

    
      
          
            
  
Welcome to ironic-staging-drivers’s documentation!

Contents:



	Ironic Staging Drivers
	What the Ironic Staging Drivers is not

	How to contribute

	Useful links





	Available drivers
	Wake-On-Lan driver

	AMT drivers

	iBoot driver

	Libvirt drivers

	Intel NodeManager drivers





	Releasing ironic-staging-drivers







Indices and tables


	Index


	Module Index


	Search Page







          

      

      

    

  

    
      
          
            
  
Ironic Staging Drivers

The Ironic Staging Drivers is used to hold out-of-tree Ironic drivers
which doesn’t have means to provide a 3rd Party CI at this point in
time which is required by Ironic.

The intention of this project is to provide a common place for useful
drivers resolving the “hundreds of different download sites” problem.


What the Ironic Staging Drivers is not


	The Ironic Staging Drivers is not a project under Ironic’s
governance, meaning that the Ironic core group is not responsible
for the code in this project (even though, some individuals that work in
this project also hold core status in the Ironic project).


	This project is not a place to dump code and run away hoping that
someone else will take care of it for you. Drivers included
in this project should be maintained and have their bugs fixed
quickly. Therefore, driver owners are going to be asked to “babysit”
their driver.






How to contribute

We want to make sure that the Ironic Staging Drivers project is a
welcoming and friendly place to contribute code. Therefore, we want to
avoid bureaucratic processes as much as possible. If you want to propose
a driver to be included in the repository: Just submit the code!


How do I submit the code?


	Before we can accept your patches, you’ll
have to agree to a contributor license agreement [https://docs.openstack.org/infra/manual/developers.html#account-setup].


	Learn about how to use our Gerrit review system [https://docs.openstack.org/infra/manual/developers.html#development-workflow].


	Get the code:

git clone https://opendev.org/x/ironic-staging-drivers







	Make your changes and write a nice commit message explaining the
change in details.


	Submit the code!







Useful links


	Free software: Apache license


	Documentation: http://ironic-staging-drivers.readthedocs.io/en/latest/


	Source: https://opendev.org/x/ironic-staging-drivers


	Bugs: https://storyboard.openstack.org/#!/project/950








          

      

      

    

  

    
      
          
            
  
Available drivers



	Wake-On-Lan driver

	AMT drivers

	iBoot driver

	Libvirt drivers

	Intel NodeManager drivers








          

      

      

    

  

    
      
          
            
  
Wake-On-Lan driver


Overview

Wake-On-Lan is a standard that allows a computer to be powered on by a
network message. This is widely available and doesn’t require any fancy
hardware to work with 1.

The Wake-On-Lan driver is a testing driver not meant for
production. And useful for users that wants to try Ironic with real
bare metal instead of virtual machines.

It’s important to note that Wake-On-Lan is only capable of powering on
the machine. When power off is called the driver won’t take any action
and will just log a message, the power off require manual intervention
to be performed.

Also, since Wake-On-Lan does not offer any means to determine the current
power state of the machine, the driver relies on the power state set in
the Ironic database. Any calls to the API to get the power state of the
node will return the value from the Ironic’s database.



Requirements


	Wake-On-Lan should be enabled in the BIOS






Configuring and Enabling


	Add staging-wol to the list of enabled_hardware_types in
/etc/ironic/ironic.conf. Also enable the staging-wol power
interface and the fake management interface. For example:

[DEFAULT]
enabled_hardware_types = staging-wol,ipmi
enabled_management_interfaces = fake,ipmitool
enabled_power_interfaces = staging-wol,ipmitool







	Restart the Ironic conductor service:

service ironic-conductor restart











Registering a node

Nodes configured for Wake-On-Lan driver should have the driver
property set to staging-wol.

The node should have at least one port registered with it because the
Wake-On-Lan driver will use the MAC address of the ports to create the
magic packet 2.

The following configuration values are optional and can be added to the
node’s driver_info as needed to match the network configuration:


	wol_host: The broadcast IP address; defaults to
255.255.255.255.


	wol_port: The destination port; defaults to 9.





Note

Say the ironic-conductor is connected to more than one network and
the node you are trying to wake up is in the 192.0.2.0/24 range. The
wol_host configuration should be set to 192.0.2.255 (the
broadcast IP) so the packets will get routed correctly.



The following sequence of commands can be used to enroll a node with
the Wake-On-Lan driver.


	Create node:

openstack baremetal node create --driver staging-wol \
    --driver-info wol_host=<broadcast ip> \
    --driver-info wol_port=<destination port>









The above command ironic node-create will return UUID of the node,
which is the value of $NODE in the following command.


	Associate port with the node created:

openstack baremetal port create --node $NODE <MAC address>










Additional requirements


	Boot device order should be set to “PXE, DISK” in the BIOS setup


	BIOS must try next boot device if PXE boot failed


	Cleaning should be disabled, see 3.


