
IRMA Documentation
Release unpackaged

Quarkslab

Sep 20, 2019

Contents

1 Introduction 1
1.1 Purpose . 1
1.2 File Analysis Process . 1
1.3 Supported Analyzers . 2

2 Installation 5
2.1 Software requirements . 5
2.2 Hardware requirements . 5
2.3 Automated Installation . 6

3 Use IRMA 13
3.1 Web Interface . 13
3.2 Command Line Interface . 20

4 Administration 31
4.1 Environment configuration . 31
4.2 Components configuration . 31
4.3 SSL settings . 37
4.4 Database migration . 43

5 Technical description 49
5.1 API documentation . 49
5.2 Frontend . 52
5.3 Brain . 53
5.4 Probe . 53
5.5 Scan workflow . 54
5.6 Functional Testing . 55

6 Extending IRMA 57
6.1 Adding a new probe . 57

7 Troubleshooting 63
7.1 Check Celery configuration . 63
7.2 Verifying RabbitMQ configuration . 64
7.3 Check SFTP accounts . 65
7.4 FTP-TLS accounts . 65
7.5 Restful API . 66

i

7.6 Logs . 66
7.7 How to debug . 66

8 References 71
8.1 Disclaimer . 71
8.2 License . 71
8.3 Apache License, version 2.0 . 71
8.4 Authors . 74

9 Resources 77

10 Screenshots 79
10.1 Command Line Interface . 79
10.2 Web Interface . 80

ii

CHAPTER 1

Introduction

This publication is intended for advanced technical users of IRMA Enterprise. It assumes the reader has working
knowledge of Systems Administration, the GNU/Linux operating system and basic Python.

IRMA (Incident Response and Malware Analysis) is a flexible content analysis orchestration platform. This guide will
explain how to install, configure, use and customize it. This is an introductory chapter to IRMA. It describes IRMA’s
overall purpose, architecture and process.

1.1 Purpose

IRMA provides its users with the ability to objectively assess whether content is malicious or not. Content may
be delivered by various means as described in this document, and subsequently distributed to various configurable
analysis engines (“probes”). After analysis, this information is then conveyed to the user.

In addition to this core functionality, IRMA provides an overview of the overall analysis process and incident.

Finally, IRMA is designed to be installed and maintained in self-contained on-premises environment. This enables
discreet and self-contained analysis for organizations which do not wish to disclose potentially confidential files to
third parties.

The ultimate purpose of IRMA is to orchestrate the entire analysis process and provide organizations with a flexible
platform with which to manage and asses the content flowing through their organizations.

1.2 File Analysis Process

IRMA consists or three basic components. the Frontend, Brain and Probes. The basic functionality of frontend is
to store results and host the API. Brain split analysis jobs on every probes involved, and Probes analyze files and
returns results.

1. An analysis begins when a user uploads files to the Frontend.

2. Frontend checks for existing files and results in SQL. If needed, it stores the new files and calls asynchronously
scan jobs on Brain.

1

IRMA Documentation, Release unpackaged

3. Brain worker sends as much subtasks to Probe(s) as needed.

4. Probe workers process their jobs and send back results to Brain.

5. Brain sends results to Frontend.

1.3 Supported Analyzers

Here is the list of analyzers that are bundled with IRMA.

2 Chapter 1. Introduction

IRMA Documentation, Release unpackaged

1.3.1 Antiviruses

Probe Name Anti-Virus Name Platform
ASquaredCmdWin Emsisoft Command Line Microsoft Windows CLI
AvastCoreSecurity Avast Core Security GNU/Linux CLI
AVGAntiVirusFree AVG GNU/Linux CLI
AviraWin Avira Microsoft Windows CLI
BitdefenderForUnices Bitdefender GNU/Linux CLI
ClamAV ClamAV GNU/Linux CLI
ComodoCAVL Comodo Antivirus for Linux GNU/Linux CLI
DrWeb Dr.Web GNU/Linux CLI
EScan eScan GNU/Linux CLI
EsetFileSecurity Eset File Security GNU/Linux CLI
FProt F-Prot GNU/Linux CLI
FSecure F-Secure GNU/Linux CLI
GDataWin G Data Antivirus Microsoft Windows CLI
Kaspersky Kaspersky File Server GNU/Linux CLI
KasperskyWin Kaspersky Internet Security Microsoft Windows CLI
McAfeeVSCL McAfee VirusScan Command Line GNU/Linux CLI
McAfeeVSCLWin McAfee VirusScan Command Line Microsoft Windows CLI
Sophos Sophos GNU/Linux CLI
SophosWin Sophos Endpoint Protection Microsoft Windows CLI
SymantecWin Symantec Endpoint Protection Microsoft Windows CLI
VirusBlokAda VirusBlokAda GNU/Linux CLI
Zoner Zoner Antivirus GNU/Linux CLI

1.3.2 External analysis platforms

Probe Name Analysis Platform Description
ICAP ICAP Query an ICAP server
VirusTotal VirusTotal Report is searched using the sha256 of the file which is not sent

1.3.3 File database

Probe
Name

Database Description

NSRL National Software Reference Li-
brary

collection of digital signatures of known, traceable software ap-
plications

1.3.4 Metadata

Probe Name Description
LIEF PE/ELF File analyzer
PEiD PE File packer analyzer
TrID File type identification
StaticAnalyzer PE File analyzer adapted from Cuckoo Sandbox
Yara Checks if a file match yara rules

1.3. Supported Analyzers 3

IRMA Documentation, Release unpackaged

4 Chapter 1. Introduction

CHAPTER 2

Installation

This chapter describes the methods available to install IRMA using Ansible scripts.

2.1 Software requirements

• Ansible; You can see the requirement version of ansible in ansible/requirements.txt

ansible==2.4.2.0

2.2 Hardware requirements

The IRMA platform is divided in three major components: the Frontend, the Brain and one or multiple Probes.

These three components can be installed on a unique host or on multiple hosts, according to the kind of probes that
are being used.

The Frontend and the Brain must be installed on a GNU/Linux system1. Quarkslab recommends using a Debian
Stable distribution which is supported and known to work.

According to the kind of probes and their dependencies, each analyzers can be installed on a separate hosts or share
the same host as far as they do not interfere with each other2. Currently, only Debian Stable and Microsoft Windows
8 and 10 hosts have been tested.

Quarkslab does not provide any estimates regarding performance. However, the following configuration is known to
provide reasonable performance for small deployments:

1 Theorically, it should be possible, with some efforts, to make IRMA work on Microsoft Windows systems as most of the components used for
the platform are known to work or to have equivalents on these systems.

2 For instance, we managed to host several GNU/Linux anti-viruses on an unique probe by preventing it to launch daemons at startup. This is
difficult for Microsoft systems on which it is not recommended to install multiple anti-viruses on a single host.

5

https://github.com/ansible/ansible

IRMA Documentation, Release unpackaged

whole IRMA platform on a single machine by hosting it with multiple systems inside virtual machines: this setup
gives fairly high throughput as long as it has reasonable IO (ideally, SSDs), and a good amount of memory (test setup
was an i7 cpu with 16 GB ram on regular drives (at least 200 GB required),

For larger deployments, the following configuration is known to work: a single high-memory machine, with 16+ cores,
and SSDs, could run IRMA platform and bear the workload load with reasonable response time.

2.3 Automated Installation

The IRMA platform is easily installed thanks to a set of ansible roles and playbooks. It permits a user to build, install
or maintain different setups.

There are 2 different types of IRMA environment, and multiple setups for each environment:

• Development environment (sources rsync’d between host and vms)

– allinone_dev: everything installed in the same vm

– dev: every component on its own vm

• Production environment (sources installed through generated archives, install on vms/physical servers)

– allinone_prod: everything installed in the same vm/physical server (default environment)

– prod: every component on its own vm/physical server

For specific instructions on these 2 environments see the related section.

Note: Vagrant step is optional in production mode.

2.3.1 Environment file

IRMA installation uses ansible and optionally Vagrant, and supports a common configuration format that allows
launching of Vagrant and/or ansible. VagrantFile automatically parses the configuration file to allow vagrant
to launch required virtual machines, and irma-ansible.py parses this same file to create an inventory and an
extra variable (vars) file before launching ansible.

Format

For examples look at the files *.yml in the ansible/environments directory. Whole IRMA infrastructure is
described here:

servers:
- name: <hostname>
ip: <ip address>
ansible_groups: [list of ansible groups]
box: [vagrant box name]
cpus: [vagrant cpus (optional)]
memory: [vagrant memory (optional)]
shares: [vagrant share (optional)]
[...]

libvirt_config:
driver: kvm

(continues on next page)

6 Chapter 2. Installation

http://www.ansible.com

IRMA Documentation, Release unpackaged

(continued from previous page)

connect_via_ssh: true
host:
username:
storage_pool_name:
id_ssh_key_file:

ansible_vars:
key: value
[...]

• servers section both described ansible usage of the server and its vagrant configuration if needed.

• libvirt_config section is a vagrant-only section for using libvirt hypervisor.

• ansible_vars section is an ansible-only section for defining extra ansible variables.

Example of a development environment with vagrant:

servers:
- name: brain.irma
ip: 172.16.1.30
ansible_groups: [frontend, sql-server, brain, comodo, trid]
box: quarkslab/debian-9.0.0-amd64
cpus: 2
memory: 2048
shares:

- share_from: ../common
share_to: /opt/irma/irma-common/releases/sync
share_exclude:
- .git/
- venv/

- share_from: ../frontend
share_to: /opt/irma/irma-frontend/releases/sync
share_exclude:
- .git/
- venv/
- web/dist
- web/node_modules

- share_from: ../brain
share_to: /opt/irma/irma-brain/releases/sync
share_exclude:
- .git/
- venv/
- db/

- share_from: ../probe
share_to: /opt/irma/irma-probe/releases/sync
share_exclude:
- .git/
- venv/

libvirt_config:
driver: kvm

ansible_vars:
irma_environment: development
vagrant: true

And an example of an environment without vagrant:

2.3. Automated Installation 7

IRMA Documentation, Release unpackaged

servers:
- name: frontend.irma
ip: 172.16.1.30
ansible_groups: [frontend, sql-server]

- name: brain.irma
ip: 172.16.1.31
ansible_groups: [brain]

- name: avs-linux.irma
ip: 172.16.1.32
ansible_groups: [avast, avg, bitdefender, clamav, comodo, escan]

- name: mcafee-win.irma
ip: 172.16.1.33
ansible_groups: [mcafee-win]
windows: true

ansible_vars:
irma_environment: production
vagrant: true
irma_release: HEAD

Extra vars

It is possible to customize IRMA variables in section ansible_vars (see irma_vars.yml.sample for a full
list of available vars).

2.3.2 Vagrant setup

Requirements

• Vagrant 1.9 or higher has to be installed

• a supported hypervisor:

– kvm/qemu (libvirt required, vagrant-libvirt plugin required)

– Virtualbox

Vagrant setup

(venv)$ export VM_ENV=dev
(venv)$ export VM_ENV=allinone_dev
(venv)$ export VM_ENV=prod
(venv)$ export VM_ENV=allinone_prod # (default)

Simply run in the Vagrantfile directory:

(venv)$ vagrant up (--provider=libvirt)

Vagrant will launch one/many VM(s).

Note: The basebox used in this project is provided by Quarkslab. The code source to build it is here.

8 Chapter 2. Installation

http://www.vagrantup.com/
https://www.virtualbox.org/
https://github.com/quarkslab/debian

IRMA Documentation, Release unpackaged

Useful commands

Some useful commands with vagrant:

$ vagrant ssh <server_name> # login through ssh
$ vagrant halt <server_name> # shutdown the machine
$ vagrant reload <server_name> # restart the machine
$ vagrant up <server_name> # start the machine
$ vagrant destroy <server_name> # delete the machine

2.3.3 Ansible setup

Common requirements

• Ansible 2.0+ (see requirements.txt for version required)

(venv)$ pip install -r requirements.txt

Warning: Due to ansible breaking releases, the ansible version supported is now fixed

Ansible playbooks

IRMA Installation is split in playbooks (in ansible/playbooks directory):

• playbooks/provisioning.yml for dependencies setup

• playbooks/updating.yml for av update only

• playbooks/deployment.yml for irma code setup

• playbooks/playbook.yml (provisioning + updating + deployment)

Launch Ansible

Note: If your environment requires some virtual machines handled by vagrant, you must do this first.

