

IRMA: Incident Response & Malware Analysis

	Introduction
	Purpose

	File Analysis Process

	Supported Analyzers

	Installation
	Software requirements

	Hardware requirements

	Automated Installation

	Use IRMA
	Web Interface

	Command Line Interface

	Administration
	Environment configuration

	Components configuration

	SSL settings

	Database migration

	Technical description
	API documentation

	Frontend

	Brain

	Probe

	Scan workflow

	Functional Testing

	Extending IRMA
	Adding a new probe

	Troubleshooting
	Check Celery configuration

	Verifying RabbitMQ configuration

	Check SFTP accounts

	FTP-TLS accounts

	Restful API

	Logs

	How to debug

	References
	Disclaimer

	License

	Apache License, version 2.0

	Authors

	Resources

	Screenshots
	Command Line Interface

	Web Interface

Introduction

This publication is intended for advanced technical users of IRMA Enterprise. It
assumes the reader has working knowledge of Systems Administration, the
GNU/Linux operating system and basic Python.

IRMA (Incident Response and Malware Analysis) is a flexible content analysis
orchestration platform. This guide will explain how to install, configure, use
and customize it. This is an introductory chapter to IRMA. It describes IRMA’s
overall purpose, architecture and process.

	Purpose

	File Analysis Process

	Supported Analyzers
	Antiviruses

	External analysis platforms

	File database

	Metadata

Purpose

IRMA provides its users with the ability to objectively assess whether content
is malicious or not. Content may be delivered by various means as described in
this document, and subsequently distributed to various configurable analysis
engines (“probes”). After analysis, this information is then conveyed to the
user.

In addition to this core functionality, IRMA provides an overview of the overall
analysis process and incident.

Finally, IRMA is designed to be installed and maintained in self-contained
on-premises environment. This enables discreet and self-contained analysis for
organizations which do not wish to disclose potentially confidential files to
third parties.

The ultimate purpose of IRMA is to orchestrate the entire analysis process and
provide organizations with a flexible platform with which to manage and asses
the content flowing through their organizations.

File Analysis Process

IRMA consists or three basic components. the Frontend, Brain and Probes.
The basic functionality of frontend is to store results and host the API.
Brain split analysis jobs on every probes involved, and Probes
analyze files and returns results.

	An analysis begins when a user uploads files to the Frontend.

	Frontend checks for existing files and results in SQL. If needed,
it stores the new files and calls asynchronously scan jobs on Brain.

	Brain worker sends as much subtasks to Probe(s) as needed.

	Probe workers process their jobs and send back results to Brain.

	Brain sends results to Frontend.

[image: Analysis workflow]

Supported Analyzers

Here is the list of analyzers that are bundled with IRMA.

Antiviruses

	Probe Name

	Anti-Virus Name

	Platform

	ASquaredCmdWin

	Emsisoft Command Line

	Microsoft Windows CLI

	AvastCoreSecurity

	Avast Core Security

	GNU/Linux CLI

	AVGAntiVirusFree

	AVG

	GNU/Linux CLI

	AviraWin

	Avira

	Microsoft Windows CLI

	BitdefenderForUnices

	Bitdefender

	GNU/Linux CLI

	ClamAV

	ClamAV

	GNU/Linux CLI

	ComodoCAVL

	Comodo Antivirus for Linux

	GNU/Linux CLI

	DrWeb

	Dr.Web

	GNU/Linux CLI

	EScan

	eScan

	GNU/Linux CLI

	EsetFileSecurity

	Eset File Security

	GNU/Linux CLI

	FProt

	F-Prot

	GNU/Linux CLI

	FSecure

	F-Secure

	GNU/Linux CLI

	GDataWin

	G Data Antivirus

	Microsoft Windows CLI

	Kaspersky

	Kaspersky File Server

	GNU/Linux CLI

	KasperskyWin

	Kaspersky Internet Security

	Microsoft Windows CLI

	McAfeeVSCL

	McAfee VirusScan Command Line

	GNU/Linux CLI

	McAfeeVSCLWin

	McAfee VirusScan Command Line

	Microsoft Windows CLI

	Sophos

	Sophos

	GNU/Linux CLI

	SophosWin

	Sophos Endpoint Protection

	Microsoft Windows CLI

	SymantecWin

	Symantec Endpoint Protection

	Microsoft Windows CLI

	VirusBlokAda

	VirusBlokAda

	GNU/Linux CLI

	Zoner

	Zoner Antivirus

	GNU/Linux CLI

External analysis platforms

	Probe Name

	Analysis Platform

	Description

	ICAP

	ICAP

	Query an ICAP server

	VirusTotal

	VirusTotal

	Report is searched using the sha256 of the file which is not sent

File database

	Probe Name

	Database

	Description

	NSRL

	National Software Reference Library

	collection of digital signatures of known, traceable software applications

Metadata

	Probe Name

	Description

	LIEF

	PE/ELF File analyzer

	PEiD

	PE File packer analyzer

	TrID

	File type identification

	StaticAnalyzer

	PE File analyzer adapted from Cuckoo Sandbox

	Yara

	Checks if a file match yara rules

Installation

This chapter describes the methods available to install IRMA using Ansible
scripts.

	Software requirements

	Hardware requirements

	Automated Installation
	Environment file
	Format

	Extra vars

	Vagrant setup
	Requirements

	Vagrant setup
	Useful commands

	Ansible setup
	Common requirements

	Ansible playbooks

	Launch Ansible

	References

	Windows provisioning
	Generate Windows base box

	Adding to Vagrant boxes

	Creating an instance of the base box

	Provisioning with ansible

	Production environment
	Requirements

	1. Prep servers

	2. Configure the installation

	Extras
	Installation behind a corporate proxy

Software requirements

	Ansible [https://github.com/ansible/ansible]; You can see the requirement version of ansible in ansible/requirements.txt

ansible==2.4.2.0

Hardware requirements

The IRMA platform is divided in three major components: the Frontend, the
Brain and one or multiple Probes.

These three components can be installed on a unique host or on multiple hosts,
according to the kind of probes that are being used.

The Frontend and the Brain must be installed on a GNU/Linux
system 1. Quarkslab recommends using a Debian Stable distribution which is
supported and known to work.

According to the kind of probes and their dependencies, each analyzers can be
installed on a separate hosts or share the same host as far as they do not
interfere with each other 2. Currently, only Debian Stable and Microsoft
Windows 8 and 10 hosts have been tested.

Quarkslab does not provide any estimates regarding performance. However,
the following configuration is known to provide reasonable performance for small deployments:

whole IRMA platform on a single machine by hosting it with multiple systems
inside virtual machines: this setup gives fairly high throughput as long as
it has reasonable IO (ideally, SSDs), and a good amount of memory (test setup
was an i7 cpu with 16 GB ram on regular drives (at least 200 GB required),

For larger deployments, the following configuration is known to work:
a single high-memory machine, with 16+ cores, and SSDs, could run IRMA platform and
bear the workload load with reasonable response time.

Footnotes

	1

	Theorically, it should be possible, with some efforts, to make IRMA work
on Microsoft Windows systems as most of the components used for the platform
are known to work or to have equivalents on these systems.

	2

	For instance, we managed to host several GNU/Linux anti-viruses on an
unique probe by preventing it to launch daemons at startup. This is
difficult for Microsoft systems on which it is not recommended to
install multiple anti-viruses on a single host.

	3

	with a limited set of probes

Automated Installation

The IRMA platform is easily installed thanks to a set of ansible [http://www.ansible.com] roles and playbooks. It permits a user to build, install or maintain different setups.

There are 2 different types of IRMA environment, and multiple setups for each environment:

	
	Development environment (sources rsync’d between host and vms)

	
	allinone_dev: everything installed in the same vm

	dev: every component on its own vm

	
	Production environment (sources installed through generated archives, install on vms/physical servers)

	
	allinone_prod: everything installed in the same vm/physical server (default environment)

	prod: every component on its own vm/physical server

For specific instructions on these 2 environments see the related section.

Note

Vagrant step is optional in production mode.

	Environment file

	Vagrant setup

	Ansible setup

	Windows provisioning

	Production environment

	Extras

Environment file

IRMA installation uses ansible and optionally Vagrant, and supports a common configuration format that allows
launching of Vagrant and/or ansible. VagrantFile automatically parses the configuration file to allow vagrant to launch required virtual machines, and irma-ansible.py parses this same file to create an inventory and an extra variable (vars) file before launching ansible.

