
Manual de Iroha: instalación, inicio,
API, guías y resolución de problemas

Release

Comunidad Iroha Hyperledger

26.01.2021

Inhaltsverzeichnis

1 Overview of Iroha 3
1.1 What are the key features of Iroha? . 3
1.2 Where can Iroha be used? . 3
1.3 How is it different from Bitcoin or Ethereum? . 3
1.4 How is it different from the rest of Hyperledger frameworks or other permissioned blockchains? . . . 4
1.5 How to create applications around Iroha? . 4

2 erste Schritte 5
2.1 Vorraussetzungen . 5
2.2 Iroha-Node starten . 5
2.3 Try other guides . 7

3 Use Case Scenarios 9
3.1 Certificates in Education, Healthcare . 9
3.2 Cross-Border Asset Transfers . 10
3.3 Financial Applications . 10
3.4 Identity Management . 11
3.5 Supply Chain . 11
3.6 Fund Management . 12
3.7 Related Research . 12

4 Kernkonzepte 13
4.1 Sections . 13

5 Guides and how-tos 23
5.1 Building Iroha . 23
5.2 Die Konfiguration . 29
5.3 Deploying Iroha . 31
5.4 Client Libraries . 34
5.5 Installing Dependencies . 41
5.6 Deploying Iroha on Kubernetes cluster . 44
5.7 Iroha installation security tips . 47

6 Iroha API Referenz 49
6.1 Befehle . 49
6.2 Suchanfragen . 65

i

7 Maintenance 83
7.1 Permissions . 83
7.2 List of Permissions . 83
7.3 Ansible . 102

8 Beitrag 103

ii

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Welcome! Hyperledger Iroha is a simple blockchain platform you can use to make trusted, secure, and fast applications
by bringing the power of permission-based blockchain with Byzantine fault-tolerant consensus. It’s free, open-source,
and works on Linux and Mac OS, with a variety of mobile and desktop libraries.

You can download the source code of Hyperledger Iroha and latest releases from GitHub page.

This documentation will guide you through the installation, deployment, and launch of Iroha network, and explain to
you how to write an application for it. We will also see which use case scenarios are feasible now, and are going to be
implemented in the future.

As Hyperledger Iroha is an open-source project, we will also cover contribution part and explain you a working
process.

Bemerkung: There is a separate website for all external API documentation, which is Iroha API. We are in the process
of migration, so that in future only RTD is maintained and updated.

Inhaltsverzeichnis 1

https://github.com/hyperledger/iroha
https://hyperledger.github.io/iroha-api

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

2 Inhaltsverzeichnis

KAPITEL 1

Overview of Iroha

1.1 What are the key features of Iroha?

• Simple deployment and maintenance

• Variety of libraries for developers

• Role-based access control

• Modular design, driven by command–query separation principle

• Assets and identity management

In our quality model, we focus on and continuously improve:

• Reliability (fault tolerance, recoverability)

• Performance Efficiency (in particular time-behavior and resource utilization)

• Usability (learnability, user error protection, appropriateness recognisability)

1.2 Where can Iroha be used?

Hyperledger Iroha is a general purpose permissioned blockchain system that can be used to manage digital assets,
identity, and serialized data. This can be useful for applications such as interbank settlement, central bank digital
currencies, payment systems, national IDs, and logistics, among others.

For a detailed description please check our Use Case Scenarios section.

1.3 How is it different from Bitcoin or Ethereum?

Bitcoin and Ethereum are designed to be permissionless ledgers where anyone can join and access all the data. They
also have native cryptocurrencies that are required to interact with the systems.

3

http://iroha.readthedocs.io/en/latest/use_cases/

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

In Iroha, there is no native cryptocurrency. Instead, to meet the needs of enterprises, system interaction is permis-
sioned, meaning that only people with requisite access can interact with the system. Additionally, queries are also
permissioned, such that access to all the data can be controlled.

One major difference from Ethereum, in particular, is that Hyperledger Iroha allows users to perform common functi-
ons, such as creating and transferring digital assets, by using prebuilt commands that are in the system. This negates
the need to write cumbersome and hard to test smart contracts, enabling developers to complete simple tasks faster
and with less risk.

1.4 How is it different from the rest of Hyperledger frameworks or
other permissioned blockchains?

Iroha has a novel, Byzantine fault tolerant consensus algorithm (called YAC1) that is high-performance and allows for
finality of transactions with low latency. Other frameworks either focus more on probabilistic consensus algorithms,
such as Nakamoto Consensus, or sacrifice Byzantine fault tolerance.

Also, Iroha’s built-in commands are a major benefit compared to other platforms, since it is very simple to do common
tasks such as create digital assets, register accounts, and transfer assets between accounts. Moreover, it narrows the
attack vector, improving overall security of the system, as there are less things to fail.

Finally, Iroha is the only ledger that has a robust permission system, allowing permissions to be set for all commands,
queries, and joining of the network.

1.5 How to create applications around Iroha?

In order to bring the power of blockchain into your application, you should think first of how it is going to interface
with Iroha peers. A good start is to check Core Concepts section, explaining what exactly is a transaction and query,
and how users of your application are supposed to interact with it.

We also have several client libraries which provide tools for developers to form building blocks, such as signatures,
commands, send messages to Iroha peers and check the status.

1 Yet Another Consensus

4 Kapitel 1. Overview of Iroha

http://iroha.readthedocs.io/en/latest/core_concepts/

KAPITEL 2

erste Schritte

In diesem Guide werden wir ein einfaches Iroha-Netzwerk erstellen, starten, einige Transaktionen erstellen und die in
den Ledger geschriebenen Daten kontrollieren. Um dies so einfach wie möglich zu gestalten nutzen wir Docker.

Bemerkung: Ledger is the synonym for a blockchain, and Hyperledger Iroha is known also as Distributed Led-
ger Technology framework — which in essence is the same as „blockchain framework“. You can check the rest of
terminology used in the Kernkonzepte section.

2.1 Vorraussetzungen

For this guide, you need a machine with Docker installed. You can read how to install it on a Docker’s website.

Bemerkung: Of course you can build Iroha from scratch, modify its code and launch a customized node! If you are
curious how to do that — you can check Building Iroha section. In this guide we will use a standard distribution of
Iroha available as a docker image.

2.2 Iroha-Node starten

2.2.1 Docker Netzwerk kreiren

Iroha benötigt eine „PostgreSQL“ Datenbank. Lass‘ uns mit der Erstellung eines Docker-Netzwerkes starten, damit
Container für Postgres und Iroha im selben virtuellen Netzwerk laufen und miteinander erfolgreichen kommunizieren.
In diesem Guide werden wir es „iroha-network“ nennen, du kannst aber jeden Namen benutzen. Schreibe in deinem
Terminal folgenden Befehl:

docker network create iroha-network

5

https://www.docker.com/community-edition/

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

2.2.2 PostgreSQL Container starten

Jetzt müssen wir „PostgreSQL“ in einem Container laufen lassen, mit dem vorher erstellten Netzwerk verbinden und
die Ports für die Kommunikation öffnen:

docker run --name some-postgres \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=mysecretpassword \
-p 5432:5432 \
--network=iroha-network \
-d postgres:9.5 \
-c 'max_prepared_transactions=100'

Bemerkung: If you already have Postgres running on a host system on default port (5432), then you should pick
another free port that will be occupied. For example, 5433: -p 5433:5432

2.2.3 Erstellung des Blockstores

Before we run Iroha container, we may create a persistent volume to store files, storing blocks for the chain. It is done
via the following command:

docker volume create blockstore

2.2.4 Preparing the configuration files

Bemerkung: To keep things simple, in this guide we will create a network containing only a single node. To under-
stand how to run several peers, follow Deploying Iroha

Now we need to configure our Iroha network. This includes creating a configuration file, generating keypairs for a
users, writing a list of peers and creating a genesis block.

Don’t be scared away — we have prepared an example configuration for this guide, so you can start testing Iroha node
now. In order to get those files, you need to clone the Iroha repository from Github or copy them manually (cloning is
faster, though).

git clone -b master https://github.com/hyperledger/iroha --depth=1

Hinweis: --depth=1 option allows us to download only the latest commit and save some time and bandwidth. If
you want to get a full commit history, you can omit this option.

There is a guide on how to set up the parameters and tune them with respect to your environment and load expectations:
Die Konfiguration. We don’t need to do this at the moment.

2.2.5 Iroha-Container starten

We are almost ready to launch our Iroha container. You just need to know the path to configuration files (from the step
above).

6 Kapitel 2. erste Schritte

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Let’s start Iroha node in Docker container with the following command:

docker run --name iroha \
-d \
-p 50051:50051 \
-v $(pwd)/iroha/example:/opt/iroha_data \
-v blockstore:/tmp/block_store \
--network=iroha-network \
-e KEY='node0' \
hyperledger/iroha:latest

If you started the node successfully you would see the container id in the same console where you started the container.

Let’s look in details what this command does:

• docker run --name iroha \ creates a container iroha

• -d \ runs container in the background

• -p 50051:50051 \ exposes a port for communication with a client (we will use this later)

• -v YOUR_PATH_TO_CONF_FILES:/opt/iroha_data \ is how we pass our configuration files to do-
cker container. The example directory is indicated in the code block above.

• -v blockstore:/tmp/block_store \ adds persistent block storage (Docker volume) to a container,
so that the blocks aren’t lost after we stop the container

• --network=iroha-network \ adds our container to previously created iroha-network for commu-
nication with PostgreSQL server

• -e KEY='node0' \ - here please indicate a key name that will identify the node allowing it to confirm
operations. The keys should be placed in the directory with configuration files mentioned above.

• hyperledger/iroha:latest is a reference to the image pointing to the latest release

You can check the logs by running docker logs iroha.

You can try using one of sample guides in order to send some transactions to Iroha and query its state.

2.3 Try other guides

2.3. Try other guides 7

https://github.com/hyperledger/iroha/releases

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

8 Kapitel 2. erste Schritte

KAPITEL 3

Use Case Scenarios

We list a number of use cases and specific advantages that Hyperledger Iroha can introduce to these applications. We
hope that the applications and use cases will inspire developers and creators to further innovation with Hyperledger
Iroha.

3.1 Certificates in Education, Healthcare

Hyperledger Iroha incorporates into the system multiple certifying authorities such as universities, schools, and medi-
cal institutions. Flexible permission model used in Hyperledger Iroha allows building certifying identities, and grant
certificates. The storage of explicit and implicit information in users‘ account allows building various reputation and
identity systems.

By using Hyperledger Iroha each education or medical certificate can be verified that it was issued by certain certifying
authorities. Immutability and clear validation rules provide transparency to health and education significantly reducing
the usage of fake certificates.

3.1.1 Example

Imagine a medical institution registered as a hospital domain in Hyperledger Iroha. This domain has certified and
registered workers each having some role, e.g. physician, therapist, nurse. Each patient of the hospital has
an account with full medical history. Each medical record, like blood test results, is securely and privately stored in the
account of the patient as JSON key/values. Rules in hospital domain are defined such that only certified medical
workers and the user can access the personal information. The medical data returned by a query is verified that it
comes from a trusted source.

Hospital is tied to a specific location, following legal rules of that location, like storing personal data of citizens
only in specific regions(privacy rules). A multi-domain approach in Hyperledger Iroha allows sharing information
across multiple countries not violating legal rules. For example, if the user makoto@hospital decides to share
personal case history with a medical institution in another country, the user can use grant command with permission
can_get_my_acc_detail.

9

https://privacypolicies.com/blog/privacy-law-by-country/

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Similar to a medical institution, a registered university in Hyperledger Iroha has permissions to push information
to the graduated students. A diploma or certificate is essentially Proof-of-Graduation with a signature of recognized
University. This approach helps to ease hiring process, with an employer making a query to Hyperledger Iroha to get
the acquired skills and competence of the potential employee.

3.2 Cross-Border Asset Transfers

Hyperledger Iroha provides fast and clear trade and settlement rules using multi-signature accounts and atomic ex-
change. Asset management is easy as in centralized systems while providing necessary security guarantees. By sim-
plifying the rules and commands required to create and transfer assets, we lower the barrier to entry, while at the same
time maintaining high-security guarantees.

3.2.1 Example

For example1, a user might want to transfer the ownership of a car. User haruto has registered owner-asset rela-
tionship with a car of sora brand with parameters: {"id": "34322069732074686520616E73776572",
"color": "red", "size": "small"}. This ownership is fixed in an underlying database of the system with
copies at each validating peer. To perform the transfer operation user haruto creates an offer, i.e. a multi-signature
transaction with two commands: transfer to user haru the car identifier and transfer some amount of usd
tokens from haru to haruto. Upon receiving the offer haru accepts it by signing the multi-signature transaction,
in this case, transaction atomically commits to the system.

Hypeledger Iroha has no built-in token, but it supports different assets from various creators. This approach allows
building a decentralized exchange market. For example, the system can have central banks from different countries to
issue assets.

3.3 Financial Applications

Hyperleger Iroha can be very useful in the auditing process. Each information is validated by business rules and is
constantly maintained by distinct network participants. Access control rules along with some encryption maintain
desired level of privacy. Access control rules can be defined at different levels: user-level, domain-level or system-
level. At the user-level privacy rules for a specific individual are defined. If access rules are determined at domain or
system level, they are affecting all users in the domain. In Hyperledger Iroha we provide convenient role-based access
control rules, where each role has specific permissions.

Transactions can be traced with a local database. Using Iroha-API auditor can query and perform analytics on the data,
execute specific audit software. Hyperledger Iroha supports different scenarios for deploying analytics software: on
a local computer, or execute code on specific middleware. This approach allows analyzing Big Data application with
Hadoop, Apache, and others. Hypeledger Iroha serves as a guarantor of data integrity and privacy (due to the query
permissions restriction).

3.3.1 Example

For example, auditing can be helpful in financial applications. An auditor account has a role of the auditor with
permissions to access the information of users in the domain without bothering the user. To reduce the probability of
account hijacking and prevent the auditor from sending malicious queries, the auditor is typically defined as a multi-
signature account, meaning that auditor can make queries only having signatures from multiple separate identities. The
auditor can make queries not only to fetch account data and balance but also all transactions of a user, e.g. all transfers

1 Currently not implemented

10 Kapitel 3. Use Case Scenarios

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

of user haruto in domain konoha. To efficiently analyze data of million users each Iroha node can work in tandem
with analytics software.

Multi-signature transactions are a powerful tool of Hyperledger Iroha that can disrupt tax system. Each transaction in
a certain domain can be as a multi-signature transaction, where one signature comes from the user (for example asset
transfer) and the second signature comes from special taxing nodes. Taxing nodes will have special validation rules
written using Iroha-API, e.g. each purchase in the certified stores must pay taxes. In other words, Iroha a valid purchase
transaction must contain two commands: money transfer(purchase) to the store and money transfer(tax payment) to
the government.

3.4 Identity Management

Hyperledger Iroha has an intrinsic support for identity management. Each user in the system has a uniquely identified
account with personal information, and each transaction is signed and associated with a certain user. This makes
Hyperledger Iroha perfect for various application with KYC (Know Your Customer) features.

3.4.1 Example

For example, insurance companies can benefit from querying the information of user’s transaction without worry-
ing about the information truthfulness. Users can also benefit from storing personal information on a blockchain
since authenticated information will reduce the time of claims processing. Imagine a situation where a user wants
to make a hard money loan. Currently, pre-qualification is a tedious process of gathering information about in-
come, debts and information verification. Each user in Hyperledger Iroha has an account with verified personal
information, such as owning assets, job positions, and debts. User income and debts can be traced using que-
ry GetAccountTransactions, owning assets using query GetAccountAssets and job positions using
GetAccountDetail. Each query returns verified result reducing the processing time of hard money loan will take
only a few seconds. To incentivize users to share personal information, various companies can come up with business
processes. For example, insurance companies can create bonus discounts for users making fitness activities. Fitness
applications can push private Proof-of-Activity to the system, and the user can decide later to share information with
insurance companies using GrantPermission with permission can_get_my_acc_detail.

3.5 Supply Chain

Governance of a decentralized system and representing legal rules as a system’s code is an essential combination of
any supply chain system. Certification system used in Hyperledger Iroha allows tokenization of physical items and
embedding them into the system. Each item comes with the information about “what, when, where and why”.

Permission systems and restricted set of secure core commands narrows the attack vector and provides effortlessly a
basic level of privacy. Each transaction is traceable within a system with a hash value, by the credentials or certificates
of the creator.

3.5.1 Example

Food supply chain is a shared system with multiple different actors, such as farmers, storehouses, grocery stores, and
customers. The goal is to deliver food from a farmer’s field to the table of a customer. The product goes through many
stages, with each stage recorded in shared space. A customer scans a code of the product via a mobile device, in which
an Iroha query is encoded. Iroha query provides a full history with all stages, information about the product and the
farmer.