To launch one of these playbook, the full command is:

Dependencies setup
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/provisioning.
→˓yml

AV update only
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/updating.yml

IRMA code install
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/deployment.yml

Full install (provisioning + updating + deployment)
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/playbook.yml

2.3. Automated Installation 9

http://www.ansible.com

IRMA Documentation, Release unpackaged

Last one will do the full install of IRMA. It can take a while (from 15 to 30 min) depending on the amount of RAM
available on the machine and the hard disk drive I/O speed.

The default IRMA interface is available at http://172.16.1.30. According to your frontend server configuration.

References

Some roles from Ansible Galaxy used here:

• NodeJS role from JasonGiedymin/nodejs

• Nginx role from jdauphant/ansible-role-nginx

• OpenSSH role from Ansibles/openssh

• UFW role from weareinteractive/ansible-ufw

• Sudo role from weareinteractive/ansible-sudo

• Users role from mivok/ansible-users

2.3.4 Windows provisioning

Generate Windows base box

$ git clone https://github.com/boxcutter/windows
$ cd windows
$ make virtualbox/eval-win10x64-enterprise

Adding to Vagrant boxes

$ vagrant box add --name eval-win10x64-enterprise box/virtualbox/eval-win10x64-
→˓enterprise*.box

Creating an instance of the base box

$ VM_ENV=<your_env> vagrant up

Provisioning with ansible

In the config file don’t forget to add windows: true in the server. Example:

servers:
- name: mcafee-win.irma
ip: 172.16.1.33
box: eval-win10x64-enterprise
ansible_groups: [mcafee-win]
windows: true

Provisioning a windows host is done the same way as other hosts:

10 Chapter 2. Installation

http://172.16.1.30
https://galaxy.ansible.com/
https://github.com/AnsibleShipyard/ansible-nodejs
https://github.com/jdauphant/ansible-role-nginx
https://github.com/Ansibles/openssh
https://github.com/weareinteractive/ansible-ufw
https://github.com/weareinteractive/ansible-sudo
https://github.com/mivok/ansible-users

IRMA Documentation, Release unpackaged

(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/playbook.yml

2.3.5 Production environment

IRMA will be installed on physical servers.

Requirements

• One or multiple 64-bit Debian 9 servers.

1. Prep servers

Create an account for ansible provisioning, or use one which has already been created. To speed up provisioning, you
can:

• Authorize your SSH key for password-less authentication (optional):

On your local machine
$ ssh-copy-id user@hostname # -i if you want to select your identity file

• If you don’t want to have to type your password for sudo command execution, add your user to sudoers, using
visudo command (optional):

user ALL=(ALL) NOPASSWD: ALL

2. Configure the installation

Modify ansible extra_vars especially the provisioning_ssh_key section, you’ll need to add private keys
from user for password-less connection to the default IRMA server user.

Warning: Be careful, you’ll need to change all passwords from this configuration files (password variables for
most of them).

You’ll need to create a configuration file and adapt it to your infrastructure.

2.3.6 Extras

Installation behind a corporate proxy

Thanks to the vagrant-proxyconf plugin, IRMA can be installed behind corporate proxy.

First, vagrant-proxyconf has to be installed:

$ vagrant plugin install vagrant-proxyconf

Then, the vagrant-proxyconf configuration has to be added to ansible/Vagrantfile. Here is an example:

2.3. Automated Installation 11

https://www.debian.org
https://github.com/tmatilai/vagrant-proxyconf

IRMA Documentation, Release unpackaged

if Vagrant.has_plugin?("vagrant-proxyconf")
config.proxy.http = "http://corporate.proxy:3128"
config.proxy.https = "http://corporate.proxy:3128"
config.proxy.no_proxy = "localhost,127.0.0.1"

end

Finally, vagrant up can be launched, as usual.

It has to be noted that using such mechanism has two limitations:

• it is not working with Windows based boxes

• it is not working with tools that are not able do deal with environment based proxy definition (http_proxy and
https_proxy environment variables). For instance, AVG updater does not take into account such definition.

12 Chapter 2. Installation

CHAPTER 3

Use IRMA

There are 2 ways to use IRMA :

3.1 Web Interface

3.1.1 How to do a scan

First choose one or multiple files to scan by:

• Drop it in the select area

• Click on “Choose file” button

Now, you can see the selected files on the right.

13

IRMA Documentation, Release unpackaged

To cancel a file selection, click on the red cross next to the filename.

By clicking on the “Display advanced settings”, you can see and determine scan parameters. Note that the defaults
parameters are not reset by default after a scan.

In the scan parameters you can choose if the scans will be forced, meaning that the files are unconditionally scaned,
even if there is a cached result. You can choose too which probes will be lauched.

When you are ready, launch the scan by clicking on “Scan for malwares” button.

Wait during the upload of your files.

14 Chapter 3. Use IRMA

IRMA Documentation, Release unpackaged

By now, you are on the results page. At the top, the scan status is displayed :

• The progression rate

• The scan status (if the scan is running or finish)

• The link to download the scan report in csv format

• The scan Id, a unique id to identify this scan that you can share

• The number of probe tasks done on the total number of probe tasks for the scan.

Next, the page displays the list of scan’s files and their status. Click on the file’s name to display the detailed scan
result of a file scan.

In the first part of detailed scan result page, you can obtain information about the scanned file: filename, size, mime-
type, different hashes, date of the first scan and the last scan of this file.

3.1. Web Interface 15

IRMA Documentation, Release unpackaged

In the second part, you can see the details of the differents probe tasks ranked by probe type.

Firstly, the antivirus. For each antivirus, the following information are given:

• The name and the platform used

• The name of threat if it exist

• The version of the antivirus

• The version of the virus database

• The duration of the task

Note there is a color code to quickly see the status of the probe : green if everything is ok, red if a threat was be
founded or orange if there was a problem with the probe.

Then, it’s the metadata and external parts : each probes of those classes have different ways to display their results.

16 Chapter 3. Use IRMA

IRMA Documentation, Release unpackaged

3.1.2 How to do a research

It’s possible to recover scan results in the “Search” section.

There are two ways to search scan : a research by name or a research by hash with a sha256. To this end, select in the
scroll bar “By name” or “By hash” and effect your research : then a list of files’ results ranked by date is displayed.

Note: To add a filter tag, see the section “Playing with tags”

3.1.3 Playing with tags

Note: Tags are available in IRMA from version 1.3.0

Creating a tag

You could create tags by using the command line tools

>>> from irmacl.helpers import *
>>> tag_list()
[]

>>> tag_new("archive")
{u'text': u'archive', u'id': 1}

>>> tag_list()
[Tag archive [1]]:

or directly from your terminal by using curl and posting a json with ‘text’ key:

$ curl -H "Content-Type: application/json; charset=UTF-8" -X POST -d '{"text":"<your
→˓tag>"}' http://172.16.1.30/api/v1.1/tags

3.1. Web Interface 17

https://github.com/quarkslab/irma-cli

IRMA Documentation, Release unpackaged

Note: There is currently no way to create a tag directly from the web IHM.

Tagging a File

Directly in web IHM, once you are on a file details page:

Just click the tag bar and you will see all available tags. You could add multiple tags.

18 Chapter 3. Use IRMA

IRMA Documentation, Release unpackaged

It is also possible to add a tag through command line tools:

>>> from irmacl.helpers import *
>>> help(file_tag_add)
Signature: file_tag_add(sha256, tagid, verbose=False)
Docstring:
Add a tag to a File

:param sha256: file sha256 hash
:type sha256: str of (64 chars)
:param tagid: tag id
:type tagid: int
:return: No return

>>> file_tag_add("346ae869f7c7ac7394196de44ab4cfcde0d1345048457d03106c1a0481fba853",1)

Searching by tag

You could specify one or more tags while searching for files too:

3.1. Web Interface 19

IRMA Documentation, Release unpackaged

choose your tag list then hit the search button:

or by command line:

>>> from irmacl.helpers import *
>>> file_search(tags=[1])
(1, [<irma.apiclient.IrmaResults at 0x7f079ca23890>])

3.2 Command Line Interface

For a use of IRMA by command line, use the command line tools

This api client is only made for IRMA API version 1.1.

3.2.1 Installation

$ python setup.py install

Configuration file contains the API endpoint (full url) and some optional paramters (max number and delay in second
between retries)

[Server]
api_endpoint=http://172.16.1.30/api/v1.1
max_tries=3
pause=1

and is searched in these locations in following order:

• current directory

• environment variable (“IRMA_CONF”)

• user home directory

• global directory (“/etc/irma”)

Once you set up a working irma.conf settings file, you could run tests on your running IRMA server:

$ python setup.py test

Pip Install

Install it directly with pip:

20 Chapter 3. Use IRMA

https://github.com/quarkslab/irma-cli

IRMA Documentation, Release unpackaged

$ pip install irmacl

Usage

>>> from irmacl.helpers import *
>>> probe_list()
[u'StaticAnalyzer', u'Unarchive', u'VirusBlokAda', u'VirusTotal']

>>> tag_list()
[Tag malware [1], Tag clean [2], Tag suspicious [3]]

>>> scan_files(["./irma/tests/samples/eicar.com"], force=True, blocking=True)
Scanid: ca2e8af4-0f5b-4a55-a1b8-2b8dc9ead068
Status: finished
Options: Force [True] Mimetype [True] Resubmit [True]
Probes finished: 2
Probes Total: 2
Date: 2015-11-24 15:43:03
Results: [<irma.apiclient.IrmaResults object at 0x7f3f250df890>]

>>> scan = _
>>> print scan.results[0]
Status: 1
Probes finished: 2
Probes Total: 2
Scanid: ca2e8af4-0f5b-4a55-a1b8-2b8dc9ead068
Scan Date: 2015-12-22 14:36:21
Filename: eicar.com
Filepath: ./irmacl/tests/samples
ParentFile SHA256: None
Resultid: 572f9418-ca3c-4fdf-bb35-50c11629a7e7
FileInfo:
None
Results: None

>>> print scan_proberesults("572f9418-ca3c-4fdf-bb35-50c11629a7e7")
Status: 1
Probes finished: 2
Probes Total: 2
Scanid: ca2e8af4-0f5b-4a55-a1b8-2b8dc9ead068
Scan Date: 2015-12-22 14:36:21
Filename: eicar.com
Filepath: ./irmacl/tests/samples
ParentFile SHA256: None
Resultid: 572f9418-ca3c-4fdf-bb35-50c11629a7e7
FileInfo:
Size: 68
Sha1: 3395856ce81f2b7382dee72602f798b642f14140
Sha256: 275a021bbfb6489e54d471899f7db9d1663fc695ec2fe2a2c4538aabf651fd0f
Md5: 44d88612fea8a8f36de82e1278abb02fs
First Scan: 2015-11-24 14:54:12
Last Scan: 2015-12-22 14:36:21
Id: 3
Mimetype: EICAR virus test files
Tags: []

(continues on next page)

3.2. Command Line Interface 21

IRMA Documentation, Release unpackaged

(continued from previous page)

Results: [<irmacl.apiclient.IrmaProbeResult object at 0x7f3f250b9dd0>, <irmacl.
→˓apiclient.IrmaProbeResult object at 0x7f3f250b9850>]

>>> fr = _
>>> print fr.probe_results[0]
Status: 1
Name: VirusBlokAda (Console Scanner)
Category: antivirus
Version: 3.12.26.4
Duration: 1.91s
Results: EICAR-Test-File

Searching for scans

>>> scan_list()
(89, [Scanid: ef0b9466-3132-40b7-990a-415f08377f09

Status: finished
Options: Force [True] Mimetype [True] Resubmit [True]
Probes finished: 1
Probes Total: 1
Date: 2015-11-24 15:04:27

[...]