Format

For examples look at the files *.yml in the ansible/environments directory.
Whole IRMA infrastructure is described here:

servers:
 - name: <hostname>
 ip: <ip address>
 ansible_groups: [list of ansible groups]
 box: [vagrant box name]
 cpus: [vagrant cpus (optional)]
 memory: [vagrant memory (optional)]
 shares: [vagrant share (optional)]
 [...]

libvirt_config:
 driver: kvm
 # connect_via_ssh: true
 # host:
 # username:
 # storage_pool_name:
 # id_ssh_key_file:

ansible_vars:
 key: value
 [...]

	servers section both described ansible usage of the server and its vagrant configuration if needed.

	libvirt_config section is a vagrant-only section for using libvirt hypervisor.

	ansible_vars section is an ansible-only section for defining extra ansible variables.

Example of a development environment with vagrant:

servers:
 - name: brain.irma
 ip: 172.16.1.30
 ansible_groups: [frontend, sql-server, brain, comodo, trid]
 box: quarkslab/debian-9.0.0-amd64
 cpus: 2
 memory: 2048
 shares:
 - share_from: ../common
 share_to: /opt/irma/irma-common/releases/sync
 share_exclude:
 - .git/
 - venv/
 - share_from: ../frontend
 share_to: /opt/irma/irma-frontend/releases/sync
 share_exclude:
 - .git/
 - venv/
 - web/dist
 - web/node_modules
 - share_from: ../brain
 share_to: /opt/irma/irma-brain/releases/sync
 share_exclude:
 - .git/
 - venv/
 - db/
 - share_from: ../probe
 share_to: /opt/irma/irma-probe/releases/sync
 share_exclude:
 - .git/
 - venv/

libvirt_config:
 driver: kvm

ansible_vars:
 irma_environment: development
 vagrant: true

And an example of an environment without vagrant:

servers:
 - name: frontend.irma
 ip: 172.16.1.30
 ansible_groups: [frontend, sql-server]
 - name: brain.irma
 ip: 172.16.1.31
 ansible_groups: [brain]
 - name: avs-linux.irma
 ip: 172.16.1.32
 ansible_groups: [avast, avg, bitdefender, clamav, comodo, escan]
 - name: mcafee-win.irma
 ip: 172.16.1.33
 ansible_groups: [mcafee-win]
 windows: true

ansible_vars:
 irma_environment: production
 vagrant: true
 irma_release: HEAD

Extra vars

It is possible to customize IRMA variables in section ansible_vars
(see irma_vars.yml.sample for a full list of available vars).

Vagrant setup

Requirements

	Vagrant [http://www.vagrantup.com/] 1.9 or higher has to be installed

	
	a supported hypervisor:

	
	kvm/qemu (libvirt required, vagrant-libvirt plugin required)

	Virtualbox [https://www.virtualbox.org/]

Vagrant setup

(venv)$ export VM_ENV=dev
(venv)$ export VM_ENV=allinone_dev
(venv)$ export VM_ENV=prod
(venv)$ export VM_ENV=allinone_prod # (default)

Simply run in the Vagrantfile directory:

(venv)$ vagrant up (--provider=libvirt)

Vagrant will launch one/many VM(s).

Note

The basebox used in this project is provided by Quarkslab. The code source to build it is here [https://github.com/quarkslab/debian].

Useful commands

Some useful commands with vagrant:

$ vagrant ssh <server_name> # login through ssh
$ vagrant halt <server_name> # shutdown the machine
$ vagrant reload <server_name> # restart the machine
$ vagrant up <server_name> # start the machine
$ vagrant destroy <server_name> # delete the machine

Ansible setup

Common requirements

	Ansible [http://www.ansible.com] 2.0+ (see requirements.txt for version required)

(venv)$ pip install -r requirements.txt

Warning

Due to ansible breaking releases, the ansible version supported is now fixed

Ansible playbooks

IRMA Installation is split in playbooks (in ansible/playbooks directory):

	playbooks/provisioning.yml for dependencies setup

	playbooks/updating.yml for av update only

	playbooks/deployment.yml for irma code setup

	playbooks/playbook.yml (provisioning + updating + deployment)

Launch Ansible

Note

If your environment requires some virtual machines handled by vagrant, you must do this first.

To launch one of these playbook, the full command is:

Dependencies setup
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/provisioning.yml

AV update only
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/updating.yml

IRMA code install
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/deployment.yml

Full install (provisioning + updating + deployment)
(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/playbook.yml

Last one will do the full install of IRMA. It can take a while
(from 15 to 30 min) depending on the amount of RAM available on the machine
and the hard disk drive I/O speed.

The default IRMA interface is available at http://172.16.1.30. According to your frontend server configuration.

References

Some roles from Ansible Galaxy [https://galaxy.ansible.com/] used here:

	NodeJS role from JasonGiedymin/nodejs [https://github.com/AnsibleShipyard/ansible-nodejs]

	Nginx role from jdauphant/ansible-role-nginx [https://github.com/jdauphant/ansible-role-nginx]

	OpenSSH role from Ansibles/openssh [https://github.com/Ansibles/openssh]

	UFW role from weareinteractive/ansible-ufw [https://github.com/weareinteractive/ansible-ufw]

	Sudo role from weareinteractive/ansible-sudo [https://github.com/weareinteractive/ansible-sudo]

	Users role from mivok/ansible-users [https://github.com/mivok/ansible-users]

Windows provisioning

Generate Windows base box

$ git clone https://github.com/boxcutter/windows
$ cd windows
$ make virtualbox/eval-win10x64-enterprise

Adding to Vagrant boxes

$ vagrant box add --name eval-win10x64-enterprise box/virtualbox/eval-win10x64-enterprise*.box

Creating an instance of the base box

$ VM_ENV=<your_env> vagrant up

Provisioning with ansible

In the config file don’t forget to add windows: true in the server. Example:

servers:
 - name: mcafee-win.irma
 ip: 172.16.1.33
 box: eval-win10x64-enterprise
 ansible_groups: [mcafee-win]
 windows: true

Provisioning a windows host is done the same way as other hosts:

(venv)$ python irma-ansible.py environments/allinone_prod.yml playbooks/playbook.yml

Production environment

IRMA will be installed on physical servers.

Requirements

	One or multiple 64-bit Debian [https://www.debian.org] 9 servers.

1. Prep servers

Create an account for ansible provisioning, or use one which has already been
created. To speed up provisioning, you can:

	Authorize your SSH key for password-less authentication (optional):

On your local machine
$ ssh-copy-id user@hostname # -i if you want to select your identity file

	If you don’t want to have to type your password for sudo command execution,
add your user to sudoers, using visudo command (optional):

user ALL=(ALL) NOPASSWD: ALL

2. Configure the installation

Modify ansible extra_vars especially the provisioning_ssh_key section,
you’ll need to add private keys from user for password-less connection to the
default IRMA server user.

Warning

Be careful, you’ll need to change all passwords from this configuration files (password variables for most of them).

You’ll need to create a configuration file and adapt it to your infrastructure.

Extras

Installation behind a corporate proxy

Thanks to the vagrant-proxyconf plugin [https://github.com/tmatilai/vagrant-proxyconf],
IRMA can be installed behind corporate proxy.

First, vagrant-proxyconf has to be installed:

$ vagrant plugin install vagrant-proxyconf

Then, the vagrant-proxyconf configuration has to be added to ansible/Vagrantfile.
Here is an example:

if Vagrant.has_plugin?("vagrant-proxyconf")
 config.proxy.http = "http://corporate.proxy:3128"
 config.proxy.https = "http://corporate.proxy:3128"
 config.proxy.no_proxy = "localhost,127.0.0.1"
end

Finally, vagrant up can be launched, as usual.

It has to be noted that using such mechanism has two limitations:

	it is not working with Windows based boxes

	it is not working with tools that are not able do deal with environment based
proxy definition (http_proxy and https_proxy environment variables). For
instance, AVG updater does not take into account such definition.

Use IRMA

There are 2 ways to use IRMA :

	Web Interface
	How to do a scan

	How to do a research

	Playing with tags

	Command Line Interface
	Installation

Web Interface

	How to do a scan

	How to do a research

	Playing with tags
	Creating a tag

	Tagging a File

	Searching by tag

How to do a scan

First choose one or multiple files to scan by:

	Drop it in the select area

	Click on “Choose file” button

[image: ../../_images/scan1.png]
Now, you can see the selected files on the right.

To cancel a file selection, click on the red cross next to the filename.

By clicking on the “Display advanced settings”, you can see and determine scan parameters. Note that the defaults parameters are not reset by default after a scan.