3.4. Identity Management 11

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

For example, gangreen is a registered farmer tomato asset creator, he serves as a guarantor tokenizing physical
items, i.e. associating each tomato with an Iroha tomato item. Asset creation and distribution processes are totally
transparent for network participants. Iroha tomato goes on a journey through a multitude of vendors to finally come
to user chad.

We simplified asset creation to just a single command CreateAsset without the need to create complex smart
contracts. One the major advantages of Hyperledger Iroha is in its ease, that allows developers to focus on the provided
value of their applications.

3.6 Fund Management

With the support of multisignature transactions it is possible to maintain a fund by many managers. In that scheme
investment can only be made after the confirmation of the quorum participants.

3.6.1 Example

The fund assets should be held at one account. Its signatories should be fund managers, who are dealing with invest-
ments and portfolio distributions. That can be added via AddSignatory command. All of the assets should be held
within one account, which signatories represent the fund managers. Thus the concrete exchanges can be performed
with the multisignature transaction so that everyone will decide on a particular financial decision. The one may confirm
a deal by sending the original transaction and one of managers‘ signature. Iroha will maintain the transaction sending
so that the deal will not be completed until it receives the required number of confirmation, which is parametrized with
the transaction quorum parameter.

3.7 Related Research

(The idea was to show current pioneers of blockchain applications and their works.)

12 Kapitel 3. Use Case Scenarios

KAPITEL 4

Kernkonzepte

Warum läuft Iroha auf einem Netzwerk? Wie können die Objekte innerhalb und außerhalb des Systems verstanden
werden? Wie können Nachbarn im Netzwerk zusammenarbeiten und entscheiden welche Dateien in die Blockchain
gesetzt werden? Wir werden auf die Grundlagen von Iroha in dieser Sektion eingehen.

Warnung: Docs are constantly updated and this section is going to be improved. Check glossary page while
contents are elaborated.

4.1 Sections

4.1.1 Account

An Iroha entity that is able to perform specified set of actions. Each account belongs to one of existing domains.

An account has some number of roles (can be none) — which is a collection of permissions. Only grantable permis-
sions are assigned to an account directly.

4.1.2 Ametsuchi

Iroha storage component, which stores blocks and a state generated from blocks, called World State View. There is no
way for the client to directly interact with Ametsuchi.

4.1.3 Asset

Any countable commodity or value. Each asset is related to one of existing domains. For example, an asset can
represent any kind of such units - currency unit, a bar of gold, real estate unit, etc.

13

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

4.1.4 Block

Transaction data is permanently recorded in files called blocks. Blocks are organized into a linear sequence over time
(also known as the block chain)1.

Blocks are signed with the cryptographic signatures of Iroha peers, voting for this block during consensus. Signable
content is called payload, so the structure of a block looks like this:

Outside payload

• signatures — signatures of peers, which voted for the block during consensus round

Inside payload

• height — a number of blocks in the chain up to the block

• timestamp — Unix time (in milliseconds) of block forming by a peer

• array of transactions, which successfully passed validation and consensus step

• hash of a previous block in the chain

• rejected transactions hashes — array of transaction hashes, which did not pass stateful validation step; this field
is optional

4.1.5 Block Creator

System component that forms a block from a set of transactions that have been passed stateless and stateful validation
for further propagation to consensus.

4.1.6 Client

Any application that uses Iroha is treated as a client.

A distinctive feature of Iroha is that all clients are using simple client-server abstractions when they interact with a peer
network: they don’t use any abstractions which are specific for blockchain-related systems. For example, in Bitcoin
clients have to validate blocks, or in Fabric they need to poll several peers to make sure that a transaction was written
in a block, whereas in Iroha a client interacts with any peer similarly to a single server.

4.1.7 Command

A command is an intention to change the state. For example, in order to create a new role in Iroha you have to issue
Create role command.

4.1.8 Consensus

A consensus algorithm is a process in computer science used to achieve agreement on a single data value among
distributed processes or systems. Consensus algorithms are designed to achieve reliability in a network involving
multiple unreliable nodes. Solving that issue – known as the consensus problem – is important in distributed computing
and multi-agent systems.

Consensus, as an algorithm

An algorithm to achieve agreement on a block among peers in the network. By having it in the system,
reliability is increased.

1 https://en.bitcoin.it/wiki/Block

14 Kapitel 4. Kernkonzepte

../api/commands.html#create-role
https://en.bitcoin.it/wiki/Block

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Consensus, as a component

Preserves consistent state among the peers within a peer network. Iroha uses own consensus algorithm
called Yet Another Consensus (aka YAC). Distinctive features of this algorithm are its scalability, perfor-
mance, and Byzantine fault tolerance. If there are missing blocks, they will be downloaded from another
peer via Synchronizer. Committed blocks are stored in Ametsuchi block storage.

4.1.9 Domain

A named abstraction for grouping accounts and assets.

4.1.10 Ordering Gate

Internal Iroha component that passes transactions from Peer Communication Service to Ordering Service. Ordering
Gate eventually recieves proposals from Ordering Service and sends them to Simulator for stateful validation.

4.1.11 Ordering Service

Internal Iroha component that combines several transactions that have been passed stateless validation into a proposal.
Proposal creation could be triggered by one of the following events:

1. Time limit dedicated to transactions collection has expired.

2. Ordering service has received the maximum amount of transactions allowed for a single proposal.

Both parameters (timeout and maximum size of proposal) are configurable (check environment-specific parameters
page).

A common precondition for both triggers is that at least one transaction should reach ordering service. Otherwise, no
proposal will be formed.

4.1.12 Peer

A node that is a part of Iroha network. It participates in consensus process.

4.1.13 Peer Communication Service

Internal component of Iroha - an intermediary that transmits transaction from Torii to Ordering Gate. The main goal
of PCS is to hide the complexity of interaction with consensus implementation.

4.1.14 Permission

A named rule that gives the privilege to perform a command. Permission cannot be granted to an account directly,
instead, an account has roles, which are the collection of permissions.

List of Iroha permissions.

4.1. Sections 15

https://en.wikipedia.org/wiki/Byzantine_fault_tolerance
../guides/configuration.html#environment-specific-parameters
../maintenance/permissions.html

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Grantable Permission

Only grantable permission is given to an account directly. An account that holds grantable permission is allowed to
perform some particular action on behalf of another account. For example, if the account a@domain1 gives the account
b@domain2 a permission that it can transfer assets — then b@domain2 can transfer assets of a@domain1 to anyone.

4.1.15 Proposal

A set of transactions that have passed only stateless validation.

Verified Proposal

A set of transactions that have been passed stateless and stateful validation, but were not committed yet.

4.1.16 Abfrage

A request to Iroha that does not change the state. By performing a query, a client can get request data from the state,
for example a balance of his account, a history of transactions, etc.

4.1.17 Quorum

In the context of transactions signing, quorum number is a minimum amount of signatures required to consider a
transaction signed. The default value is 1. Each account can link additional public keys and increase own quorum
number.

4.1.18 Role

A named abstraction that holds a set of permissions.

4.1.19 Signatory

Represents an entity that can confirm multisignature transactions for some account. It can be attached to account via
AddSignatory and detached via RemoveSignatory.

4.1.20 Simulator

See Verified Proposal Creator.

4.1.21 Synchronizer

Is a part of consensus. Adds missing blocks to peers‘ chains (downloads them from other peers).

4.1.22 Torii

. Entry point for clients. Uses gRPC as a transport. In order to interact with Iroha anyone can use gRPC endpoints,
described in Commands and Queries sections, or use client libraries.

16 Kapitel 4. Kernkonzepte

mailto:a@domain1
mailto:b@domain2
mailto:b@domain2
mailto:a@domain1
../api/commands.html#add-signatory
../api/commands.html#remove-signatory
../api/commands.html
../api/queries.html
../guides/libraries.html

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

4.1.23 Transaktion

An ordered set of commands, which is applied to the ledger atomically. Any nonvalid command within a transaction
leads to rejection of the whole transaction during the validation process.

Transaction Structure

Payload stores all transaction fields, except signatures:

• Time of creation (unix time, in milliseconds)

• Account ID of transaction creator (username@domain)

• Quorum field (indicates required number of signatures)

• Repeated commands which are described in details in commands section

• Batch meta information (optional part). See Batch of Transactions for details

Signatures contain one or many signatures (ed25519 public key + signature)

Reduced Transaction Hash

Reduced hash is calculated over transaction payload excluding batch meta information. Used in Batch of Transactions.

Transaction Statuses

Hyperledger Iroha supports both push and pull interaction mode with a client. A client that uses pull mode requests
status updates about transactions from Iroha peer by sending transaction hashes and awaiting a response. In contrary
push interaction is done over the listening of an event stream for each transaction. In any of these modes, the set of
transaction statuses is the same:

core_concepts/./../../image_assets/tx_status.png

Transaction Status Set

• NOT_RECEIVED: requested peer does not have this transaction.

• ENOUGH_SIGNATURES_COLLECTED: this is a multisignature transaction which has enough signatures and
is going to be validated by the peer.

• MST_PENDING: this transaction is a multisignature transaction which has to be signed by more keys (as
requested in quorum field).

• MST_EXPIRED: this transaction is a multisignature transaction which is no longer valid and is going to be
deleted by this peer.

• STATELESS_VALIDATION_FAILED: the transaction was formed with some fields, not meeting stateless va-
lidation constraints. This status is returned to a client, who formed transaction, right after the transaction was
sent. It would also return the reason — what rule was violated.

4.1. Sections 17

mailto:username@domain
../api/commands.html

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

• STATELESS_VALIDATION_SUCCESS: the transaction has successfully passed stateless validation. This sta-
tus is returned to a client, who formed transaction, right after the transaction was sent.

• STATEFUL_VALIDATION_FAILED: the transaction has commands, which violate validation rules, checking
state of the chain (e.g. asset balance, account permissions, etc.). It would also return the reason — what rule was
violated.

• STATEFUL_VALIDATION_SUCCESS: the transaction has successfully passed stateful validation.

• COMMITTED: the transaction is the part of a block, which gained enough votes and is in the block store at the
moment.

• REJECTED: this exact transaction was rejected by the peer during stateful validation step in previous consensus
rounds. Rejected transactions‘ hashes are stored in block store. This is required in order to prevent replay attacks.

Pending Transactions

Any transaction that has lesser signatures at the moment than quorum of transaction creator account is considered
as pending. Pending transaction will be submitted for stateful validation as soon as multisignature mechanism will
collect required amount of signatures for quorum.

Transaction that already has quorum of signatures can also be considered as pending in cases when the transaction is
a part of batch of transactions and there is a not fully signed transaction.

4.1.24 Batch of Transactions

Transactions batch is a feature that allows sending several transactions to Iroha at once preserving their order.

Each transaction within a batch includes batch meta information. Batch meta contains batch type identifier (atomic or
ordered) and a list of reduced hashes of all transactions within a batch. The order of hashes prescribes transactions
sequence.

Batch can contain transactions created by different accounts. Any transaction within a batch can require single or
multiple signatures (depends on quorum set for an account of transaction creator). At least one transaction inside a
batch should have at least one signature to let the batch pass stateless validation.

Atomic Batch

All the transactions within an atomic batch should pass stateful validation for the batch to be applied to a ledger.

Ordered Batch

Ordered batch preserves only the sequence of transactions applying to a ledger. All the transactions that able to pass
stateful validation within a batch will be applied to a ledger. Validation failure of one transaction would NOT directly
imply the failure of the whole batch.

4.1.25 Multisignature Transactions

A transaction which has the quorum greater than one is considered as multisignature (also called mst). To achieve
stateful validity the confirmation is required by the signatories of the creator account. These participants need to send
the same transaction with their signature.

18 Kapitel 4. Kernkonzepte

https://en.wikipedia.org/wiki/Replay_attack

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

4.1.26 Validator

There are two kinds of validation - stateless and stateful.

Stateless Validation

Performed in Torii. Checks if an object is well-formed, including the signatures.

Stateful Validation

Performed in Verified Proposal Creator. Validates against World State View.

4.1.27 Verified Proposal Creator

Internal Iroha component that performs stateful validation of transactions contained in received proposal. On the basis
of transactions that have been passed stateful validation verified proposal will be created and passed to Block Creator.
All the transactions that have not passed stateful validation will be dropped and not included in a verified proposal.

4.1.28 World State View

WSV reflects the current state of the system, can be considered as a snapshot. For example, WSV holds information
about an amount of assets that an account has at the moment but does not contain any info history of transaction flow.

4.1.29 Entity-relationship model

Each Hyperledger Iroha peer has a state, called „World State View“, which is represented by a set of entities and
relations between them. To explain you more which entities exist in the system and what are the relations, this sections
includes ER diagram and an explanation of its components.

ER diagram

core_concepts/./../../image_assets/er-model.png

Peer

• address — network address and internal port, is used for synchronization, consensus, and communication with
the ordering service

• public_key — key, which will be used for signing blocks during consensus process

4.1. Sections 19

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Asset

• asset_id — identifier of asset, formatted as asset_name#domain_id

• domain_id — identifier of domain, where the asset was created, references existing domain

• precision — size of fractional part

• data — JSON with arbitrary structure of asset description

Signatory

• public_key — a public key

Domain

• domain_id — identifier of a domain

• default_role — a default role per user created in the domain, references existing role

Role

• role_id — identifier of role

RoleHasPermissions

• role_id — identifier of role, references existing role

• permission_id — an id of predefined role

Account

• account_id — identifier of account, formatted as account_name@domain_id

• domain_id — identifier of domain where the account was created, references existing domain

• quorum — number of signatories required for creation of valid transaction from this account

• transaction_count – counter of transactions created by this account

• data — key-value storage for any information, related to the account. Size is limited to 268435455 bytes
(0x0FFFFFFF) (PostgreSQL JSONB field).

AccountHasSignatory

• account_id — identifier of account, references existing account

• public_key — a public key (which is also called signatory), references existing signatory

20 Kapitel 4. Kernkonzepte

mailto:account_name@domain_id

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

AccountHasAsset

• account_id — identifier of account, references existing account

• asset_id — identifier of asset, references existing asset

• amount — an amount of the asset, belonging to the account

AccountHasRoles

• account_id — identifier of account, references existing account

• role_id — identifier of role, references existing role

AccountHasGrantablePermissions

• account_id — identifier of account, references existing account. This account gives grantable permission to
perform operation over itself to permittee.

• permittee_account_id — identifier of account, references existing account. This account is given permission to
perform operation over account_id.

• permission_id — identifier of grantable_permission

4.1. Sections 21

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

22 Kapitel 4. Kernkonzepte

KAPITEL 5

Guides and how-tos

5.1 Building Iroha

In this guide we will learn how to install all dependencies, required to build Iroha and how to build it.

Bemerkung: You don’t need to build Iroha to start using it. Instead, you can download prepared Docker image from
the Hub, this process explained in details in the erste Schritte page of this documentation.

5.1.1 Preparing the Environment

In order to successfully build Iroha, we need to configure the environment. There are several ways to do it and we will
describe all of them.

Currently, we support Unix-like systems (we are basically targeting popular Linux distros and macOS). If you happen
to have Windows or you don’t want to spend time installing all dependencies you might want to consider using Docker
environment. Also, Windows users might consider using WSL

Technically Iroha can be built under Windows natively in experimental mode. This guide covers that way too. All the
stages related to native Windows build are separated from the main flow due to its significant differences.

Hinweis: Having troubles? Check FAQ section or communicate to us directly, in case you were stuck on something.
We don’t expect this to happen, but some issues with an environment are possible.

Docker

Bemerkung: You don’t need Docker to run Iroha, it is just one of the possible choices.

23

https://en.wikipedia.org/wiki/Windows_Subsystem_for_Linux

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

First of all, you need to install docker and docker-compose. You can read how to install it on the Docker’s
website

Bemerkung: Please, use the latest available docker daemon and docker-compose.

Then you should clone the Iroha repository to the directory of your choice.

git clone -b master https://github.com/hyperledger/iroha --depth=1

Hinweis: --depth=1 option allows us to download only latest commit and save some time and bandwidth. If you
want to get a full commit history, you can omit this option.

After it, you need to run the development environment. Run the scripts/run-iroha-dev.sh script:

bash scripts/run-iroha-dev.sh

Hinweis: Please make sure that Docker is running before executing the script. macOS users could find a Docker icon
in system tray, Linux user could use systemctl start docker

After you execute this script, following things happen:

1. The script checks if you don’t have containers with Iroha already running. Successful completion finishes with the
new container shell.

2. The script will download hyperledger/iroha:develop-build and postgres images. hyperledger/
iroha:develop-build image contains all development dependencies and is based on top of ubuntu:16.04.
postgres image is required for starting and running Iroha.

3. Two containers are created and launched.

4. The user is attached to the interactive environment for development and testing with iroha folder mounted from
the host machine. Iroha folder is mounted to /opt/iroha in Docker container.

Now your are ready to build Iroha! Please go to Building Iroha section.

Linux

Boost

Iroha requires Boost of at least 1.65 version. To install Boost libraries (libboost-all-dev), use current re-
lease from Boost webpage. The only dependencies are thread, system and filesystem, so use ./bootstrap.sh
--with-libraries=thread,system,filesystem when you are building the project.