Searching for files

>>> file_search(name="ei")
(1, [<irmacl.apiclient.IrmaResults at 0x7f3f250491d0>])

>>> (total, res) = _
>>> print res[0]
Status: 1
Probes finished: 1
Probes Total: 1
Scanid: 7ae6b759-b357-4680-8358-b134b564b1ca
Filename: eicar.com
[...]

>>> file_search(hash="3395856ce81f2b7382dee72602f798b642f14140")
(7,
[<irmacl.apiclient.IrmaResults at 0x7f3f250b96d0>,
<irmacl.apiclient.IrmaResults at 0x7f3f24fdc1d0>,
<irmacl.apiclient.IrmaResults at 0x7f3f24fdca90>,
<irmacl.apiclient.IrmaResults at 0x7f3f24fdcdd0>,
<irmacl.apiclient.IrmaResults at 0x7f3f24fdc690>,
<irmacl.apiclient.IrmaResults at 0x7f3f2504f390>,
<irmacl.apiclient.IrmaResults at 0x7f3f24fea350>])

>>> file_search(hash="3395856ce81f2b7382dee72602f798b642f14140", tags=[1,2])
(0, [])

looking for an unexisting tagid raise IrmaError
>>> file_search(hash="3395856ce81f2b7382dee72602f798b642f14140", tags=[100])
IrmaError: Error 402

22 Chapter 3. Use IRMA

IRMA Documentation, Release unpackaged

Objects (apiclient.py)

class irmacl.apiclient.IrmaFileInfo(id, size, timestamp_first_scan, timestamp_last_scan, sha1, sha256, md5,
mimetype, tags)

Bases: “object”

IrmaFileInfo Description for class

Variables:

• id – id

• timestamp_first_scan – timestamp when file was first scanned in IRMA

• timestamp_last_scan – timestamp when file was last scanned in IRMA

• size – size in bytes

• md5 – md5 hexdigest

• sha1 – sha1 hexdigest

• sha256 – sha256 hexdigest

• mimetype – mimetype (based on python magic)

• tags – list of tags

pdate_first_scan – property, humanized date of first scan

pdate_last_scan – property, humanized date of last scan

raw()

class irmacl.apiclient.IrmaProbeResult(**kwargs)

Bases: “object”

IrmaProbeResult Description for class

Variables:

• status – int probe specific (usually -1 is error, 0 nothing found 1 something found)

• name – probe name

• type – one of IrmaProbeType (‘antivirus’, ‘external’, ‘database’, ‘metadata’. . .)

• version – probe version

• duration – analysis duration in seconds

• results – probe results (could be str, list, dict)

• error – error string (only relevant in error case when status == -1)

• external_url – remote url if available (only relevant when type == ‘external’)

• database – antivirus database digest (need unformatted results) (only relevant when type ==
‘antivirus’)

• platform – ‘linux’ or ‘windows’ (need unformatted results)

to_json()

class irmacl.apiclient.IrmaResults(file_infos=None, probe_results=None, **kwargs)

3.2. Command Line Interface 23

IRMA Documentation, Release unpackaged

Bases: “object”

IrmaResults Description for class

Variables:

• status – int (0 means clean 1 at least one AV report this file as a virus)

• probes_finished – number of finished probes analysis for current file

• probes_total – number of total probes analysis for current file

• scan_id – id of the scan

• scan_date – date of the scan

• name – file name

• path – file path (as sent during upload or resubmit)

• result_id – id of specific results for this file and this scan used to fetch probe_results through
file_results helper function

• file_infos – IrmaFileInfo object

• probe_results – list of IrmaProbeResults objects

to_json()

pscan_date – property, humanized date of scan date

class irmacl.apiclient.IrmaScan(id, status, probes_finished, probes_total, date, force, resubmit_files, mime-
type_filtering, results=[])

Bases: “object”

IrmaScan Description for class

Variables:

• id – id of the scan

• status – int (one of IrmaScanStatus)

• probes_finished – number of finished probes analysis for current scan

• probes_total – number of total probes analysis for current scan

• date – scan creation date

• force – force a new analysis or not

• resubmit_files – files generated by the probes should be analyzed or not

• mimetype_filtering – probes list should be decided based on files mimetype or not

• results – list of IrmaResults objects

is_finished()

is_launched()

pdate – property, printable date

pstatus – property, printable status

class irmacl.apiclient.IrmaTag(id, text)

Bases: “object”

IrmaTag Description for class

24 Chapter 3. Use IRMA

IRMA Documentation, Release unpackaged

Variables:

• id – id of the tag

• text – tag label

Helpers (helpers.py)

irmacl.helpers.file_download(sha256, dest_filepath, verbose=False)

Download file identified by sha256 to dest_filepath

Parameters:

• sha256 (str of 64 chars) – file sha256 hash value

• dest_filepath (str) – destination path

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return tuple of total files and list of results for the given file

Return type: tuple(int, list of IrmaResults)

irmacl.helpers.file_results(sha256, limit=None, offset=None, verbose=False)

List all results for a given file identified by sha256

Parameters:

• sha256 (str of 64 chars) – file sha256 hash value

• limit (int) – max number of files to receive (optional default:25)

• offset (int) – index of first result (optional default:0)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: tuple(int, list of IrmaResults)

irmacl.helpers.file_search(name=None, hash=None, tags=None, limit=None, offset=None, verbose=False)

Search a file by name or hash value

Parameters:

• name (str) – name of the file (‘name’ will be searched)

• hash (str of (64, 40 or 32 chars)) – one of sha1, md5 or sha256 full hash value

• tags (list of int) – list of tagid

• limit (int) – max number of files to receive (optional default:25)

• offset (int) – index of first result (optional default:0)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return tuple of total files and list of matching files already scanned

Return type: tuple(int, list of IrmaResults)

irmacl.helpers.file_tag_add(sha256, tagid, verbose=False)

Add a tag to a File

Parameters:

• sha256 (str of (64 chars)) – file sha256 hash

3.2. Command Line Interface 25

IRMA Documentation, Release unpackaged

• tagid (int) – tag id

Returns: No return

irmacl.helpers.file_tag_remove(sha256, tagid, verbose=False)

Remove a tag to a File

Parameters:

• sha256 (str of (64 chars)) – file sha256 hash

• tagid (int) – tag id

Returns: No return

irmacl.helpers.probe_list(verbose=False)

List availables probes

Parameters: verbose (bool) – enable verbose requests (optional default:False)

Returns: return probe list

Return type: list

irmacl.helpers.scan_add_data(scan_id, data, filename, post_max_size_M=100, verbose=False)

Add files to an existing scan

Parameters:

• scan_id (str) – the scan id

• data (str) – data to scan

• filename (str) – filename associated to data

• post_max_size_M (int) – POST data max size in Mb (multiple calls to the api will be done if
total size is more than this limit, note that if one or more file is bigger than this limit it will raise
an error)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return the updated scan object

Return type: IrmaScan

irmacl.helpers.scan_add_files(scan_id, filelist, post_max_size_M=100, verbose=False)

Add files to an existing scan

Parameters:

• scan_id (str) – the scan id

• filelist (list) – list of full path qualified files

• post_max_size_M (int) – POST data max size in Mb (multiple calls to the api will be done if
total size is more than this limit, note that if one or more file is bigger than this limit it will raise
an error)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return the updated scan object

Return type: IrmaScan

irmacl.helpers.scan_cancel(scan_id, verbose=False)

26 Chapter 3. Use IRMA

IRMA Documentation, Release unpackaged

Cancel a scan

Parameters:

• scan_id (str) – the scan id

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return the scan object

Return type: IrmaScan

irmacl.helpers.scan_data(data, filename, force, post_max_size_M=100, probe=None, mime-
type_filtering=None, resubmit_files=None, blocking=False,blocking_timeout=60, verbose=False)

Wrapper around scan_new / scan_add / scan_launch

Parameters:

• data (str) – data to scan

• filename (str) – filename associated to data

• force (bool) – if True force a new analysis of files if False use existing results

• post_max_size_M (int) – POST data max size in Mb (multiple calls to the api will be done if
total size is more than this limit, note that if one or more file is bigger than this limit it will raise
an error)

• probe (list) – probe list to use (optional default: None means all)

• mimetype_filtering (bool) – enable probe selection based on mimetype (optional default:True)

• resubmit_files (bool) – reanalyze files produced by probes (optional default:True)

• blocking (bool) – wether or not the function call should block until scan ended

• blocking_timeout (int) – maximum amount of time before timeout per file (only enabled while
blocking is ON)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return the scan object

Return type: IrmaScan

irmacl.helpers.scan_files(filelist, force, post_max_size_M=100, probe=None, mimetype_filtering=None, resub-
mit_files=None, blocking=False,blocking_timeout=60, verbose=False)

Wrapper around scan_new / scan_add / scan_launch

Parameters:

• filelist (list) – list of full path qualified files

• force (bool) – if True force a new analysis of files if False use existing results

• post_max_size_M (int) – POST data max size in Mb (multiple calls to the api will be done if
total size is more than this limit, note that if one or more file is bigger than this limit it will raise
an error)

• probe (list) – probe list to use (optional default: None means all)

• mimetype_filtering (bool) – enable probe selection based on mimetype (optional default:True)

• resubmit_files (bool) – reanalyze files produced by probes (optional default:True)

• blocking (bool) – wether or not the function call should block until scan ended

3.2. Command Line Interface 27

IRMA Documentation, Release unpackaged

• blocking_timeout (int) – maximum amount of time before timeout per file (only enabled while
blocking is ON)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return the scan object

Return type: IrmaScan

irmacl.helpers.scan_get(scan_id, verbose=False)

Fetch a scan (useful to track scan progress with scan.pstatus)

Parameters:

• scan_id (str) – the scan id

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return the scan object

Return type: IrmaScan

irmacl.helpers.scan_launch(scan_id, force, probe=None, mimetype_filtering=None, resubmit_files=None, ver-
bose=False)

Launch an existing scan

Parameters:

• scan_id (str) – the scan id

• force (bool) – if True force a new analysis of files if False use existing results

• probe (list) – probe list to use (optional default None means all)

• mimetype_filtering (bool) – enable probe selection based on mimetype (optional default:True)

• resubmit_files (bool) – reanalyze files produced by probes (optional default:True)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return the updated scan object

Return type: IrmaScan

irmacl.helpers.scan_list(limit=None, offset=None, verbose=False)

List all scans

Parameters:

• limit (int) – max number of files to receive (optional default:25)

• offset (int) – index of first result (optional default:0)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return tuple of total scans and list of scans

Return type: tuple(int, list of IrmaScan)

irmacl.helpers.scan_new(verbose=False)

Create a new scan

Parameters: verbose (bool) – enable verbose requests (optional default:False)

Returns: return the new generated scan object

Return type: IrmaScan

28 Chapter 3. Use IRMA

IRMA Documentation, Release unpackaged

irmacl.helpers.scan_proberesults(result_idx, formatted=True, verbose=False)

Fetch file probe results (for a given scan one scan <-> one result_idx

Parameters:

• result_idx (str) – the result id

• formatted (bool) – apply frontend formatters on results (optional default:True)

• verbose (bool) – enable verbose requests (optional default:False)

Returns: return a IrmaResult object

Return type: IrmaResults

irmacl.helpers.tag_list(verbose=False)

List all available tags

Returns: list of existing tags

Return type: list of IrmaTag

irmacl.helpers.tag_new(text, verbose=False)

Create a new tag

Parameters: text (str) – tag label (utf8 encoded)

Returns: None

3.2. Command Line Interface 29

IRMA Documentation, Release unpackaged

30 Chapter 3. Use IRMA

CHAPTER 4

Administration

4.1 Environment configuration

Conf VMs with choice of probes

4.2 Components configuration

4.2.1 Frontend configuration

Configuration

The configuration file is located at config/frontend.ini in the installation directory.