[image: ../../_images/scan2.png]
In the scan parameters you can choose if the scans will be forced, meaning that the files are unconditionally scaned, even if there is a cached result. You can choose too which probes will be lauched.

When you are ready, launch the scan by clicking on “Scan for malwares” button.

[image: ../../_images/scan3.png]
Wait during the upload of your files.

[image: ../../_images/scan4.png]
By now, you are on the results page. At the top, the scan status is displayed :

	The progression rate

	The scan status (if the scan is running or finish)

	The link to download the scan report in csv format

	The scan Id, a unique id to identify this scan that you can share

	The number of probe tasks done on the total number of probe tasks for the scan.

Next, the page displays the list of scan’s files and their status. Click on the file’s name to display the detailed scan result of a file scan.

[image: ../../_images/scan5.png]
In the first part of detailed scan result page, you can obtain information about the scanned file: filename, size, mimetype, different hashes, date of the first scan and the last scan of this file.

[image: ../../_images/scan6.png]
In the second part, you can see the details of the differents probe tasks ranked by probe type.

Firstly, the antivirus. For each antivirus, the following information are given:

	The name and the platform used

	The name of threat if it exist

	The version of the antivirus

	The version of the virus database

	The duration of the task

Note there is a color code to quickly see the status of the probe : green if everything is ok, red if a threat was be founded or orange if there was a problem with the probe.

Then, it’s the metadata and external parts : each probes of those classes have different ways to display their results.

[image: ../../_images/scan7.png]

How to do a research

It’s possible to recover scan results in the “Search” section.

There are two ways to search scan : a research by name or a research by hash with a sha256.
To this end, select in the scroll bar “By name” or “By hash” and effect your research : then a list of files’ results ranked by date is displayed.

[image: ../../_images/search_name.png]

Note

To add a filter tag, see the section “Playing with tags”

Playing with tags

Note

Tags are available in IRMA from version 1.3.0

Creating a tag

You could create tags by using the command line tools [https://github.com/quarkslab/irma-cli]

>>> from irmacl.helpers import *
>>> tag_list()
[]

>>> tag_new("archive")
{u'text': u'archive', u'id': 1}

>>> tag_list()
[Tag archive [1]]:

or directly from your terminal by using curl and posting a json with ‘text’ key:

$ curl -H "Content-Type: application/json; charset=UTF-8" -X POST -d '{"text":"<your tag>"}' http://172.16.1.30/api/v1.1/tags

Note

There is currently no way to create a tag directly from the web IHM.

Tagging a File

Directly in web IHM, once you are on a file details page:

[image: Add a tag to a file]
Just click the tag bar and you will see all available tags. You could add multiple tags.

[image: See added tags]
It is also possible to add a tag through command line tools:

>>> from irmacl.helpers import *
>>> help(file_tag_add)
Signature: file_tag_add(sha256, tagid, verbose=False)
Docstring:
Add a tag to a File

:param sha256: file sha256 hash
:type sha256: str of (64 chars)
:param tagid: tag id
:type tagid: int
:return: No return

>>> file_tag_add("346ae869f7c7ac7394196de44ab4cfcde0d1345048457d03106c1a0481fba853",1)

Searching by tag

You could specify one or more tags while searching for files too:

[image: Add a tag while searching files]
choose your tag list then hit the search button:

[image: Search by tag]
or by command line:

>>> from irmacl.helpers import *
>>> file_search(tags=[1])
(1, [<irma.apiclient.IrmaResults at 0x7f079ca23890>])

Command Line Interface

For a use of IRMA by command line, use the
command line tools [https://github.com/quarkslab/irma-cli]

This api client is only made for IRMA API version 1.1.

Installation

$ python setup.py install

Configuration file contains the API endpoint (full url) and some optional paramters (max number and
delay in second between retries)

[Server]
api_endpoint=http://172.16.1.30/api/v1.1
max_tries=3
pause=1

and is searched in these locations in following order:

	current directory

	environment variable (“IRMA_CONF”)

	user home directory

	global directory (“/etc/irma”)

Once you set up a working irma.conf settings file, you could run tests on your running IRMA server:

$ python setup.py test

Pip Install

Install it directly with pip:

$ pip install irmacl

Usage

>>> from irmacl.helpers import *
>>> probe_list()
[u'StaticAnalyzer', u'Unarchive', u'VirusBlokAda', u'VirusTotal']

>>> tag_list()
[Tag malware [1], Tag clean [2], Tag suspicious [3]]

>>> scan_files(["./irma/tests/samples/eicar.com"], force=True, blocking=True)
Scanid: ca2e8af4-0f5b-4a55-a1b8-2b8dc9ead068
Status: finished
Options: Force [True] Mimetype [True] Resubmit [True]
Probes finished: 2
Probes Total: 2
Date: 2015-11-24 15:43:03
Results: [<irma.apiclient.IrmaResults object at 0x7f3f250df890>]

>>> scan = _
>>> print scan.results[0]
Status: 1
Probes finished: 2
Probes Total: 2
Scanid: ca2e8af4-0f5b-4a55-a1b8-2b8dc9ead068
Scan Date: 2015-12-22 14:36:21
Filename: eicar.com
Filepath: ./irmacl/tests/samples
ParentFile SHA256: None
Resultid: 572f9418-ca3c-4fdf-bb35-50c11629a7e7
FileInfo:
None
Results: None

>>> print scan_proberesults("572f9418-ca3c-4fdf-bb35-50c11629a7e7")
Status: 1
Probes finished: 2
Probes Total: 2
Scanid: ca2e8af4-0f5b-4a55-a1b8-2b8dc9ead068
Scan Date: 2015-12-22 14:36:21
Filename: eicar.com
Filepath: ./irmacl/tests/samples
ParentFile SHA256: None
Resultid: 572f9418-ca3c-4fdf-bb35-50c11629a7e7
FileInfo:
Size: 68
Sha1: 3395856ce81f2b7382dee72602f798b642f14140
Sha256: 275a021bbfb6489e54d471899f7db9d1663fc695ec2fe2a2c4538aabf651fd0f
Md5: 44d88612fea8a8f36de82e1278abb02fs
First Scan: 2015-11-24 14:54:12
Last Scan: 2015-12-22 14:36:21
Id: 3
Mimetype: EICAR virus test files
Tags: []

Results: [<irmacl.apiclient.IrmaProbeResult object at 0x7f3f250b9dd0>, <irmacl.apiclient.IrmaProbeResult object at 0x7f3f250b9850>]

>>> fr = _
>>> print fr.probe_results[0]
Status: 1
Name: VirusBlokAda (Console Scanner)
Category: antivirus
Version: 3.12.26.4
Duration: 1.91s
Results: EICAR-Test-File

Searching for scans

>>> scan_list()
(89, [Scanid: ef0b9466-3132-40b7-990a-415f08377f09
 Status: finished
 Options: Force [True] Mimetype [True] Resubmit [True]
 Probes finished: 1
 Probes Total: 1
 Date: 2015-11-24 15:04:27
[...]

Searching for files

>>> file_search(name="ei")
(1, [<irmacl.apiclient.IrmaResults at 0x7f3f250491d0>])

>>> (total, res) = _
>>> print res[0]
Status: 1
Probes finished: 1
Probes Total: 1
Scanid: 7ae6b759-b357-4680-8358-b134b564b1ca
Filename: eicar.com
[...]

>>> file_search(hash="3395856ce81f2b7382dee72602f798b642f14140")
(7,
 [<irmacl.apiclient.IrmaResults at 0x7f3f250b96d0>,
 <irmacl.apiclient.IrmaResults at 0x7f3f24fdc1d0>,
 <irmacl.apiclient.IrmaResults at 0x7f3f24fdca90>,
 <irmacl.apiclient.IrmaResults at 0x7f3f24fdcdd0>,
 <irmacl.apiclient.IrmaResults at 0x7f3f24fdc690>,
 <irmacl.apiclient.IrmaResults at 0x7f3f2504f390>,
 <irmacl.apiclient.IrmaResults at 0x7f3f24fea350>])

>>> file_search(hash="3395856ce81f2b7382dee72602f798b642f14140", tags=[1,2])
(0, [])

looking for an unexisting tagid raise IrmaError
>>> file_search(hash="3395856ce81f2b7382dee72602f798b642f14140", tags=[100])
IrmaError: Error 402

Objects (apiclient.py)

class irmacl.apiclient.IrmaFileInfo(id, size, timestamp_first_scan, timestamp_last_scan, sha1, sha256, md5, mimetype, tags)

Bases: “object”