Other Dependencies

To build Iroha, you need following packages:

build-essential automake libtool libssl-dev zlib1g-dev libc6-dbg golang git tar gzip
ca-certificates wget curl file unzip python cmake

Use this code to install dependencies on Debian-based Linux distro.

24 Kapitel 5. Guides and how-tos

https://www.docker.com/community-edition/
https://www.docker.com/community-edition/
https://github.com/hyperledger/iroha
http://www.boost.org/users/download/
http://www.boost.org/users/download/

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

apt-get update; \
apt-get -y --no-install-recommends install \
build-essential automake libtool \
libssl-dev zlib1g-dev \
libc6-dbg golang \
git tar gzip ca-certificates \
wget curl file unzip \
python cmake

Bemerkung: If you are willing to actively develop Iroha and to build shared libraries, please consider installing the
latest release of CMake.

macOS

If you want to build it from scratch and actively develop it, please use this code to install all dependencies with
Homebrew.

xcode-select --install
brew install cmake boost postgres grpc autoconf automake libtool golang soci

Hinweis: To install the Homebrew itself please run

ruby -e "$(curl -fsSL https://raw.githubusercontent.com/homebrew/install/
master/install)"

Windows

All the listed commands are desinged for building 64-bit version of Iroha.

Chocolatey Package Manager

First of all you need chocolatey package manager installed. Please refer the guide for chocoloatey installation.

Build Toolset

Install CMake, Git, Microsoft compilers via chocolatey being in Administrative mode of command prompt:

choco install cmake git visualstudio2017-workload-vctools

Hinweis: Despite PostgreSQL is not a build dependency it is recommended to install Postgres now for the testing
later.

choco install postgresql
Don't forget the password you set!

5.1. Building Iroha 25

https://cmake.org/download/
https://chocolatey.org/install

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Vcpkg Dependency Manager

Although Vcpkg is aimed to control dependency hell among the C++ libraries, unfortunately, we cannot install its
default version. The first problem is that Iroha dependency called SOCI is not able to work with the latest Boost. The
second reason - Vcpkg does not provide Postgres related libraries for Debug build.

The solution is to use Vcpkg from a pull request (until it is merged):

git clone https://github.com/Microsoft/vcpkg.git --depth=1
cd vcpkg
git fetch origin pull/6328/head:vcpkg_for_iroha
git checkout vcpkg_for_iroha

Then follow Vcpkg installation guide:

execute in Power shell
.\bootstrap-vcpkg.bat
.\vcpkg.exe integrate install

After the installation of vcpkg you will be provided with a CMake build parameter like
-DCMAKE_TOOLCHAIN_FILE=C:/path/to/vcpkg/scripts/buildsystems/vcpkg.cmake. Sa-
ve it somewhere for the later use.

Vcpkg Packages

Install C++ dependencies via vcpkg:

Execute this from cmd.exe NOT from Power Shell

vcpkg.exe install ^
protobuf:x64-windows ^
grpc:x64-windows ^
tbb:x64-windows ^
gtest:x64-windows ^
gflags:x64-windows ^
soci[boost,postgresql]:x64-windows ^
boost-filesystem:x64-windows ^
boost-system:x64-windows ^
boost-thread:x64-windows ^
boost-variant:x64-windows ^
boost-multiprecision:x64-windows ^
boost-bimap:x64-windows ^
boost-format:x64-windows ^
boost-circular-buffer:x64-windows ^
boost-assign:x64-windows ^
boost-uuid:x64-windows ^
boost-accumulators:x64-windows ^
boost-property-tree:x64-windows ^
boost-process:x64-windows

Bemerkung: If you plan to build 32-bit version of Iroha - you will need to install all the mentioned librares above
prefixed with x86 term instead of x64.

26 Kapitel 5. Guides and how-tos

https://github.com/Microsoft/vcpkg/pull/6328
https://github.com/Microsoft/vcpkg/blob/master/README.md

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

5.1.2 Build Process

Cloning the Repository

Clone the Iroha repository to the directory of your choice.

git clone -b master https://github.com/hyperledger/iroha
cd iroha

Hinweis: If you have installed the prerequisites with Docker, you don’t need to clone Iroha again, because when you
run run-iroha-dev.sh it attaches to Iroha source code folder. Feel free to edit source code files with your host
environment and build it within docker container.

Building Iroha

Building on Windows differs from the main flow and the guide is here.

To build Iroha, use those commands

mkdir build; cd build; cmake ..; make -j$(nproc)

Alternatively, you can use these shorthand parameters (they are not documented though)

cmake -H. -Bbuild;
cmake --build build -- -j$(nproc)

Bemerkung: On macOS $(nproc) variable does not work. Check the number of logical cores with sysctl -n
hw.ncpu and put it explicitly in the command above, e.g. cmake --build build -- -j4

CMake Parameters

We use CMake to build platform-dependent build files. It has numerous flags for configuring the final build. Note that
besides the listed parameters cmake’s variables can be useful as well. Also as long as this page can be deprecated (or
just not complete) you can browse custom flags via cmake -L, cmake-gui, or ccmake.

Hinweis: You can specify parameters at the cmake configuring stage (e.g cmake -DTESTING=ON).

Main Parameters

Parameter Possible va-
lues

Default Description

TESTING ON/OFF ON Enables or disables build of the tests
BENCHMAR-
KING

OFF Enables or disables build of the Google Benchmarks library

COVERAGE OFF Enables or disables lcov setting for code coverage generation

5.1. Building Iroha 27

https://github.com/hyperledger/iroha

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Packaging Specific Parameters

Parameter Possible values Default Description
ENABLE_LIBS_PACKAGING ON/OFF ON Enables or disables all types of packaging
PACKAGE_ZIP OFF Enables or disables zip packaging
PACKAGE_TGZ OFF Enables or disables tar.gz packaging
PACKAGE_RPM OFF Enables or disables rpm packaging
PACKAGE_DEB OFF Enables or disables deb packaging

Running Tests (optional)

After building Iroha, it is a good idea to run tests to check the operability of the daemon. You can run tests with this
code:

cmake --build build --target test

Alternatively, you can run following command in the build folder

cd build
ctest . --output-on-failure

Bemerkung: Some of the tests will fail without PostgreSQL storage running, so if you are not using scripts/
run-iroha-dev.sh script please run Docker container or create a local connection with following parameters:

docker run --name some-postgres \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=mysecretpassword \
-p 5432:5432 \
-d postgres:9.5

Building Iroha on Windows

Configure the CMake project using configuration parameter acquired from vcpkg.

cmake -HC:\path\to\iroha -BC:\path\to\build ^
-DCMAKE_TOOLCHAIN_FILE=C:\path\to\vcpkg\scripts\buildsystems\vcpkg.cmake ^
-G "Visual Studio 15 2017 Win64" -T host=x64

Bemerkung: To build a 32-bit version of Iroha change -G "Visual Studio 15 2017 Win64" to -G
"Visual Studio 15 2017"

Bemerkung: -T host=x64 indicates only the fact that 64-bit system is used as a host, where Iroha is going to be
compiled.

Build irohad and iroha-cli:

28 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

cmake --build C:\path\to\build --target irohad
cmake --build C:\path\to\build --target iroha-cli

Running Iroha on Windows

Set the correct path and PostgreSQL password in config-win.sample

C:\path\to\irohad.exe ^
--config C:\path\to\iroha\example\config-win.sample ^
--genesis_block C:\path\to\iroha\example\genesis-win.block ^
--keypair_name C:\path\to\iroha\example\node0

As we stated before Windows build support is on experimental stage, that is why there no much details regarding the
process. If you want to explore the maximum of Windows-related works around Iroha please take a look at these pull
requests: 1, 2, 3.

5.2 Die Konfiguration

In diesem Abschnitt werden wir auf die Konfiguration von Iroha eingehen, ausgehend von ‚example/config.sample‘.

1 {
2 "block_store_path": "/tmp/block_store/",
3 "torii_port": 50051,
4 "internal_port": 10001,
5 "pg_opt": "host=localhost port=5432 user=postgres password=mysecretpassword",
6 "max_proposal_size": 10,
7 "proposal_delay": 5000,
8 "vote_delay": 5000,
9 "mst_enable" : false,

10 "mst_expiration_time" : 1440,
11 "max_rounds_delay": 3000,
12 "stale_stream_max_rounds": 2
13 }

Die Konfigurationsdatei ist eine valide JSON-Struktur. Lass‘ uns diese Zeile für Zeile ansehen und verstehen, was
jeder Parameter bedeutet.

5.2.1 Deployment-spezifische Parameter

• ‚block_store_path‘ setzt den Pfad an dem Blöcke gespeichert werden

• ‚torii_port‘ setzt den Port für externe Kommunikation. Queries und Transaktionen werden hierhin gesendet.

• ‚internal_port‘ setzt den Port für interne Kommunikation: Ordering service, Konsensus und block loader

• ‚pg_opt‘ setzt Zugangsdaten für PostgreSQL: Hostname, Port, Nutzername und Passwort

• log is an optional parameter controlling log output verbosity and format (see below).

5.2.2 Umgebungsspezifische Parameter

• ‚max_proposal_size‘ ist die maximale Anzahl an Transaktionen, die in einem Proposal, und darausfolgend in
einem Block sein können. Die Änderung dieses Wertes definiert auch die Größe eines potentiellen Blockes.

5.2. Die Konfiguration 29

https://github.com/hyperledger-archives/iroha/pull/1988
https://github.com/hyperledger-archives/iroha/pull/2022
https://github.com/hyperledger/iroha/pull/55

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Als Startwert empfiehlt sich ‚10‘. Sollten eine große Menge an Transaktionen pro Sekunden zu erwarten sein,
empfiehlt es sich diesen Wert zu erhöhen.

• proposal_delay is a timeout in milliseconds that a peer waits a response from the orderding service with a
proposal.

• ‚vote_delay‘ ist die Wartezeit in Millisekunden bevor ein Votum zum nächsten Peer gesendet wird. Ein optimaler
Wert ist stark abhängig von der Anzahl von Iroha-Peers im Netzwerk (eine größere Anzahl von Nodes erfordert
einen größeren ‚vote_delay‘). Wir empfehlen einen Startwert von 100 bis 1000 ms.

• mst_enable enables or disables multisignature transaction network transport in Iroha. Note that MST engine
always works for any peer even when the flag is set to false. The flag only allows sharing information about
MST transactions among the peers.

• mst_expiration_time is an optional parameter specifying the time period in which a not fully signed
transaction (or a batch) is considered expired (in minutes). The default value is 1440.

• max_rounds_delay is an optional parameter specifying the maximum delay between two consensus rounds
(in milliseconds). The default value is 3000. When Iroha is idle, it gradually increases the delay to reduce CPU,
network and logging load. However too long delay may be unwanted when first transactions arrive after a long
idle time. This parameter allows users to find an optimal value in a tradeoff between resource consumption and
the delay of getting back to work after an idle period.

• stale_stream_max_rounds is an optional parameter specifying the maximum amount of rounds to keep
an open status stream while no status update is reported. The default value is 2. Increasing this value reduces
the amount of times a client must reconnect to track a transaction if for some reason it is not updated with new
rounds. However large values increase the average number of connected clients during each round.

• "initial_peers is an optional parameter specifying list of peers a node will use after startup instead of
peers from genesis block. It could be useful when you add a new node to the network where the most of initial
peers may become malicious. Peers list should be provided as a JSON array:

"initial_peers" : [{"address":"127.0.0.1:10001", "public_key":
"bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929"}]

5.2.3 Logging

In Iroha logging can be adjusted as granularly as you want. Each component has its own logging configuration with
properties inherited from its parent, able to be overridden through config file. This means all the component loggers
are organized in a tree with a single root. The relevant section of the configuration file contains the overriding values:

1 "log": {
2 "level": "info",
3 "patterns": {
4 "debug": "don't panic, it's %v.",
5 "error": "MAMA MIA! %v!!!"
6 },
7 "children": {
8 "KeysManager": {
9 "level": "trace"

10 },
11 "Irohad": {
12 "children": {
13 "Storage": {
14 "level": "trace",
15 "patterns": {
16 "debug": "thread %t: %v."
17 }
18 }

30 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

19 }
20 }
21 }
22 }

Every part of this config section is optional.

• level sets the verbosity. Available values are (in decreasing verbosity order):

– trace - print everything

– debug

– info

– warning

– error

– critical - print only critical messages

• patterns controls the formatting of each log string for different verbosity levels. Each value overrides the less
verbose levels too. So in the example above, the „don’t panic“ pattern also applies to info and warning levels,
and the trace level pattern is the only one that is not initialized in the config (it will be set to default hardcoded
value).

• children describes the overrides of child nodes. The keys are the names of the components, and the values
have the same syntax and semantics as the root log configuration.

5.3 Deploying Iroha

Hyperledger Iroha can be deployed in different ways, depending on the perspective and the purpose. There can be
either a single node deployed, or multiple nodes running in several containers on a local machine or spread across the
network — so pick any case you need. This page describes different scenarios and is intended to act as a how-to guide
for users, primarily trying out Iroha for the first time.

5.3.1 Running single instance

Generally, people want to run Iroha locally in order to try out the API and explore the capabilities. This can be done in
local or container environment (Docker). We will explore both possible cases, but in order to simplify peer components
deployment, it is advised to have Docker installed on your machine.

Local environment

By local environment, it is meant to have daemon process and Postgres deployed without any containers. This might
be helpful in cases when messing up with Docker is not preferred — generally a quick exploration of the features.

Run postgres server

In order to run postgres server locally, you should check postgres website and follow their description. Generally,
postgres server runs automatically when the system starts, but this should be checked in the configuration of the
system.

5.3. Deploying Iroha 31

https://www.postgresql.org/docs/current/static/server-start.html

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Run iroha daemon (irohad)

There is a list of preconditions which you should meet before proceeding:

• Postgres server is up and running

• irohad Iroha daemon binary is built and accessible in your system

• The genesis block and configuration files were created

• Config file uses valid postgres connection settings

• A keypair for the peer is generated

• This is the first time you run the Iroha on this peer and you want to create new chain

Hinweis: Have you got something that is not the same as in the list of assumptions? Please, refer to the section below
the document, titled as Dealing with troubles.

In case of valid assumptions, the only thing that remains is to launch the daemon process with following parameters:

Parameter Meaning
config configuration file, containing postgres connection and values to tune the system
genesis_block initial block in the ledger
keypair_name private and public key file names without file extension, used by peer to sign the blocks

Achtung: Specifying a new genesis block using –genesis_block with blocks already present in ledger requires
–overwrite_ledger flag to be set. The daemon will fail otherwise.

An example of shell command, running Iroha daemon is

irohad --config example/config.sample --genesis_block example/genesis.block --keypair_
→˓name example/node0

Achtung: If you have stopped the daemon and want to use existing chain — you should not pass the genesis block
parameter.

Docker

In order to run Iroha peer as a single instance in Docker, you should pull the image for Iroha first:

docker pull hyperledger/iroha:latest

Hinweis: Use latest tag for latest stable release, and develop for latest development version

Then, you have to create an enviroment for the image to run without problems:

32 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Create docker network

Containers for Postgres and Iroha should run in the same virtual network, in order to be available to each other.
Create a network, by typing following command (you can use any name for the network, but in the example, we use
iroha-network name):

docker network create iroha-network

Run Postgresql in a container

Similarly, run postgres server, attaching it to the network you have created before, and exposing ports for communica-
tion:

docker run --name some-postgres \
-e POSTGRES_USER=postgres \
-e POSTGRES_PASSWORD=mysecretpassword \
-p 5432:5432 \
--network=iroha-network \
-d postgres:9.5

Create volume for block storage

Before we run iroha daemon in the container, we should create persistent volume to store files, storing blocks for the
chain. It is done via the following command:

docker volume create blockstore

Running iroha daemon in docker container

There is a list of assumptions which you should review before proceeding:

• Postgres server is running on the same docker network

• There is a folder, containing config file and keypair for a single node

• This is the first time you run the Iroha on this peer and you want to create new chain

If they are met, you can move forward with the following command:

docker run --name iroha \
External port
-p 50051:50051 \
Folder with configuration files
-v ~/Developer/iroha/example:/opt/iroha_data \
Blockstore volume
-v blockstore:/tmp/block_store \
Postgres settings
-e POSTGRES_HOST='some-postgres' \
-e POSTGRES_PORT='5432' \
-e POSTGRES_PASSWORD='mysecretpassword' \
-e POSTGRES_USER='postgres' \
Node keypair name
-e KEY='node0' \
Docker network name

5.3. Deploying Iroha 33

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

--network=iroha-network \
hyperledger/iroha:latest

5.3.2 Running multiple instances (peer network)

In order to set up a peer network, one should follow routines, described in this section. In this version, we support
manual deployment and automated by Ansible Playbook. Choose an option, that meets your security criteria and other
needs.

