca6f3a41fc236a60d39261d21e78ef918cf2026a88091ab6b2a624688.mp3.m4a

Yet this is used by git-annex and the website to access files. This
hashing mechanism ensures that files are deduplicated in git-annex.

Otherwise no special code runs on S3 for us: we just treat it as the
mass storage system that it is. Files are stored in the
isuma-files bucket.

Note about standard groups

Note that we use the standard groups [http://git-annex.branchable.com/preferred_content/standard_groups/]
vocabulary above to distinguish the various functions of the different
git annex repositories. An overview:

	Source

	A source git annex repository only holds file while they are being
transfered elsewhere. Its normal state is to only have the
metadata.

	Backup

	This repository has a copy of all the files that ever
existed. This is the case for the S3 and media players
repositories.

Transcoding

Uploaded files are the “originals”. Currently, they are stored in a
specific S3 bucket and also on the main website. The transcoding
server NFS-mounts the main website directory and does transcoding
remotely to avoid overloading the main website. This is handled by
a media mover cronjob, which we would like to get rid of.

Note that we also rescale images (think imagecache) right now, so this
would also need to cover this work.

One solution that John suggested was to write a daemon that would
react to git annex repository changes and would do the transcoding and
upload to amazon. This way:

	the main website doesn’t have access to the AWS credentials

	transcoding operates on a separate server still

	we decouple transcoding from the main website modules

	transcoding implementation remains stable and portable against
Drupal releases and infrastructure changes

One way to react to those changes could be through regular git hooks
or the git annex specific post-update hook that was recently added [http://source.git-annex.branchable.com/?p=source.git;a=blobdiff;f=doc/git-annex.mdwn;h=8e56f42b5e2334c42f911a86e9967a711283ca7e;hp=7cd02fb637b1a3959a78aaaa38736755cf4fea00;hb=798da6cf2e80c278c72dc0faef7fb0a14b19d23f;hpb=dd35cf34a44d84cf38ad01f44dabf413b11ca14e].

We should probably look at existing implementations of such a
transcoding daemon, and how to hook that into git. Otherwise I would
suggest using Python to implement this, as it is future-proof and an
elegant and stable enough language to have a lower barrier to entry.

This could all be done in a second phase of the 3G media
players. Followup is in Redmine issue #17492 [https://redmine.koumbit.net/issues/17492].

Metadata

Caution

This is not implemented yet, as it needs some help from
the transcoding server. For now, we only use path-based
preferred content expressions, see
Changing preferred content. See also
Redmine issue #17492 [https://redmine.koumbit.net/issues/17492] for details about the transcoding server
integration.

We want to attach metadata to files. A few fields should be defined:

	mimetype: image/jpg, video/…

	quality: sd/hd/original/…

	original: name of the original file, allowing transcoded versions to
be linked to their original file. absent for originals.

	channel: the number of the channels the file was published to
(multiple values)

	site: “isuma.tv” for now

The above metadata can then be used to have certain media players sync
only certain content. For example, a given media players may only
carry a certain channel or site, or certain quality settings. Those
could be then used to determined the preferred content [http://git-annex.branchable.com/preferred_content/] of a set (or a
single) media player. We can then create groups [http://git-annex.branchable.com/preferred_content/standard_groups/]
(using the git annex groupwanted command) and assign media players
to those groups (using the git annex group command).

For example, this would create a group for sd and hd files and assign
the current media player to it:

git annex groupwanted sdhd 'metadata=quality=sd or metadata=quality=hd'
git annex group here sdhd

The specific transfer group can be chosen on the commandline or in a
dropdown in the webapp interface, but groups need to be created on the
commandline or in the configuration file. So the group definition
would be propagated through puppet and could be set using the ENC.

Note that those groups will not not make git-annex drop non-matching
files. In other words, files that match the pattern will be kept, but
other files are not necessarily removed immediately.

To add a file to channels (say 1 and 2), the web site would need
to do a command such as:

git annex metdata -s channel+=1 -s channel+=2 file

Arbitrary tags could also be used:

git annex metadata -t word -t awesome file

Schedules

Download schedules are not managed by git-annex yet [http://git-annex.branchable.com/todo/wishlist:___39__get__39___queue_and_schedule./]. We
have made Puppet rules to enforce the sync schedules to disable the S3
remote at specific times, which need to be configured
through the Puppet ENC. See Redmine issue #17261 [https://redmine.koumbit.net/issues/17261] for more details.

We are using the annex-ignore configuration flag to disable remotes
on a specific schedule, an idea documented in the “disabling a
special remote tip” upstream [http://git-annex.branchable.com/tips/disabling_a_special_remote//].

This remains to be connected with the Puppet Dashboard.

We have considered using the Puppet schedules [http://docs.puppetlabs.com/references/latest/type.html#schedule]
but that only precludes certain resources from being loaded, which is
not what we want exactly. A discussion on the Puppet mailing list [https://groups.google.com/forum/#!topic/puppet-users/C5gZCrsUEC0]
clarified that we had to come up with our own solution for this.

Bandwith limits

Bandwidth limitation is not available natively in git-annex. One
solution is to override the annex.web-download-command to specify a
bandwidth limit with wget. The trickle command could also be used
but it wouldn’t be effective for manual downloads (see below). Another
option may be in the AWS support.

This was implemented with the annex.web-download-command (for
downloads) and annex.rsync-upload-options for uploads. It was
verified that S3 uses wget for public downloads [http://git-annex.branchable.com/forum/s3_bandwidth_limitations_and_next_release].

See Redmine issue #17262 [https://redmine.koumbit.net/issues/17262] for
details.

This remains to be connected with the Puppet Dashboard.xs

File deletion and garbage collection

Removed files should be scheduled for deletion after a certain period
of time that remains to be decided. This will be done by the assistant
with the annex.expireunused configuration setting. See Redmine issue #17493 [https://redmine.koumbit.net/issues/17493] for followup.

The annex.expireunused is used by the assistant to prune old
“unused” (e.g. deleted or old versions) content. For example, this
will make the assistant remove files that have been unused for 1
month:

git config annex.expireunused 1m

This setting is documented in the git-annex manpage [https://git-annex.branchable.com/git-annex/].

Files uploaded to the main website repository are automatically
uploaded to S3 and dropped locally, thanks to the source group the
repository is assigned to. In a way, the files, once uploaded to S3,
become locally unused and this is why the assistant removes them.

Server-specific metadata

There is a certain set of metadata that isn’t the same as the “git
annex metadata”. We need to propagate a certain set of server-specific
metadata like the public IP address, last check-in time, and so
on. This is propagated through Puppet runs, which are usually
scheduled around once per hour, so there is significant latency in
those checks.

Puppet facts and settings

Puppet facts are used to send to the central server various
information about the media players. In return, the media players also
receive settings that affect their behavior from the central
server. Those are documented in Metadata.