Note: Detailed meaning of each field in config/frontend.ini:

Section Key Type Default Description
log syslog integer 0 enable rsyslog (ex-

perimental)
prefix string irma-frontend: prefix to append to

rsyslog entries
debug boolean False enable Debug log
sql_debug boolean False enable SQL debug

log
sqldb username string database username

password string database password
host string database host
port integer database port
dbname string database name

Continued on next page

31

IRMA Documentation, Release unpackaged

Table 1 – continued from previous page
Section Key Type Default Description

tables_prefix string database tables pre-
fix

samples_storage path string Samples storage
path

celery_brain timeout integer 60 (sec) time before consid-
ering that the brain
has timed-out

celery_frontend timeout integer 30 (sec) time before consid-
ering that the fron-
tend has timed-out

celery_options concurrency integer 0 number of con-
current workers (0
means nb of cores)

soft_time_limit integer 300 (sec) time limit before
task soft interrupt

time_limit integer 1500 (sec) time limit before
task is killed

beat_schedule string /var/irma/fronte
nd_beat_schedule

celery beat schedule
file

broker_brain host string hostname for the
RabbitMQ server

port integer 5672 port for the Rab-
bitMQ server

vhost string virtual host config-
ured for brain

username string username used for
brain on the Rab-
bitMQ server

password string password used for
brain on the Rab-
bitMQ server

queue string queue to poll new
tasks on the Rab-
bitMQ server

broker_frontend host string hostname for the
RabbitMQ server

port integer 5672 port for the Rab-
bitMQ server

vhost string virtual host config-
ured for this fron-
tend

username string username used for
this frontend on the
RabbitMQ server

password string password used for
this frontend on the
RabbitMQ server

queue string queue to poll new
tasks on the Rab-
bitMQ server

Continued on next page

32 Chapter 4. Administration

IRMA Documentation, Release unpackaged

Table 1 – continued from previous page
Section Key Type Default Description
ftp protocol string “sftp” choose File Transfer

Protocol (“sftp” or
“ftps”)

ftp_brain host string hostname for the
FTP server

port integer 22 port for the FTP
server

auth string “password” SFTP authenti-
cation method
(“password” or
“key”)

key_path string sftp private key ab-
solute path

username string username used by
this frontend on the
FTP server

password string password used by
this frontend on the
FTP server

cron_clean_file
_age clean_fs_max

_age

string “0” remove file when
not scanned for
givent time 0 means
disabled (“1 hour”,
“5 days”, “3w”,
“1year”)

clean_fs_age
_cron_hour

string 0 cron hour settings

clean_fs_age
_cron_minute

string 0 cron minute settings

clean_fs_age
_cron_day_of_week

string * cron day of week
settings

cron_clean_file
_size clean_fs_max

_size

string “0” space’s maximum
size dedicated to the
file system (“100
Mb”, “512 Mb”,
“1.5Gb”)

clean_fs_size
_cron_hour

string * cron hour settings

clean_fs_size
_cron_minute

string 0 cron minute settings

clean_fs_size
_cron_day_of_week

string * cron day of week
settings

interprocess _lock path string /var/run/lock/ir ma-
frontend.lock

Concurrency file
lock

ssl_config activate_ssl boolean False Enable RabbitMQ
ssl

Continued on next page

4.2. Components configuration 33

IRMA Documentation, Release unpackaged

Table 1 – continued from previous page
Section Key Type Default Description

ca_certs string RabbitMQ SSL
certs

keyfile string RabbitMQ SSL key-
file

certfile string RabbitMQ SSL
certfile

Note: The default path for samples is /var/irma/samples/ make sure it exists with correct rights for irma user before
launching your first scan.

4.2.2 Brain configuration

Configuration

The configuration file is located at config/brain.ini in the installation directory. Update it with your specific
info.

Note: Detailed meaning of each field in config/brain.ini:

Section Key Type Default Description
log syslog integer 0 enable rsyslog (experimental)

prefix string irma-brain: prefix to append to rsyslog entries
debug boolean False | enable Debug log
sql_debug boolean False | enable SQL debug log

celery_options concurrency integer 0 number of concurrent workers (0
means nb of cores)

soft_time_limit integer 300 (sec) time limit before task soft interrupt
time_limit integer 1500 (sec) time limit before task is killed

broker_brain host string hostname for the RabbitMQ server
port integer 5672 port for the RabbitMQ server
vhost string virtual host configured for brain
username string username used for brain on the Rab-

bitMQ server
password string password used for brain on the Rab-

bitMQ server
queue string queue to poll new tasks on the Rab-

bitMQ server
broker_probe host string hostname for the RabbitMQ server

port integer 5672 port for the RabbitMQ server
vhost string virtual host configured for probes
username string username used for probes on the

RabbitMQ server
password string password used for probes on the

RabbitMQ server
queue string queue to poll new tasks on the Rab-

bitMQ server
Continued on next page

34 Chapter 4. Administration

IRMA Documentation, Release unpackaged

Table 2 – continued from previous page
Section Key Type Default Description
broker_frontend host string hostname for the RabbitMQ server

port integer 5672 port for the RabbitMQ server
vhost string virtual host configured for frontend
username string username used for frontend on the

RabbitMQ server
password string password used for frontend on the

RabbitMQ server
queue string queue to poll new tasks on the Rab-

bitMQ server
sqldb dbms string sqlite dbapi engine

dialect string sqlalchemy dialect
username string database username
password string database password
host string database host
dbname string /var/irma/

db/brain.db
database name

tables_prefix string database tables prefix
ftp protocol string “sftp” choose File Transfer Protocol

(“sftp” or “ftps”)
ftp_brain host string hostname for the FTP server

port integer 21 port for the FTP server
auth string “password”| SFTP authentication method (“password”

or “key”)
key_path string sftp private key absolute path

username string username used by probe on the FTP server

password string password used by the probe on the
FTP server

interprocess
_lock

path string /var/run/
lock/irma-
brain.lock

Concurrency file lock

ssl_config activate_ssl boolean False Enable RabbitMQ ssl
ca_certs string RabbitMQ SSL certs
keyfile string RabbitMQ SSL keyfile
certfile string RabbitMQ SSL certfile

Generate a SQLite database for scan tracking

You could easily generate the user database by running the following command. The path of the database is taken
from the configuration file and the folder where the database is going to be stored must be created beforehand.

Note: The default path for the database is /var/irma/db/ make sure it exists before creating user database.

$ cd /opt/irma/irma-brain/current/
$./venv/bin/python -m scripts.create_user
usage: create_user <username> <rmqvhost> <ftpuser>

(continues on next page)

4.2. Components configuration 35

IRMA Documentation, Release unpackaged

(continued from previous page)

with <username> a string
<rmqvhost> the rmqvhost used for the frontend
<ftpuser> the ftpuser used by the frontend

example: create_user test1 mqfrontend frontend

To create an entry in the database for the frontend named frontend and which uses the mqfrontend virtual host
on the RabbitMQ server, simply run the following commands:

$./venv/bin/python -m scripts.create_user frontend mqfrontend frontend

Note: There is a limitation due to SQLite. The folder where the database is stored, plus the database file must be
writable by the user running the worker:

$ sudo chown irma:irma /var/irma/db/brain.db
$ sudo chmod a+w /opt/irma/irma-brain

4.2.3 Probe configuration

Configuration

The configuration file is config/probe.ini located in the installation directory.

Note: We recall in the following the meaning of each field in config/probe.ini:

Section Key Type Default Description
log syslog integer 0 enable rsyslog (experimental)

prefix string irma-probe: prefix to append to rsyslog entries
celery_options concurrency integer 0 number of concurrent workers (0

means nb of cores)
soft_time_limit integer 300 (sec) time limit before task soft interrupt
time_limit integer 1500 (sec) time limit before task is killed

broker probe host string hostname for the RabbitMQ server
port integer 5672 port for the RabbitMQ server
vhost string virtual host configured for probes
username string username used for probes on the

RabbitMQ server
password string password used for probes on the

RabbitMQ server
queue string queue to poll new tasks on the Rab-

bitMQ server
ftp_brain host string hostname for the FTP server

port integer 21 port for the FTP server
auth string “password”| SFTP authentication method (“password”

or “key”)
key_path string sftp private key absolute path

username string username used by probe on the FTP
server

password string password used by the probe on the
FTP server

36 Chapter 4. Administration

IRMA Documentation, Release unpackaged

4.3 SSL settings

SSL is available for 5 services:

• for an https connection with an nginx configuration;

• for RabbitMQ;

• for PostgreSQL with an authentication by certificate;

In the nominal case, enabling SSL for at least one of these services generates a PKI made of a root CA and, for each
mechanism, an intermediate CA and some other stuff. Every CA and https certificate requires an openssl configu-
ration file. These files are set in the appropriate directory in ./extras/pki/conf: root.config at the root,
a <service>/ca.config in the https, rabbitmq and psql directories and configuration file corresponding
to https clients in https directory. The configuration files are copied in the corresponding directories during their
generation.

The PKI is generated in the infra directory ./infras/<infra-name>/pki where <infra-name> is the an-
sible variable infra_name in group_vars/all.yml (defaults to “Qb”). The PKI is described in infras/
<infra-name>/<infra-name>-infra.yml. During the provisioning, ansible updates the PKI (or creates it)
according to this file. To erase the PKI, delete the infra directory first.

4.3.1 HTTPS

Enable HTTPS

To enable SSL on the frontend server, edit group_vars/all.yml with:

frontend_openssl: True
nginx_https_enabled: True # require frontend_openssl
nginx_https_client_enabled: True # require nginx_https_enabled

Note: HTTPS and HTTP connections can operate at the same time.

Note: nginx_https_enabled [required] activates the server’s certificate verification.
nginx_https_client_enabled [optional] activates the client’s certificate verification.

Generate certificates

The crypto objects for an https connection are generated in infras/<infra-name>/pki/https. By default,
these are:

• a CA (key, certificate, chained certificate, database and CRL);

• a server (key, certificate, chained certificate);

• a client (key, certificate, chained certificate).

4.3. SSL settings 37

IRMA Documentation, Release unpackaged

$ tree infras/Qb/pki/https
infras/Qb/pki/https/

ca
01.pem
02.pem
ca-chain.crt
ca.config
ca.crt
ca.key
db

ca.crl.srl
ca.crl.srl.old
ca.crt.srl
ca.crt.srl.old
ca.db
ca.db.attr
ca.db.attr.old
ca.db.old

https.crl
clients

client-chain.crt
client.config
client.crt
client.key
revoked

server
server-chain.crt
server.config
server.crt
server.key

Add a client

To add a client:

• edit infras/<infra-name>/<infra-name>-infra.yml with:

infra:
name: Qb
https:

clients:
running:
- name: client
- name: new_client #there we indicate a the name of the new user

revoked: []

• add an openssl configuration file ./extras/pki/conf/https/<client-name>.config correspond-
ing to the new user.

• provision with ansible: it copies the previous file in clients directory.

Revoke a client

To revoke a client:

38 Chapter 4. Administration

IRMA Documentation, Release unpackaged

• edit infras/<infra-name>/<infra-name>-infra.yml with:

infra:
name: Qb

clients:
running:
- name: client

revoked:
- name: bad_user # the user is now in revoked list and not in running list

• provision with ansible: it revokes the user with the user’s CA and moves its stuff in clients/revoked/.

4.3.2 RabbitMQ

Enable SSL on RabbitMQ

To enable SSL in RabbitMQ, edit group_vars/brain.yml with:

rabbitmq_ssl: True

Note: If you are updating an already running no_ssl version, do the following on irma-brain RabbitMQ server:

$ sudo rabbitmqctl stop_app
$ sudo rabbitmqctl reset
$ sudo rabbitmqctl start_app
create again the RabbitMQ vhosts, usernames and passwords:
$ sudo ./extras/scripts/rabbitmq/rmq_adduser.sh probe probe mqprobe
$ sudo ./extras/scripts/rabbitmq/rmq_adduser.sh brain brain mqbrain
$ sudo ./extras/scripts/rabbitmq/rmq_adduser.sh frontend frontend mqfrontend

Certificates generation

The crypto objects for RabbitMQ with SSL are generated in infras/<infra-name>/pki/rabbitmq. These
are:

• a CA (key, certificate, chained certificate and database);

• a server brain (key, certificate);

• 3 clients for the entities frontend, brain and probe (key, certificate).