IrmaFileInfo Description for class

	Variables:

	
	id – id

	timestamp_first_scan – timestamp when file was first
scanned in IRMA

	timestamp_last_scan – timestamp when file was last
scanned in IRMA

	size – size in bytes

	md5 – md5 hexdigest

	sha1 – sha1 hexdigest

	sha256 – sha256 hexdigest

	mimetype – mimetype (based on python magic)

	tags – list of tags

pdate_first_scan – property, humanized date of first scan

pdate_last_scan – property, humanized date of last scan

raw()

class irmacl.apiclient.IrmaProbeResult(**kwargs)

Bases: “object”

IrmaProbeResult Description for class

	Variables:

	
	status – int probe specific (usually -1 is error, 0
nothing found 1 something found)

	name – probe name

	type – one of IrmaProbeType (‘antivirus’, ‘external’,
‘database’, ‘metadata’…)

	version – probe version

	duration – analysis duration in seconds

	results – probe results (could be str, list, dict)

	error – error string (only relevant in error case when
status == -1)

	external_url – remote url if available (only relevant
when type == ‘external’)

	database – antivirus database digest (need unformatted
results) (only relevant when type == ‘antivirus’)

	platform – ‘linux’ or ‘windows’ (need unformatted
results)

to_json()

class irmacl.apiclient.IrmaResults(file_infos=None, probe_results=None, **kwargs)

Bases: “object”

IrmaResults Description for class

	Variables:

	
	status – int (0 means clean 1 at least one AV report
this file as a virus)

	probes_finished – number of finished probes analysis
for current file

	probes_total – number of total probes analysis for
current file

	scan_id – id of the scan

	scan_date – date of the scan

	name – file name

	path – file path (as sent during upload or resubmit)

	result_id – id of specific results for this file and
this scan used to fetch probe_results through file_results
helper function

	file_infos – IrmaFileInfo object

	probe_results – list of IrmaProbeResults objects

to_json()

pscan_date – property, humanized date of scan date

class irmacl.apiclient.IrmaScan(id, status, probes_finished, probes_total, date, force, resubmit_files, mimetype_filtering, results=[])

Bases: “object”

IrmaScan Description for class

	Variables:

	
	id – id of the scan

	status – int (one of IrmaScanStatus)

	probes_finished – number of finished probes analysis
for current scan

	probes_total – number of total probes analysis for
current scan

	date – scan creation date

	force – force a new analysis or not

	resubmit_files – files generated by the probes should
be analyzed or not

	mimetype_filtering – probes list should be decided
based on files mimetype or not

	results – list of IrmaResults objects

is_finished()

is_launched()

pdate – property, printable date

pstatus – property, printable status

class irmacl.apiclient.IrmaTag(id, text)

Bases: “object”

IrmaTag Description for class

	Variables:

	
	id – id of the tag

	text – tag label

Helpers (helpers.py)

irmacl.helpers.file_download(sha256, dest_filepath, verbose=False)

Download file identified by sha256 to dest_filepath

	Parameters:

	
	sha256 (str of 64 chars) – file sha256 hash value

	dest_filepath (str) – destination path

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return tuple of total files and list of results for the given
file

	Return type:

	tuple(int, list of IrmaResults)

irmacl.helpers.file_results(sha256, limit=None, offset=None, verbose=False)

List all results for a given file identified by sha256

	Parameters:

	
	sha256 (str of 64 chars) – file sha256 hash value

	limit (int) – max number of files to receive
(optional default:25)

	offset (int) – index of first result (optional
default:0)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	tuple(int, list of IrmaResults)

irmacl.helpers.file_search(name=None, hash=None, tags=None, limit=None, offset=None, verbose=False)

Search a file by name or hash value

	Parameters:

	
	name (str) – name of the file (‘name’ will be
searched)

	hash (str of (64, 40 or 32 chars)) – one of sha1, md5
or sha256 full hash value

	tags (list of int) – list of tagid

	limit (int) – max number of files to receive
(optional default:25)

	offset (int) – index of first result (optional
default:0)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return tuple of total files and list of matching files already
scanned

	Return type:

	tuple(int, list of IrmaResults)

irmacl.helpers.file_tag_add(sha256, tagid, verbose=False)

Add a tag to a File

	Parameters:

	
	sha256 (str of (64 chars)) – file sha256 hash

	tagid (int) – tag id

	Returns:

	No return

irmacl.helpers.file_tag_remove(sha256, tagid, verbose=False)

Remove a tag to a File

	Parameters:

	
	sha256 (str of (64 chars)) – file sha256 hash

	tagid (int) – tag id

	Returns:

	No return

irmacl.helpers.probe_list(verbose=False)

List availables probes

	Parameters:

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return probe list

	Return type:

	list

irmacl.helpers.scan_add_data(scan_id, data, filename, post_max_size_M=100, verbose=False)

Add files to an existing scan

	Parameters:

	
	scan_id (str) – the scan id

	data (str) – data to scan

	filename (str) – filename associated to data

	post_max_size_M (int) – POST data max size in Mb (multiple calls to the
api will be done if total size is more than this limit, note that if
one or more file is bigger than this limit it will raise an error)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the updated scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_add_files(scan_id, filelist, post_max_size_M=100, verbose=False)

Add files to an existing scan

	Parameters:

	
	scan_id (str) – the scan id

	filelist (list) – list of full path qualified files

	post_max_size_M (int) – POST data max size in Mb (multiple calls to the
api will be done if total size is more than this limit, note that if
one or more file is bigger than this limit it will raise an error)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the updated scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_cancel(scan_id, verbose=False)

Cancel a scan

	Parameters:

	
	scan_id (str) – the scan id

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_data(data, filename, force, post_max_size_M=100, probe=None, mimetype_filtering=None, resubmit_files=None, blocking=False,blocking_timeout=60, verbose=False)

Wrapper around scan_new / scan_add / scan_launch

	Parameters:

	
	data (str) – data to scan

	filename (str) – filename associated to data

	force (bool) – if True force a new analysis of files
if False use existing results

	post_max_size_M (int) – POST data max size in Mb (multiple calls to the
api will be done if total size is more than this limit, note that if
one or more file is bigger than this limit it will raise an error)

	probe (list) – probe list to use (optional default:
None means all)

	mimetype_filtering (bool) – enable probe selection
based on mimetype (optional default:True)

	resubmit_files (bool) – reanalyze files produced by
probes (optional default:True)

	blocking (bool) – wether or not the function call
should block until scan ended

	blocking_timeout (int) – maximum amount of time
before timeout per file (only enabled while blocking is ON)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_files(filelist, force, post_max_size_M=100, probe=None, mimetype_filtering=None, resubmit_files=None, blocking=False,blocking_timeout=60, verbose=False)

Wrapper around scan_new / scan_add / scan_launch

	Parameters:

	
	filelist (list) – list of full path qualified files

	force (bool) – if True force a new analysis of files
if False use existing results

	post_max_size_M (int) – POST data max size in Mb (multiple calls to the
api will be done if total size is more than this limit, note that if
one or more file is bigger than this limit it will raise an error)

	probe (list) – probe list to use (optional default:
None means all)

	mimetype_filtering (bool) – enable probe selection
based on mimetype (optional default:True)

	resubmit_files (bool) – reanalyze files produced by
probes (optional default:True)

	blocking (bool) – wether or not the function call
should block until scan ended

	blocking_timeout (int) – maximum amount of time
before timeout per file (only enabled while blocking is ON)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_get(scan_id, verbose=False)

Fetch a scan (useful to track scan progress with scan.pstatus)

	Parameters:

	
	scan_id (str) – the scan id

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_launch(scan_id, force, probe=None, mimetype_filtering=None, resubmit_files=None, verbose=False)

Launch an existing scan

	Parameters:

	
	scan_id (str) – the scan id

	force (bool) – if True force a new analysis of files
if False use existing results

	probe (list) – probe list to use (optional default
None means all)

	mimetype_filtering (bool) – enable probe selection
based on mimetype (optional default:True)

	resubmit_files (bool) – reanalyze files produced by
probes (optional default:True)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the updated scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_list(limit=None, offset=None, verbose=False)

List all scans

	Parameters:

	
	limit (int) – max number of files to receive
(optional default:25)

	offset (int) – index of first result (optional
default:0)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return tuple of total scans and list of scans

	Return type:

	tuple(int, list of IrmaScan)

irmacl.helpers.scan_new(verbose=False)

Create a new scan

	Parameters:

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return the new generated scan object

	Return type:

	IrmaScan

irmacl.helpers.scan_proberesults(result_idx, formatted=True, verbose=False)