Custom metadata script

The IP address of the media players are propagated using a custom
Python script that saves the data in the git-annex repository. The
inner workings of the script are detailed in
the development section.

A trace of the reasoning behind this implementation is available in
Redmine issue #17091 [https://redmine.koumbit.net/issues/17091]. A discussion also took place upstream [http://git-annex.branchable.com/forum/remote-specific_meta-data],
where the remote.log location was suggested. Basically, this option
was retained because we wanted to avoid having another channel of
communication and remote-specific metadata has to be inspected by the
website to see where files are. So it’s a logical extension of the
file location tracking code.

The other options that were considered (and discarded) were:

	Puppet fact: required interoperation of the main website with
Puppet, which required more research and a more explicit dependency
on the Puppet requirement. concerns were also raised about the
security of the system, considering how critical Puppet is (because
it runs as root everywhere)

	Pagekite [http://pagekite.me]: doesn’t fulfill the requirement,
because it is only a reverse proxy to bypass NATs and Firewalls. it
is also a paid service and while we could have setup our own
replica, it was a big overhead and wouldn’t have given us the
information we wanted about the internal and external IPs out of the
box. it is still considered as an alternative to the remote access
problem.

	DDNS: would have involved running our own DNS server with a client
that would update a pair of DNS records that would be looked up by
the main website. this would have required a separate authentication
system to be setup when we setup a new machine and extra
configuration on the server. Koumbit currently uses this approach
for the office router (see documentation here [https://wiki.koumbit.net/BindConfiguration#Updates_dynamiques_du_DNS])
but only for the office router, a quite different use case.

Offline detection

The above metadata system works well if media players are always
offline. But unfortunately, the metadata has no timestamp, so it is
not possible for the main website to tell if the information is
stale. For that reason, there is a purge script that detects offline
media players and removes them from the metadata storage. This is
documented in Metadata purge script.

Remaining issues

These are the issues with the current design that have been noticed
during development. There are also Known issues in
git-annex itself that should be kept in mind here.

Hard drive sync feedback

Right now, it is difficult to tell how or when a HD sync operates. we
could send a message through to the main website (same as the IP
address problem above) and use it to inform the user of progress. if
we use git-annex to propagate that metadata, that could involve extra
latency, as it remains to be tested how fast changes propagate from a
media player through to the website. our current preferred solution is
to train users to use the webapp to examine the transfers in
progress. The webapp could also pop up on the desktop when a HD sync
is in progress… Another option is to use desktop notifications
(e.g. the notify-send command), but all those assume a working
screen and desktop configuration, which is not always available.

Operators can’t configure media players

Right now, configuration changes are accessible only by
operators. right now, configuration is being fetched through our
custom XML-RPC API. we’d like that to go away, so it will likely be
replaced by Puppet. but then this means giving users (or at least
“operators”) access to the puppet manifests, which in turns means root
everywhere, so huge security issue and error potential. an External
Node Classifier (ENC) may resolve that issue in that it would restrict
the changes allowed to the operator. the parameters we need to change
here are:

	bandwith limits (Redmine issue #17262 [https://redmine.koumbit.net/issues/17262]

	scheduling times (Redmine issue #17261 [https://redmine.koumbit.net/issues/17261]

	preferred content - this can also be done by the operator through
the git annex webapp UI

This implementation of this still needs to be decided, see Redmine issue #16705 [https://redmine.koumbit.net/issues/16705] for follow.

Remote transfer prioritisation

Transfer prioritisation cannot be handled by an operator on the
central server in the current design. this would need to be managed by
an operator on the media player, so we need to teach users to operate
the git annex webapp UI. those would be called “manual
downloads”. git-annex has a todo item [http://git-annex.branchable.com/todo/wishlist:___39__get__39___queue_and_schedule./]
regarding having queues, but it’s not implemented at all so far. this
will not be implemented at first as on-site operators can prioritise
transfers.

The git-annex web interface by default listens only to the localhost
socket, which make it necessary to have a screen on the media player
for certain operations mentionned above. A workaround is to force the
webapp to listen on a specific interface, but it is yet unclear how to
make it listen on all interfaces. It is possible to forward the web
interface port through SSH, but then it doesn’t allow us to manage
queue priority because this is done by manually forcing files to be
downloaded through the file manager, which won’t show up in the web
interface.

In other words, the remote view of the git-annex web interface allows
us to have a readonly interface to the media-players, only to see
what is going on, but not prioritise downloads or remove files. In
fact, the git-annex webapp interface isn’t currently available at all
in the “kiosk” mode of the media players, which only provide Firefox
and VLC. It could be possible to start the webapp in the kiosk mode as
well, but that remains to be implemented.

There are a few solutions to this issue:

	the aforementionned git-annex implementation, but that would require
hiring Joey and actually writing that software

	VNC access, which would work, but would provide access to only one
media player at a time

	Puppet-based “jobs”, but that would take at least an hour to
propagate and would require Koumbit’s intervention

	more research on similar alternatives (e.g. MCollective, Fabric,
etc)

Multiple UIs

The 3.x design has multiple UIs: the main website, the puppet
dashboard, the git annex webapp UI… this could be overwhelming for
operators of media players. Unfortunately, that is the cost of
modularity and software reuse at this point and, short of implementing
yet another dashboard on top of all the other ones, this will not be
fixed in the short term.

Eventually, an interface could be built on the main website to show
key Puppet parameters and so on.

HTML site cache

The media players still don’t provide an offline copy of the Drupal
site. This is an inherent problem with the way Drupal works: it is a
dynamic website that is hard to mirror offline. There are various
modules in Drupal that could be leveraged to distribute files on the
media players, however:

	boost [https://www.drupal.org/project/boost] creates a static
HTML cache of a running Drupal. The cache may be incomplete or even
inconsistent, so it maybe not the best candidate. Still, it’s a long
lasting project in the Drupal community with stable releases that is
worth mentionning, if only to contrast with the others.

	static [https://www.drupal.org/project/static] can create a
static copy of the website. Updates can be triggered to refresh
certain pages. This looks like a great candidate that could
eventually be deployed to distribute an offline copy of the
website. However, anything that looks like a form (comments,
searching, etc) wouldn’t work. There is only a Drupal 7 version with
no stable releases.

	html_export [https://www.drupal.org/project/html_export] is
similar, but hasn’t seen a release since 2012 and little changes
since then. There is little documentation available to compare it
with the others.

Any of those options would need to first be implemented in the Drupal
site before any effort is made into propagating those files into the
media players. git-annex may be leveraged to distribute the files
but it could be easier to just commit the resulting files into git
and distribute them that way.

Transitionning the main site to a static site generator engine [https://www.staticgen.com/] would help a lot in distributing a
static copy of the website, as there would be clearer separation of
duties in the different components of the site (content submission,
rendering, distribution).