Manually

By manual deployment, we mean that Iroha peer network is set up without automated assistance. It is similar to the
process of running a single local instance, although the difference is the genesis block includes more than a single
peer. In order to form a block, which includes more than a single peer, or requires customization for your needs, please
take a look at Dealing with troubles section.

Automated

5.3.3 Dealing with troubles

—“Please, help me, because I. . . “

Do not have Iroha daemon binary

You can build Iroha daemon binary from sources. You can get binaries here

Do not have a config file

Check how to create a configuration file by following this link

Do not have a genesis block

Create genesis block by generating it via iroha-cli or manually, using the example and checking out permissions

Do not have a keypair for a peer

In order to create a keypair for an account or a peer, use iroha-cli binary by passing the name of the peer with
–new_account option. For example:

./iroha-cli --account_name newuser@test --new_account

5.4 Client Libraries

5.4.1 Java Library

Client library of Iroha written completely in Java 8, which includes:

34 Kapitel 5. Guides and how-tos

https://github.com/hyperledger/iroha/releases
./configuration.html
https://github.com/hyperledger/iroha/blob/master/example/genesis.block
https://iroha.readthedocs.io/en/latest/maintenance/permissions.html

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

• SDK to work with Iroha API

• async wrapper over Iroha API

• testcontainers wrapper for convenient integration testing with Iroha

• examples in Java and Groovy

Both options are described in the following sections. Please check readme file in project’s repo.

How to use

• JitPack

• GitHub

Example code

import iroha.protocol.BlockOuterClass;
import iroha.protocol.Primitive.RolePermission;
import java.math.BigDecimal;
import java.security.KeyPair;
import java.util.Arrays;
import jp.co.soramitsu.crypto.ed25519.Ed25519Sha3;
import jp.co.soramitsu.iroha.testcontainers.IrohaContainer;
import jp.co.soramitsu.iroha.testcontainers.PeerConfig;
import jp.co.soramitsu.iroha.testcontainers.detail.GenesisBlockBuilder;
import lombok.val;

public class Example1 {

private static final String bankDomain = "bank";
private static final String userRole = "user";
private static final String usdName = "usd";

private static final Ed25519Sha3 crypto = new Ed25519Sha3();

private static final KeyPair peerKeypair = crypto.generateKeypair();

private static final KeyPair useraKeypair = crypto.generateKeypair();
private static final KeyPair userbKeypair = crypto.generateKeypair();

private static String user(String name) {
return String.format("%s@%s", name, bankDomain);

}

private static final String usd = String.format("%s#%s", usdName, bankDomain);

/**
* <pre>

* Our initial state cosists of:

* - domain "bank", with default role "user" - can transfer assets and can query
→˓their amount

* - asset usd#bank with precision 2

* - user_a@bank, which has 100 usd

* - user_b@bank, which has 0 usd

* </pre>

*/

5.4. Client Libraries 35

https://github.com/hyperledger/iroha-java
https://jitpack.io/#hyperledger/iroha-java
https://github.com/hyperledger/iroha

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

private static BlockOuterClass.Block getGenesisBlock() {
return new GenesisBlockBuilder()

// first transaction
.addTransaction(

// transactions in genesis block can have no creator
Transaction.builder(null)

// by default peer is listening on port 10001
.addPeer("0.0.0.0:10001", peerKeypair.getPublic())
// create default "user" role
.createRole(userRole,

Arrays.asList(
RolePermission.can_transfer,
RolePermission.can_get_my_acc_ast,
RolePermission.can_get_my_txs,
RolePermission.can_receive

)
)
.createDomain(bankDomain, userRole)
// create user A
.createAccount("user_a", bankDomain, useraKeypair.getPublic())
// create user B
.createAccount("user_b", bankDomain, userbKeypair.getPublic())
// create usd#bank with precision 2
.createAsset(usdName, bankDomain, 2)
// transactions in genesis block can be unsigned
.build() // returns ipj model Transaction
.build() // returns unsigned protobuf Transaction

)
// we want to increase user_a balance by 100 usd
.addTransaction(

Transaction.builder(user("user_a"))
.addAssetQuantity(usd, new BigDecimal("100"))
.build()
.build()

)
.build();

}

public static PeerConfig getPeerConfig() {
PeerConfig config = PeerConfig.builder()

.genesisBlock(getGenesisBlock())

.build();

// don't forget to add peer keypair to config
config.withPeerKeyPair(peerKeypair);

return config;
}

/**
* Custom facade over GRPC Query

*/
public static int getBalance(IrohaAPI api, String userId, KeyPair keyPair) {
// build protobuf query, sign it
val q = Query.builder(userId, 1)

.getAccountAssets(userId)

.buildSigned(keyPair);

36 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

// execute query, get response
val res = api.query(q);

// get list of assets from our response
val assets = res.getAccountAssetsResponse().getAccountAssetsList();

// find usd asset
val assetUsdOptional = assets

.stream()

.filter(a -> a.getAssetId().equals(usd))

.findFirst();

// numbers are small, so we use int here for simplicity
return assetUsdOptional

.map(a -> Integer.parseInt(a.getBalance()))

.orElse(0);
}

public static void main(String[] args) {
// for simplicity, we will create Iroha peer in place
IrohaContainer iroha = new IrohaContainer()

.withPeerConfig(getPeerConfig());

// start the peer. blocking call
iroha.start();

// create API wrapper
IrohaAPI api = new IrohaAPI(iroha.getToriiAddress());

// transfer 100 usd from user_a to user_b
val tx = Transaction.builder("user_a@bank")

.transferAsset("user_a@bank", "user_b@bank", usd, "For pizza", "10")

.sign(useraKeypair)

.build();

// create transaction observer
// here you can specify any kind of handlers on transaction statuses
val observer = TransactionStatusObserver.builder()

// executed when stateless or stateful validation is failed
.onTransactionFailed(t -> System.out.println(String.format(

"transaction %s failed with msg: %s",
t.getTxHash(),
t.getErrOrCmdName()

)))
// executed when got any exception in handlers or grpc
.onError(e -> System.out.println("Failed with exception: " + e))
// executed when we receive "committed" status
.onTransactionCommitted((t) -> System.out.println("Committed :)"))
// executed when transfer is complete (failed or succeed) and observable is

→˓closed
.onComplete(() -> System.out.println("Complete"))
.build();

// blocking send.
// use .subscribe() for async sending
api.transaction(tx)

.blockingSubscribe(observer);

5.4. Client Libraries 37

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

/// now lets query balances
val balanceUserA = getBalance(api, user("user_a"), useraKeypair);
val balanceUserB = getBalance(api, user("user_b"), userbKeypair);

// ensure we got correct balances
assert balanceUserA == 90;
assert balanceUserB == 10;

}
}

5.4.2 Javascript library

This library provides functions which will help you to interact with Hyperledger Iroha from your JS program.

Installation

Via npm

$ npm i iroha-helpers

Via yarn

$ yarn add iroha-helpers

Commands

For usage of any command you need to provide commandOptions as a first argument.

const commandOptions = {
privateKeys: ['f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'], /

→˓/ Array of private keys in hex format
creatorAccountId: '', // Account id, ex. admin@test
quorum: 1,
commandService: null

}

As second argument you need to provide object that contains properties for required command.

// Example usage of setAccountDetail

const commandService = new CommandService_v1Client(
'127.0.0.1:50051',
grpc.credentials.createInsecure()

)

const adminPriv = 'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'

commands.setAccountDetail({
privateKeys: [adminPriv],
creatorAccountId: 'admin@test',
quorum: 1,
commandService

38 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

}, {
accountId: 'admin@test',
key: 'jason',
value: 'statham'

})

Queries

For usage of any query you need to provide queryOptions as a first argument.

const queryOptions = {
privateKey: 'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70', //

→˓Private key in hex format
creatorAccountId: '', // Account id, ex. admin@test
queryService: null

}

As second argument you need to provide object that contains properties for required query.

// Example usage of getAccountDetail

const queryService = new QueryService_v1Client(
'127.0.0.1:50051',
grpc.credentials.createInsecure()

)

const adminPriv = 'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'

queries.getAccountDetail({
privateKey: adminPriv,
creatorAccountId: 'admin@test',
queryService

}, {
accountId: 'admin@test'

})

Example code

import grpc from 'grpc'
import {
QueryService_v1Client,
CommandService_v1Client

} from '../iroha-helpers/lib/proto/endpoint_grpc_pb'
import { commands, queries } from 'iroha-helpers'

const IROHA_ADDRESS = 'localhost:50051'
const adminPriv =

'f101537e319568c765b2cc89698325604991dca57b9716b58016b253506cab70'

const commandService = new CommandService_v1Client(
IROHA_ADDRESS,
grpc.credentials.createInsecure()

)

const queryService = new QueryService_v1Client(

5.4. Client Libraries 39

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

IROHA_ADDRESS,
grpc.credentials.createInsecure()

)

Promise.all([
commands.setAccountDetail({
privateKeys: [adminPriv],
creatorAccountId: 'admin@test',
quorum: 1,
commandService

}, {
accountId: 'admin@test',
key: 'jason',
value: 'statham'

}),
queries.getAccountDetail({
privateKey: adminPriv,
creatorAccountId: 'admin@test',
queryService

}, {
accountId: 'admin@test'

})
])

.then(a => console.log(a))

.catch(e => console.error(e))

5.4.3 Python Library

Where to Get

A supported python library for Iroha is available at its own Hyperledger iroha-python repo. Python 3+ is supported.

You can also install Python library via pip:

pip install iroha

Example Code

from iroha import Iroha, IrohaCrypto, IrohaGrpc

iroha = Iroha('alice@test')
net = IrohaGrpc('127.0.0.1:50051')

alice_key = IrohaCrypto.private_key()
alice_tx = iroha.transaction(
[iroha.command(

'TransferAsset',
src_account_id='alice@test',
dest_account_id='bob@test',
asset_id='bitcoin#test',
description='test',
amount='1'

)]
)

40 Kapitel 5. Guides and how-tos

https://github.com/hyperledger/iroha-python/

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

IrohaCrypto.sign_transaction(alice_tx, alice_key)
net.send_tx(alice_tx)

for status in net.tx_status_stream(alice_tx):
print(status)

5.4.4 iOS Swift Library

The library was created to provide convenient interface for iOS applications to communicate with Iroha blockchain
including sending transactions/query, streaming transaction statuses and block commits.

Where to get

Iroha iOS library is available through CocoaPods. To install it, simply add the following line to your Podfile:

pod 'IrohaCommunication'

Also you can download the source code for the library in its repo

How to use

For new Iroha users we recommend to checkout iOS example project. It tries to establish connection with Iroha peer
which should be also run locally on your computer to create new account and send some asset quantity to it. To run
the project, please, go through steps below:

• Follow instructions from Iroha documentation to setup and run iroha peer in Docker container.

• Clone iroha-ios repository.

• cd Example directory and run pod install.

• Open IrohaCommunication.xcworkspace in XCode

• Build and Run IrohaExample target.

• Consider logs to see if the scenario completed successfully.

Feel free to experiment with example project and don’t hesitate to ask any questions in Rocket.Chat.

5.5 Installing Dependencies

This page contains references and guides about installation of various tools you may need during build of different
targets of Iroha project.

Bemerkung: Please note that most likely you do not need to install all the listed tools. Some of them are required
only for building specific versions of Iroha Client Library.

5.5. Installing Dependencies 41

https://github.com/hyperledger/iroha-ios
https://github.com/hyperledger/iroha-ios/tree/master/Example
https://github.com/hyperledger/iroha-ios

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

5.5.1 Automake

Installation on Ubuntu

sudo apt install automake
automake --version
automake (GNU automake) 1.15

5.5.2 Bison

Installation on Ubuntu

sudo apt install bison
bison --version
bison (GNU Bison) 3.0.4

5.5.3 CMake

Minimum required version is 3.11.4, but we recommend to install the latest available version (3.12.0 at the moment).

Installation on Ubuntu

Since Ubuntu repositories contain unsuitable version of CMake, you need to install the new one manually. Here is how
to build and install CMake from sources.

wget https://cmake.org/files/v3.11/cmake-3.11.4.tar.gz
tar -xvzf cmake-3.11.4.tar.gz
cd cmake-3.11.4/
./configure
make
sudo make install
cmake --version
cmake version 3.11.4

Installation on macOS

brew install cmake
cmake --version
cmake version 3.12.1

5.5.4 Git

Installation on Ubuntu

sudo apt install git
git --version
git version 2.7.4

42 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

5.5.5 Python

Installation on Ubuntu

For Python 2:

sudo apt install python-dev
python --version
Python 2.7.12

For Python 3:

sudo apt install python3-dev
python3 --version
Python 3.5.2

Installation on macOS

For Python 2:

brew install python
python --version
Python 2.7.12

For Python 3:

brew install python3
python3 --version
Python 3.5.2

5.5.6 PIP

Installation on Ubuntu

For Python 2:

sudo apt install python-pip
pip --version
pip 8.1.1 from /usr/lib/python2.7/dist-packages (python 2.7)

For Python 3:

sudo apt install python3-pip
pip3 --version
pip 8.1.1 from /usr/lib/python3/dist-packages (python 3.5)

Installation on macOS

For Python 2:

sudo easy_install pip
pip --version
pip 9.0.3 from /usr/local/lib/python2.7/site-packages (python 2.7)

5.5. Installing Dependencies 43

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

For Python 3:

wget https://bootstrap.pypa.io/get-pip.py
sudo python3 get-pip.py
python3 -m pip --version
pip 9.0.3 from /usr/local/Cellar/python/3.6.4_4/Frameworks/Python.framework/
→˓Versions/3.6/lib/python3.6/site-packages (python 3.6)

5.5.7 Boost

Installation on Ubuntu

git clone https://github.com/boostorg/boost /tmp/boost;
(cd /tmp/boost ; git submodule update --init --recursive);
(cd /tmp/boost ; /tmp/boost/bootstrap.sh);
(cd /tmp/boost ; /tmp/boost/b2 headers);
(cd /tmp/boost ; /tmp/boost/b2 cxxflags="-std=c++14" install);
ldconfig;
rm -rf /tmp/boost

Installation on macOS

brew install boost

5.5.8 Protobuf

Installation on macOS

CMAKE_BUILD_TYPE="Release"
git clone https://github.com/google/protobuf /tmp/protobuf;
(cd /tmp/protobuf ; git checkout 106ffc04be1abf3ff3399f54ccf149815b287dd9);
cmake \

-DCMAKE_BUILD_TYPE=${CMAKE_BUILD_TYPE} \
-Dprotobuf_BUILD_TESTS=OFF \
-Dprotobuf_BUILD_SHARED_LIBS=ON \
-H/tmp/protobuf/cmake \
-B/tmp/protobuf/.build;

cmake --build /tmp/protobuf/.build --target install;
ldconfig;
rm -rf /tmp/protobuf

5.6 Deploying Iroha on Kubernetes cluster

By following this guide you will be able to deploy a Kubernetes cluster from scratch on AWS cloud using Terraform
and Kubespray, and deploy a network of Iroha nodes on it.

44 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

5.6.1 Prerequisites

• machine running Linux (tested on Ubuntu 16.04) or MacOS

• Python 3.3+

• boto3

• Ansible 2.4+

• ed25519-cli utility for key generation. Statically linked binary (for x86_64 platform) can be found in
deploy/ansible/playbooks/iroha-k8s/scripts directory. You may need to compile it yourself.

You do not need the items below if you already have a working Kubernetes (k8s) cluster. You can skip to Generating
Iroha configs chapter.

• Terraform 0.11.8+

• AWS account for deploying a k8s cluster on EC2

5.6.2 Preparation

You need to obtain AWS key for managing resources. We recommend to create a separate IAM user for that. Go
to your AWS console, head to „My Security Credentials“ menu and create a user in „Users“ section. Assign „Ama-
zonEC2FullAccess“ and „AmazonVPCFullAccess“ policies to that user. Click „Create access key“ on Security cre-
dentials tab. Take a note for values of Access key ID and Secret key. Set these values as environment variables in your
console:

export AWS_ACCESS_KEY_ID='<The value of Access key ID>'
export AWS_SECRET_ACCESS_KEY='<The value of Secret key>'

Checkout the source tree from Github:

git clone https://github.com/hyperledger/iroha && cd iroha

5.6.3 Setting up cloud infrastructure

We use Hashicorp’s Terraform infrastructure management tool for automated deployment of AWS EC2 nodes in
multiple regions. Kubespray Ansible module is used for setting up a production-grade k8s cluster.

Terraform module creates 3 AWS instances in 3 different regions: eu-west-1, eu-west-2, eu-west-3 by default. Instance
type is c5.large. There is a separate VPC created in every region. All created VPCs are then connected using VPC
peering connection. That is to create a seamless network for k8s cluster.

There are several configurable options: number of nodes in each region and its role in k8s cluster (kube-master or
kube-node). They can be set either in variables.tf file or via environment variables (using the same variable name
but prefixed with TF_VAR. See more in Terraform docs). More options can be configured by tuning parameters in
module’s variables.tf file.