	Node should be powered off before start of deploy







References


	1

	Wake-On-Lan - https://en.wikipedia.org/wiki/Wake-on-LAN



	2

	Magic packet - https://en.wikipedia.org/wiki/Wake-on-LAN#Sending_the_magic_packet



	3

	Ironic node cleaning - https://docs.openstack.org/ironic/latest/admin/cleaning.html









          

      

      

    

  

    
      
          
            
  
AMT drivers


Overview

AMT (Active Management Technology) drivers extend Ironic’s range to the
desktop. AMT/vPro is widely used in desktops to remotely control their power,
similar to IPMI in servers.

AMT drivers use WS-MAN protocol to interact with AMT clients.
They work on AMT 7.0/8.0/9.0. AMT 7.0 was released in 2010, so AMT drivers
should work on most PCs with vPro.

The staging-amt hardware type uses AMT for power and boot device
management.



Set up your environment

A detailed reference is available in Intel Active Management Technology [https://software.intel.com/en-us/articles/intel-active-management-technology-start-here-guide-intel-amt-9#4.2].

A short guide follows below:


	Set up AMT Client


	Choose a system which supports Intel AMT / vPro. Desktop and laptop systems
that support this can often be identified by looking at the “Intel” tag for
the word vPro.


	During boot, press Ctrl+P to enter Intel MEBx management.


	Reset password – default is admin. The new password must contain at
least one upper case letter, one lower case letter, one digit and one
special character, and be at least eight characters.


	Go to Intel AMT Configuration:


	Enable all features under SOL/IDER/KVM section


	Select User Consent and choose None (No password is needed)


	Select Network Setup section and set IP


	Activate Network Access






	MEBx Exit


	Restart and enable PXE boot in bios






	Install openwsman on servers where ironic-conductor is running:


	Fedora/RHEL: openwsman-python.


	Ubuntu: python-openwsman’s most recent version is 2.4.3 which
is enough.


	Or build it yourself from: https://github.com/Openwsman/openwsman






	Enable the staging-amt hardware type, power, deploy and management
interfaces, for example:

[DEFAULT]
enabled_hardware_types = staging-amt,ipmi
enabled_deploy_interfaces = direct
enabled_management_interfaces = staging-amt,ipmitool
enabled_power_interfaces = staging-amt,ipmitool





and restart the ironic-conductor process:

service ironic-conductor restart







	Enroll an AMT node


	
	Specify these driver_info properties for the node: amt_password,

	amt_address, and amt_username







	Boot an instance





Note

It is recommended that nodes using the pxe_amt* driver be deployed with the
local boot [http://docs.openstack.org/developer/ironic/deploy/install-guide.html#local-boot-with-partition-images] option. This is because the AMT firmware currently has no
support for setting a persistent boot device. Nodes deployed without the
local boot [http://docs.openstack.org/developer/ironic/deploy/install-guide.html#local-boot-with-partition-images] option could fail to boot if they are restarted outside of
Ironic’s control (I.E. rebooted by a local user) because the node will
not attempt to PXE / network boot the kernel, using local boot [http://docs.openstack.org/developer/ironic/deploy/install-guide.html#local-boot-with-partition-images] solves this
known issue.







          

      

      

    

  

    
      
          
            
  
iBoot driver


Overview

The iBoot power driver enables you to take advantage of power cycle
management of nodes using Dataprobe iBoot devices over the DxP protocol.

The staging-iboot hardware type uses iBoot to manage power of the nodes.


Requirements


	python-iboot library should be installed - https://github.com/darkip/python-iboot






Tested platforms


	iBoot-G2 1






Configuring and enabling


	Add staging-iboot to enabled_hardware_types and
enabled_power_interfaces in /etc/ironic/ironic.conf. Also enable
the fake management interface. For example:

[DEFAULT]
enabled_hardware_types = staging-iboot,ipmi
enabled_management_interfaces = fake,ipmitool
enabled_power_interfaces = staging-iboot,ipmitool







	Restart the Ironic conductor service:

service ironic-conductor restart











Registering a node

Nodes configured for the iBoot driver should have the driver property
set to staging-iboot.

The following configuration values are also required in driver_info:


	iboot_address: The IP address of the iBoot PDU.


	iboot_username: User name used for authentication.


	iboot_password: Password used for authentication.




In addition, there are optional properties in driver_info:


	iboot_port: iBoot PDU port. Defaults to 9100.


	iboot_relay_id: iBoot PDU relay ID. This option is useful in order
to support multiple nodes attached to a single PDU. Defaults to 1.




The following sequence of commands can be used to enroll a node with
the iBoot driver.