But that is beyond the scope of this document for now. The current
design should be able to adapt to various platforms beyond Drupal,
provided that files are put in the git-annex repository on the
frontend site and that the site properly rewrites URLs depending on
the origin of the client. Still, even with a static site generator,
some research would need to be done to see how clients would discover
the static copy while offline…

Another way this could work would be by providing a simple way to
browse the content on the media player, without being a direct mirror
of the website. This issue is tracked in Redmine issue #7159 [https://redmine.koumbit.net/issues/7159].

Security issues

Introducing git annex adds certain problematic properties to the
system. Those issues were mostly addressed in a git validation hook
(see also Redmine issue #17829 [https://redmine.koumbit.net/issues/17829]
. The validation hook
currently forbids changes to trust.log and file removal. There is
also a discussion upstream about this [http://git-annex.branchable.com/todo/git-hook_to_sanity-check_git-annex_branch_pushes/]
to implement this natively in git-annex.

The hook is installed in
/var/lib/git-annex/isuma-files/.git/hooks/pre-receive and is
managed through Puppet, in
modules/gitannex/files/pre-receive-gitannex-check.py.

Amazon S3 access

To allow media players to upload, they could need to be able to upload
directly to Amazon, but we don’t want that, since it gives way too
much power to the media players. They could, for example, destroy all
the data on the precious S3 buckets.

We could implement access policies and special credentials on Amazon,
but that means yet another set of credentials to distribute, and
complicated configurations on S3.

The solution we have chosen instead is to make the media players
upload to the central server which would then upload to Amazon itself,
as its repository is a transfer repository.

File removal

A malicious or broken media player may start removing files from the
“master” branch in the git repository. This would be destructive in
that the files would appear to be gone or “unused” from all
repositories after those changes are synced out. They could then end
up being garbage-collected and lost.

Note that this could easily be reverted if files are not
garbage-collected everywhere.

A git hook that refuses pushes that remove files has been implemented
to workaround that problem.

Filesystem-level permissions could also have be used to enforce this,
but this was considered to be more complicated, if not impossible.

Tracking information tampering

A malicious media player could start inserting bad information in the
git-annex branch, either corrupting the branch’s content or inserting
erroneous information in other media player’s state information. Since
this is stored in a per file basis (as opposed to per-repository), it
could be difficult to control those kind of corruption.

Once detected however, the offending media player access could be
simply removed and changes reverted by a developper.

The git hook implemented forbids changes to critical git-annex files
like the trust.log file. This file is where trust information is
kept, which make git-annex trust a remote or not about the location
tracking information it provides.

A remaining issue here is the number of copies of files in a given
remote. A media player should only be allowed to change tracking
information from its own files. This has not been implemented yet in
the git hook, but is considered to be a benign problem: the worst case
is that a media player lies about the presence of a file on Amazon or
the site server, which could confuse the queuing system. A simple
git annex fsck would resolve the problem.

Removal of the last copy of a file

Normally, git-annex will not willingly drop the “last copy” (which may
mean any number of copies depending on the numcopies setting) of a
file, unless the --force flag is used. Nevertheless, it could be
possible that some garbage-collection routine we would set would drop
unused files that would be have been removed by a malicious
server. the above git hooks should protect against such an attack.

Transition plan

This section documents the transition process from the old media
players to the new media players. This consists mainly of replacing
the old software shipped in Debian packages by Puppet configurations
and git-annex (Redmine issue #16708 [https://redmine.koumbit.net/issues/16708]
but also replacing all the previous, old media content on media
players with HTML 5 ready media content (Redmine issue #14032 [https://redmine.koumbit.net/issues/14032]).

We will therefore not maintain a backwards-compatible API for the new
3G software, so we will transition all media players at once. That
means that non-transitionned media players will be broken until they
can run Puppet and follow the transition.

General principles

We will make a clear break between the older and newer system. We will
schedule a specific date and time for the transition. Media players
that will be offline on that date will not be updated until they go
back online. We cannot afford to ship new physical machines installed
from scratch so we will need to implement an automated transition
script between the two versions, which will require more time.

We will implement a typical “one, some, many” approach:

	Create a well-defined update that will be distributed to all
hosts. Nominate it for distribution. The nomination begins a buy-in
phase to get it approved by all stakeholders. This practice prevents
overly enthusiastic SAs from distributing trivial,
non-business-critical software packages.

	Establish a communication plan so that those affected don’t feel
surprised by updates. Execute the plan the same way every time,
because customers find comfort in consistency.

	When you’re ready to implement your Some phase, define (and use!) a
success metric, such as If there are no failures, each succeeding
group is about 50 percent larger than the previous group. If there
is a single failure, the group size returns to a single host and
starts growing again.

	Finally, establish a way for customers to stop the deployment
process if things go disastrously wrong. The process document should
indicate who has the authority to request a halt, how to request it,
who has the authority to approve the request, and what happens next.

—Section 3.1.2.2 of the PSNA [http://everythingsysadmin.com/]

Timeline

The three phases above will be the following:

	Phase “one” or “alpha”: koumbit media player - week of June 1st

	Phase “some” or “beta”: isuma office media player - June 8-22

	Phase “many” or “production”: all media players - July

The above roadmap and dates will be confirmed by Cara before it is put
into play, and Cara will be responsible in contacting the various
stakeholders affected by the deployment. Updates should be deployed on 3
to 5 machines at a time for better efficiency, in 2 hours maintenance
windows. Before an update is actually deployed, Cara will be notified
and will coordinate with the stakeholders to ensure everything still
works correctly.

Metrics and communication

The success metric for a given media player is determined by the Test procedure, that is, a media player
should be basically working as before, syncing new content and
allowing uploads (although the latter also depends on the one-step
upload work [https://redmine.koumbit.net/issues/14028]). The success
criteria is that 75% of the media players updated in a phase be
working before we move on to the next batch, that is, a problem with
one machine in a batch is acceptable.

Koumbit and Isuma will be communicating during the migration. Cara can
file a ticket with “Immediate” priority in the Media players 3.0
Redmine project [https://redmine.koumbit.net/projects/media-players-3/issues/new] to
stop operations. Cara from Isuma, Antoine, Cleve and Gabriel from
Koumbit are the ones with the authority to stop a deployment.