	Fetch file probe results (for a given scan

	one scan <-> one result_idx

	Parameters:

	
	result_idx (str) – the result id

	formatted (bool) – apply frontend formatters on
results (optional default:True)

	verbose (bool) – enable verbose requests (optional
default:False)

	Returns:

	return a IrmaResult object

	Return type:

	IrmaResults

irmacl.helpers.tag_list(verbose=False)

List all available tags

	Returns:

	list of existing tags

	Return type:

	list of IrmaTag

irmacl.helpers.tag_new(text, verbose=False)

Create a new tag

	Parameters:

	text (str) – tag label (utf8 encoded)

	Returns:

	None

Administration

	Environment configuration

	Components configuration
	Frontend configuration
	Configuration

	Brain configuration
	Configuration
	Generate a SQLite database for scan tracking

	Probe configuration
	Configuration

	SSL settings
	HTTPS
	Enable HTTPS
	Generate certificates

	Add a client

	Revoke a client

	RabbitMQ
	Enable SSL on RabbitMQ

	Certificates generation

	Postgresql
	Enable SSL on Postgresql

	Generate certificates

	Revoke a client

	External PKI
	External root

	External HTTPS PKI

	External RabbitMQ PKI

	External PostgreSQL PKI

	Database migration
	Requirements

	Content

	Usage
	Create database from scratch with Alembic
	Configuration and creating database

	Update your schema with Alembic

	If you already have a database WITHOUT Alembic

	Generating a new revision

	Migrating between revisions

	Tips and tricks

Environment configuration

Conf VMs with choice of probes

Components configuration

	Frontend configuration
	Configuration

	Brain configuration
	Configuration
	Generate a SQLite database for scan tracking

	Probe configuration
	Configuration

Frontend configuration

Configuration

The configuration file is located at config/frontend.ini in the installation
directory.

Note

Detailed meaning of each field in config/frontend.ini:

	Section

	Key

	Type

	Default

	Description

	log

	syslog

	integer

	0

	enable rsyslog (experimental)

	prefix

	string

	irma-frontend:

	prefix to append to rsyslog entries

	debug

	boolean

	False

	enable Debug log

	sql_debug

	boolean

	False

	enable SQL debug log

	sqldb

	username

	string

	
	database username

	password

	string

	
	database password

	host

	string

	
	database host

	port

	integer

	
	database port

	dbname

	string

	
	database name

	tables_prefix

	string

	
	database tables prefix

	samples_storage

	path

	string

	
	Samples storage path

	celery_brain

	timeout

	integer

	60 (sec)

	time before considering that the brain has timed-out

	celery_frontend

	timeout

	integer

	30 (sec)

	time before considering that the frontend has timed-out

	celery_options

	concurrency

	integer

	0

	number of concurrent workers (0 means nb of cores)

	soft_time_limit

	integer

	300 (sec)

	time limit before task soft interrupt

	time_limit

	integer

	1500 (sec)

	time limit before task is killed

	beat_schedule

	string

	/var/irma/fronte
nd_beat_schedule

	celery beat schedule file

	broker_brain

	host

	string

	
	hostname for the RabbitMQ server

	port

	integer

	5672

	port for the RabbitMQ server

	vhost

	string

	
	virtual host configured for brain

	username

	string

	
	username used for brain on the RabbitMQ server

	password

	string

	
	password used for brain on the RabbitMQ server

	queue

	string

	
	queue to poll new tasks on the RabbitMQ server

	broker_frontend

	host

	string

	
	hostname for the RabbitMQ server

	port

	integer

	5672

	port for the RabbitMQ server

	vhost

	string

	
	virtual host configured for this frontend

	username

	string

	
	username used for this frontend on the RabbitMQ server

	password

	string

	
	password used for this frontend on the RabbitMQ server

	queue

	string

	
	queue to poll new tasks on the RabbitMQ server

	ftp

	protocol

	string

	“sftp”

	choose File Transfer Protocol (“sftp” or “ftps”)

	ftp_brain

	host

	string

	
	hostname for the FTP server

	port

	integer

	22

	port for the FTP server

	auth

	string

	“password”

	SFTP authentication method (“password” or “key”)

	key_path

	string

	
	sftp private key absolute path

	username

	string

	
	username used by this frontend on the FTP server

	password

	string

	
	password used by this frontend on the FTP server

	
	cron_clean_file

	_age

	
	clean_fs_max

	_age

	string

	“0”

	remove file when not scanned for givent time
0 means disabled (“1 hour”, “5 days”, “3w”, “1year”)

	
	clean_fs_age

	_cron_hour

	string

	0

	cron hour settings

	clean_fs_age
_cron_minute

	string

	0

	cron minute settings

	clean_fs_age
_cron_day_of_week

	string

	*

	cron day of week settings

	
	cron_clean_file

	_size

	
	clean_fs_max

	_size

	string

	“0”

	space’s maximum size dedicated to the file system
(“100 Mb”, “512 Mb”, “1.5Gb”)

	
	clean_fs_size

	_cron_hour

	string

	*

	cron hour settings

	clean_fs_size
_cron_minute

	string

	0

	cron minute settings

	clean_fs_size
_cron_day_of_week

	string

	*

	cron day of week settings

	interprocess
_lock

	path

	string

	/var/run/lock/ir
ma-frontend.lock

	Concurrency file lock

	ssl_config

	activate_ssl

	boolean

	False

	Enable RabbitMQ ssl

	ca_certs

	string

	
	RabbitMQ SSL certs

	keyfile

	string

	
	RabbitMQ SSL keyfile

	certfile

	string

	
	RabbitMQ SSL certfile

Note

The default path for samples is /var/irma/samples/ make sure it exists with correct rights for irma user
before launching your first scan.

Brain configuration

Configuration

The configuration file is located at config/brain.ini in the installation
directory. Update it with your specific info.

Note

Detailed meaning of each field in config/brain.ini:

	Section

	Key

	Type

	Default

	Description

	log

	syslog

	integer

	0

	enable rsyslog (experimental)

	prefix

	string

	irma-brain:

	prefix to append to rsyslog entries

	debug

	boolean

	False | enable Debug log

	sql_debug

	boolean

	False | enable SQL debug log

	celery_options

	concurrency

	integer

	0

	number of concurrent workers (0 means nb of cores)

	soft_time_limit

	integer

	300 (sec)

	time limit before task soft interrupt

	time_limit

	integer

	1500 (sec)

	time limit before task is killed

	broker_brain

	host

	string

	
	hostname for the RabbitMQ server

	port

	integer

	5672

	port for the RabbitMQ server

	vhost

	string

	
	virtual host configured for brain

	username

	string

	
	username used for brain on the RabbitMQ server

	password

	string

	
	password used for brain on the RabbitMQ server

	queue

	string

	
	queue to poll new tasks on the RabbitMQ server

	broker_probe

	host

	string

	
	hostname for the RabbitMQ server

	port

	integer

	5672

	port for the RabbitMQ server

	vhost

	string

	
	virtual host configured for probes

	username

	string

	
	username used for probes on the RabbitMQ server

	password

	string

	
	password used for probes on the RabbitMQ server

	queue

	string

	
	queue to poll new tasks on the RabbitMQ server

	broker_frontend

	host

	string

	
	hostname for the RabbitMQ server

	port

	integer

	5672

	port for the RabbitMQ server

	vhost

	string

	
	virtual host configured for frontend

	username

	string

	
	username used for frontend on the RabbitMQ server

	password

	string

	
	password used for frontend on the RabbitMQ server

	queue

	string

	
	queue to poll new tasks on the RabbitMQ server

	sqldb

	dbms

	string

	sqlite

	dbapi engine

	dialect

	string

	
	sqlalchemy dialect

	username

	string

	
	database username

	password

	string

	
	database password

	host

	string

	
	database host

	dbname

	string

	/var/irma/
db/brain.db

	database name

	tables_prefix

	string

	
	database tables prefix

	ftp

	protocol

	string

	“sftp”

	choose File Transfer Protocol (“sftp” or “ftps”)

	ftp_brain

	host

	string

	
	hostname for the FTP server

	port

	integer

	21

	port for the FTP server

	auth

	string

	“password”| SFTP authentication method (“password” or “key”)

	key_path

	string

	
sftp private key absolute path

	username

	string

	
username used by probe on the FTP server

	password

	string

	
	password used by the probe on the FTP server

	interprocess
_lock

	path

	string

	/var/run/
lock/irma-
brain.lock

	Concurrency file lock

	ssl_config

	activate_ssl

	boolean

	False

	Enable RabbitMQ ssl

	ca_certs

	string

	
	RabbitMQ SSL certs

	keyfile

	string

	
	RabbitMQ SSL keyfile

	certfile

	string

	
	RabbitMQ SSL certfile

Generate a SQLite database for scan tracking

You could easily generate the user database by running the following command.
The path of the database is taken from the configuration file and the folder
where the database is going to be stored must be created beforehand.