You must set up SSH key in deploy/tf/k8s/variables.tf as well. Replace public key with your own. It will added on
each created EC2 instance.

Navigate to deploy/tf/k8s directory. Terraform needs to download required modules first:

pushd deploy/tf/k8s && terraform init

Then run module execution:

5.6. Deploying Iroha on Kubernetes cluster 45

https://github.com/Warchant/ed25519-cli
https://github.com/kubernetes-incubator/kubespray
https://www.terraform.io/intro/getting-started/variables.html#from-environment-variables

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

terraform apply && popd

Review the execution plan and type yes to approve. Upon completion you should see an output similar to this:

Apply complete! Resources: 39 added, 0 changed, 0 destroyed.

We are now ready to deploy k8s cluster. Wait a couple of minutes before instances are initialized.

5.6.4 Setting up k8s cluster

There is an Ansible role for setting up k8s cluster. It is an external module called Kubespray. It is stored as a submodule
in Hyperledger Iroha repository. This means it needs to be initialized first:

git submodule init && git submodule update

This command will download Kubespray from master repository.

Install required dependencies:

pip3 install -r deploy/ansible/kubespray/requirements.txt

Proceed to actual cluster deployment. Make sure you replaced key-file parameter with an actual path to SSH private
key that was used previously during Terraform configuration. REGIONS variable corresponds to default list of regions
used on a previous step. Modify it accordingly in case you added or removed any. Inventory file is a Python script that
returns Ansible-compatible list of hosts filtered by tag.

pushd deploy/ansible && REGIONS="eu-west-1,eu-west-2,eu-west-3" VPC_VISIBILITY="public
→˓" ansible-playbook -u ubuntu -b --ssh-extra-args="-o IdentitiesOnly=yes" --key-file=
→˓<PATH_TO_SSH_KEY> -i inventory/kubespray-aws-inventory.py kubespray/cluster.yml
popd

Upon successful completion you will have working k8s cluster.

5.6.5 Generating Iroha configs

In order for Iroha to work properly it requires to generate a key pair for each node, genesis block and configuration
file. This is usually a tedious and error-prone procedure, especially for a large number of nodes. We automated it with
Ansible role. You can skip to Deploying Iroha on the cluster chapter if you want to quick start using default configs
for k8s cluster with 4 Iroha replicas.

Generate configuration files for N Iroha nodes. replicas variable controls the number of N:

pushd deploy/ansible && ansible-playbook -e 'replicas=7' playbooks/iroha-k8s/iroha-
→˓deploy.yml
popd

You should find files created in deploy/ansible/roles/iroha-k8s/files/conf.

5.6.6 Deploying Iroha on the cluster

Make sure you have configuration files in deploy/ansible/roles/iroha-k8s/files. Specifically, non-empty conf directory
and k8s-iroha.yaml file.

46 Kapitel 5. Guides and how-tos

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

There are two options for managing k8s cluster: logging into either of master node and executing commands there or
configure remote management. We will cover the second option here as the first one is trivial.

In case you set up cluster using Kubespray, you can find admin.conf file on either of master node in /etc/kubernetes
directory. Copy this file on the control machine (the one you will be running kubectl command from). Make sure server
parameter in this file points to external IP address or DNS name of a master node. Usually, there is a private IP address
of the node (in case of AWS). Make sure kubectl utility is installed (check out the docs for instructions).

Replace the default kubectl configuration:

export KUBECONFIG=<PATH_TO_admin.conf>

We can now control the remote k8s cluster

k8s-iroha.yaml pod specification file requires the creation of a config-map first. This is a special resource that is
mounted in the init container of each pod, and contains the configuration and genesis block files required to run Iroha.

kubectl create configmap iroha-config --from-file=deploy/ansible/roles/iroha-k8s/
→˓files/conf/

Each peer will have their public and private keys stored in a Kubernetes secret which is mounted in the init container
and copied over for Iroha to use. Peers will only be able read their assigned secret when running Iroha.

kubectl create -f deploy/ansible/roles/iroha-k8s/files/k8s-peer-keys.yaml

Deploy Iroha network pod specification:

kubectl create -f deploy/ansible/roles/iroha-k8s/files/k8s-iroha.yaml

Wait a moment before each node downloads and starts Docker containers. Executing kubectl get pods command should
eventually return a list of deployed pods each in Running state.

Hinweis: Pods do not expose ports externally. You need to connect to Iroha instance by its hostname (iroha-0, iroha-1,
etc). For that you have to have a running pod in the same network.

5.7 Iroha installation security tips

This guide is intended to secure Iroha installation. Most of the steps from this guide may seem obvious but it helps to
avoid possible security problems in the future.

5.7.1 Physical security

In case the servers are located locally (physically accessible), a number of security measures have to be applied. Skip
these steps if cloud hosting is used.

Establish organisational policy and/or access control system such that only authorized personnel has access to the ser-
ver room. Next, set BIOS/firmware password and configure boot order to prevent unauthorized booting from alternate
media. Make sure the bootloader is password protected if there is such a functionality. Also, it is good to have a CCTV
monitoring in place.

5.7. Iroha installation security tips 47

https://kubernetes.io/docs/tasks/tools/install-kubectl/

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

5.7.2 Deployment

First, verify that official repository is used for downloading source code and Docker images. Change any default pass-
words that are used during installation, e.g., password for connecting to postgres. Iroha repository contains examples
of private and public keys - never use it in production. Moreover, verify that new keypairs are generated in a safe
environment and only administrator has access to those keypairs (or at least minimise the number of people). After
deploying keys to Iroha peers delete private keys from the host that was used to perform deployment, i.e. private keys
should reside only inside Iroha peers. Create an encrypted backup of private keys before deleting them and limit the
access to it.

5.7.3 Network configuration

Iroha listens on ports 50051 and 10001. Firewall settings must allow incoming/outgoing connections to/from these
ports. If possible, disable or remove any other network services with listening ports (FTP, DNS, LDAP, SMB, DHCP,
NFS, SNMP, etc). Ideally, Iroha should be as much isolated as possible in terms of networking.

Currently, there is no traffic encryption in Iroha, we strongly recommend using VPN or Calico for setting up Docker
overlay network, i.e. any mechanism that allows encrypting communication between peers. Docker swarm encrypts
communications by default, but remember to open necessary ports in the firewall configuration. In case VPN is used,
verify that VPN key is unavailable to other users.

If SSH is used, disable root login. Apart from that, disable password authentication and use only keys. It might be
helpful to set up SSH log level to INFO as well.

If IPv6 is not used, it might be a good idea to disable it.

5.7.4 Updates

Install the latest operating system security patches and update it regularly. If Iroha is running in Docker containers,
update Docker regularly. While being optional, it is considered a good practice to test updates on a separate server
before installing to production.

5.7.5 Logging and monitoring

• Collect and ship logs to a dedicated machine using an agent (e.g., Filebeat).

• Collect logs from all Iroha peers in a central point (e.g., Logstash).

• Transfer logging and monitoring information via an encrypted channel (e.g., https).

• Set up an authentication mechanism to prevent third parties from accessing logs.

• Set up an authentication mechanism to prevent third parties from submitting logs.

• Log all administrator access.

5.7.6 OS hardening

The following steps assume Docker is used for running Iroha.

• Enable and configure Docker Content Trust.

• Allow only trusted users to control Docker daemon.

• Set up a limit for Docker container resources.

48 Kapitel 5. Guides and how-tos

https://github.com/hyperledger/iroha
https://hub.docker.com/r/hyperledger/iroha

KAPITEL 6

Iroha API Referenz

In API section we will take a look at building blocks of an application interacting with Iroha. We will overview
commands and queries that the system has, and the set of client libraries encompassing transport and application layer
logic.

6.1 Befehle

A command changes the state, called World State View, by performing an action over an entity (asset, account) in the
system. Any command should be included in a transaction to perform an action.

6.1.1 Assetmenge hinzufügen

Purpose

The purpose of add asset quantity command is to increase the quantity of an asset on account of transaction creator.
Use case scenario is to increase the number of a mutable asset in the system, which can act as a claim on a commodity
(e.g. money, gold, etc.)

Schema

message AddAssetQuantity {
string asset_id = 1;
string amount = 2;

}

Bemerkung: Please note that due to a known issue you would not get any exception if you pass invalid precision
value. Valid range is: 0 <= precision <= 255

49

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Structure

Field Description Constraint Example
Asset ID id of the asset <asset_name>#<domain_id>usd#morgan
Amount positive amount of the asset to add > 0 200.02

Validation

1. Asset and account should exist

2. Added quantity precision should be equal to asset precision

3. Creator of a transaction should have a role which has permissions for issuing assets

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not add asset
quantity

Internal error happened Try again or contact developers

2 No such permissi-
ons

Command’s creator does not have permission
to add asset quantity

Grant the necessary permission

3 No such asset Cannot find asset with such name or such pre-
cision

Make sure asset id and precision
are correct

4 Summation over-
flow

Resulting amount of asset is greater than the
system can support

Make sure that resulting amount is
less than 2^256

6.1.2 Nachbarn hinzufügen

Purpose

The purpose of add peer command is to write into ledger the fact of peer addition into the peer network. After a
transaction with AddPeer has been committed, consensus and synchronization components will start using it.

Schema

message AddPeer {
Peer peer = 1;

}

message Peer {
string address = 1;
bytes peer_key = 2;

}

50 Kapitel 6. Iroha API Referenz

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Structure

Field Description Constraint Example
Address resolvable address in network (IPv4,

IPv6, domain name, etc.)
should be
resolvable

192.168.1.1:50541

Peer key peer public key, which is used in
consensus algorithm to sign-off vote,
commit, reject messages

ed25519
public key

292a8714694095edce6be799398ed5d6244cd7be37eb813106b217d850d261f2

Validation

1. Peer key is unique (there is no other peer with such public key)

2. Creator of the transaction has a role which has CanAddPeer permission

3. Such network address has not been already added

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not add peer Internal error happened Try again or contact devel-
opers

2 No such permissi-
ons

Command’s creator does not have permission to add
peer

Grant the necessary permis-
sion

6.1.3 Signatur hinzufügen

Purpose

The purpose of add signatory command is to add an identifier to the account. Such identifier is a public key of another
device or a public key of another user.

Schema

message AddSignatory {
string account_id = 1;
bytes public_key = 2;

}

Structure

Field Description Constraint Example
Account ID Account to which to add signatory <account_name>@<domain_id>makoto@soramitsu
Public key Signatory to add to account ed25519 public key 359f925e4eeecfdd6aa1abc0b79a6a121a5dd63bb612b603247ea4f8ad160156

6.1. Befehle 51

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Validation

Two cases:

Case 1. Transaction creator wants to add a signatory to his or her account, having permission CanAddSi-
gnatory

Case 2. CanAddSignatory was granted to transaction creator

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not add si-
gnatory

Internal error happened Try again or contact devel-
opers

2 No such permissi-
ons

Command’s creator does not have permission to add
signatory

Grant the necessary per-
mission

3 No such account Cannot find account to add signatory to Make sure account id is
correct

4 Signatory already
exists

Account already has such signatory attached Choose another signatory

6.1.4 Rolle anfügen

Purpose

The purpose of append role command is to promote an account to some created role in the system, where a role is a
set of permissions account has to perform an action (command or query).

Schema

message AppendRole {
string account_id = 1;
string role_name = 2;

}

Structure

Field Description Constraint Example
Account ID id or account to append role to already existent makoto@soramitsu
Role name name of already created role already existent MoneyCreator

Validation

1. The role should exist in the system

2. Transaction creator should have permissions to append role (CanAppendRole)

52 Kapitel 6. Iroha API Referenz

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

3. Account, which appends role, has set of permissions in his roles that is a superset of appended role (in other
words no-one can append role that is more powerful than what transaction creator is)

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not append
role

Internal error happened Try again or contact devel-
opers

2 No such permissi-
ons

Command’s creator does not have permission to ap-
pend role

Grant the necessary per-
mission

3 No such account Cannot find account to append role to Make sure account id is
correct

4 No such role Cannot find role with such name Make sure role id is correct

6.1.5 Accounterstellung

Purpose

The purpose of create account command is to make entity in the system, capable of sending transactions or queries,
storing signatories, personal data and identifiers.

Schema

message CreateAccount {
string account_name = 1;
string domain_id = 2;
bytes public_key = 3;

}

Structure

Field Description Constraint Example
Account name domain-unique name for account [a-z_0-9]{1,32} morgan_stanley
Domain ID target domain to make relation with should be created before

the account
america

Public key first public key to add to the account ed25519 public key 407e57f50ca48969b08ba948171bb2435e035d82cec417e18e4a38f5fb113f83

Validation

1. Transaction creator has permission to create an account

2. Domain, passed as domain_id, has already been created in the system

3. Such public key has not been added before as first public key of account or added to a multi-signature account

6.1. Befehle 53

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Na-
me

Description How to solve

1 Could not
create ac-
count

Internal error happened Try again or contact de-
velopers

2 No such
permissi-
ons

Command’s creator either does not have permission to create ac-
count or tries to create account in a more privileged domain, than
the one creator is in

Grant the necessary per-
mission or choose ano-
ther domain

3 No such
domain

Cannot find domain with such name Make sure domain id is
correct

4 Account
already
exists

Account with such name already exists in that domain Choose another name

6.1.6 Asset erstellen

Purpose

The purpose of reate asset command is to create a new type of asset, unique in a domain. An asset is a countable
representation of a commodity.

Schema

message CreateAsset {
string asset_name = 1;
string domain_id = 2;
uint32 precision = 3;

}

Bemerkung: Please note that due to a known issue you would not get any exception if you pass invalid precision
value. Valid range is: 0 <= precision <= 255

Structure

Field Description Constraint Example
Asset name domain-unique name for asset [a-z_0-9]{1,32} soracoin
Domain ID target domain to make relation with RFC10351, RFC11232 japan
Precision number of digits after comma/dot 0 <= precision <= 255 2

Validation

1. Transaction creator has permission to create assets

1 https://www.ietf.org/rfc/rfc1035.txt
2 https://www.ietf.org/rfc/rfc1123.txt

54 Kapitel 6. Iroha API Referenz

https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1123.txt

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

2. Asset name is unique in domain

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not create
asset

Internal error happened Try again or contact devel-
opers

2 No such permissi-
ons

Command’s creator does not have permission to crea-
te asset

Grant the necessary permis-
sion

3 No such domain Cannot find domain with such name Make sure domain id is cor-
rect

4 Asset already
exists

Asset with such name already exists Choose another name

6.1.7 Domain erstellen

Purpose

The purpose of create domain command is to make new domain in Iroha network, which is a group of accounts.

Schema

message CreateDomain {
string domain_id = 1;
string default_role = 2;

}

Structure

Field Description Constraint Example
Domain ID ID for created domain unique, RFC10351,

RFC11232
japan05

Default role role for any created user in the domain one of the existing roles User

Validation

1. Domain ID is unique

2. Account, who sends this command in transaction, has role with permission to create domain

3. Role, which will be assigned to created user by default, exists in the system

6.1. Befehle 55

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not create
domain

Internal error happened Try again or contact developers

2 No such permis-
sions

Command’s creator does not have permission to
create domain

Grant the necessary permission

3 Domain already
exists

Domain with such name already exists Choose another domain name

4 No default role
found

Role, which is provided as a default one for the
domain, is not found

Make sure the role you provided
exists or create it

6.1.8 Rolle erstellen

Purpose

The purpose of create role command is to create a new role in the system from the set of permissions. Combining
different permissions into roles, maintainers of Iroha peer network can create customized security model.

Schema

message CreateRole {
string role_name = 1;
repeated RolePermission permissions = 2;

}

Structure

Field Description Constraint Example
Role name name of role to create [a-z_0-9]{1,32} User
RolePermission array of already existent permissions set of passed permissions

is fully included into set of
existing permissions

{can_receive,
can_transfer}

Validation

1. Set of passed permissions is fully included into set of existing permissions

2. Set of the permissions is not empty

56 Kapitel 6. Iroha API Referenz

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not create
role

Internal error happened Try again or contact devel-
opers

2 No such permissi-
ons

Command’s creator does not have permission to crea-
te role

Grant the necessary permis-
sion

3 Role already exists Role with such name already exists Choose another role name

6.1.9 Rolle widerrufen

Purpose

The purpose of detach role command is to detach a role from the set of roles of an account. By executing this command
it is possible to decrease the number of possible actions in the system for the user.

Schema

message DetachRole {
string account_id = 1;
string role_name = 2;

}

Structure

Field Description Constraint Example
Account ID ID of account where role will be deleted already existent makoto@soramitsu
Role name a detached role name existing role User

Validation

1. The role exists in the system

2. The account has such role

6.1. Befehle 57

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not detach role Internal error happened Try again or contact devel-
opers

2 No such permissions Command’s creator does not have permission
to detach role

Grant the necessary permissi-
on

3 No such account Cannot find account to detach role from Make sure account id is cor-
rect

4 No such role in ac-
count’s roles

Account with such id does not have role with
such name

Make sure account-role pair
is correct

5 No such role Role with such name does not exist Make sure role id is correct

6.1.10 Berechtigung erteilen

Purpose

The purpose of grant permission command is to give another account rights to perform actions on the account of
transaction sender (give someone right to do something with my account).