Implementation

The actual update that will be performed on the media players will be
the following. Unless otherwise noted, all steps are performed through
Puppet and still remain to be implemented. Each step is grouped and
numbered according to the (eventual) mediaplayers::transitionX
class in which the transition will be implemented.

	have a hard drive sent up north and connected

	upgrade to wheezy (not through Puppet)

	Prepare for the puppet deployment

	add stringify_facts=false to [main] of /etc/puppet/puppet.conf

	generate the unique hostname for the mediaplayer using cs.isuma.tv:

cd /var/www/cachingserver; drush sql-query 'SELECT uid,name,CONCAT("host-mp",YEAR(FROM_UNIXTIME(created)),MONTH(FROM_UNIXTIME(created)),DAY(FROM_UNIXTIME(created)),"-1.mp.isuma.tv") AS hostname FROM users WHERE name LIKE "%n6%" ;'

	make sure fail2ban is disabled on cs.isuma.tv:

sudo service fail2ban status

	git-annex deployment (all those are automated through Puppet in the
mediaplayers class)

	install git-annex (Puppet class gitannex)

	configure the assistant in /var/isuma/git-annex (Puppet class
gitannex::daemon and define gitannex::repository)

	configure hard drive sync script in udev (Puppet class
mediaplayers::syncdrive)

	setup a cronjob for the metadata sync (Puppet class
gitannex::metadata)

	setup reverse SSH tunnel (Puppet class sshd::autossh and
site_sshd::sandbox)

	configure the remote and bandwidth limits in the assistant
(Puppet define gitannex::remote and gitannex::bandwidth)

	test checklist:

	new files are synchronised from the central server to the
player, just look for the latest changes in the repository, and
see if they correspond to latest videos uploaded on the main site:

cd /var/isuma/git-annex
git log --stat

	the IP address is propagated in the git repo, see the
Media player not detected procedure

	the new reverse SSH tunel is up and running, see the
Remote login to media players procedure

	downloading an actual file works:

git annex enableremote s3
git annex get video/mp4_sd/ZACK_QIA_.mov.mp4

	the bandwidth limits are effective: there should be
annex.rsync-upload-options and
annex.web-download-command settings that reflect the
upload and download parameters in the mediaplayers
Puppet class. then when there’s a download, you can look at the
process list to see if the commandline flag is effective:

ps axfu | grep wget

You can still look at the actual bandwidth usage with vnstat
--traffic.

	the schedules are effective: try to set the stop time to the
next hour, for example, to stop at 17h00 and start at 18h00:

class { 'mediaplayers':
 # [...]
 sched_start_hour => ['18'],
 sched_start_minute => 0,
 sched_stop_hour => ['17'],
 sched_stop_minute => 0,
}

	Manual deployment (those steps need to be done by hand on the
media player)

	make sure the s3 remote is configured properly:

cd /var/isuma/git-annex
git annex enableremote s3

	disable the web and s3 remotes so that downloads are not done
from the internet until the drive sync is completed:

cd /var/isuma/git-annex
git config remote.web.annex-ignore true
git config remote.s3.annex-ignore true

	configure the group and wanted content:

git annex group . mediaplayer
git annex wanted . groupwanted

	remove /var/isuma/media by hand:

rm -r /var/isuma/media

	run the syncdrive script, unless Updating a synchronisation drive:

/lib/udev/mediaplayers-syncdrive <drivepath>

The drive path is the device without /dev and can be found
with cat /proc/partitions or dmesg. See also
Creating a new synchronisation drive for more
detailed instructions on how to find the device number.

If you are not running this by hand (if it’s already started or
you don’t have a sync drive), at least disable the sneakernet
remote to remove noises from the logs:

git config remote.sneakernet.annex-ignore true

	enable the web and s3 remotes so that downloads are properly done
from the internet from now on:

cd /var/isuma/git-annex
git config remote.web.annex-ignore true
git config remote.s3.annex-ignore true

	test checklist:

	new files are downloaded from S3 to the media player

	the sync drive is working: content is being copied from the
external hard drive to the git-annex repo

	deploy remaining components

	deploy the new upload.php and pong.js.php scripts in
/var/www/isuma/ (done by hand for now, to be put in the
mediaplayers::upload Puppet module)

	configure Apache and PHP to serve those files (configured by hand,
to be put in the mediaplayers::upload Puppet class)

	setup automated upgrades (apt::unattended_upgrades Puppet
class)

	test checklist:

	ping/pong test

	url rewrite test

	upload test

	apt-get test

	remove the old infrastructure

	remove the old packages: koumbit-archive-keyring, ffmpeg,
php-xml-rpc, isuma-local-servers and isuma-autossh
packages (mediaplayers::transition puppet class)

	rerun the entire Test procedure

Also, we will work on a separate set of AWS S3 buckets
and then transition over to them during the break, dropping the old
ones after two months. This will double the storage cost at
the benefit of a much safer transition.

See also the Redmine issue #17242 [https://redmine.koumbit.net/issues/17242]
for more detailed
information on the various tasks in the transition. This includes
blocking issues for the above transition. The larger 3g
deployment plan is in Redmine issue #16707 [https://redmine.koumbit.net/issues/16707].

Similar projects

This section describes various services and software alternatives to
this project. There seems to be an opportunity to build a more generic
content distribution system. We should, however, consider the existing
alternatives and work from there or at the very least study the way
they operate to avoid running into similar problems.

Commercial CDNs

The CDN service is currently mostly implemented by closed-source,
for-profit corporations, like Akamai, Cloudflare and others. What we
are doing is essentially the same problem, although their use case is
simpler because they can usually get the content on the fly and don’t
necessarily deal with large files and low bandwidth.

Debian mirrors network

There is a free software projects with similar goals and problems:
Debian itself. The Debian project operates a large network of mirrors
all over the world [https://www.debian.org/mirror/list]. Although a
lot of the files on the mirror are small files (less than 1MiB),
quite a few are much larger (Chromium is currently around 50MiB)
and the total size of an archive snapshot is around 1TB, something
quite close to the dataset of Isuma right now.

They have some software to sync packages between the different
archives, called ftpsync [https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=673565]. It is,
however, not well released or distributed (there isn’t even a debian
package!), or abstracted: it is very tied to the Debian mirrors
network.

Git annex

Holy shit, GIT-annex does a lot of what we want, in implementing a
distributed file system on a variety of possible remote repositories!

Integrated with gitolite providing centralized
authentication/authorization, much of our required functionality would
be available. Git hooks would make it pretty easy to customize and
automate. GIT-annex even has a full metadata system implemented, which
was a feature I had in mind for the next version of media
players. Building on this seems like a good direction!

Challenges with a git-annex implementation:

	metadata is stored in a separate git branch, by synthesizing
commits, which requires git wizardry, and some overhead, see the
details of the internals [http://git-annex.branchable.com/internals/]

	git-annex is still in heavy development and may move under our
feet, although the kickstarter phase is finishing now and the
product is quite stable for basis

	git-annex may not scale well with lots of files and lots of
clients, see this complaint [http://git-annex.branchable.com/forum/A_tiny_filesystem__63__/]
for example

The git annex author, Joey Hess, may be available for consulting. In
this self-run crowdfunding campaign [https://campaign.joeyh.name/]
he was proposing 300$/hr consulting fee, but that is now sold
out. After discussions in person with Joey, I get the impression it
may be possible to hire him for specific improvements to git-annex,
but those would need to be useful for the project as a whole, and not
juste for our use case. For example, he may be opened to being
contracted for improving scalability, but not for storing “behind NAT”
metadata that we need.