Note

The default path for the database is /var/irma/db/ make sure it exists before creating user database.

$ cd /opt/irma/irma-brain/current/
$./venv/bin/python -m scripts.create_user
usage: create_user <username> <rmqvhost> <ftpuser>
 with <username> a string
 <rmqvhost> the rmqvhost used for the frontend
 <ftpuser> the ftpuser used by the frontend
example: create_user test1 mqfrontend frontend

To create an entry in the database for the frontend named frontend and
which uses the mqfrontend virtual host on the RabbitMQ server, simply run
the following commands:

$./venv/bin/python -m scripts.create_user frontend mqfrontend frontend

Note

There is a limitation due to SQLite. The folder where the database is
stored, plus the database file must be writable by the user running the
worker:

$ sudo chown irma:irma /var/irma/db/brain.db
$ sudo chmod a+w /opt/irma/irma-brain

Probe configuration

Configuration

The configuration file is config/probe.ini located in the installation
directory.

Note

We recall in the following the meaning of each field in config/probe.ini:

	Section

	Key

	Type

	Default

	Description

	log

	syslog

	integer

	0

	enable rsyslog (experimental)

	prefix

	string

	irma-probe:

	prefix to append to rsyslog entries

	celery_options

	concurrency

	integer

	0

	number of concurrent workers (0 means nb of cores)

	soft_time_limit

	integer

	300 (sec)

	time limit before task soft interrupt

	time_limit

	integer

	1500 (sec)

	time limit before task is killed

	broker
probe

	host

	string

	
	hostname for the RabbitMQ server

	port

	integer

	5672

	port for the RabbitMQ server

	vhost

	string

	
	virtual host configured for probes

	username

	string

	
	username used for probes on the RabbitMQ server

	password

	string

	
	password used for probes on the RabbitMQ server

	queue

	string

	
	queue to poll new tasks on the RabbitMQ server

	ftp_brain

	host

	string

	
	hostname for the FTP server

	port

	integer

	21

	port for the FTP server

	auth

	string

	“password”| SFTP authentication method (“password” or “key”)

	key_path

	string

	
sftp private key absolute path

	username

	string

	
	username used by probe on the FTP server

	password

	string

	
	password used by the probe on the FTP server

SSL settings

SSL is available for 5 services:

	for an https connection with an nginx configuration;

	for RabbitMQ;

	for PostgreSQL with an authentication by certificate;

In the nominal case, enabling SSL for at least one of these services generates a PKI made of a root CA and, for each mechanism, an intermediate CA and some other stuff.
Every CA and https certificate requires an openssl configuration file. These files are set in the appropriate directory in ./extras/pki/conf: root.config at the root, a <service>/ca.config in the https, rabbitmq and psql directories and configuration file corresponding to https clients in https directory. The configuration files are copied in the corresponding directories during their generation.

The PKI is generated in the infra directory ./infras/<infra-name>/pki where <infra-name> is the ansible variable infra_name in group_vars/all.yml (defaults to “Qb”). The PKI is described in infras/<infra-name>/<infra-name>-infra.yml. During the provisioning, ansible updates the PKI (or creates it) according to this file. To erase the PKI, delete the infra directory first.

HTTPS

Enable HTTPS

To enable SSL on the frontend server, edit group_vars/all.yml with:

frontend_openssl: True
nginx_https_enabled: True # require frontend_openssl
nginx_https_client_enabled: True # require nginx_https_enabled

Note

HTTPS and HTTP connections can operate at the same time.

Note

nginx_https_enabled [required] activates the server’s certificate verification.
nginx_https_client_enabled [optional] activates the client’s certificate verification.

Generate certificates

The crypto objects for an https connection are generated in infras/<infra-name>/pki/https. By default, these are:

	a CA (key, certificate, chained certificate, database and CRL);

	a server (key, certificate, chained certificate);

	a client (key, certificate, chained certificate).

$ tree infras/Qb/pki/https
infras/Qb/pki/https/
├── ca
│ ├── 01.pem
│ ├── 02.pem
│ ├── ca-chain.crt
│ ├── ca.config
│ ├── ca.crt
│ ├── ca.key
│ ├── db
│ │ ├── ca.crl.srl
│ │ ├── ca.crl.srl.old
│ │ ├── ca.crt.srl
│ │ ├── ca.crt.srl.old
│ │ ├── ca.db
│ │ ├── ca.db.attr
│ │ ├── ca.db.attr.old
│ │ └── ca.db.old
│ └── https.crl
├── clients
│ ├── client-chain.crt
│ ├── client.config
│ ├── client.crt
│ ├── client.key
│ └── revoked
└── server
 ├── server-chain.crt
 ├── server.config
 ├── server.crt
 └── server.key

Add a client

To add a client:

	edit infras/<infra-name>/<infra-name>-infra.yml with:

infra:
 name: Qb
 https:
 clients:
 running:
 - name: client
 - name: new_client #there we indicate a the name of the new user
 revoked: []

	add an openssl configuration file ./extras/pki/conf/https/<client-name>.config corresponding to the new user.

	provision with ansible: it copies the previous file in clients directory.

Revoke a client

To revoke a client:

	edit infras/<infra-name>/<infra-name>-infra.yml with:

infra:
 name: Qb

 clients:
 running:
 - name: client
 revoked:
 - name: bad_user # the user is now in revoked list and not in running list

	provision with ansible: it revokes the user with the user’s CA and moves its stuff in clients/revoked/.

RabbitMQ

Enable SSL on RabbitMQ

To enable SSL in RabbitMQ, edit group_vars/brain.yml with:

rabbitmq_ssl: True

Note

If you are updating an already running no_ssl version,
do the following on irma-brain RabbitMQ server:

$ sudo rabbitmqctl stop_app
$ sudo rabbitmqctl reset
$ sudo rabbitmqctl start_app
create again the RabbitMQ vhosts, usernames and passwords:
$ sudo ./extras/scripts/rabbitmq/rmq_adduser.sh probe probe mqprobe
$ sudo ./extras/scripts/rabbitmq/rmq_adduser.sh brain brain mqbrain
$ sudo ./extras/scripts/rabbitmq/rmq_adduser.sh frontend frontend mqfrontend

Certificates generation

The crypto objects for RabbitMQ with SSL are generated in infras/<infra-name>/pki/rabbitmq. These are:

	a CA (key, certificate, chained certificate and database);

	a server brain (key, certificate);

	3 clients for the entities frontend, brain and probe (key, certificate).

$ tree infras/Qb/pki/rabbitmq
infras/Qb/pki/rabbitmq/
├── ca
│ ├── 01.pem
│ ├── 02.pem
│ ├── 03.pem
│ ├── 04.pem
│ ├── ca-chain.crt
│ ├── ca.config
│ ├── ca.crt
│ ├── ca.key
│ └── db
│ ├── ca.crt.srl
│ ├── ca.crt.srl.old
│ ├── ca.db
│ ├── ca.db.attr
│ ├── ca.db.attr.old
│ └── ca.db.old
├── clients
│ ├── brain-client.crt
│ ├── brain-client.key
│ ├── frontend-client.crt
│ ├── frontend-client.key
│ ├── probe-client.crt
│ └── probe-client.key
└── server
 ├── brain.crt
 └── brain.key

Note

In RabbitMQ case, only the CA needs a openssl configuration file.

Postgresql

Enable SSL on Postgresql

To activate SSL in PostgreSQL service, edit group_vars/brain.yml with:

postgresql_ssl: True

Generate certificates

The crypto objects for PostgreSQL with SSL are generated in infras/<infra-name>/pki/psql. These are:

	a CA (key, certificate, chained certificate, a CRL and database);

	a server (key, certificate);

	a client frontend (key, certificate).

$ tree infras/Qb/pki/psql
infras/Qb/pki/psql/
├── ca
│ ├── 01.pem
│ ├── 02.pem
│ ├── ca-chain.crt
│ ├── ca.config
│ ├── ca.crt
│ ├── ca.key
│ ├── db
│ │ ├── ca.crl.srl
│ │ ├── ca.crl.srl.old
│ │ ├── ca.crt.srl
│ │ ├── ca.crt.srl.old
│ │ ├── ca.db
│ │ ├── ca.db.attr
│ │ ├── ca.db.attr.old
│ │ └── ca.db.old
│ └── psql.crl
├── clients
│ ├── frontend.config
│ ├── frontend.crt
│ ├── frontend.key
│ └── revoked
└── server
 ├── server.config
 ├── server.crt
 └── server.key

Revoke a client

To revoke a client:

	edit infras/<infra-name>/<infra-name>-infra.yml with:

infra:
 name: Qb

 psql:
 clients:
 revoked:
 - name: bad_user # bad_user is now in revoked list and no longer in running list

	provision with ansible: it revokes the user with the user’s CA and moves its stuff in clients/revoked/.