	Create node:

openstack baremetal node create --driver staging-iboot \
    --driver-info iboot_username=<username> \
    --driver-info iboot_password=<password> \
    --driver-info iboot_address=<address>












References


	1

	iBoot-G2 official documentation - http://dataprobe.com/support_iboot-g2.html









          

      

      

    

  

    
      
          
            
  
Libvirt drivers


Overview

This driver implements Power/Management interfaces for virtual baremetal
hardware and is based on Libvirt 1 library and its Python interface.
Thus it is suited for testing environments only.

It performs considerably better that Ironic’s SSH driver, especially when
there are many virtual baremetal nodes placed on hypervizor 2.
It also supports additional connection transports, including TCP with SASL
authentication that can be considered as secure alternative to SSH.

Known drawbacks in comparison to Ironic’s SSH driver are:


	no support for user+password SSH authentication


	some use cases possible with SSH driver are not supported


	e.g. managing VirtualBox VMs on a Windows host from Linux guest










Setting up the environment


	Install Ironic


	Install ironic-staging-drivers


	Install libvirt-python


	When installing from PyPI, you’d need development version of
libvirt package from your distribution
(e.g. libvirt-dev in Ubuntu, libvirt-devel in Fedora)
and all the usual Python packages required to compile C-extensions
in your system
(on DevStack, those are already installed when nova-compute is enabled).






	Add staging-libvirt to the list of enabled_hardware_types
in ironic.conf, configure the power and management interfaces, for example:

[DEFAULT]
enabled_hardware_types = staging-libvirt
enabled_management_interfaces = staging-libvirt
enabled_power_interfaces = staging-libvirt





Then restart the ironic-conductor service.



	Create or update existing virtual baremetal nodes to use one of
libvirt-based drivers enabled in the previous step.


	Update node properties with driver-specific fields if needed.
(see Node driver_info).
Default values are suitable for single-node DevStack.


	Deploy the node.





Node driver_info


	libvirt_uri

	(optional) Libvirt URI to connect to.
Default is qemu+unix:///system.



	ssh_key_filename

	(optional) File name of private SSH key when using qemu+ssh://
transport.
The file must have appropriate permissions for the user running
ironic-conductor service.
Default is to use default SSH keys for that user.
Note that for private keys with password those must be pre-loaded into
ssh-agent.



	sasl_username

	username to authenticate as.
Required when using TCP transport with SASL authentication.



	sasl_password

	password to use for SASL authentication.
Required when using TCP transport with SASL authentication.








References


	1

	https://libvirt.org



	2

	https://github.com/pshchelo/ironic_libvirt_vs_virsh









          

      

      

    

  

    
      
          
            
  
Intel NodeManager drivers


Overview

This driver implements support of Intel NodeManager platform via ironic
vendor interface methods. Those methods are implemented as sending raw bytes
over IPMI.
Hardware with Intel NodeManager 1.5 or above is required, feature must be
enabled via Flash Image Tool. The driver detects internal addresses of
NodeManager device automatically.
The main term for NodeManager is policy, which can be power, thermal or
boot time. Each policy identified by policy_id (integer number from 0 to
255). Maximum numbers of policies which can be set at the same time limited by
platform. For more detailed information see full specification 1.

The staging-nm hardware types extends the ipmi hardware type with
support for the staging-nm vendor interface.



Supported vendor passthru methods

In all examples below request/response are JSON bodies in the HTTP request
or response.


get_nm_version


	HTTP method

	GET



	Description

	Get Intel Node Manager version.





Example of response:

{"firmware": "1.2", "ipmi": "3.0", "nm": "3.0", "patch": "7"}







get_nm_capabilities


	HTTP method

	GET



	Description

	Get Intel Node Manager capabilities.





Example of request:

{"domain_id": "platform", "policy_trigger": "none",
 "power_domain": "primary"}





Example of response:

{"domain_id": "platform", "max_correction_time": 100000,
 "max_limit_value": 4096, "max_policies": 16,
 "max_reporting_period": 32768, "min_correction_time": 10,
 "min_limit_value": 100, "min_reporting_period": 100,
 "power_domain": "primary"}







control_nm_policy


	HTTP method

	PUT



	Description

	Enable or disable Intel Node Manager policy control.





Example of request:

{"scope": "policy", "enable": false, "policy_id": 10}







set_nm_policy


	HTTP method

	PUT



	Description

	Set Intel Node Manager policy. This method creates new policy if provided
policy_id is not present or changes current policy.





Example of request:

{"domain_id": "platform", "enable": true, "policy_id": 10,
 "policy_trigger": "none", "action": "alert", "power_domain": "primary",
 "target_limit": 200, "reporting_period": 20000}







get_nm_policy


	HTTP method

	GET



	Description

	Get Intel Node Manager policy.