Those are the things missing from git-annex at this point:

	bandwidth limiting - although we could use –bwlimit in rsync fairly
easily

	local uploads: git-annex won’t provide you with a web interface for
uploads, but will certainly take care of local files

	glue to automatically mount drives and sync: git-annex doesn’t
automatically mount drives but can certainly sync

	cache of the HTML files - unless the website is redone in static
html

	a good view of sync progress in the various MPs for the CS

	transcoding - if we keep doing that at all

	glue for URL rewriting in the website

git-annex manages metadata, and can store arbitrary per-file metadata
as well. That meta-data can be exchanged through the git annex
assistant, through SSH or XMPP. There had been some talks of using
Telehash [http://git-annex.branchable.com/design/assistant/telehash/] but
this somewhat fell through as the telehash.org upstream [http://telehash.org/] development is still incomplete. Looking
back at the previous development year [http://git-annex.branchable.com/devblog/day_219__catching_up_and_looking_back/]
Joey mentionned that he will keep an eye on the project and consider
other alternatives such as MaidSafe [http://maidsafe.net/].

Those backends could be useful to help media players share data with
each other and facilitate communication without talking to the central
server.

Camlistore

Another storage system that may be interesting, similar to git-annex,
is Camlistore [http://camlistore.org/].

Terminology

In this documentation, the following definitions are used:

	Local servers

	Physical machines installed in remote communities with low
bandwidth, high-latency or no internet connectivity providing read
and write access to a large media library.

	Media players

	The IsumaTV implementation of the local servers, mainly
distributed in Canada’s northern native communities.

	Central server

	A Drupal website with a set of custom modules to keep an inventory
of which files are on which local server, currently only deployed
on cs.isuma.tv [http://cs.isuma.tv/].

	Website

	The main Drupal site with all the content and user interface for
the public, with custom Drupal modules to rewrite URLs to point to
the media players if they are detected after a “ping pong
test”. Currently isuma.tv [http://isuma.tv].

	v1.0	first generation

	The first implementation of media players distributed during the
first phase of the project designed jointly by Koumbit and Isuma.TV
around 2010.

	v2.0	second generation	3g

	The second generation of media players was developped around 2012
to adress some bugs and issues with the central server, add a
remote diagnostic system (isuma-autossh) and other updates. This
is sometimes refered to as “3g” in the litteratue because part of
the work on the second generation involved working on the design
of a third generation.

	v2.5

	The “v2.5” is an incremental update on the second generation to
improve stability and fix a lot of bugs to ease
deployments. During that phase, Debian packaging, install
procedures and documentation were improved significantly.

	v3.0	third generation	3g

	A new generation of media players, most likely a complete
rewrite of the local servers code.

	CDN

	Content Distribution Network, to quote wikipedia:

[A CDN is a] large distributed system of servers deployed in
multiple [locations]. The goal of a CDN is to serve content to
end-users with high availability and high performance.

	SSD

	Solid State Drive, to quote Wikipedia: “is a data storage device
that uses integrated circuit assemblies as memory to store data
persistently. […] SSDs have no moving (mechanical)
components. This distinguishes them from traditional
electromechanical magnetic disks such as hard disk drives (HDDs)
or floppy disks, which contain spinning disks and movable
read/write heads.”

“Compared with electromechanical disks, SSDs are typically more
resistant to physical shock, run silently, have lower access time,
and less latency. However, while the price of SSDs has continued
to decline over time, consumer-grade SSDs are still roughly six to
seven times more expensive per unit of storage than consumer-grade
HDDs.” (SSD article on Wikipedia [https://en.wikipedia.org/wiki/Solid-state_drive])

SSDs are commonly found in laptops, music players, cell phones and
embeded devices, but also more and more commonly in servers.

	HDD

	Hard Disk Drives, to quote Wikipedia: “data storage device used for
storing and retrieving digital information using rapidly rotating
disks (platters) coated with magnetic material. An HDD retains
its data even when powered off. Data is read in a random-access
manner, meaning individual blocks of data can be stored or
retrieved in any order rather than sequentially. An HDD consists
of one or more rigid (“hard”) rapidly rotating disks (platters)
with magnetic heads arranged on a moving actuator arm to read and
write data to the surfaces.” (HDD article on Wikipedia [https://en.wikipedia.org/wiki/Hard_disk_drive])

HDD are high-capacity, but use more power and are more fragile
than SSD drives. HDD drives are commonly found in servers,
workstations and external backup drives.

	RAID

	There are two ways of configuring two storage devices:

	“RAID-1” or “mirroring”: two or more drives that hold the same
copy of the data. if one fails, the other still has a copy

	“RAID-0” or “stripping”: two or more drives that hold different
data. if one fails, all the data is lost.

“Stripping”, allows for storage expansion because more than one
drive appear as one. The problem with this is that if one of
the drives fails (or simply disconnected, if it’s an external
drive), the whole data set can be lost. The way we usually work
around this problem is by “stripping” multiple “mirrors”, what
is basically known as “RAID-10”. So basically, instead of
having two drives, we have two times two drives, so four
drives.

	storage enclosures

	Some background: there are really 3 ways of storing disks:

	internal, no hot-swap: disks are stored internally in the machine
and are simply not hot-swappable without stopping the machine,
opening the case and taking out your screwdrive and fiddling with
wires. This is the current design of the media players

	externally-accessible trays, but no hotswap: disks are in trays
that are accessible from the outside but can’t reliably be
replaced or added while the machine is running, in other words,
the machine needs to be turned off before a disk is added

	fully hot-swappable trays: disks are in trays that can be removed
while the machine is running

And even in trays, there are some variations: some trays you need a
screwdriver to attach the disk in the tray, some don’t have screws,
and some don’t have trays at all (you just slide the disk in the
slot)!

So basically, it’s a scale of skills required to replace a hard drive here:

	internal, highest skill level: operator needs to know how to
open the case, remove and install the drive, connect and tell
apart the different wires

	non-hotswap trays, with screws: operator needs to be able to
power-cycle the machine, remove and insert trays, remove and
install disks in trays

	hotswap trays, with screws: operator needs to be able to remove
and insert trays, remove and install disks in trays

	hotswap trays, without screws: operator needs to be able to
remove and insert disks

The last disk layout could be possible for anyone with a user
manual. Most people should also be able to swap drives in and out
of trays with a screwdriver, and probably power-cycle the machine
as well. This is why hot-swappable drives are so interesting.

Keep in mind that, in all those situations, there’s always the risk
that the operator removes too many disks from the array and destroy
everything, so the first skill is to be able to interpret the
status of the disk array. Hopefully visual indicators could help
with that, but it’s something that would need to be part of the
requirements, for example.

	Repository	Repositories

	A git-annex repository is basically a git repository, a
directory with files and subdirectories in it where git-annex
manages the files as symlinks. There can be many different
interconnected repositories that have their own copies of the
files.