$ tree infras/Qb/pki/rabbitmq
infras/Qb/pki/rabbitmq/

ca
01.pem
02.pem
03.pem
04.pem
ca-chain.crt
ca.config

(continues on next page)

4.3. SSL settings 39

IRMA Documentation, Release unpackaged

(continued from previous page)

ca.crt
ca.key
db

ca.crt.srl
ca.crt.srl.old
ca.db
ca.db.attr
ca.db.attr.old
ca.db.old

clients
brain-client.crt
brain-client.key
frontend-client.crt
frontend-client.key
probe-client.crt
probe-client.key

server
brain.crt
brain.key

Note: In RabbitMQ case, only the CA needs a openssl configuration file.

4.3.3 Postgresql

Enable SSL on Postgresql

To activate SSL in PostgreSQL service, edit group_vars/brain.yml with:

postgresql_ssl: True

Generate certificates

The crypto objects for PostgreSQL with SSL are generated in infras/<infra-name>/pki/psql. These are:

• a CA (key, certificate, chained certificate, a CRL and database);

• a server (key, certificate);

• a client frontend (key, certificate).

$ tree infras/Qb/pki/psql
infras/Qb/pki/psql/

ca
01.pem
02.pem
ca-chain.crt
ca.config
ca.crt
ca.key
db

ca.crl.srl
ca.crl.srl.old

(continues on next page)

40 Chapter 4. Administration

IRMA Documentation, Release unpackaged

(continued from previous page)

ca.crt.srl
ca.crt.srl.old
ca.db
ca.db.attr
ca.db.attr.old
ca.db.old

psql.crl
clients

frontend.config
frontend.crt
frontend.key
revoked

server
server.config
server.crt
server.key

Revoke a client

To revoke a client:

• edit infras/<infra-name>/<infra-name>-infra.yml with:

infra:
name: Qb

psql:
clients:

revoked:
- name: bad_user # bad_user is now in revoked list and no longer in

→˓running list

• provision with ansible: it revokes the user with the user’s CA and moves its stuff in clients/revoked/.

4.3.4 External PKI

It is also possible to use an external PKI for one or more of these services, for the root entity or the whole Irma’s PKI.
In this case, it is necessary to provide the corresponding cryptographic objects in PEM format. To specify which PKI’s
part are provided by an external PKI, edit group_vars/all.yml :

root_external: False
pki_rabbitmq_external: False
pki_https_external: False
pki_psql_external: False

By default, the automatic generation of the whole PKI is activated and all variables for external PKI are set to False.

External root

To use a external root, edit group_vars/all.yml with:

4.3. SSL settings 41

IRMA Documentation, Release unpackaged

root_external: True
root_external_key: root_key.key
root_external_cert: root_cert.crt

Note: root_key.key and root_external_cert must contain the paths to respectively the key and the cer-
tificate of the external root entity.

The Irma’s PKI will be generated with this external root as authority.

External HTTPS PKI

To use an external PKI for HTTPS and disable the automatic generation of a new one, edit group_vars/all.yml
with:

pki_https_external: True

Provide the cryptographic objects and specify the paths editing group_vars/frontend.yml:

frontend_openssl_certificates:
cert:
src: https_server.crt
dst: /etc/nginx/certs/{{ hostname }}.crt
key:
src: https_server.key
dst: /etc/nginx/certs/{{ hostname }}.key
ca:
src: https_ca_cert.crt
dst: /etc/nginx/certs/ca.crt
chain:
src: https_ca_chain.crt
dst: /etc/nginx/certs/ca-chain.crt
crl:
src: https_crl.crl
dst: /etc/nginx/certs/https.crl

Note: frontend_openssl_certificates.cert.src is the path to the server’s cer-
tificate frontend_openssl_certificates.key.src is the path to the server’s pri-
vate key frontend_openssl_certificates.ca.src is the path to the CA’s certificate
frontend_openssl_certificates.chain.src is the path to the CA’s certification chain
frontend_openssl_certificates.crl.src is the path to the CRL

External RabbitMQ PKI

To use an external PKI for RabbitMQ and disable the automatic generation of a new one, edit group_vars/all.
yml with:

pki_rabbitmq_external: True

Provide the cryptographic objects and specify the paths editing group_vars/all.yml:

42 Chapter 4. Administration

IRMA Documentation, Release unpackaged

rabbitmq_cacert : ca-chain.crt
rabbitmq_server_key : server.key
rabbitmq_server_cert: server.crt
rabbitmq_frontend_key: frontend-client.key
rabbitmq_frontend_cert: frontend-client.crt
rabbitmq_brain_key: brain-client.key
rabbitmq_brain_cert: brain-client.crt
rabbitmq_probe_key: probe-client.key
rabbitmq_probe_cert: probe-client.crt

Note: rabbitmq_cacert is the path to the CA’s certification chain rabbitmq_server_key is the path to the
server’s private key rabbitmq_server_cert is the path to the server’s certificate rabbitmq_frontend_key
is the path to the frontend’s private key rabbitmq_fontend_cert is the path to the frontend’s certificate
rabbitmq_brain_key is the path to the brain’s private key rabbitmq_brain_cert is the path to the brain’s
certificate rabbitmq_probe_key is the path to the probes’ private key rabbitmq_probe_cert is the path to
the probes’ certificate

External PostgreSQL PKI

To use an external PKI for PostgreSQL and disable the automatic generation of a new one, edit group_vars/all.
yml with:

pki_psql_external: True

Provide the cryptographic objects and specify the paths editing group_vars/sql-server.yml:

postgresql_ssl_cert_src_path: server.crt
postgresql_ssl_key_src_path: server.key
postgresql_ssl_ca_src_path: ca-chain.crt
postgresql_ssl_crl_src_path: psql.crl

Note: postgresql_ssl_cert_src_path is the path to the server’s certificate
postgresql_ssl_key_src_path is the path to the server’s private key postgresql_ssl_ca_src_path
is the path to the CA’s certificate chain postgresql_ssl_crl_src_path is the path to the CRL

4.4 Database migration

IRMA uses Alembic to manage and perform databases migration.

Note: Alembic is a useful tool to manage migration, but can’t surpass local engine implementation of SQL. As
SQLite doesn’t manage schema modifications such as ALTER_COLUMN, the whole migration system of IRMA
won’t support it. The preferred database engine is PostgreSQL.

You can still use SQLite, but you will be on your own for migrations.

4.4. Database migration 43

https://alembic.readthedocs.org/en/latest/

IRMA Documentation, Release unpackaged

Warning: Please note that most of the manipulations on this can and sometimes will alter your data. If you are
not sure about what you are doing, and even if you are sure, make backup.

4.4.1 Requirements

• Alembic package

4.4.2 Content

Database migrations are managed in the frontend and brain IRMA components.

The files/directories used are:

alembic.ini
extras/migration/

+- env.py
+- script.py.mako
+- versions/

+- <revision_1>.py
+- <revision_2>.py
+- ...

Note: All the commands below will assert to be executed on top of this file system, as Alembic needs the alembic.
ini configuration file.

You could also use the -c <path_to_conf_file>.

4.4.3 Usage

Alembic manage a ‘revision’ for each database evolution. These revisions are used to upgrade or downgrade the
database schema.

The command:

$ alembic current

. . . shows the current revision of the database.

The command to get the history of the latest alembic migrations is:

$ alembic history --verbose

Create database from scratch with Alembic

Configuration and creating database

Alembic will use the information in the [sqldb] section of the configuration files (respectively config/
frontend.ini or conf/brain.ini for the repositories of the frontend or the brain components). Make sure
they are accurate.

The database must already exist. This step is quite simple, the SQL command usually being:

44 Chapter 4. Administration

https://pypi.python.org/pypi/alembic

IRMA Documentation, Release unpackaged

sql$ CREATE DATABASE <db_name>;

Update your schema with Alembic

If you use a virtualenv, activate it. Then enter:

$ alembic upgrade head

Alembic applies each revision one after the other. At the end of the process, if no error occurs, your database should
be updated.

Note: You can update the database one revision at a time, or up to a specific revision. See the revisions section for
further information.

If you already have a database WITHOUT Alembic

Alembic stores its current revision number in database. If your database doesn’t have this information, you are very
likely to encounter errors when using Alembic, as it will try to create already existing tables.

The easiest solution is to destroy your database and go for a fresh install.

Although, if you don’t want to lose your data, you could update the Alembic information manually.

You will need to:

1. Get the exact current Alembic revision of your database. Each migration file has a Revision ID in its header.
Investigate the successive revisions to know which one matches your current database state.

2. Once you known your Alembic revision, run:

$ alembic stamp <your_alembic_revision_number>

3. Your database is now synchronized with Alembic! You should be able to use Alembic to upgrade/downgrade
your database now. Be aware that if the revision number you provided is false, you could encounter massive
errors while attempting to upgrade/downgrade your database.

Generating a new revision

Creating a new revision can be done with the command:

$ alembic revision -m <revision_message>

This command produces a new <hash>_<revision_message>.py file in the extras/migration/
versions/ directory. This file contains two functions upgrade and downgrade, respectively used to upgrade
the database to the revision, or downgrade from it. These two functions are empty and must be completed with the
desired modifications (see the alembic documentation section ops).

A revision could be produced automatically, from database metadata defined in the IRMA SQL objects description
through sqlalchemy, with the command:

$ alembic revision --autogenerate -m <revision_message>

These SQL objects are defined in:

4.4. Database migration 45

https://alembic.readthedocs.org/en/latest/ops.html

IRMA Documentation, Release unpackaged

• frontend/models/sqlobjects.py for the frontend,

• brain/models/sqlobjects.py for the brain.

Alembic scripts in IRMA repositories are already configured to use metadata defined in these files. You should be able
to use the --autogenerate option without further modifications.

Note: IRMA configuration allows to prefix table names through configuration. Our revision files use the function
<frontend_or_brain>/config/parser.py:prefix_table_name to generate table names rather than
keeping alembic-generated plain string names. A good practice would be to keep using this function in revision files.

Warning: Alembic easily detects changes such as adding/removing columns, but could be blind on thin, inner
modifications. Re-reading the auto-generated script is a strongly recommended step before actually performing
the migration.

See the alembic documentation section autogenerate for more information.

Warning: Database modifications using ALTER_COLUMN (such as changing the type of a column) can’t be
performed on SQLite databases. Be aware of this limitation if you absolutely want to use migration scripts with
this SQL engine.

Migrating between revisions

Once the revision is properly described, the migration is performed with:

$ alembic upgrade head

Alembic allows to migrate the database to any revision, relatively to the current revision or absolutely. Several exam-
ples:

$ alembic upgrade +4
$ alembic downgrade base
$ alembic upgrade <revision_number>+3

4.4.4 Tips and tricks

Note: Don’t trust Alembic too much. It is nothing more than a tool, without any comprehension on the code.
Cautiously read the revision scripts it generates.

Note: Database migration is hardly ever a painless step. Be sure to:

1. save your data before performing a migration,

2. test your application after the migration to ensure its compatibility with the new data schemes.

46 Chapter 4. Administration

https://alembic.readthedocs.org/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect

IRMA Documentation, Release unpackaged

Note: With a PostgreSQL database, the Float type is tolerated but the real type name used by the database
is Real. It means that SQL objects described in sqlalchemy with Float columns will be properly applied in
database, but at each autogenerate revision, alembic will see Real type in database, against Float type in the
code metadata, and so will perform each time a useless alter_column from Real to Float. This problem could
be avoided (with PostgreSQL) by declaring Real instead of Float.

See this page for more information on PostgreSQL numeric types.

Note:

Alembic can’t directly deal with many somehow complex operations, such as type migration with no
trivial cast. In these cases, the operation must be manually described with a raw SQL command (which
could be database-dependent).

For instance, alembic can’t perform the migration from real to datetime:

> alembic.alter_column('table', 'column',
existing_type=sqlalchemy.REAL(),
type_=sqlalchemy.DateTime(),
existing_nullable=False)

. . . because of an error a column "column" cannot be cast automatically to type
timestamp with time zone.