External PKI

It is also possible to use an external PKI for one or more of these services, for the root entity or the whole Irma’s PKI. In this case, it is necessary to provide the corresponding cryptographic objects in PEM format.
To specify which PKI’s part are provided by an external PKI, edit group_vars/all.yml :

root_external: False
pki_rabbitmq_external: False
pki_https_external: False
pki_psql_external: False

By default, the automatic generation of the whole PKI is activated and all variables for external PKI are set to False.

External root

To use a external root, edit group_vars/all.yml with:

root_external: True
root_external_key: root_key.key
root_external_cert: root_cert.crt

Note

root_key.key and root_external_cert must contain the paths to respectively the key and the certificate of the external root entity.

The Irma’s PKI will be generated with this external root as authority.

External HTTPS PKI

To use an external PKI for HTTPS and disable the automatic generation of a new one, edit group_vars/all.yml with:

pki_https_external: True

Provide the cryptographic objects and specify the paths editing group_vars/frontend.yml:

frontend_openssl_certificates:
 cert:
 src: https_server.crt
 dst: /etc/nginx/certs/{{ hostname }}.crt
 key:
 src: https_server.key
 dst: /etc/nginx/certs/{{ hostname }}.key
 ca:
 src: https_ca_cert.crt
 dst: /etc/nginx/certs/ca.crt
 chain:
 src: https_ca_chain.crt
 dst: /etc/nginx/certs/ca-chain.crt
 crl:
 src: https_crl.crl
 dst: /etc/nginx/certs/https.crl

Note

frontend_openssl_certificates.cert.src is the path to the server’s certificate
frontend_openssl_certificates.key.src is the path to the server’s private key
frontend_openssl_certificates.ca.src is the path to the CA’s certificate
frontend_openssl_certificates.chain.src is the path to the CA’s certification chain
frontend_openssl_certificates.crl.src is the path to the CRL

External RabbitMQ PKI

To use an external PKI for RabbitMQ and disable the automatic generation of a new one, edit group_vars/all.yml with:

pki_rabbitmq_external: True

Provide the cryptographic objects and specify the paths editing group_vars/all.yml:

rabbitmq_cacert : ca-chain.crt
rabbitmq_server_key : server.key
rabbitmq_server_cert: server.crt
rabbitmq_frontend_key: frontend-client.key
rabbitmq_frontend_cert: frontend-client.crt
rabbitmq_brain_key: brain-client.key
rabbitmq_brain_cert: brain-client.crt
rabbitmq_probe_key: probe-client.key
rabbitmq_probe_cert: probe-client.crt

Note

rabbitmq_cacert is the path to the CA’s certification chain
rabbitmq_server_key is the path to the server’s private key
rabbitmq_server_cert is the path to the server’s certificate
rabbitmq_frontend_key is the path to the frontend’s private key
rabbitmq_fontend_cert is the path to the frontend’s certificate
rabbitmq_brain_key is the path to the brain’s private key
rabbitmq_brain_cert is the path to the brain’s certificate
rabbitmq_probe_key is the path to the probes’ private key
rabbitmq_probe_cert is the path to the probes’ certificate

External PostgreSQL PKI

To use an external PKI for PostgreSQL and disable the automatic generation of a new one, edit group_vars/all.yml with:

pki_psql_external: True

Provide the cryptographic objects and specify the paths editing group_vars/sql-server.yml:

postgresql_ssl_cert_src_path: server.crt
postgresql_ssl_key_src_path: server.key
postgresql_ssl_ca_src_path: ca-chain.crt
postgresql_ssl_crl_src_path: psql.crl

Note

postgresql_ssl_cert_src_path is the path to the server’s certificate
postgresql_ssl_key_src_path is the path to the server’s private key
postgresql_ssl_ca_src_path is the path to the CA’s certificate chain
postgresql_ssl_crl_src_path is the path to the CRL

Database migration

IRMA uses Alembic [https://alembic.readthedocs.org/en/latest/] to manage and perform
databases migration.

Note

Alembic is a useful tool to manage migration, but can’t surpass local engine implementation
of SQL. As SQLite doesn’t manage schema modifications such as ALTER_COLUMN, the
whole migration system of IRMA won’t support it. The preferred database engine is
PostgreSQL.

You can still use SQLite, but you will be on your own for migrations.

Warning

Please note that most of the manipulations on this can and sometimes will alter your data.
If you are not sure about what you are doing, and even if you are sure, make backup.

Requirements

	Alembic package [https://pypi.python.org/pypi/alembic]

Content

Database migrations are managed in the frontend and brain IRMA components.

The files/directories used are:

alembic.ini
extras/migration/
 +- env.py
 +- script.py.mako
 +- versions/
 +- <revision_1>.py
 +- <revision_2>.py
 +- ...

Note

All the commands below will assert to be executed on top of this file system,
as Alembic needs the alembic.ini configuration file.

You could also use the -c <path_to_conf_file>.

Usage

Alembic manage a ‘revision’ for each database evolution. These revisions are used to upgrade or
downgrade the database schema.

The command:

$ alembic current

… shows the current revision of the database.

The command to get the history of the latest alembic migrations is:

$ alembic history --verbose

Create database from scratch with Alembic

Configuration and creating database

Alembic will use the information in the [sqldb] section of the configuration files
(respectively config/frontend.ini or conf/brain.ini for the repositories of
the frontend or the brain components). Make sure they are accurate.

The database must already exist. This step is quite simple, the SQL command usually being:

sql$ CREATE DATABASE <db_name>;

Update your schema with Alembic

If you use a virtualenv, activate it. Then enter:

$ alembic upgrade head

Alembic applies each revision one after the other. At the end of the process, if no error
occurs, your database should be updated.

Note

You can update the database one revision at a time, or up to a specific revision. See the
revisions section for further information.

If you already have a database WITHOUT Alembic

Alembic stores its current revision number in database. If your database doesn’t have this
information, you are very likely to encounter errors when using Alembic, as it will try to
create already existing tables.

The easiest solution is to destroy your database and go for a fresh install.

Although, if you don’t want to lose your data, you could update the Alembic information
manually.

You will need to:

	Get the exact current Alembic revision of your database. Each migration file has a
Revision ID in its header. Investigate the successive revisions to know which one
matches your current database state.

	Once you known your Alembic revision, run:

$ alembic stamp <your_alembic_revision_number>

	Your database is now synchronized with Alembic! You should be able to use Alembic to
upgrade/downgrade your database now. Be aware that if the revision number you provided is
false, you could encounter massive errors while attempting to upgrade/downgrade your
database.

Generating a new revision

Creating a new revision can be done with the command:

$ alembic revision -m <revision_message>

This command produces a new <hash>_<revision_message>.py file in the extras/migration/versions/
directory. This file contains two functions upgrade and downgrade, respectively used
to upgrade the database to the revision, or downgrade from it. These two functions are empty
and must be completed with the desired modifications (see the
alembic documentation section ops [https://alembic.readthedocs.org/en/latest/ops.html]).

A revision could be produced automatically, from database metadata defined in the IRMA SQL
objects description through sqlalchemy, with the command:

$ alembic revision --autogenerate -m <revision_message>

These SQL objects are defined in:

	frontend/models/sqlobjects.py for the frontend,

	brain/models/sqlobjects.py for the brain.

Alembic scripts in IRMA repositories are already configured to use metadata defined in these
files. You should be able to use the --autogenerate option without further modifications.

Note

IRMA configuration allows to prefix table names through configuration. Our revision files
use the function <frontend_or_brain>/config/parser.py:prefix_table_name to generate table
names rather than keeping alembic-generated plain string names. A good practice would be
to keep using this function in revision files.

Warning

Alembic easily detects changes such as adding/removing columns, but could be blind on thin,
inner modifications. Re-reading the auto-generated script is a strongly recommended step
before actually performing the migration.

See the alembic documentation section autogenerate [https://alembic.readthedocs.org/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect]
for more information.

Warning

Database modifications using ALTER_COLUMN (such as changing the type of
a column) can’t be performed on SQLite databases. Be aware of this
limitation if you absolutely want to use migration scripts with this SQL
engine.