	Remote

	A git-annex remote is another git-annex repository, from the
point of view of a given repository. It allows one repository to
push changes into, and pull changes from, another repository. It
can also be a special remote [http://git-annex.branchable.com/special_remotes/] that is not
really a git-annex repository, but some special storage. We
particularly use the S3 special remote [http://git-annex.branchable.com/special_remotes/S3/] that way.

	S3

	Amazon S3 [http://en.wikipedia.org/wiki/Amazon_S3] (Simple
Storage Service) is a commonly used online file storage service
that is used to storing objects, often publicly, in
“buckets”. Git-annex uses this to store unique copies of the
files. Amazon garantees 99.9% uptime on S3, that is, not more
than 43 minutes downtime per month.

	PuppetDB REST API

	A RESTful interface is a standard respecting the
Representational state transfer standard [https://en.wikipedia.org/wiki/Representational_state_transfer]. The
exact protocol varies according to the application, but in our
case, we mostly use it to communicate with the PuppetDB [https://docs.puppetlabs.com/puppetdb/index.html] REST API [http://docs.puppetlabs.com/puppetdb/2.2/api/index.html].

	Assistant

	The git-annex assistant is a daemon that runs in the background
and implements the various policies defined by the operator. It
will automatically add or remove files from git as they are
changed from the outside. It will also synchronise content to
other repositories as determined by preferred content policies
and sometimes even drop files locally if they are not required
anymore.

If two git-annex :remotes: run git-annex, they also can do
real-time synchronisation of their content.

 About this document

About this document

This documentation is formatted with ReST [http://sphinx-doc.org/rest.html] and managed by the Sphinx
documentation engine [http://sphinx-doc.org/].

You can generate the documentation locally with:

make html

You will need to have GNU Make and Sphinx installed for this to work.

Changes should be pushed to the central git repository [https://redmine.koumbit.net/projects/isuma-doc/repository] at:

gitolite@git.koumbit.net:isuma-doc.git

This requires write access to the repository, which can be requested
at support@koumbit.org.

Alternatively, a read-only access to the repository is available at:

git://git.koumbit.net/isuma-doc.git

The main documentation is on the master branch while older
documentation is available, as an archive, in the 2.x branch.

The documentation is also automatically generated on Readthedocs.org [http://isuma-media-players.readthedocs.org/en/latest/installation.html]
when new content is pushed to the source repository. To get the same
results as the rendering there locally, you will need the RTD theme [https://github.com/snide/sphinx_rtd_theme], also available as a
Debian package [https://tracker.debian.org/pkg/sphinx-rtd-theme].

The documentation is currently only available in english, but could be
translated [https://redmine.koumbit.net/issues/17720] fairly
easily, contact us if you are interested.

License

This documentation and all software produced as part of the Isuma 3G
project are available under the AGPLv3 license [https://www.gnu.org/licenses/agpl-3.0.html], a copy of which is
available below.

Various components are used in the Isuma projects, with license links
below:

	git-annex [https://git-annex.branchable.com/license/]

	Puppet [https://docs.puppetlabs.com/guides/faq.html#what-license-is-puppet-released-under]

	Debian [https://www.debian.org/social_contract#guidelines]

 GNU AFFERO GENERAL PUBLIC LICENSE
 Version 3, 19 November 2007

 Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.

 The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

 Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.

 A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.

 The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.

 An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.

 The precise terms and conditions for copying, distribution and
modification follow.

 TERMS AND CONDITIONS

 0. Definitions.

 "This License" refers to version 3 of the GNU Affero General Public License.

 "Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

 "The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.

 To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.

 A "covered work" means either the unmodified Program or a work based
on the Program.

 To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

 To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

 An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

 1. Source Code.

 The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.

 A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

 The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

 The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

 The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

 The Corresponding Source for a work in source code form is that
same work.

 2. Basic Permissions.

 All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

 You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

 Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

 3. Protecting Users' Legal Rights From Anti-Circumvention Law.

 No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

 When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.

 4. Conveying Verbatim Copies.

 You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

 You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

 5. Conveying Modified Source Versions.

 You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

 a) The work must carry prominent notices stating that you modified
 it, and giving a relevant date.

 b) The work must carry prominent notices stating that it is
 released under this License and any conditions added under section
 7. This requirement modifies the requirement in section 4 to
 "keep intact all notices".

 c) You must license the entire work, as a whole, under this
 License to anyone who comes into possession of a copy. This
 License will therefore apply, along with any applicable section 7
 additional terms, to the whole of the work, and all its parts,
 regardless of how they are packaged. This License gives no
 permission to license the work in any other way, but it does not
 invalidate such permission if you have separately received it.

 d) If the work has interactive user interfaces, each must display
 Appropriate Legal Notices; however, if the Program has interactive
 interfaces that do not display Appropriate Legal Notices, your
 work need not make them do so.

 A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

 6. Conveying Non-Source Forms.

 You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

 a) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by the
 Corresponding Source fixed on a durable physical medium
 customarily used for software interchange.

 b) Convey the object code in, or embodied in, a physical product
 (including a physical distribution medium), accompanied by a
 written offer, valid for at least three years and valid for as
 long as you offer spare parts or customer support for that product
 model, to give anyone who possesses the object code either (1) a
 copy of the Corresponding Source for all the software in the
 product that is covered by this License, on a durable physical
 medium customarily used for software interchange, for a price no
 more than your reasonable cost of physically performing this
 conveying of source, or (2) access to copy the
 Corresponding Source from a network server at no charge.

 c) Convey individual copies of the object code with a copy of the
 written offer to provide the Corresponding Source. This
 alternative is allowed only occasionally and noncommercially, and
 only if you received the object code with such an offer, in accord
 with subsection 6b.

 d) Convey the object code by offering access from a designated
 place (gratis or for a charge), and offer equivalent access to the
 Corresponding Source in the same way through the same place at no
 further charge. You need not require recipients to copy the
 Corresponding Source along with the object code. If the place to
 copy the object code is a network server, the Corresponding Source
 may be on a different server (operated by you or a third party)
 that supports equivalent copying facilities, provided you maintain
 clear directions next to the object code saying where to find the
 Corresponding Source. Regardless of what server hosts the
 Corresponding Source, you remain obligated to ensure that it is
 available for as long as needed to satisfy these requirements.

 e) Convey the object code using peer-to-peer transmission, provided
 you inform other peers where the object code and Corresponding
 Source of the work are being offered to the general public at no
 charge under subsection 6d.

 A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

 A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

 "Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

 If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

 The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

 Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

 7. Additional Terms.

 "Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

 When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

 Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

 a) Disclaiming warranty or limiting liability differently from the
 terms of sections 15 and 16 of this License; or

 b) Requiring preservation of specified reasonable legal notices or
 author attributions in that material or in the Appropriate Legal
 Notices displayed by works containing it; or

 c) Prohibiting misrepresentation of the origin of that material, or
 requiring that modified versions of such material be marked in
 reasonable ways as different from the original version; or

 d) Limiting the use for publicity purposes of names of licensors or
 authors of the material; or

 e) Declining to grant rights under trademark law for use of some
 trade names, trademarks, or service marks; or

 f) Requiring indemnification of licensors and authors of that
 material by anyone who conveys the material (or modified versions of
 it) with contractual assumptions of liability to the recipient, for
 any liability that these contractual assumptions directly impose on
 those licensors and authors.