A proper migration for PostgreSQL would be (in Python):

> alembic.execute('ALTER TABLE "table" ALTER COLUMN "column" TYPE TIMESTAMP WITHOUT
→˓TIME ZONE USING to_timestamp(column)')

And the reverse code to downgrade the migration could be:

> alembic.execute('ALTER TABLE "table" ALTER COLUMN "column" TYPE REAL USING
→˓extract(epoch from column)')

Note: Rather than managing migrations directly with Alembic, we could generate SQL migration revision to be used
directly on database with the command:

$ alembic upgrade <revision> --sql > migration.sql

Note: Deleting a revision R is simple:

• downgrade the database to the revision before R-1 the revision you want to delete;

• if any, edit the script of the following revision R+1 and update the down_revision variable to match the
revision number of revision R-1;

• delete the script of the revision R you want to delete;

• upgrade your database.

The deleted revision want be applied any more.

4.4. Database migration 47

http://www.postgresql.org/docs/9.1/static/datatype-numeric.html

IRMA Documentation, Release unpackaged

48 Chapter 4. Administration

CHAPTER 5

Technical description

Each major component of the IRMA platform comes with their own python-based application. As the Brain is the
nerve center of the whole platform, it is recommended to install it first before installing other components. One can
then install either the Frontend or the Probes he wants.

The IRMA entrypoint is the web API hosted on frontend. File results are stored in PostgreSQL database. All files
transfers are done through FTP (sftp server on brain). All tasks are executed by celery applications that consumes
their own task queue on RabbitMQ server. For further details give a look at scan workflow part

5.1 API documentation

There is a dynamic documentation for IRMA API available on your instance

It allows you to read documentation but also try request and see server response.

49

http://172.16.1.30/swagger

IRMA Documentation, Release unpackaged

50 Chapter 5. Technical description

../_images/infra.jpg

IRMA Documentation, Release unpackaged

You could see detailed information about one specific API route:

and by clicking on the Try it button, see the server response:

5.1. API documentation 51

IRMA Documentation, Release unpackaged

5.2 Frontend

The Frontend handles scan submission to the Brain, stores the results of the scanned files. These results can be
displayed through a web graphical user interface or via the command line interface.

5.2.1 Installation

The Frontend must be installed on a GNU/Linux system. With some efforts, it should be possible to run it on a
Microsoft Windows system, but this has not been tested yet.

This section describes how to get the source code of the application and to install it.

5.2.2 Architecture

Let us recall first the inner architecture of the Frontend. It uses multiple technologies with each a specific purpose:

• A client through which a user submits a file and get the analysis results. There are two clients bundled in the
repository: a web user interface and a command-line client.

• A python-based restful API, served by a NGINX web server and a uWSGI application server. It gets the results
of a file scan by querying a database.

• A worker that will handle scan submission to the Brain and store the results of analyzes scheduled by the Brain.
The worker relies on Celery, a python-based distributed task queue.

• A database server (PostgreSQL) is used to store results of analyzes made on each file submitted either by the
web graphical interface or the CLI client.

52 Chapter 5. Technical description

IRMA Documentation, Release unpackaged

5.3 Brain

The Brain is a python-based application that only dispatches analysis requests from different frontends1 to the avail-
able Probes. Analyses are scheduled by the Brain on Probes through Celery, an open source task.

5.3.1 Installation

The Brain must be installed on a GNU/Linux distribution. With some efforts, it should be possible to run it on a
Microsoft Windows system, but this has not been tested yet.

This section describes how to get the source code of the application for the Brain and to install it.

5.3.2 Architecture

Let us recall first the inner architecture of the Brain. It uses multiple technologies with a specific purpose each:

• a Celery worker that handles scan requests from Frontends and results returned by the Probes.

• a RabbitMQ server used by Celery as a backend and as a broker for task queues and job queues used to schedule
tasks for Probes (for scan jobs) and the Frontend (for scan results).

• an SFTP server where files to be scanned are uploaded by Frontends and downloaded by Probes,

5.3.3 Nginx

In the Frontend, we use a nginx web server to serve the uWSGI application and the static web site that query the API
in order to get results of scanned files and to present them to the user.

5.3.4 SQL server

The Frontend relies on a PostgreSQL database to keep track of all scans info.

5.4 Probe

The Probes are python-based application that host a single or multiple analyzers. Each analyzer listens on a specific
work queue and waits for an analysis to be scheduled by the Brain through Celery, an open source task framework for
Python. Python version should be at least 3.4 on linux, 3.5 on windows.

5.4.1 Architecture

Probes are mainly Celery workers that handle scan requests from Brain
1 This feature is not ready yet, we are currently working on its implementation.

5.3. Brain 53

IRMA Documentation, Release unpackaged

5.5 Scan workflow

5.5.1 Frontend API Part (frontend_api/uwsgi+hug)

1. A new scan object is created in PostgreSQL database.

2. Files are uploaded to the WEB API, stored on Filesystem and registered in PostgreSQL database.

3. Scan is launched, an asynchronous task is launched on Frontend celery.

5.5.2 Frontend Celery Part (frontend_app/celery)

1. Used probes are filtered according to scan options (selected probes, mimetype filtering).

2. Empty results are created in PostgreSQL database (one per probe per file).

3. Each file is uploaded to SFTP server.

4. For each file uploaded a scan task on Brain is launched with the file probelist (according to scan option force
some results could already be present).

5.5.3 Brain Celery Part (scan_app/celery)

1. A new scan object is created in SQLite database to track jobs (for canceling).

54 Chapter 5. Technical description

../_images/scan_flow.jpg

IRMA Documentation, Release unpackaged

2. Each file is send for analysis in sent for analysis in every probe selected (each time a probe is available in IRMA,
it registers itself to the brain and open a RabbitMQ Queue named with its probe name, probe list is retrieved by
listing active queues).

3. Two callbacks are set on every probe scan tasks, one for success and the other for failure.

5.5.4 Probe Celery Part (probe_app/celery)

1. Scan task is received with a file id.

2. File is downloaded as temporary file.

3. File is scanned by the probe.

4. Results are sent back to Brain to one of the two callbacks set.

5.5.5 Brain Celery Part (result_app/celery)

1. successful results are marked as completed in SQLite database.

2. successful results are forwarded to Frontend.

3. error are marked as completed in SQLite database.

4. As there is no result, an error message is generated to tell the Frontend the particular job for the file and probe
failed.

5.5.6 Frontend Celery Part (frontend_app/celery)

1. Results is received for each file and probe.

2. Results are updated in PostgreSQL database.

3. If scan is finished, a scan flush task is launched on Brain to delete files on SFTP server.

5.6 Functional Testing

Only available on *dev* environments

On the frontend, to launch the functionals tests:

$ cd /opt/irma/irma-frontend/current/web
$ npm run functional-tests

It will launch the Javascript implementation of Cucumber. Cucumber.js will take a file that contain test scenarios,
written using the Gherkin language). For each steps of a scenario, an action is perform by Cucumber.js, like accessing
a web page and typing some texts in a form. In order to do that, IRMA project uses Puppeteer, a software that can
launch and control a Chromium instance in headless mode.

IRMA scenarios can be found in frontend/web/tests/functionals/*.feature and actions used to per-
form these steps are available in the file frontend/web/tests/functionals/support/steps.js.

When an error occured, you will get a screenshot of the page where the scenario ends. It will be available on the VM
at frontend/web/error.jpeg.

5.6. Functional Testing 55

https://cucumber.io/
https://cucumber.io/docs/reference
https://github.com/GoogleChrome/puppeteer
https://www.chromium.org/
https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md

IRMA Documentation, Release unpackaged

5.6.1 Debug

Using the headless mode of Chromium, it will be difficult to debug if an error occured.

You can launch the test using a real Chromium instance on your host:

• You’ll need NodeJS and NPM

• Install IRMA web interface devDependencies on your host

$ cd frontend/web
$ npm install --only=dev

• Update the ROOT_URL (see: frontend/web/tests/functionals/support/steps.js) vari-
able to the location of your IRMA web url (for example: const ROOT_URL="http://172.16.1.
30") and toggle the HEADLESS variable to false (see: frontend/web/tests/functionals/
support/hooks.js)

• Run the tests:

$ npm run functional-tests

You can also use the power of X11 Forwarding through SSH to see a real browser launching the tests on the VM and
getting the result on the host, without having to install NodeJS:

$ vagrant ssh # to connect as vagrant user/superuser
$ sudo apt-get install xorg # to install a X11 server to launch Chromium
$ sudo sed -i "s/^X11Forwarding .*/X11Forwarding yes/" /etc/ssh/sshd_config
$ sudo systemctl restart sshd
$ exit # disconnect from vagrant user
$ vagrant ssh -- -l deploy -X # to connect as deploy with XForwarding enable
$ cd /opt/irma/irma-frontend/current/web
$ sed -i "s/^const HEADLESS = true;/const HEADLESS = false;/" tests/functionals/
→˓support/hooks.js
$ npm run functional-tests

You should see an instance of a Chromium browser on your host machine, running the tests.

Take a look at the argument pass to the puppeteer.launch() function in frontend/web/tests/
functionals/support/hooks.js. For example, by modifying the SLOW_MOTION_DELAY you can force
Puppeteer to slow down its operations.

56 Chapter 5. Technical description

https://nodejs.org/
https://www.npmjs.com/

CHAPTER 6

Extending IRMA

6.1 Adding a new probe

6.1.1 Writing a Plugin for the probe

Note: To be a valid probe module, IRMA expects it to have a predefined structure. To save time, one can get a
minimal working structure from the skeleton plugin. The new plugin is stored in the appropriate sub-directory of the
directory probe/modules according to the type of the new probe (antivirus, metadata, external. . .).

For a probe that is not a antivirus

1. Copy the directory skeleton to the new module (appropriate localisation). Example with a module my_module with
metadata type :

$ cp -r probe/modules/custom/skeleton/ probe/modules/metadata/my_module

2. If there are packages to install, specify them in the file requirements.txt. Otherwise remove the file

3. Adjust the file plugin.py according to the module :

• Adjust the class’s name with the name of your probe

• Fill in the fields of the class :- _plugin_name_ = [the plugin name]

– _plugin_display_name_ = [the field _name of the class of the probe]

– _plugin_version_ = [the version number]

– _plugin_category = [the type of the probe: IrmaProbeType.]

– _plugin_description = [quick description]

– _plugin_dependencies = [list of dependencies: platform, binary or/and file] => if used import from
lib.plugins PlatformDependency, BinaryDependency or/and FileDependency

57

IRMA Documentation, Release unpackaged

– _mimetype_regexp = [mimetype corresponding]

4. Implement the functions corresponding to the type of the plugin

For an antivirus

In the case of an antivirus, it is a little different because an Antivirus class was created to avoid code’s duplication.
You can use the skeleton below:

plugin.py:

#
Copyright (c) 2013-2018 Quarkslab.
This file is part of IRMA project.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License in the top-level directory
of this distribution and at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
No part of the project, including this file, may be copied,
modified, propagated, or distributed except according to the
terms contained in the LICENSE file.

from .skeleton import Skeleton

from ..interface import AntivirusPluginInterface
from irma.common.plugins import PluginMetaClass

class SkeletonPlugin(AntivirusPluginInterface, metaclass=PluginMetaClass):

=================
plugin metadata
=================
_plugin_name_ = "Skeleton"
_plugin_display_name_ = Skeleton._name
_plugin_author_ = "IRMA (c) Quarkslab"
_plugin_version_ = "1.0.0"
_plugin_category_ = "custom"
_plugin_description_ = "Plugin skeleton"
_plugin_dependencies_ = []
_mimetype_regexp = None

================
interface data
================

module_cls = Skeleton

If needed, overload the `verify` classmethod in order to check your class
is instanciable. It should return if everything is alright, otherwise
raise an exception. By default it checks that the module's attribute
`self.scan_path` is an existing file (cf. `super()._chk_scanpath`)
#
@classmethod

(continues on next page)

58 Chapter 6. Extending IRMA

IRMA Documentation, Release unpackaged

(continued from previous page)

def verify(cls):
pass

The metaclass PluginMetaClass handles the registering of the plugin to a plugin manager. It also checks that the
class is instanciable thanks to the verify method.

skeleton.py:

#
Copyright (c) 2013-2018 Quarkslab.
This file is part of IRMA project.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License in the top-level directory
of this distribution and at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
No part of the project, including this file, may be copied,
modified, propagated, or distributed except according to the
terms contained in the LICENSE file.

import logging

Choose the class you need to inherit from
from modules.antivirus.base import AntivirusUnix, AntivirusWindows

log = logging.getLogger(__name__)

Inhererit from AntivirusUnix or AntivirusWindows according to your plateform
class Skeleton(Antivirus):

name = "Skeleton for Antivirus"

==================================
Constructor and destructor stuff
==================================

def __init__(self, *args, **kwargs):
class super class constructor
super().__init__(*args, **kwargs)

do your initialization stuff

The recipe is the same, the files with the corresponding module name and differents fields need to be updated. The
attributes in Antivirus._attributes are meant to be defined by the instanciation. One can either:

• leave it blank, in this case the super class will assign it a default value (eg. "unavailable" for self.
version);

• define it directly (eg. self.scan_path = Path("/opt/skeleton/skeleton"));

• define a function to be called to assign it (eg. def get_scan_path(self): ...), the super class will
take care of calling it and handling exceptions.