Schema

message GrantPermission {
string account_id = 1;
GrantablePermission permission = 2;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the rights are

granted
already existent makoto@soramitsu

GrantablePermission
name

name of grantable permission permission is defined CanTransferAssets

Validation

1. Account exists

2. Transaction creator is allowed to grant this permission

58 Kapitel 6. Iroha API Referenz

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not grant per-
mission

Internal error happened Try again or contact de-
velopers

2 No such permissions Command’s creator does not have permission to
grant permission

Grant the necessary per-
mission

3 No such account Cannot find account to grant permission to Make sure account id is
correct

6.1.11 Remove signatory

Purpose

Purpose of remove signatory command is to remove a public key, associated with an identity, from an account

Schema

message RemoveSignatory {
string account_id = 1;
bytes public_key = 2;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the rights are

granted
already existent makoto@soramitsu

Public key Signatory to delete ed25519 public key 407e57f50ca48969b08ba948171bb2435e035d82cec417e18e4a38f5fb113f83

Validation

1. When signatory is deleted, we should check if invariant of size(signatories) >= quorum holds

2. Signatory should have been previously added to the account

Two cases:

Case 1. When transaction creator wants to remove signatory from their account and he or she has permis-
sion CanRemoveSignatory

Case 2. CanRemoveSignatory was granted to transaction creator

6.1. Befehle 59

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not remove signato-
ry

Internal error happened Try again or con-
tact developers

2 No such permissions Command’s creator does not have permission to remove
signatory from his account

Grant the necessa-
ry permission

3 No such account Cannot find account to remove signatory from Make sure account
id is correct

4 No such signatory Cannot find signatory with such public key Make sure public
key is correct

5 Quorum does not allow to
remove signatory

After removing the signatory account will be left with
less signatories, than its quorum allows

Reduce the
quorum

6.1.12 Berechtigung zurückziehen

Purpose

The purpose of revoke permission command is to revoke or dismiss given granted permission from another account in
the network.

Schema

message RevokePermission {
string account_id = 1;
GrantablePermission permission = 2;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the rights are

granted
already existent makoto@soramitsu

GrantablePermission
name

name of grantable permission permission was granted CanTransferAssets

Validation

Transaction creator should have previously granted this permission to a target account

60 Kapitel 6. Iroha API Referenz

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not revoke per-
mission

Internal error happened Try again or contact de-
velopers

2 No such permissions Command’s creator does not have permission to re-
voke permission

Grant the necessary per-
mission

3 No such account Cannot find account to revoke permission from Make sure account id is
correct

6.1.13 Accountdetails einstellen

Purpose

Purpose of set account detail command is to set key-value information for a given account

Warnung: If there was a value for a given key already in the storage then it will be replaced with the new value

Schema

message SetAccountDetail{
string account_id = 1;
string key = 2;
string value = 3;

}

Structure

Field Description Constraint Example
Account ID id of the account to which the key-value

information was set
already existent makoto@soramitsu

Key key of information being set [A-Za-z0-9_]{1,64} Name
Value value of corresponding key 4096 Makoto

Validation

Two cases:

Case 1. When transaction creator wants to set account detail to his/her account and he or she has permis-
sion CanSetAccountInfo

Case 2. CanSetAccountInfo was granted to transaction creator

6.1. Befehle 61

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not set ac-
count detail

Internal error happened Try again or contact
developers

2 No such permissi-
ons

Command’s creator does not have permission to set account
detail for another account

Grant the necessary
permission

3 No such account Cannot find account to set account detail to Make sure account id
is correct

6.1.14 Beschlussfähigkeit des Account setzen

Purpose

The purpose of set account quorum command is to set the number of signatories required to confirm the identity of a
user, who creates the transaction. Use case scenario is to set the number of different users, utilizing single account, to
sign off the transaction.

Schema

message SetAccountQuorum {
string account_id = 1;
uint32 quorum = 2;

}

Structure

Field Description Constraint Example
Account ID ID of account to set quorum already existent makoto@soramitsu
Quorum number of signatories needed to be in-

cluded within a transaction from this ac-
count

0 < quorum public-key set
up to account 128

5

Validation

When quorum is set, it is checked if invariant of size(signatories) >= quorum holds.

Two cases:

Case 1. When transaction creator wants to set quorum for his/her account and he or she has permission
CanRemoveSignatory

Case 2. CanRemoveSignatory was granted to transaction creator

62 Kapitel 6. Iroha API Referenz

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not set
quorum

Internal error happened Try again or contact developers

2 No such permis-
sions

Command’s creator does not have permission to set
quorum for his account

Grant the necessary permission

3 No such account Cannot find account to set quorum to Make sure account id is correct
4 No signatories on

account
Cannot find any signatories attached to the account Add some signatories before

setting quorum
5 New quorum is

incorrect
New quorum size is less than account’s signatories
amount

Choose another value or add
more signatories

6.1.15 Menge des Assets abziehen

Purpose

The purpose of subtract asset quantity command is the opposite of AddAssetQuantity commands — to decrease the
number of assets on account of transaction creator.

Schema

message SubtractAssetQuantity {
string asset_id = 1;
string amount = 2;

}

Bemerkung: Please note that due to a known issue you would not get any exception if you pass invalid precision
value. Valid range is: 0 <= precision <= 255

Structure

Field Description Constraint Example
Asset ID id of the asset <asset_name>#<domain_id>usd#morgan
Amount positive amount of the asset to subtract > 0 200

Validation

1. Asset and account should exist

2. Added quantity precision should be equal to asset precision

3. Creator of the transaction should have a role which has permissions for subtraction of assets

6.1. Befehle 63

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not subtract
asset quantity

Internal error happened Try again or contact developers

2 No such permissions Command’s creator does not have permission
to subtract asset quantity

Grant the necessary permission

3 No such asset found Cannot find asset with such name or precision
in account’s assets

Make sure asset name and precisi-
on are correct

4 Not enough balance Account’s balance is too low to perform the
operation

Add asset to account or choose
lower value to subtract

6.1.16 Asset transferieren

Purpose

The purpose of transfer asset command is to share assets within the account in peer network: in the way that source
account transfers assets to the target account.

Schema

message TransferAsset {
string src_account_id = 1;
string dest_account_id = 2;
string asset_id = 3;
string description = 4;
string amount = 5;

}

Structure

Field Description Constraint Example
Source account ID ID of the account to withdraw the asset

from
already existent makoto@soramitsu

Destination ac-
count ID

ID of the account to send the asset to already existent alex@california

Asset ID ID of the asset to transfer already existent usd#usa
Description Message to attach to the transfer Max length is 64 here’s my money

take it
Amount amount of the asset to transfer 0 <= precision <= 255 200.20

Validation

1. Source account has this asset in its AccountHasAsset relation1

2. An amount is a positive number and asset precision is consistent with the asset definition

3. Source account has enough amount of asset to transfer and is not zero

64 Kapitel 6. Iroha API Referenz

mailto:makoto@soramitsu
mailto:alex@california

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

4. Source account can transfer money, and destination account can receive money (their roles have these permissi-
ons)

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not trans-
fer asset

Internal error happened Try again or contact developers

2 No such permis-
sions

Command’s creator does not have permission to
transfer asset from his account

Grant the necessary permission

3 No such source
account

Cannot find account with such id to transfer mo-
ney from

Make sure source account id is
correct

4 No such destina-
tion account

Cannot find account with such id to transfer mo-
ney to

Make sure destination account id
is correct

5 No such asset
found

Cannot find such asset Make sure asset name and precisi-
on are correct

6 Not enough ba-
lance

Source account’s balance is too low to perform the
operation

Add asset to account or choose
lower value to subtract

7 Too much asset to
transfer

Resulting value of asset amount overflows desti-
nation account’s amount

Make sure final value is less than
2^256

6.2 Suchanfragen

A query is a request related to certain part of World State View — the latest state of blockchain. Query cannot modify
the contents of the chain and a response is returned to any client immediately after receiving peer has processed a
query.

6.2.1 Validation

The validation for all queries includes:

• timestamp — shouldn’t be from the past (24 hours prior to the peer time) or from the future (range of 5 minutes
added to the peer time)

• signature of query creator — used for checking the identity of query creator

• query counter — checked to be incremented with every subsequent query from query creator

• roles — depending on the query creator’s role: the range of state available to query can relate to to the same
account, account in the domain, to the whole chain, or not allowed at all

6.2.2 Get Account

Purpose

Purpose of get account query is to get the state of an account.

6.2. Suchanfragen 65

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Request Schema

message GetAccount {
string account_id = 1;

}

Request Structure

Field Description Constraint Example
Account ID account id to request its state <account_name>@<domain_id>alex@morgan

Response Schema

message AccountResponse {
Account account = 1;
repeated string account_roles = 2;

}

message Account {
string account_id = 1;
string domain_id = 2;
uint32 quorum = 3;
string json_data = 4;

}

Response Structure

Field Description Constraint Example
Account ID account id <account_name>@<domain_id>alex@morgan
Domain ID domain where the account was created RFC10351, RFC11232 morgan
Quorum number of signatories needed to sign the

transaction to make it valid
0 < quorum 128 5

JSON data key-value account information JSON { genesis: {name:
alex} }

Possible Stateful Validation Errors

Co-
de

Error
Name

Description How to solve

1 Could not
get account

Internal error happened Try again or contact developers

2 No such
permissions

Query’s creator does not have any of
the permissions to get account

Grant the necessary permission: individual, global
or domain one

3 Invalid
signatures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

1 https://www.ietf.org/rfc/rfc1035.txt
2 https://www.ietf.org/rfc/rfc1123.txt

66 Kapitel 6. Iroha API Referenz

mailto:alex@morgan
mailto:alex@morgan
https://www.ietf.org/rfc/rfc1035.txt
https://www.ietf.org/rfc/rfc1123.txt

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

6.2.3 Get Block

Purpose

Purpose of get block query is to get a specific block, using its height as an identifier

Request Schema

message GetBlock {
uint64 height = 1;

}

Request Structure

Field Description Constraint Example
Height height of the block to be retrieved 0 < height < 2^64 42

Response Schema

message BlockResponse {
Block block = 1;

}

Response Structure

Field Description Constraint Example
Block the retrieved block block structure block

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get
block

Internal error happened Try again or contact devel-
opers

2 No such permis-
sions

Query’s creator does not have a permission to get block Grant the necessary per-
mission

3 Invalid height Supplied height is not uint_64 or greater than the led-
ger’s height

Check the height and try
again

6.2.4 Get Signatories

Purpose

Purpose of get signatories query is to get signatories, which act as an identity of the account.

6.2. Suchanfragen 67

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Request Schema

message GetSignatories {
string account_id = 1;

}

Request Structure

Field Description Constraint Example
Account ID account id to request signatories <account_name>@<domain_id>alex@morgan

Response Schema

message SignatoriesResponse {
repeated bytes keys = 1;

}

Response Structure

Field Description Constraint Example
Keys an array of public keys ed25519 292a8714694095edce6be799398ed5d6244cd7be37eb813106b217d850d261f2

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get
signatories

Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get signatories

Grant the necessary permission: individual, glo-
bal or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s si-
gnatures are a subset of account’s signatories

6.2.5 Get Transactions

Purpose

GetTransactions is used for retrieving information about transactions, based on their hashes. .. note:: This query is
valid if and only if all the requested hashes are correct: corresponding transactions exist, and the user has a permission
to retrieve them

Request Schema

68 Kapitel 6. Iroha API Referenz

mailto:alex@morgan
https://ed25519.cr.yp.to

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

message GetTransactions {
repeated bytes tx_hashes = 1;

}

Request Structure

Field Description Constraint Example
Transactions has-
hes

an array of hashes array with 32 byte hashes {hash1, hash2. . . }

Response Schema

message TransactionsResponse {
repeated Transaction transactions = 1;

}

Response Structure

Field Description Constraint Example
Transactions an array of transactions Committed transactions {tx1, tx2. . . }

Possible Stateful Validation Errors

Co-
de

Error Na-
me

Description How to solve

1 Could not
get tran-
sactions

Internal error happened Try again or contact developers

2 No such
permissi-
ons

Query’s creator does not have any of the permissions
to get transactions

Grant the necessary permission: in-
dividual, global or domain one

3 Invalid si-
gnatures

Signatures of this query did not pass validation Add more signatures and make su-
re query’s signatures are a subset of
account’s signatories

4 Invalid
hash

At least one of the supplied hashes either does not exist
in user’s transaction list or creator of the query does not
have permissions to see it

Check the supplied hashes and try
again

6.2.6 Get Pending Transactions

Purpose

GetPendingTransactions is used for retrieving a list of pending (not fully signed) multisignature transactions or batches
of transactions issued by account of query creator.

6.2. Suchanfragen 69

../core_concepts/glossary.html#multisignature-transactions
../core_concepts/glossary.html#batch-of-transactions
../core_concepts/glossary.html#batch-of-transactions

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Request Schema

message GetPendingTransactions {
}

Response Schema

message TransactionsResponse {
repeated Transaction transactions = 1;

}

Response Structure

The response contains a list of pending transactions.

Field Description Constraint Example
Transactions an array of pending transactions Pending transactions {tx1, tx2. . . }

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get
pending transac-
tions

Internal error happened Try again or contact developers

2 No such permis-
sions

Query’s creator does not have any of the
permissions to get pending transactions

Grant the necessary permission: individual,
global or domain one

3 Invalid signatu-
res

Signatures of this query did not pass va-
lidation

Add more signatures and make sure query’s
signatures are a subset of account’s signato-
ries

6.2.7 Get Account Transactions

Purpose

In a case when a list of transactions per account is needed, GetAccountTransactions query can be formed.

Bemerkung: This query uses pagination for quicker and more convenient query responses.

Request Schema

message TxPaginationMeta {
uint32 page_size = 1;
oneof opt_first_tx_hash {

string first_tx_hash = 2;
}

70 Kapitel 6. Iroha API Referenz

../core_concepts/glossary.html#pending-transactions

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

}

message GetAccountTransactions {
string account_id = 1;
TxPaginationMeta pagination_meta = 2;

}

Request Structure

Field Description Constraint Example
Account ID account id to request transactions from <account_name>@<domain_id>makoto@soramitsu
Page size size of the page to be returned by the que-

ry, if the response contains fewer transac-
tions than a page size, then next tx hash
will be empty in response

page_size > 0 5

First tx hash hash of the first transaction in the page. If
that field is not set — then the first tran-
sactions are returned

hash in hex format bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

Response Schema

message TransactionsPageResponse {
repeated Transaction transactions = 1;
uint32 all_transactions_size = 2;
oneof next_page_tag {

string next_tx_hash = 3;
}

}

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get ac-
count transacti-
ons

Internal error happened Try again or contact developers

2 No such permis-
sions

Query’s creator does not have any of the
permissions to get account transactions

Grant the necessary permission: individual,
global or domain one

3 Invalid signatu-
res

Signatures of this query did not pass va-
lidation

Add more signatures and make sure query’s
signatures are a subset of account’s signato-
ries

4 Invalid paginati-
on hash

Supplied hash does not appear in any of
the user’s transactions

Make sure hash is correct and try again

5 Invalid account
id

User with such account id does not exist Make sure account id is correct

6.2. Suchanfragen 71

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Response Structure

Field Description Constraint Example
Transactions an array of transactions for given account Committed transactions {tx1, tx2. . . }
All transactions si-
ze

total number of transactions created by
the given account

100

Next transaction
hash

hash pointing to the next transaction af-
ter the last transaction in the page. Empty
if a page contains the last transaction for
the given account

bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

6.2.8 Get Account Asset Transactions

Purpose

GetAccountAssetTransactions query returns all transactions associated with given account and asset.

Bemerkung: This query uses pagination for query responses.