 All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

 If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

 Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

 8. Termination.

 You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

 However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

 Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

 Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

 9. Acceptance Not Required for Having Copies.

 You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

 10. Automatic Licensing of Downstream Recipients.

 Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

 An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

 You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

 11. Patents.

 A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".

 A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

 Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

 In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

 If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

 If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

 A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

 Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

 12. No Surrender of Others' Freedom.

 If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

 13. Remote Network Interaction; Use with the GNU General Public License.

 Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.

 Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.

 14. Revised Versions of this License.

 The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

 Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.

 If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

 Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

 15. Disclaimer of Warranty.

 THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

 16. Limitation of Liability.

 IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

 17. Interpretation of Sections 15 and 16.

 If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU Affero General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU Affero General Public License for more details.

 You should have received a copy of the GNU Affero General Public License
 along with this program. If not, see <http://www.gnu.org/licenses/>.

Also add information on how to contact you by electronic and paper mail.

 If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.

 You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<http://www.gnu.org/licenses/>.

 Index

Index

 Symbols
 | A
 | C
 | F
 | H
 | L
 | M
 | P
 | R
 | S
 | T
 | V
 | W

Symbols

 	
 	3g, [1]

A

 	
 	Assistant

C

 	
 	CDN

 	
 	Central server

F

 	
 	first generation

H

 	
 	HDD

L

 	
 	Local servers

M

 	
 	Media players

P

 	
 	PuppetDB REST API

R

 	
 	RAID

 	Remote

 	
 	Repositories

 	Repository

S

 	
 	S3

 	second generation

 	
 	SSD

 	storage enclosures

T

 	
 	third generation

V

 	
 	v1.0

 	v2.0

 	
 	v2.5

 	v3.0

W

 	
 	Website

 Git-annex maintenance manual

Git-annex maintenance manual

Error

This section was removed and is kept to avoid breaking URLs. See
instead the Installation, Maintenance and
Troubleshooting sections.

_images/10_in_the_address_bar.png
Tt st N M. o cambrde-by -5 /192 160 1100wk vd_1 ol v 1 60 s M i t cankid oy
0 b 192 1650 110t fr e 2015 1 o 2 192 1650 1 picuco el T s ido s i, v s e camaid by st 02
163 163010 oo, s — oo . 192 165010 e gk 2 g oo Gl s bbb park 02 [
i 153 1630 1104 ka1 ol gose s B o e . s e o cambide by g 12

193 1680 110vwo s fora o015 a2t s 192 1660 110 e g o foru S s e o i i i v combide by ot 02
it 152 1630 1105 wecimp_sds_dgrce o /192 1680 110 pcn e dogeace g video M Hikae Coine i s sma e cabrdoe by -l 02

153 1680 1108 . berdO 8 i Nl Kl . e s oo byl 03k 192 1650 1101ideoigh Tape.show 6 e Nt Ko
oo e o pt. 0, 163 1650 10 i Tape1 s B <ido Nl Ko b e v o - 02

153 1650 11050 ih Tape 6 0 Stpt 3 i Lo Nceo W v s e cambrde byl 02 g 192 1650 10sdoompd_sd 13 _caben, g v vdeo

_images/11_make_sure_you_see_the_IP.png
hitp:/svvvev suma.tv Mabik- hitp:/svvww isuma. tv/en/ cambridge-bay-tv-playlst-02 hitp:/192.168.0.110/ideo high'mikkausivut_dvd_1 the
8.0.110¥ideo/mp4_sd/nla_forum_october_2013_1_of 2mdv.mp4 hitp:/192.168.0.110/picturc arge/mla_forum
hitp?/192 168 0.110%i feo highijohn_anaija_-_taloyosknmmngavrgn mév fiv hitp:/192 168.0.110/gicture Targe/jayko_2 iog video Mahik-|
hitp//192.168.0.110i feo high unikkausivut_dvd_1 theowlhomarriecthegoose mdv-flv video mainjohn htp/wwww isuma tv/en/cambridg
http//192.168.0.110/i feo/mp4_sd/mla_forum_october_2013_part_2.m4v.mp4 bttp:/192.168.0.110/picturclarge mla_forum,_thumb_0 j
hitp//192.168.0.110%i leo/mp4_sd/ab_dograce mov.mp4 bitp://192.168.0.110/picture large dogteamrace.jpg video Marie-Hékne Cousin
hitp//192.168.0.110%i feo highicaribon_herd001 v video Nathalie Kalina bitp:/swov isuma tv/en/cambridge-bay-tv-playiist-02 hitp:/19;
2 hitp//192.168.0.110Avideo/high/Tape 105-show68pt3 fiv video Nathalie Kalina hitp:/

_images/12_middle_of_the_page.png
http:/www.isuma.tv Mahik- http:/www.isuma.tv/en/cambridge-bay-tv-playlist-02 http://192.168.2.15/video
/high/unikkausivut_dvd_1 theowlandraven.mav.fiv video mainjohn http://www.isuma.tv/en/cambridge-bay-tv-playlist-02
hitpi/s3.amazonaws.com/isuma.video.mp4_sd/mla_forum_october -

@] tpisuma.tipleytstplayist/56706 Ki5d

fooogde @

2013_1_of 2.mdv.mp4 “ http://s3.amazonaws.com

fisuma.picture.large/mla_forum_thumb,jpg video jnieeveacheak hitp://www.isuma.tv/en/cambridge-bay-tv-playlist-02.

hitpi/192.168.2.15video/highfjohn_anaii =1
video Mahik- http//www.isuma. tv/er/carr b

/high/unikkausivut_dvd_1.theowlwhomar i

playlist-02 http://s3.amazonaws.com/isu n
hitpy/s3.amezonaws.com/isuma.picture. ai

en/cambridge-bay-tv-playlist-02 http:/1
Idogteamrace pg video Mari=-

Nideofhigh/caribou_herd001
http://182.168.2.15/video/high/Tapess:

playlist-02 http://192.168.2.1 5video/hig
/en/cambridge-bay-tv-playlist-02 http://1

http:/www.isuma.tv/en/cambrids
video

@ Back
@ Eovard
& eload
O stop

Bookmark This Page

Send Unk..