Example of request:

{"domain_id": "platform", "policy_id": 11}





Example of response:

{"action": "alert", "correction_time": 10000, "cpu_power_correction": "auto",
 "created_by_nm": true, "domain_id": "platform", "enabled": true,
 "global_enabled": true, "per_domain_enabled": true,
 "policy_trigger": "none", "power_domain": "primary", "power_policy": false,
 "reporting_period": 20000, "storage": "persistent", "target_limit": 250,
 "trigger_limit": 300}







remove_nm_policy


	HTTP method

	DELETE



	Description

	Remove Intel Node Manager policy.





Example of request:

{"domain_id": "platform", "policy_id": 11}







set_nm_policy_suspend


	HTTP method

	PUT



	Description

	Set Intel Node Manager policy suspend periods.





Example of request:

{"domain_id": "platform", "policy_id": 10,
 "periods": [{"start": 10, "stop": 60, "days": ["monday", "tuesday"]}]}





For information about time periods calculation please read NodeManager
specification.



get_nm_policy_suspend


	HTTP method

	GET



	Description

	Get Intel Node Manager policy suspend periods.





Example of request:

{"domain_id": "platform", "policy_id": 13}





Example of response:

{"domain_id": "platform", "policy_id": 13,
 "periods": [{"start": 20, "stop": 100, "days": ["monday", "tuesday"]},
             {"start": 30, "stop": 150, "days": ["friday", "sunday"]}]}







remove_nm_policy_suspend


	HTTP method

	DELETE



	Description

	Remove Intel Node Manager policy suspend periods.





Example of request:

{"domain_id": "platform", "policy_id": 13}







get_nm_statistics


	HTTP method

	GET



	Description

	Get Intel Node Manager statistics.





Example of request:

{"scope": "global", "domain_id": "platform", "parameter_name": "power"}





Example of response:

{"activation_state": true, "administrative_enabled": true,
 "average_value": 200, "current_value": 202, "domain_id": "platform",
 "maximum_value": 240, "measurement_state": true, "minimum_value": 150,
 "operational_state": true, "reporting_period": 2125,
 "timestamp": "2016-02-03T20:13:52"}







reset_nm_statistics


	HTTP method

	DELETE



	Description

	Reset Intel Node Manager statistics.





Example of request:

{"scope": "global", "domain_id": "platform"}








References


	1

	http://www.intel.com/content/www/us/en/power-management/intelligent-power-node-manager-3-0-specification.html









          

      

      

    

  

    
      
          
            
  
Releasing ironic-staging-drivers

This section is relevant to the maintainers of ironic-staging-drivers. You have
to be a member of the ironic-staging-drivers-release [https://review.opendev.org/admin/groups/bf6b0cc8749d0d89a8620882f697a60b46f032ab] group to do releases.


	Verify that the CI works via a dummy patch.


	Create a signed tag locally:

git tag -s -m "Release <version>" <version>







	Push the new tag to gerrit:

git push gerrit <version>







	Wait for the new release to appear on PyPI [https://pypi.org/project/ironic-staging-drivers/], contact the infra team in case
of any issues.


	If a stable branch is needed, go to the branches section of the
ironic-staging-drivers settings [https://review.opendev.org/admin/repos/x/ironic-staging-drivers] in gerrit and add a new branch from the
newly created tag.


	If a stable branch has been created, submit a change for it that:


	updates .gitreview with a new defaultbranch,


	updates extra-requirements.txt with a link to ironic stable,


	updates tox.ini to use upper constraints from the corresponding
release.




See the stable/xena patch [https://review.opendev.org/c/x/ironic-staging-drivers/+/810657] for an example.








          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  _static/file.png





_static/down-pressed.png





_static/down.png





_static/up-pressed.png





_static/minus.png





_static/plus.png





_static/up.png





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to ironic-staging-drivers’s documentation!
        


        		
          Ironic Staging Drivers
          
            		
              What the Ironic Staging Drivers is not
            


            		
              How to contribute
              
                		
                  How do I submit the code?
                


              


            


            		
              Useful links
            


          


        


        		
          Available drivers
          
            		
              Wake-On-Lan driver
              
                		
                  Overview
                


                		
                  Requirements
                


                		
                  Configuring and Enabling
                


                		
                  Registering a node
                


                		
                  References
                


              


            


            		
              AMT drivers
              
                		
                  Overview
                


                		
                  Set up your environment
                


              


            


            		
              iBoot driver
              
                		
                  Overview
                


                		
                  References
                


              


            


            		
              Libvirt drivers
              
                		
                  Overview
                


                		
                  Setting up the environment
                


                		
                  References
                


              


            


            		
              Intel NodeManager drivers
              
                		
                  Overview
                


                		
                  Supported vendor passthru methods
                


                		
                  References
                


              


            


          


        


        		
          Releasing ironic-staging-drivers
        


      


    
  