Request Schema

message TxPaginationMeta {
uint32 page_size = 1;
oneof opt_first_tx_hash {

string first_tx_hash = 2;
}

}

message GetAccountAssetTransactions {
string account_id = 1;
string asset_id = 2;
TxPaginationMeta pagination_meta = 3;

}

Request Structure

Field Description Constraint Example
Account ID account id to request transactions from <account_name>@<domain_id>makoto@soramitsu
Asset ID asset id in order to filter transactions con-

taining this asset
<asset_name>#<domain_id>jpy#japan

Page size size of the page to be returned by the que-
ry, if the response contains fewer transac-
tions than a page size, then next tx hash
will be empty in response

page_size > 0 5

First tx hash hash of the first transaction in the page. If
that field is not set — then the first tran-
sactions are returned

hash in hex format bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

72 Kapitel 6. Iroha API Referenz

mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Response Schema

message TransactionsPageResponse {
repeated Transaction transactions = 1;
uint32 all_transactions_size = 2;
oneof next_page_tag {

string next_tx_hash = 3;
}

}

Response Structure

Field Description Constraint Example
Transactions an array of transactions for given account

and asset
Committed transactions {tx1, tx2. . . }

All transactions si-
ze

total number of transactions for given ac-
count and asset

100

Next transaction
hash

hash pointing to the next transaction after
the last transaction in the page. Empty if
a page contains the last transaction for gi-
ven account and asset

bddd58404d1315e0eb27902c5d7c8eb0602c16238f005773df406bc191308929

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get ac-
count asset tran-
sactions

Internal error happened Try again or contact developers

2 No such permissi-
ons

Query’s creator does not have any of the
permissions to get account asset transac-
tions

Grant the necessary permission: individu-
al, global or domain one

3 Invalid signatures Signatures of this query did not pass va-
lidation

Add more signatures and make sure que-
ry’s signatures are a subset of account’s si-
gnatories

4 Invalid pagination
hash

Supplied hash does not appear in any of
the user’s transactions

Make sure hash is correct and try again

5 Invalid account id User with such account id does not exist Make sure account id is correct
6 Invalid asset id Asset with such asset id does not exist Make sure asset id is correct

6.2.9 Get Account Assets

Purpose

To get the state of all assets in an account (a balance), GetAccountAssets query can be used.

6.2. Suchanfragen 73

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Request Schema

message GetAccountAssets {
string account_id = 1;

}

Request Structure

Field Description Constraint Example
Account ID account id to request balance from <account_name>@<domain_id>makoto@soramitsu

Response Schema

message AccountAssetResponse {
repeated AccountAsset acct_assets = 1;

}

message AccountAsset {
string asset_id = 1;
string account_id = 2;
string balance = 3;

}

Response Structure

Field Description Constraint Example
Asset ID identifier of asset used for checking the

balance
<asset_name>#<domain_id>jpy#japan

Account ID account which has this balance <account_name>@<domain_id>makoto@soramitsu
Balance balance of the asset No less than 0 200.20

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get
account assets

Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get account assets

Grant the necessary permission: individual, glo-
bal or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s si-
gnatures are a subset of account’s signatories

6.2.10 Get Account Detail

74 Kapitel 6. Iroha API Referenz

mailto:makoto@soramitsu
mailto:makoto@soramitsu

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Purpose

To get details of the account, GetAccountDetail query can be used. Account details are key-value pairs, splitted into
writers categories. Writers are accounts, that added the corresponding account detail. Example of such structure is:

{
"account@a_domain": {

"age": 18,
"hobbies": "crypto"

},
"account@b_domain": {

"age": 20,
"sports": "basketball"

}
}

Here, one can see four account details - „age“, „hobbies“ and „sports“ - added by two writers - „account@a_domain“
and „account@b_domain“. All of these details, obviously, are about the same account.

Request Schema

message GetAccountDetail {
oneof opt_account_id {
string account_id = 1;

}
oneof opt_key {
string key = 2;

}
oneof opt_writer {
string writer = 3;

}
}

Bemerkung: Pay attention, that all fields are optional. Reasons will be described later.

Request Structure

Field Description Constraint Example
Account ID account id to get details from <account_name>@<domain_id>account@domain
Key key, under which to get details string age
Writer account id of writer <account_name>@<domain_id>account@domain

Response Schema

message AccountDetailResponse {
string detail = 1;

}

6.2. Suchanfragen 75

mailto:account@a_domain
mailto:account@b_domain
mailto:account@domain
mailto:account@domain

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Response Structure

Field Description Constraint Example
Detail key-value pairs with account details JSON see below

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get
account detail

Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get account detail

Grant the necessary permission: individual, glo-
bal or domain one

3 Invalid signa-
tures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s si-
gnatures are a subset of account’s signatories

Usage Examples

Again, let’s consider the example of details from the beginning and see how different variants of GetAccountDetail
queries will change the resulting response.

{
"account@a_domain": {

"age": 18,
"hobbies": "crypto"

},
"account@b_domain": {

"age": 20,
"sports": "basketball"

}
}

account_id is not set

If account_id is not set - other fields can be empty or not - it will automatically be substituted with query creator’s
account, which will lead to one of the next cases.

only account_id is set

In this case, all details about that account are going to be returned, leading to the following response:

{
"account@a_domain": {

"age": 18,
"hobbies": "crypto"

},
"account@b_domain": {

"age": 20,
"sports": "basketball"

}
}

account_id and key are set

76 Kapitel 6. Iroha API Referenz

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Here, details added by all writers under the key are going to be returned. For example, if we asked for the key „age“,
that’s the response we would get:

{
"account@a_domain": {

"age": 18
},
"account@b_domain": {

"age": 20
}

}

account_id and writer are set

Now, the response will contain all details about this account, added by one specific writer. For example, if we asked
for writer „account@b_domain“, we would get:

{
"account@b_domain": {

"age": 20,
"sports": "basketball"

}
}

account_id, key and writer are set

Finally, if all three field are set, result will contain details, added the specific writer and under the specific key, for
example, if we asked for key „age“ and writer „account@a_domain“, we would get:

{
"account@a_domain": {

"age": 18
}

}

6.2.11 Get Asset Info

Purpose

In order to get information on the given asset (as for now - its precision), user can send GetAssetInfo query.

Request Schema

message GetAssetInfo {
string asset_id = 1;

}

Request Structure

Field Description Constraint Example
Asset ID asset id to know related information <asset_name>#<domain_id>jpy#japan

6.2. Suchanfragen 77

mailto:account@b_domain
mailto:account@a_domain

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Response Schema

message Asset {
string asset_id = 1;
string domain_id = 2;
uint32 precision = 3;

}

Bemerkung: Please note that due to a known issue you would not get any exception if you pass invalid precision
value. Valid range is: 0 <= precision <= 255

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not
get asset info

Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get asset info

Grant the necessary permission: individual, global
or domain one

3 Invalid
signatures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signa-
tures are a subset of account’s signatories

Response Structure

Field Description Constraint Example
Asset ID identifier of asset used for checking the

balance
<asset_name>#<domain_id>jpy#japan

Domain ID domain related to this asset RFC10351, RFC11232 japan
Precision number of digits after comma 0 <= precision <= 255 2

6.2.12 Get Roles

Purpose

To get existing roles in the system, a user can send GetRoles query to Iroha network.

Request Schema

message GetRoles {
}

Response Schema

78 Kapitel 6. Iroha API Referenz

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

message RolesResponse {
repeated string roles = 1;

}

Response Structure

Field Description Constraint Example
Roles array of created roles in the network set of roles in the system {MoneyCreator,

User, Admin, . . . }

Possible Stateful Validation Errors

Co-
de

Error Na-
me

Description How to solve

1 Could not
get roles

Internal error happened Try again or contact developers

2 No such
permissi-
ons

Query’s creator does not have any of
the permissions to get roles

Grant the necessary permission: individual, global or
domain one

3 Invalid
signatures

Signatures of this query did not pass
validation

Add more signatures and make sure query’s signatu-
res are a subset of account’s signatories

6.2.13 Get Role Permissions

Purpose

To get available permissions per role in the system, a user can send GetRolePermissions query to Iroha network.

Request Schema

message GetRolePermissions {
string role_id = 1;

}

Request Structure

Field Description Constraint Example
Role ID role to get permissions for existing role in the system MoneyCreator

Response Schema

message RolePermissionsResponse {
repeated string permissions = 1;

}

6.2. Suchanfragen 79

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Response Structure

Field Description Constraint Example
Permissions array of permissions related to the role string of permissions rela-

ted to the role
{can_add_asset_qty,
. . . }

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get
role permissi-
ons

Internal error happened Try again or contact developers

2 No such per-
missions

Query’s creator does not have any of
the permissions to get role permissions

Grant the necessary permission: individual,
global or domain one

3 Invalid signatu-
res

Signatures of this query did not pass
validation

Add more signatures and make sure query’s si-
gnatures are a subset of account’s signatories

6.2.14 FetchCommits

Purpose

To get new blocks as soon as they are committed, a user can invoke FetchCommits RPC call to Iroha network.

Request Schema

No request arguments are needed

Response Schema

message BlockQueryResponse {
oneof response {
BlockResponse block_response = 1;
BlockErrorResponse block_error_response = 2;

}
}

Please note that it returns a stream of BlockQueryResponse.

Response Structure

Field Description Constraint Example
Block Iroha block only committed blocks { ‚block_v1‘:}

80 Kapitel 6. Iroha API Referenz

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Possible Stateful Validation Errors

Co-
de

Error Name Description How to solve

1 Could not get
block streaming

Internal error happened Try again or contact developers

2 No such permis-
sions

Query’s creator does not have any
of the permissions to get blocks

Grant the necessary permission: individual, glo-
bal or domain one

3 Invalid signatu-
res

Signatures of this query did not pass
validation

Add more signatures and make sure query’s si-
gnatures are a subset of account’s signatories

Example

You can check an example how to use this query here: https://github.com/x3medima17/twitter

6.2. Suchanfragen 81

https://github.com/x3medima17/twitter

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

82 Kapitel 6. Iroha API Referenz

KAPITEL 7

Maintenance

Hardware requirements, deployment process in details, aspects related to security, configuration files — all of the
listed is explained in this separate section, helpful for DevOps engineers or those who are digging deeper in the system
capabilities.

7.1 Permissions

Hyperledger Iroha uses a role-based access control system to limit actions of its users. This system greatly helps to
implement use cases involving user groups having different access levels — ranging from the weak users, who can’t
even receive asset transfer to the super-users. The beauty of our permission system is that you don’t have to have a
super-user in your Iroha setup or use all the possible permissions: you can create segregated and lightweight roles.

Maintenance of the system involves setting up roles and permissions, that are included in the roles. This might be done
at the initial step of system deployment — in genesis block, or later when Iroha network is up and running, roles can
be changed (if there is a role that can do that :)

This section will help you to understand permissions and give you an idea of how to create roles including certain per-
missions. Each permission is provided with an example written in Python that demonstrates the way of transaction or
query creation, which require specific permission. Every example uses commons.py module, which listing is available
at Supplementary Sources section.

7.2 List of Permissions

Permission Name Category Type
can_create_account Account Command
can_set_detail Account Command
can_set_my_account_detail grantable Account Command
can_create_asset Asset Command
can_receive Asset Command

Continued on next page

83

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Tab. 7.1 – continued from previous page
Permission Name Category Type
can_transfer Asset Command
can_transfer_my_assets grantable Asset Command
can_add_asset_qty Asset Quantity Command
can_subtract_asset_qty Asset Quantity Command
can_add_domain_asset_qty Asset Quantity Command
can_subtract_domain_asset_qty Asset Quantity Command
can_create_domain Domain Command
can_grant_can_add_my_signatory Grant Command
can_grant_can_remove_my_signatory Grant Command
can_grant_can_set_my_account_detail Grant Command
can_grant_can_set_my_quorum Grant Command
can_grant_can_transfer_my_assets Grant Command
can_add_peer Peer Command
can_append_role Role Command
can_create_role Role Command
can_detach_role Role Command
can_add_my_signatory grantable Signatory Command
can_add_signatory Signatory Command
can_remove_my_signatory grantable Signatory Command
can_remove_signatory Signatory Command
can_set_my_quorum grantable Signatory Command
can_set_quorum Signatory Command
can_get_all_acc_detail Account Query
can_get_all_accounts Account Query
can_get_domain_acc_detail Account Query
can_get_domain_accounts Account Query
can_get_my_acc_detail Account Query
can_get_my_account Account Query
can_get_all_acc_ast Account Asset Query
can_get_domain_acc_ast Account Asset Query
can_get_my_acc_ast Account Asset Query
can_get_all_acc_ast_txs Account Asset Transaction Query
can_get_domain_acc_ast_txs Account Asset Transaction Query
can_get_my_acc_ast_txs Account Asset Transaction Query
can_get_all_acc_txs Account Transaction Query
can_get_domain_acc_txs Account Transaction Query
can_get_my_acc_txs Account Transaction Query
can_read_assets Asset Query
can_get_blocks Block Stream Query
can_get_roles Role Query
can_get_all_signatories Signatory Query
can_get_domain_signatories Signatory Query
can_get_my_signatories Signatory Query
can_get_all_txs Transaction Query
can_get_my_txs Transaction Query

7.2.1 Command-related permissions

Account

84 Kapitel 7. Maintenance

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

can_create_account

Allows creating new accounts.

Related API method: Create Account

Example

Admin creates domain „test“ that contains only can_create_account permission and Alice account in that domain.
Alice can create Bob account.

can_set_detail

Allows setting account detail.

The permission allows setting details to other accounts. Another way to set detail without can_set_detail permissi-
on is to grant can_set_my_account_detail permission to someone. In order to grant, transaction creator should have
can_grant_can_set_my_account_detail permission.

Bemerkung: Transaction creator can always set detail for own account even without that permission.

Related API method: Set Account Detail

Example

Admin creates domain „test“ that contains only can_set_detail permission and Alice account in that domain. Alice
can set detail for Admin account.

can_set_my_account_detail

Hinweis: This is a grantable permission.

Permission that allows a specified account to set details for the another specified account.

Bemerkung: To grant the permission an account should already have a role with
can_grant_can_set_my_account_detail permission.

Related API method: Set Account Detail

7.2. List of Permissions 85

../core_concepts/glossary.html#account
../api/commands.html#create-account
../core_concepts/glossary.html#account
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#transaction
../api/commands.html#set-account-detail
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#account
../api/commands.html#set-account-detail

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Example

Admin creates domain „test“ that contains only can_grant_can_set_my_account_detail permission and two accounts
for Alice and Bob in that domain. Alice grants to Bob can_set_my_account_detail permission. Bob can set detail for
Alice account.

Asset

can_create_asset

Allows creating new assets.

Related API method: Create Asset

Example

Admin creates domain „test“ that contains only can_create_asset permission and Alice account in that domain. Alice
can create new assets.

can_receive

Allows account receive assets.

Related API method: Transfer Asset

Example

Admin creates domain „test“ that contains can_receive and can_transfer permissions and two accounts for Alice and
Bob. Admin creates „coin“ asset, adds some quantity of it and transfers the asset to Alice. Alice can transfer assets to
Bob (Alice has can_transfer permission and Bob has can_receive permission).

can_transfer

Allows sending assets from an account of transaction creator.

You can transfer an asset from one domain to another, even if the other domain does not have an asset with the same
name.

86 Kapitel 7. Maintenance

../core_concepts/glossary.html#asset
../api/commands.html#create-asset
../core_concepts/glossary.html#account
../core_concepts/glossary.html#asset
../api/commands.html#transfer-asset
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#account
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#domain

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Bemerkung: Destination account should have can_receive permission.

Related API method: Transfer Asset

can_transfer_my_assets

Hinweis: This is a grantable permission.

Permission that allows a specified account to transfer assets of another specified account.

See the example (to be done) for the usage details.

Related API method: Transfer Asset

Example

Admin creates domain „test“ that contains can_grant_can_transfer_my_assets, can_receive, can_transfer permissions
and two accounts for Alice and Bob in that domain. Admin issues some amount of „coin“ asset and transfers it to
Alice. Alice grants to Bob can_transfer_my_assets permission. Bob can transfer Alice’s assets to any account that has
can_receive permission, for example, to Admin.

Asset Quantity

can_add_asset_qty

Allows issuing assets.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Add Asset Quantity

Example

Admin creates domain „test“ that contains only can_add_asset_qty permission and Alice account in that domain.
Admin craetes „coin“ asset. Alice can add to own account any amount of any asset (e.g. „coin“ asset).

7.2. List of Permissions 87

../api/commands.html#transfer-asset
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#account
../core_concepts/glossary.html#asset
../api/commands.html#transfer-asset
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#command
../core_concepts/glossary.html#account
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#add-asset-quantity

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

can_subtract_asset_qty

Allows burning assets.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Subtract Asset Quantity

Example

Admin creates domain „test“ that contains only can_subtract_asset_qty permission and Alice account in that domain.
Admin issues some amount of „coin“ asset and transfers some amount of „coin“ asset to Alice. Alice can burn any
amount of „coin“ assets.

can_add_domain_asset_qty

Allows issuing assets only in own domain.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission and only for assets in creator’s domain.

Related API method: Add Asset Quantity

can_subtract_domain_asset_qty

Allows burning assets only in own domain.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission and only for assets in creator’s domain.

Related API method: Subtract Asset Quantity

Domain

can_create_domain

Allows creating new domains within the system.

Related API method: Create Domain

Example

88 Kapitel 7. Maintenance

../core_concepts/glossary.html#asset
../core_concepts/glossary.html#command
../core_concepts/glossary.html#account
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#subtract-asset-quantity
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#domain
../core_concepts/glossary.html#command
../core_concepts/glossary.html#account
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#add-asset-quantity
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#domain
../core_concepts/glossary.html#command
../core_concepts/glossary.html#account
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#subtract-asset-quantity
../core_concepts/glossary.html#domain
../api/commands.html#create-domain

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Admin creates domain that contains only can_create_domain permission and Alice account in that domain. Alice can
create new domains.