6.1. Adding a new probe 59

IRMA Documentation, Release unpackaged

6.1.2 Testing the new plugin

Before testing, module’s necessary stuff (binaries, files, etc) must be provisioned to the VM.

$ cd ansible
$ vagrant rsync
$ vagrant ssh
$ sudo su deploy
$ cd /opt/irma/irma-probe/current
$ venv/bin/python -m extras.tools.run_module

This last command lists available modules.

Now, if the new module is available, its launching can be done:

$ venv/bin/python -m extras.tools.run_module my_module file

6.1.3 Automatic provisioning

Creating a new role

Create a new directory with this structure:

cd ansible
tree roles/quarsklab.my_module
roles/quarkslab.my_module/
+-- defaults
| +-- main.yml
+-- tasks

+-- main.yml

tasks/main.yml is the default entry point for a role containing Ansible tasks. In this file, write the instruction to install
the module. Add the file tasks/update.yml to write the informations for the update if necessary. In defaults/main.yml it
is usual to store default variables for this role. If there are particular instructions, for example how to obtain a licence
for a antivirus, add a README file.

Invoking the module role

Modify playbooks/provisioning.yml : add the module

-name : my_module
hosts: my_module
roles:
- { role: quarkslab.my_module, tags: 'my_module'}

If a task update was defined, add the module in playbooks/updating.yml :

-name : my_module
hosts: my_module
roles:
- { role: quarkslab.module, tags: 'my_module', task_from : update}

60 Chapter 6. Extending IRMA

IRMA Documentation, Release unpackaged

Defining hosts

Modify the environment to add the new probe.

For example for the allinone_dev :

$ cat environments/allinone_dev.yml
[... snip ...]

virustotal:
- brain.irma

my_module:
- brain.irma

"probe:children":
- clamav
- comodo
- mcafee
- static-analyzer
- virustotal
- my_module

6.1. Adding a new probe 61

IRMA Documentation, Release unpackaged

62 Chapter 6. Extending IRMA

CHAPTER 7

Troubleshooting

7.1 Check Celery configuration

7.1.1 Celery Workers

Before going further, you should check that the python applications manages to communicate with the RabbitMQ
server through Celery. To ensure that, from the installation directory, execute both Celery workers:

On GNU/Linux:

$ cd /opt/irma/irma-brain/current
$./venv/bin/python -m brain.scan_tasks

-------------- celery@brain v3.1.23 (Cipater)
---- **** -----
--- * *** * -- Linux-3.16.0-4-amd64-x86_64-with-debian-8.2
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: scantasks:0x7fbd7ee4c350
- ** ---------- .> transport: amqp://brain:**@127.0.0.1:5672/mqbrain
- ** ---------- .> results: amqp://
- *** --- * --- .> concurrency: 2 (prefork)
-- ******* ----
--- ***** ----- [queues]
-------------- .> brain exchange=celery(direct) key=brain

[2016-07-15 15:00:36,155: WARNING/MainProcess] celery@brain ready.

This worker is responsible for splitting the whole scan job in multiples job per probe per file.

$ cd /opt/irma/irma-brain/current
$./venv/bin/python -m brain.results_tasks

(continues on next page)

63

IRMA Documentation, Release unpackaged

(continued from previous page)

-------------- celery@brain v3.1.23 (Cipater)
---- **** -----
--- * *** * -- Linux-3.16.0-4-amd64-x86_64-with-debian-8.2
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: resultstasks:0x7fa68f9aa590
- ** ---------- .> transport: amqp://probe:**@127.0.0.1:5672/mqprobe
- ** ---------- .> results: disabled://
- *** --- * --- .> concurrency: 2 (prefork)
-- ******* ----
--- ***** ----- [queues]
-------------- .> results exchange=celery(direct) key=results

[2016-07-15 14:59:01,799: WARNING/MainProcess] celery@brain ready.

And this worker is responsible for collecting and tracking results.

If your Celery worker does not output something similar to the above output, you should check twice the parameters
in the application configuration file you are using.

7.2 Verifying RabbitMQ configuration

We can verify that the RabbitMQ server has taken into account our modifications with some commands:

7.2.1 Checking for vhosts

$ sudo rabbitmqctl list_vhosts
Listing vhosts ...
mqbrain
/
mqfrontend
mqprobe
mqadmin
...done.

If the defined virtual host are not listed by the above command, please execute once more the script.

7.2.2 Checking for users

$ sudo rabbitmqctl list_users
Listing users ...
probe []
brain []
frontend []
...done.

If the defined users are not listed by the above command, please execute once more the script.

64 Chapter 7. Troubleshooting

IRMA Documentation, Release unpackaged

7.2.3 Changing password

If you do not remember the password you just typed, you can change it with rabbitmqctl command:

$ sudo rabbitmqctl change_password brain brain-rmq-password
Changing password for user "brain" ...
...done.

Restarting the service

You may want to restart the service. Thus, the following command can be done:

$ sudo invoke-rc.d rabbitmq-server restart

7.3 Check SFTP accounts

Try to login as frontend and upload a sample file in home dir (should raise an error as it is non writeable) then in
uploads dir.

$ sftp frontend@localhost
frontend@localhost's password:
Connected to localhost.
sftp> put test
Uploading test to /test
remote open("/test"): Permission denied
sftp> ls
uploads
sftp> cd uploads/
sftp> put test
Uploading test to /uploads/test
test
→˓100% 10 0.0KB/s 00:00

7.4 FTP-TLS accounts

Additionnally, if you have configured IRMA to use FTP-TLS, you can check whether the configured account is valid.
On Debian, this can be done with the ftp-ssl package:

$ sudo apt-get install ftp-ssl
[...]
$ ftp-ssl <hostname of the brain>
Connected to brain.
220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------
220-You are user number 1 of 50 allowed.
220-Local time is now 18:55. Server port: 21.
220-This is a private system - No anonymous login
220-IPv6 connections are also welcome on this server.
220 You will be disconnected after 15 minutes of inactivity.
Name (brain:root): frontend-ftp
500 This security scheme is not implemented
234 AUTH TLS OK.

(continues on next page)

7.3. Check SFTP accounts 65

IRMA Documentation, Release unpackaged

(continued from previous page)

[SSL Cipher DHE-RSA-AES256-GCM-SHA384]
200 PBSZ=0
200 Data protection level set to "private"
331 User probe OK. Password required
Password: frontend-ftp-password
230 OK. Current directory is /
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

7.5 Restful API

One can verify that the restful API is up and running by querying a specific route on the web server or by checking the
system logs:

$ curl http://localhost/api/v1.1/probes
{"total": 9, "data": ["ClamAV", "ComodoCAVL", "EsetNod32", "FProt", "Kaspersky",
→˓"McAfeeVSCL", "NSRL", "StaticAnalyzer", "VirusTotal"]}

$ sudo cat /var/log/supervisor/frontend_api.log
[...]
added /opt/irma/irma-frontend/current/venv/ to pythonpath.

*** uWSGI is running in multiple interpreter mode ***
spawned uWSGI master process (pid: 3943)
spawned uWSGI worker 1 (pid: 3944, cores: 1)
spawned uWSGI worker 2 (pid: 3945, cores: 1)
spawned uWSGI worker 3 (pid: 3946, cores: 1)
spawned uWSGI worker 4 (pid: 3947, cores: 1)
mounting frontend/api/base.py on /api
mounting frontend/api/base.py on /api
mounting frontend/api/base.py on /api
mounting frontend/api/base.py on /api
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3945
→˓(default app)
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3946
→˓(default app)
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3944
→˓(default app)
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3947
→˓(default app)

7.6 Logs

7.7 How to debug

7.7.1 Collect debug files

An Ansible playbook is available in order to gather logs and other useful files.

The playbook is ansible/playbooks/collect_debug.yml and it will allow you to retrieve on each host:

66 Chapter 7. Troubleshooting

IRMA Documentation, Release unpackaged

• IRMA Files (located on the multiples hosts);

• Systemd logs;

• Application logs (Nginx, RabbitMQ, PostgreSQL).

After running the playbook, all the files are available in the directory specified in the debug_directory
variable of the playbook. The files are store in directories named after the host they where retrieve from
(<debug_directory>/<host_name>/<debug_files_or_directory>). Most of the files are plain text
but Systemd logs are using a binary format. To explore and read them, you’ll need the journalctl command, for
example:

$ journalctl -D debug/brain.irma/var/log/journal

7.7.2 Switch debug log on

Configuration file for frontend, brain and probe is located by default in the config folder and is named respectively
frontend.ini, brain.ini and probe.ini.

To turn on debug log just add the following line:

[log]
syslog = 0
debug = 1

and restart all related applications.

To turn on SQL debug log (warning: its verbose) just add the following line:

[log]
syslog = 0
debug = 1
sql_debug = 1

and restart all related applications.

7.7.3 Debug a probe

Open a session on the probe machine and change directory to the irma-probe location. Try the run_module tool on a
file to see what analyzer is detected and what is its output on a file.

$ sudo su deploy
$ cd /opt/irma/irma-probe/current
$./venv/bin/python -m extras.tools.run_module

[...]
usage: run_module.py [-h] [-v]

{Unarchive,StaticAnalyzer,ClamAV,VirusTotal} filename
[filename ...]

run_module.py: error: too few arguments

Here 4 probes are automatically detected. Now try one on a file:

$./venv/bin/python -m extras.tools.run_module ClamAV requirements.txt
{'database': {'/var/lib/clamav/bytecode.cvd': {'ctime': 1458640823.285298,

'mtime': 1458640823.069295,

(continues on next page)

7.7. How to debug 67

IRMA Documentation, Release unpackaged

(continued from previous page)

'sha256':
→˓'82972e6cc5f1204829dba913cb1a0b5f8152eb73d3407f6b86cf388626cff1a1'},

'/var/lib/clamav/daily.cvd': {'ctime': 1458640822.8932924,
'mtime': 1458640822.6692889,
'sha256':

→˓'9804c9b9aaf983f85b4f13a7053f98eb7cca5a5a88d3897d49b22182b228885f'},
'/var/lib/clamav/main.cvd': {'ctime': 1458640821.6972747,

'mtime': 1458640813.9771628,
'sha256':

→˓'4a8dfbc4c44704186ad29b5a3f8bdb6674b679cecdf83b156dd1c650129b56f2'}},
'duration': 0.0045299530029296875,
'error': None,
'name': 'Clam AntiVirus Scanner',
'platform': 'linux2',
'results': None,
'status': 0,
'type': 'antivirus',
'version': '0.99'}

And check the output.