View Background Image
Select all

Viwpage Source
ige-bay-tv p 0 2

View Page nfo

v & hitp:/192.168.2.15/picture/large/jayko_2,jpg
p1/192.168.2.15/video

0 mainjohn http:/www.isuma.tv/en/cambridge-bay-tv-

_cctober_2013_part_2.m4v.mp4
g video Zacharias Kunuk http://www.isuma.tv

_lograce.mov.mpd “ http://192.168.2.15/picture/large
/e /cambridge-bay-tv-playlist-02 http://192.168.2.15

is 1ma tv/en/cambridge-bay-tv playlist-02
lie Kalina htp://www.isuma.tv/en/cambridge-bay-tv-
vileo Nathalie Kalina https//www.isuma.tv
105-shows8pta.fiv

video lan Mauro

15video/mp4_sd/13._caribou_hunting.m4v.mpa

_images/13_change_the_file_name.png
heEpi/fww.i
/high/unikia

playlist-02 I |@ ecently Used
hep//s3.am |

Jen/cambrid.
fdogteamra |E3 Desktop

Nideomighy/ | Fie System
http192.1¢ [cdrome

pleylist02 1
fen/cambrid

http:/fwww.ic
video

padd | =pemove

(D logout hem

27,5 K8 2013.09-11

Web Page, HTML only |+

Rconcal |

| e-bay-tv-

v

icture/large
682.15

“bay-tv-

apa

seve

Done

_images/14_return_to_vlc.png
sc | 5 Network | @ copturs Dovice |
F.. Selection

U can select local les with the folowng lst and buttons

| e|x|

nav.xhtml

 Table of Contents

 		
 Overview

 		
 Installation

 		
 BIOS configuration

 		
 Naming convention

 		
 Install Debian

 		
 More in-depth OS installation instruction

 		
 Create bootable Debian USB

 		
 Installation Parameters

 		
 Partition disk

 		
 Install system services

 		
 Initial login

 		
 Configure Puppet

 		
 Puppet Master

 		
 On the media player

 		
 Running puppet

 		
 Stretch Fixes

 		
 Configuring and Running Git Annex

 		
 Old Installation Details

 		
 Puppet

 		
 Git-annex

 		
 Puppet deployment

 		
 Debian package installation

 		
 Manual installation on any Linux system

 		
 Manually configuring the assistant

 		
 Git-annex configuration

 		
 Repository name

 		
 Preferred content configuration

 		
 Central server configuration

 		
 Main website configuration

 		
 Encoding server configuration

 		
 Other configurations

 		
 User creation

 		
 Puppet auto-configuration

 		
 SSH and Monkeysphere

 		
 Automated upgrades

 		
 First content synchronisation

 		
 Testing

 		
 Backend

 		
 CableTV

 		
 Git-annex sync

 		
 Isuma.tv

 		
 Maintenance

 		
 Changing preferred content

 		
 Unused and deleted files

 		
 Metadata

 		
 Generic Puppet facts

 		
 Custom Puppet facts

 		
 Settings

 		
 Configuration settings

 		
 Informative settings

 		
 External synchronisation drives

 		
 Syncing a media player

 		
 Updating a synchronisation drive

 		
 Manual updates of synchronisation drives

 		
 Design notes

 		
 External drive format

 		
 Creating a new synchronisation drive

 		
 Creating user accounts

 		
 Upgrading git-annex

 		
 User guides

 		
 How to setup a playlist

 		
 Hardware platforms

 		
 Rugged specification

 		
 Lightweight specification

 		
 Shuttle XPC small desktops

 		
 Logic Supply desktops (v2.5 series)

 		
 Advantech rugged servers (1.0 series)

 		
 Troubleshooting

 		
 Test procedure

 		
 Basics

 		
 Queue is full but media player sees it empty

 		
 Password resets

 		
 Logging in to media players on the console

 		
 Remote login to media players

 		
 Inspecting status from the commandline

 		
 Git-annex

 		
 Caveats

 		
 Troubleshooting stuck queues

 		
 Diagnostics on the git-annex assistant

 		
 Stopping transfers

 		
 Media player not detected

 		
 Offline media player not detected

 		
 Unblocking the assistant

 		
 Changing files in git-annex

 		
 Errors running git-annex

 		
 Evaluating disk usage

 		
 Dealing with files committed by mistake

 		
 Inspecting the git-annex branch

 		
 Removing refused commits

 		
 Known issues

 		
 Resolved issues

 		
 S3 diagnostics

 		
 Development

 		
 Git-annex internals

 		
 Fetching key names

 		
 Location tracking

 		
 Git-annex Drupal integration

 		
 gitannex_get_internal_ip

 		
 gitannex_get_preferred_url

 		
 Metadata sync script

 		
 Metadata purge script

 		
 Debian packages

 		
 Automated package build system

 		
 Automated package upgrades

 		
 Manually building a package

 		
 Manually installing a package

 		
 Manually upgrading Media Players

 		
 Configuration Management

 		
 Installing the puppet master

 		
 Setting up git repositories to ease up modification

 		
 Managing modules

 		
 Configuring a dashboard

 		
 Design

 		
 Context

 		
 Requirements

 		
 Open source

 		
 Standard communication API

 		
 Location tracking

 		
 Modularity

 		
 Monitoring

 		
 Remote management

 		
 Technical decisions

 		
 Programming language and framework

 		
 Cron or daemons?

 		
 Architecture overview

 		
 Main website

 		
 Transcoding server

 		
 Central server

 		
 Media players

 		
 Amazon S3

 		
 Note about standard groups

 		
 Transcoding

 		
 Metadata

 		
 Schedules

 		
 Bandwith limits

 		
 File deletion and garbage collection

 		
 Server-specific metadata

 		
 Puppet facts and settings

 		
 Custom metadata script

 		
 Offline detection

 		
 Remaining issues

 		
 Hard drive sync feedback

 		
 Operators canâ��t configure media players

 		
 Remote transfer prioritisation

 		
 Multiple UIs

 		
 HTML site cache

 		
 Security issues

 		
 Amazon S3 access

 		
 File removal

 		
 Tracking information tampering

 		
 Removal of the last copy of a file

 		
 Transition plan

 		
 General principles

 		
 Timeline

 		
 Metrics and communication

 		
 Implementation

 		
 Similar projects

 		
 Commercial CDNs

 		
 Debian mirrors network

 		
 Git annex

 		
 Camlistore

 		
 Terminology

 		
 About this document

 		
 License

_images/1_make_sure_connected.png
AAL Search

nter your keywords o]

1suma Al

Videos Channels Audio Tnages Tex More HONE | Ao v MY PROFLLE | LOGOUT

| i (=]]v] f]

Sign up for our Email B
Newsletter

_leo]

What's New Today?

Jon Lindell Memorial - The
Story.

NIRB Public Hearings in Pand
nlet Jan 30, 2014 - Part 717

NIRB Public Hearings in Pond

_images/2_sign_in.png
st User Sign-in | bumaTV %

€« C' [www.isuma.tv/lo/en/user

AL e

isuma Al Videos Channels Audio Tmages Text More HOME | AN SIGNIN | JOIN/UPLOAD

User Sign-in
* You must fill in these areas.

userna