Grant

can_grant_can_add_my_signatory

Allows role owners grant can_add_my_signatory permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_add_my_signatory permission and two accounts for Alice
and Bob in that domain. Alice can grant to Bob and revoke can_add_my_signatory permission.

can_grant_can_remove_my_signatory

Allows role owners grant can_remove_my_signatory permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_remove_my_signatory permission and two accounts for
Alice and Bob in that domain. Alice can grant to Bob and revoke can_remove_my_signatory permission.

can_grant_can_set_my_account_detail

Allows role owners grant can_set_my_account_detail permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_set_my_account_detail permission and two accounts for
Alice and Bob in that domain. Alice can grant to Bob and revoke can_set_my_account_detail permission.

7.2. List of Permissions 89

../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#grant-permission
../api/commands.html#revoke-permission
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#grant-permission
../api/commands.html#revoke-permission
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#grant-permission
../api/commands.html#revoke-permission

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

can_grant_can_set_my_quorum

Allows role owners grant can_set_my_quorum permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_set_my_quorum permission and two accounts for Alice and
Bob in that domain. Alice can grant to Bob and revoke can_set_my_quorum permission.

can_grant_can_transfer_my_assets

Allows role owners grant can_transfer_my_assets permission.

Related API methods: Grant Permission, Revoke Permission

Example

Admin creates domain that contains only can_grant_can_transfer_my_assets permission and two accounts for Alice
and Bob in that domain. Alice can grant to Bob and revoke can_transfer_my_assets permission.

Peer

can_add_peer

Allows adding peers to the network.

A new peer will be a valid participant in the next consensus round after an agreement on transaction containing
„addPeer“ command.

Related API method: Add Peer

Example

Admin creates domain that contains only can_add_peer permission and Alice account in that domain. Alice can add
new peers.

90 Kapitel 7. Maintenance

../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#grant-permission
../api/commands.html#revoke-permission
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#grant-permission
../api/commands.html#revoke-permission
../core_concepts/glossary.html#peer
../core_concepts/glossary.html#consensus
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#command
../api/commands.html#add-peer

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Role

can_append_role

Allows appending roles to another account.

You can append only that role that has lesser or the same set of privileges as transaction creator.

Related API method: Append Role

Example

Admin creates domian that contains can_append_role and can_add_peer permissions and two accounts for Alice and
Bob in that domain. Admin creates the second role that contains only can_add_peer permission. Alice can append
role to Bob.

can_create_role

Allows creating a new role within a system.

Possible set of permissions for a new role is limited to those permissions that transaction creator has.

Related API method: Create Role

Example

Admin creates domain that contains only can_create_role permission and Alice account in that domain. Alice can
create new roles.

can_detach_role

Allows revoking a role from a user.

Bemerkung: Due to a known issue the permission allows to detach any role without limitations https://soramitsu.
atlassian.net/browse/IR-1468

Related API method: Detach Role

7.2. List of Permissions 91

../core_concepts/glossary.html#role
../core_concepts/glossary.html#account
../core_concepts/glossary.html#transaction
../api/commands.html#append-role
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#transaction
../api/commands.html#create-role
../core_concepts/glossary.html#role
https://soramitsu.atlassian.net/browse/IR-1468
https://soramitsu.atlassian.net/browse/IR-1468
../api/commands.html#detach-role

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Example

Admin creates domain that contains only can_detach_role permission and creates Alice account in that domain.
Admin has two roles test_role and admin_role. Alice can detach test_role from Admin account.

Signatory

can_add_my_signatory

Hinweis: This is a grantable permission.

Permission that allows a specified account to add an extra public key to the another specified account.

Related API method: Add Signatory

Example

Admin creates domain that contains only can_grant_can_add_my_signatory permission and two accounts for Alice
and Bob in that domain. Alice can grant to Bob can_add_my_signatory permission. Bob can add an extra key to
Alice account.

can_add_signatory

Allows linking additional public keys to account.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Add Signatory

Example

Admin creates domain that contains only can_add_signatory permission and Alice account in that domain. Alice can
add to own account additional keys.

can_remove_my_signatory

92 Kapitel 7. Maintenance

../core_concepts/glossary.html#permission
../core_concepts/glossary.html#account
../api/commands.html#add-signatory
../core_concepts/glossary.html#account
../core_concepts/glossary.html#command
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#add-signatory

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Hinweis: This is a grantable permission.

Permission that allows a specified account remove public key from the another specified account.

See the example (to be done) for the usage details.

Related API method: Remove Signatory

Example

Admin creates domain that contains can_add_signatory and can_grant_can_remove_my_signatory permissions and
two accounts for Alice and Bob. Alice grants can_remove_my_signatory permission to Bob and adds additional key
to own account. Bob can remove one of Alice’s keys.

can_remove_signatory

Allows unlinking additional public keys from an account.

The corresponding command can be executed only for an account of transaction creator and only if that account has a
role with the permission.

Related API method: Remove Signatory

Example

Admin creates domian that contains can_remove_signatory permission and Alice account in that domain. Admin
adds an extra key to Alice account. Alice can remove one of the keys.

can_set_my_quorum

Hinweis: This is a grantable permission.

Permission that allows a specified account to set quorum for the another specified account.

Account should have greater or equal amount of keys than quorum.

Related API method: Set Account Quorum

Example

7.2. List of Permissions 93

../core_concepts/glossary.html#permission
../core_concepts/glossary.html#account
../api/commands.html#remove-signatory
../core_concepts/glossary.html#account
../core_concepts/glossary.html#command
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/commands.html#remove-signatory
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#account
../core_concepts/glossary.html#quorum
../api/commands.html#set-account-quorum

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Admin creates domain that contains can_grant_can_set_my_quorum and can_add_signatory permissions and create
two accounts for Alice and Bob in that domain. Alice grants to Bob can_set_my_qourum permission and adds an
extra key to account. Bob can set quorum for Alice.

can_set_quorum

Allows setting quorum.

At least the same number (or more) of public keys should be already linked to an account.

Related API method: Set Account Quorum

Example

Admin creates domain that contains only can_set_quorum permission and creates Alice account in that domain.
Admin adds an extra key for Alice account. Alice can set quorum equals two.

7.2.2 Query-related permissions

Account

can_get_all_acc_detail

Allows getting all the details set to any account within the system.

Related API method: Get Account Detail

Example

Admin creates Alice account in a diffrerent domain that has only can_get_all_acc_detail permission. Alice can access
details set to Admin account.

can_get_all_accounts

Allows getting account information: quorum and all the details related to the account.

With this permission, query creator can get information about any account within a system.

All the details (set by the account owner or owners of other accounts) will be returned.

Related API method: Get Account

94 Kapitel 7. Maintenance

../core_concepts/glossary.html#quorum
../core_concepts/glossary.html#account
../api/commands.html#set-account-quorum
../core_concepts/glossary.html#account
../api/queries.html#get-account-detail
../core_concepts/glossary.html#account
../core_concepts/glossary.html#quorum
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#query
../api/queries.html#get-account

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Example

Admin creates Alice account in a different domain that has only can_get_all_accounts permission. Alice can access
account information of Admin.

can_get_domain_acc_detail

Allows getting all the details set to any account within the same domain as a domain of query creator account.

Related API method: Get Account Detail

Example

Admin creates Alice account in the same domain that has only can_get_domain_acc_detail permission. Alice can get
details set to Admin account.

can_get_domain_accounts

Allows getting account information: quorum and all the details related to the account.

With this permission, query creator can get information only about accounts from the same domain.

All the details (set by the account owner or owners of other accounts) will be returned.

Related API method: Get Account

Example

Admin creates Alice account in the same domain that has only can_get_domain_accounts. Alice can access account
information of Admin.

can_get_my_acc_detail

Allows getting all the details set to the account of query creator.

Related API method: Get Account Detail

Example

7.2. List of Permissions 95

../core_concepts/glossary.html#account
../core_concepts/glossary.html#domain
../core_concepts/glossary.html#query
../api/queries.html#get-account-detail
../core_concepts/glossary.html#account
../core_concepts/glossary.html#quorum
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#query
../core_concepts/glossary.html#domain
../api/queries.html#get-account
../core_concepts/glossary.html#account
../core_concepts/glossary.html#query
../api/queries.html#get-account-detail

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Admin creates Alice account in the domain that has only can_get_my_acc_detail permission. Alice can get details set
to own account.

can_get_my_account

Allows getting account information: quorum and all the details related to the account.

With this permission, query creator can get information only about own account.

All the details (set by the account owner or owners of other accounts) will be returned.

Related API method: Get Account

Example

Admin creates Alice account in the domain that has only can_get_my_account permission. Alice can access own
account information.

Account Asset

can_get_all_acc_ast

Allows getting a balance of assets on any account within the system.

Query response will contain information about all the assets that ever been assigned to an account.

Related API method: Get Account Assets

Example

Admin creates Alice account in a different domain that has only can_get_all_acc_ast permission. Alice can access
assets balance on Admin account.

can_get_domain_acc_ast

Allows getting a balance of specified asset on any account within the same domain as a domain of query creator
account.

Query response will contain information about all the assets that ever been assigned to an account.

Related API method: Get Account Assets

96 Kapitel 7. Maintenance

../core_concepts/glossary.html#account
../core_concepts/glossary.html#quorum
../core_concepts/glossary.html#permission
../core_concepts/glossary.html#query
../api/queries.html#get-account
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#account
../core_concepts/glossary.html#query
../api/queries.html#get-account-assets
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#account
../core_concepts/glossary.html#domain
../core_concepts/glossary.html#query
../api/queries.html#get-account-assets

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Example

Admin creates Alice account in the same domain that has only can_get_domain_acc_ast permission. Alice can access
assets balance on Admin account.

can_get_my_acc_ast

Allows getting a balance of specified asset on account of query creator.

Query response will contain information about all the assets that ever been assigned to an account.

Related API method: Get Account Assets

Example

Admin creates Alice account in a domain that has only can_get_my_acc_ast permission. Alice can access assets
balance on own account.

Account Asset Transaction

can_get_all_acc_ast_txs

Allows getting transactions associated with a specified asset and any account within the system.

Bemerkung: Incoming asset transfers will also appear in the query response.

Related API method: Get Account Asset Transactions

Example

Admin creates Alice account in a different domain that has can_get_all_acc_ast_txs, can_receive and can_transfer
permissions. Admin issues some amount of coins and transfers them to Alice. Alice can query all transactions related
to coins and Admin account.

can_get_domain_acc_ast_txs

Allows getting transactions associated with a specified asset and an account from the same domain as query creator.

7.2. List of Permissions 97

../core_concepts/glossary.html#asset
../core_concepts/glossary.html#account
../core_concepts/glossary.html#query
../api/queries.html#get-account-assets
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#account
../api/queries.html#get-account-asset-transactions
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#asset
../core_concepts/glossary.html#account
../core_concepts/glossary.html#domain
../core_concepts/glossary.html#query

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Bemerkung: Incoming asset transfers will also appear in the query response.

Related API method: Get Account Asset Transactions

Example

Admin creates Alice in the same domain that has only can_get_domain_acc_ast_txs permission. Admin issues some
amount of coins and transfers them to Alice. Alice can query all transactions related to coins and Admin account.

can_get_my_acc_ast_txs

Allows getting transactions associated with the account of query creator and specified asset.

Bemerkung: Incoming asset transfers will also appear in the query response.

Related API method: Get Account Asset Transactions

Example

Admin creates Alice account in a domain that has only can_get_my_acc_ast_txs permission. Admin issues some
amount of coins and transfers them to Alice. Alice can query all transactions related to coins and own account.

Account Transaction

can_get_all_acc_txs

Allows getting all transactions issued by any account within the system.

Bemerkung: Incoming asset transfer inside a transaction would NOT lead to an appearance of the transaction in the
command output.

Related API method: Get Account Transactions

Example

98 Kapitel 7. Maintenance

../api/queries.html#get-account-asset-transactions
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#account
../core_concepts/glossary.html#query
../core_concepts/glossary.html#asset
../api/queries.html#get-account-asset-transactions
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#account
../api/queries.html#get-account-transactions

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Admin creates Alice account in a different domain that has only can_get_all_acc_txs permiison. Alice can request all
the transactions issues by Admin.

can_get_domain_acc_txs

Allows getting all transactions issued by any account from the same domain as query creator.

Bemerkung: Incoming asset transfer inside a transaction would NOT lead to an appearance of the transaction in the
command output.

Related API method: Get Account Transactions

Example

Admin creates Alice account in the same domain that has only can_get_domain_acc_txs permission. Alice can
request all the transactions issued by Admin.

can_get_my_acc_txs

Allows getting all transactions issued by an account of query creator.

Bemerkung: Incoming asset transfer inside a transaction would NOT lead to an appearance of the transaction in the
command output.

Related API method: Get Account Transactions

Example

Admin creates Alice account in a domain that has only can_get_my_acc_txs permission. Alice can get all
transactions issued by own account.

Asset

can_read_assets

Allows getting information about asset precision.

7.2. List of Permissions 99

../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#account
../core_concepts/glossary.html#domain
../core_concepts/glossary.html#query
../api/queries.html#get-account-transactions
../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#account
../core_concepts/glossary.html#query
../api/queries.html#get-account-transactions
../core_concepts/glossary.html#asset

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

Related API method: Get Asset Info

Example

Admin creates Alice account in a domain that has can_read_assets permissions. Alice can query information about
any asset.

Block Stream

can_get_blocks

Allows subscription to the stream of accepted blocks.

Role

can_get_roles

Allows getting a list of roles within the system. Allows getting a list of permissions associated with a role.

Related API methods: Get Roles, Get Role Permissions

Example

Admin creates Alice account in a domain that has can_get_roles permission. Alice can query list of all existing roles.
Alice can query list of permissions contained in any role.

Signatory

can_get_all_signatories

Allows getting a list of public keys linked to an account within the system.

Related API method: Get Signatories

Example

Admin creates Alice account in a different domain that has only can_get_all_signatories permission. Alice can query
a list of public keys related to Admin account.

100 Kapitel 7. Maintenance

../api/queries.html#get-asset-info
../core_concepts/glossary.html#block
../core_concepts/glossary.html#role
../core_concepts/glossary.html#permission
../api/queries.html#get-roles
../api/queries.html#get-role-permissions
../core_concepts/glossary.html#account
../api/queries.html#get-signatories

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

can_get_domain_signatories

Allows getting a list of public keys of any account within the same domain as the domain of query creator account.

Related API method: Get Signatories

Example

Admin creates Alice account in the same domain that has only can_get_domain_signatories permission. Alice can
query a list of public keys related to Admin account.

can_get_my_signatories

Allows getting a list of public keys of query creator account.

Related API method: Get Signatories

Example

Admin creates Alice account in a domain that has only can_get_my_signatories permission. Alice can query a list of
public keys related to own account.

Transaction

can_get_all_txs

Allows getting any transaction by hash.

Related API method: Get Transactions

Example

Admin issues several transactions and creates Alice account in a different domain that has only can_get_all_txs
permission. Alice (knowing transactions hashes) can query transactions issued by Admin Account.

7.2. List of Permissions 101

../core_concepts/glossary.html#account
../core_concepts/glossary.html#domain
../core_concepts/glossary.html#query
../api/queries.html#get-signatories
../core_concepts/glossary.html#query
../core_concepts/glossary.html#account
../api/queries.html#get-signatories
../core_concepts/glossary.html#transaction
../api/queries.html#get-transactions

Manual de Iroha: instalación, inicio, API, guías y resolución de problemas, Release

can_get_my_txs

Allows getting transaction (that was issued by query creator) by hash.

Related API method: Get Transactions

Example

Admin creates Alice account in a different domain. Alice (knowing transactions hashes) issues several transactions.
Alice can query own transactions.

7.2.3 Supplementary Sources

7.3 Ansible

Achtung: Contents are missing for now. Please check deploy/ansible folder and README.md file in it.

102 Kapitel 7. Maintenance

../core_concepts/glossary.html#transaction
../core_concepts/glossary.html#query
../api/queries.html#get-transactions

KAPITEL 8

Beitrag

103

	Overview of Iroha
	What are the key features of Iroha?
	Where can Iroha be used?
	How is it different from Bitcoin or Ethereum?
	How is it different from the rest of Hyperledger frameworks or other permissioned blockchains?
	How to create applications around Iroha?

	erste Schritte
	Vorraussetzungen
	Iroha-Node starten
	Try other guides

	Use Case Scenarios
	Certificates in Education, Healthcare
	Cross-Border Asset Transfers
	Financial Applications
	Identity Management
	Supply Chain
	Fund Management
	Related Research

	Kernkonzepte
	Sections

	Guides and how-tos
	Building Iroha
	Die Konfiguration
	Deploying Iroha
	Client Libraries
	Installing Dependencies
	Deploying Iroha on Kubernetes cluster
	Iroha installation security tips

	Iroha API Referenz
	Befehle
	Suchanfragen

	Maintenance
	Permissions
	List of Permissions
	Ansible

	Beitrag