7.7.4 Debug Ansible Provisioning

To debug errors while provisioning (same goes with deployment) with following typical command:

$ ansible-playbook --private-key=~/.vagrant.d/insecure_private_key --inventory-file=.
→˓vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory -u vagrant
→˓playbooks/provisioning.yml

Example output:

TASK [Mayeu.RabbitMQ : add rabbitmq user and set privileges] *******************
[DEPRECATION WARNING]: Using bare variables is deprecated. Update your playbooks so
→˓that the environment value uses the
full variable syntax ('{{rabbitmq_users_definitions}}').
This feature will be removed in a future release. Deprecation
warnings can be disabled by setting deprecation_warnings=False in ansible.cfg.
failed: [brain.irma] (item={u'vhost': u'mqbrain', u'password': u'brain', u'user': u
→˓'brain'}) => {"failed": true, "item": {"password": "brain", "user": "brain", "vhost
→˓": "mqbrain"}, "module_stderr": "", "module_stdout": "Traceback (most recent call
→˓last):\r\n File \"/tmp/ansible_wKXoO5/ansible_module_rabbitmq_user.py\", line 302,
→˓in <module>\r\n main()\r\n File \"/tmp/ansible_wKXoO5/ansible_module_rabbitmq_
→˓user.py\", line 274, in main\r\n if rabbitmq_user.get():\r\n File \"/tmp/
→˓ansible_wKXoO5/ansible_module_rabbitmq_user.py\", line 155, in get\r\n users =
→˓self._exec(['list_users'], True)\r\n File \"/tmp/ansible_wKXoO5/ansible_module_
→˓rabbitmq_user.py\", line 150, in _exec\r\n rc, out, err = self.module.run_
→˓command(cmd + args, check_rc=True)\r\n File \"/tmp/ansible_wKXoO5/ansible_modlib.
→˓zip/ansible/module_utils/basic.py\", line 1993, in run_command\r\n File \"/usr/lib/
→˓python2.7/posixpath.py\", line 261, in expanduser\r\n if not path.startswith('~
→˓'):\r\nAttributeError: 'list' object has no attribute 'startswith'\r\n", "msg":
→˓"MODULE FAILURE", "parsed": false}

You could first increase ansible verbosity by adding -vvv option (-vvvv on windows for winrm debug), it will help
is the problem is linked to arguments.

68 Chapter 7. Troubleshooting

IRMA Documentation, Release unpackaged

$ ansible-playbook -vvv --private-key=~/.vagrant.d/insecure_private_key --inventory-
→˓file=.vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory -u vagrant
→˓playbooks/provisioning.yml
TASK [Mayeu.RabbitMQ : add rabbitmq user and set privileges] *******************
task path: /home/alex/repo/irma-ansible/roles/Mayeu.RabbitMQ/tasks/vhost.yml:13
[DEPRECATION WARNING]: Using bare variables is deprecated. Update your playbooks so
→˓that the environment value uses the full
variable syntax ('{{rabbitmq_users_definitions}}').
This feature will be removed in a future release. Deprecation warnings can be
disabled by setting deprecation_warnings=False in ansible.cfg.
<127.0.0.1> ESTABLISH SSH CONNECTION FOR USER: vagrant
<127.0.0.1> SSH: EXEC ssh -C -q -o ForwardAgent=yes -o Port=2222 -o 'IdentityFile="/
→˓home/alex/.vagrant.d/insecure_private_key"' -o KbdInteractiveAuthentication=no -o
→˓PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
→˓PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 127.0.0.1 '/bin/sh -
→˓c '"'"'(umask 77 && mkdir -p "` echo $HOME/.ansible/tmp/ansible-tmp-1468570550.09-
→˓211613386938202 `" && echo ansible-tmp-1468570550.09-211613386938202="` echo $HOME/.
→˓ansible/tmp/ansible-tmp-1468570550.09-211613386938202 `") && sleep 0'"'"''
<127.0.0.1> PUT /tmp/tmpiysJ6l TO /home/vagrant/.ansible/tmp/ansible-tmp-1468570550.
→˓09-211613386938202/rabbitmq_user
<127.0.0.1> SSH: EXEC sftp -b - -C -o ForwardAgent=yes -o Port=2222 -o 'IdentityFile=
→˓"/home/alex/.vagrant.d/insecure_private_key"' -o KbdInteractiveAuthentication=no -o
→˓PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
→˓PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 '[127.0.0.1]'
<127.0.0.1> ESTABLISH SSH CONNECTION FOR USER: vagrant
<127.0.0.1> SSH: EXEC ssh -C -q -o ForwardAgent=yes -o Port=2222 -o 'IdentityFile="/
→˓home/alex/.vagrant.d/insecure_private_key"' -o KbdInteractiveAuthentication=no -o
→˓PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o
→˓PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 -tt 127.0.0.1 '/bin/
→˓sh -c '"'"'sudo -H -S -n -u root /bin/sh -c '"'"'"'"'"'"'"'"'echo BECOME-SUCCESS-
→˓rbeeckncuxenewcwkayivqiwvarchlrd; LANG=fr_FR.UTF-8 LC_ALL=fr_FR.UTF-8 LC_
→˓MESSAGES=fr_FR.UTF-8 /usr/bin/python /home/vagrant/.ansible/tmp/ansible-tmp-
→˓1468570550.09-211613386938202/rabbitmq_user; rm -rf "/home/vagrant/.ansible/tmp/
→˓ansible-tmp-1468570550.09-211613386938202/" > /dev/null 2>&1'"'"'"'"'"'"'"'"' &&
→˓sleep 0'"'"''
failed: [brain.irma] (item={u'vhost': u'mqbrain', u'password': u'brain', u'user': u
→˓'brain'}) => {"failed": true, "invocation": {"module_name": "rabbitmq_user"}, "item
→˓": {"password": "brain", "user": "brain", "vhost": "mqbrain"}, "module_stderr": "",
→˓"module_stdout": "Traceback (most recent call last):\r\n File \"/tmp/ansible_
→˓Qo3lZl/ansible_module_rabbitmq_user.py\", line 302, in <module>\r\n main()\r\n
→˓File \"/tmp/ansible_Qo3lZl/ansible_module_rabbitmq_user.py\", line 274, in main\r\n
→˓ if rabbitmq_user.get():\r\n File \"/tmp/ansible_Qo3lZl/ansible_module_rabbitmq_
→˓user.py\", line 155, in get\r\n users = self._exec(['list_users'], True)\r\n
→˓File \"/tmp/ansible_Qo3lZl/ansible_module_rabbitmq_user.py\", line 150, in _
→˓exec\r\n rc, out, err = self.module.run_command(cmd + args, check_rc=True)\r\n
→˓File \"/tmp/ansible_Qo3lZl/ansible_modlib.zip/ansible/module_utils/basic.py\", line
→˓1993, in run_command\r\n File \"/usr/lib/python2.7/posixpath.py\", line 261, in
→˓expanduser\r\n if not path.startswith('~'):\r\nAttributeError: 'list' object has
→˓no attribute 'startswith'\r\n", "msg": "MODULE FAILURE", "parsed": false}

In this particular case, verbose doesn’t add much information as the problem is linked to ansible scripts. Let’s go one
level deeper so. Ansible output the temporary script executed on guest (highlighted in previous code block) but delete
it just after execution. To further debug it we will set ansible to keep remote files and the debug session will now takes
place inside the guest.

$ ANSIBLE_KEEP_REMOTE_FILES=1 ansible-playbook -vvv --private-key=~/.vagrant.d/
→˓insecure_private_key --inventory-file=.vagrant/provisioners/ansible/inventory/
→˓vagrant_ansible_inventory -u vagrant playbooks/provisioning.yml (continues on next page)

7.7. How to debug 69

IRMA Documentation, Release unpackaged

(continued from previous page)

in debug log get the temporary ansible path to remote script:

/usr/bin/python /home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/
→˓rabbitmq_user

Log in to remote machine and go to the temporary ansible dir. Explode the compressed script and run it locallly:

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ ls
rabbitmq_user

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ python
→˓rabbitmq_user explode
Module expanded into:
/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_dir

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ ls debug_
→˓dir/
ansible
ansible_module_rabbitmq_user.py
args

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ python
→˓rabbitmq_user execute
Traceback (most recent call last):

File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_
→˓dir/ansible_module_rabbitmq_user.py", line 302, in <module>

main()
File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_

→˓dir/ansible_module_rabbitmq_user.py", line 274, in main
if rabbitmq_user.get():
File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_

→˓dir/ansible_module_rabbitmq_user.py", line 155, in get
users = self._exec(['list_users'], True)

File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_
→˓dir/ansible_module_rabbitmq_user.py", line 150, in _exec

rc, out, err = self.module.run_command(cmd + args, check_rc=True)
File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_

→˓dir/ansible/module_utils/basic.py", line 1993, in run_command
args = [os.path.expandvars(os.path.expanduser(x)) for x in args if x is not None

→˓]
File "/usr/lib/python2.7/posixpath.py", line 261, in expanduser
if not path.startswith('~'):

AttributeError: 'list' object has no attribute 'startswith'

You could now add debug to source files and properly understand where the problem is. In our example case, it is an
ansible problem related to module_rabbitmq_user present in 2.1.0.0 see github PR

70 Chapter 7. Troubleshooting

https://github.com/ansible/ansible-modules-extras/pull/2310

CHAPTER 8

References

8.1 Disclaimer

IRMA is distributed as it is, in the hope that it will be useful, but without any warranty neither the implied mer-
chantability or fitness for a particular purpose.

Whatever you do with this tool is uniquely your own responsibility.

8.2 License

IRMA source code is licensed under Apache License, version 2.0.

The full license text can be found below (Apache License, version 2.0).

8.3 Apache License, version 2.0

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

(continues on next page)

71

IRMA Documentation, Release unpackaged

(continued from previous page)

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

(continues on next page)

72 Chapter 8. References

IRMA Documentation, Release unpackaged

(continued from previous page)

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

(continues on next page)

8.3. Apache License, version 2.0 73

IRMA Documentation, Release unpackaged

(continued from previous page)

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

8.4 Authors

IRMA is a project co-funded by the following actors:

• CEA DAM

• DCNS

74 Chapter 8. References

IRMA Documentation, Release unpackaged

• GOVCERT.LU (governmental CERT of Luxembourg)

• Airbus Group

• Quarkslab

• Orange Group IS&T

The PRIMARY AUTHORS are (and/or have been):

• Alexandre Quint - Lead Developer, Quarkslab

• David Carle - Quarkslab

• Guillaume Dedrie - Quarkslab

• Fernand Lone-Sang - Quarkslab

And here is an inevitably incomplete list of MUCH-APPRECIATED CONTRIBUTORS – people who have submitted
patches, reported bugs, helped answer newbie questions, and generally made IRMA that much better:

• lpecheur

• y0ug

• mdeloitte

8.4. Authors 75

IRMA Documentation, Release unpackaged

76 Chapter 8. References

CHAPTER 9

Resources

• Project website

• IRC (irc.freenode.net, #qb_irma)

• Twitter (@qb_irma)

77

http://irma.quarkslab.com
irc://irc.freenode.net/qb_irma
https://twitter.com/qb_irma

IRMA Documentation, Release unpackaged

78 Chapter 9. Resources

CHAPTER 10

Screenshots

10.1 Command Line Interface

A sample script can be found in frontend repository. Add your own frontend address before testing it.

79

IRMA Documentation, Release unpackaged

10.2 Web Interface

Some screenshots of the irma user interface shipped with frontend package.

80 Chapter 10. Screenshots

IRMA Documentation, Release unpackaged

10.2. Web Interface 81

IRMA Documentation, Release unpackaged

82 Chapter 10. Screenshots

IRMA Documentation, Release unpackaged

10.2. Web Interface 83

IRMA Documentation, Release unpackaged

84 Chapter 10. Screenshots

	Introduction
	Purpose
	File Analysis Process
	Supported Analyzers

	Installation
	Software requirements
	Hardware requirements
	Automated Installation

	Use IRMA
	Web Interface
	Command Line Interface

	Administration
	Environment configuration
	Components configuration
	SSL settings
	Database migration

	Technical description
	API documentation
	Frontend
	Brain
	Probe
	Scan workflow
	Functional Testing

	Extending IRMA
	Adding a new probe

	Troubleshooting
	Check Celery configuration
	Verifying RabbitMQ configuration
	Check SFTP accounts
	FTP-TLS accounts
	Restful API
	Logs
	How to debug

	References
	Disclaimer
	License
	Apache License, version 2.0
	Authors

	Resources
	Screenshots
	Command Line Interface
	Web Interface