Migrating between revisions

Once the revision is properly described, the migration is performed with:

$ alembic upgrade head

Alembic allows to migrate the database to any revision, relatively to the current revision
or absolutely. Several examples:

$ alembic upgrade +4
$ alembic downgrade base
$ alembic upgrade <revision_number>+3

Tips and tricks

Note

Don’t trust Alembic too much. It is nothing more than a tool, without any comprehension
on the code. Cautiously read the revision scripts it generates.

Note

Database migration is hardly ever a painless step. Be sure to:

	save your data before performing a migration,

	test your application after the migration to ensure its compatibility with the new data
schemes.

Note

With a PostgreSQL database, the Float type is tolerated but the real type name used
by the database is Real. It means that SQL objects described in sqlalchemy with
Float columns will be properly applied in database, but at each autogenerate revision,
alembic will see Real type in database, against Float type in the code metadata,
and so will perform each time a useless alter_column from Real to Float.
This problem could be avoided (with PostgreSQL) by declaring Real instead of Float.

See this page [http://www.postgresql.org/docs/9.1/static/datatype-numeric.html] for more
information on PostgreSQL numeric types.

Note

Alembic can’t directly deal with many somehow complex operations, such as type migration
with no trivial cast. In these cases, the operation must be manually described with a raw
SQL command (which could be database-dependent).

For instance, alembic can’t perform the migration from real to datetime:

> alembic.alter_column('table', 'column',
 existing_type=sqlalchemy.REAL(),
 type_=sqlalchemy.DateTime(),
 existing_nullable=False)

… because of an error a column "column" cannot be cast automatically to type timestamp
with time zone.

A proper migration for PostgreSQL would be (in Python):

> alembic.execute('ALTER TABLE "table" ALTER COLUMN "column" TYPE TIMESTAMP WITHOUT TIME ZONE USING to_timestamp(column)')

And the reverse code to downgrade the migration could be:

> alembic.execute('ALTER TABLE "table" ALTER COLUMN "column" TYPE REAL USING extract(epoch from column)')

Note

Rather than managing migrations directly with Alembic, we could generate SQL migration
revision to be used directly on database with the command:

$ alembic upgrade <revision> --sql > migration.sql

Note

Deleting a revision R is simple:

	downgrade the database to the revision before R-1 the revision you want to delete;

	if any, edit the script of the following revision R+1 and update the down_revision
variable to match the revision number of revision R-1;

	delete the script of the revision R you want to delete;

	upgrade your database.

The deleted revision want be applied any more.

Technical description

Each major component of the IRMA platform comes with their own python-based
application. As the Brain is the nerve center of the whole platform, it is
recommended to install it first before installing other components. One can then
install either the Frontend or the Probes he wants.

[image: IRMA's Overall Infrastructure]

The IRMA entrypoint is the web API hosted on frontend. File results are stored in
PostgreSQL database. All files transfers are done through FTP (sftp server on brain).
All tasks are executed by celery applications that consumes their own task queue on RabbitMQ server.
For further details give a look at scan workflow part

	API documentation

	Frontend
	Installation

	Architecture

	Brain
	Installation

	Architecture

	Nginx

	SQL server

	Probe
	Architecture

	Scan workflow
	Frontend API Part (frontend_api/uwsgi+hug)

	Frontend Celery Part (frontend_app/celery)

	Brain Celery Part (scan_app/celery)

	Probe Celery Part (probe_app/celery)

	Brain Celery Part (result_app/celery)

	Frontend Celery Part (frontend_app/celery)

	Functional Testing
	Debug

API documentation

There is a dynamic documentation for IRMA API available on your instance [http://172.16.1.30/swagger]

It allows you to read documentation but also try request and see server response.

[image: Swagger homepage]
You could see detailed information about one specific API route:

[image: Swagger homepage]
and by clicking on the Try it button, see the server response:

[image: Swagger homepage]

Frontend

The Frontend handles scan submission to the Brain, stores the results
of the scanned files. These results can be displayed through a web graphical
user interface or via the command line interface.

Installation

The Frontend must be installed on a GNU/Linux system. With some efforts, it
should be possible to run it on a Microsoft Windows system, but this has not
been tested yet.

This section describes how to get the source code of the application and to
install it.

Architecture

Let us recall first the inner architecture of the Frontend. It uses
multiple technologies with each a specific purpose:

	A client through which a user submits a file and get the analysis results.
There are two clients bundled in the repository: a web user interface and a
command-line client.

	A python-based restful API, served by a NGINX web server and a uWSGI
application server. It gets the results of a file scan by querying a
database.

	A worker that will handle scan submission to the Brain and store the
results of analyzes scheduled by the Brain. The worker relies on Celery,
a python-based distributed task queue.

	A database server (PostgreSQL) is used to store results of analyzes
made on each file submitted either by the web graphical interface or the CLI
client.

Brain

The Brain is a python-based application that only dispatches analysis
requests from different frontends 1 to the available Probes. Analyses
are scheduled by the Brain on Probes through Celery, an open source
task.

Footnotes

	1

	This feature is not ready yet, we are currently working on its
implementation.

Installation

The Brain must be installed on a GNU/Linux distribution. With some efforts,
it should be possible to run it on a Microsoft Windows system, but this has not
been tested yet.

This section describes how to get the source code of the application for the
Brain and to install it.

Architecture

Let us recall first the inner architecture of the Brain. It uses multiple
technologies with a specific purpose each:

	a Celery worker that handles scan requests from Frontends and results
returned by the Probes.

	a RabbitMQ server used by Celery as a backend and as a broker for task queues
and job queues used to schedule tasks for
Probes (for scan jobs) and the Frontend (for scan results).

	an SFTP server where files to be scanned are uploaded by
Frontends and downloaded by Probes,

Nginx

In the Frontend, we use a nginx web server to serve the uWSGI application
and the static web site that query the API in order to get results of scanned
files and to present them to the user.

SQL server

The Frontend relies on a PostgreSQL database to keep track of all scans info.

Probe

The Probes are python-based application that host a single or multiple analyzers. Each analyzer listens on a specific work queue and waits for an analysis to be scheduled by the Brain through Celery, an open source task framework for Python.
Python version should be at least 3.4 on linux, 3.5 on windows.

Architecture

Probes are mainly Celery workers that handle scan requests from Brain

Scan workflow

[image: Scan workflow]

Frontend API Part (frontend_api/uwsgi+hug)

	A new scan object is created in PostgreSQL database.

	Files are uploaded to the WEB API, stored on Filesystem and registered in PostgreSQL database.

	Scan is launched, an asynchronous task is launched on Frontend celery.

Frontend Celery Part (frontend_app/celery)

	Used probes are filtered according to scan options (selected probes, mimetype filtering).

	Empty results are created in PostgreSQL database (one per probe per file).

	Each file is uploaded to SFTP server.

	For each file uploaded a scan task on Brain is launched with the file probelist (according to scan option force some results could already be present).

Brain Celery Part (scan_app/celery)

	A new scan object is created in SQLite database to track jobs (for canceling).

	Each file is send for analysis in sent for analysis in every probe selected (each time a probe is available in IRMA, it registers itself to the brain and open a
RabbitMQ Queue named with its probe name, probe list is retrieved by listing active queues).

	Two callbacks are set on every probe scan tasks, one for success and the other for failure.

Probe Celery Part (probe_app/celery)

	Scan task is received with a file id.

	File is downloaded as temporary file.

	File is scanned by the probe.

	Results are sent back to Brain to one of the two callbacks set.

Brain Celery Part (result_app/celery)

	successful results are marked as completed in SQLite database.

	successful results are forwarded to Frontend.

	error are marked as completed in SQLite database.

	As there is no result, an error message is generated to tell the Frontend the particular job for the file and probe failed.

Frontend Celery Part (frontend_app/celery)

	Results is received for each file and probe.

	Results are updated in PostgreSQL database.

	If scan is finished, a scan flush task is launched on Brain to delete files on SFTP server.

Functional Testing

Only available on *dev* environments

On the frontend, to launch the functionals tests:

$ cd /opt/irma/irma-frontend/current/web
$ npm run functional-tests

It will launch the Javascript implementation of Cucumber [https://cucumber.io/]. Cucumber.js will take a file that contain test
scenarios, written using the Gherkin language [https://cucumber.io/docs/reference]).
For each steps of a scenario, an action is perform by Cucumber.js, like
accessing a web page and typing some texts in a form. In order to do that, IRMA
project uses Puppeteer [https://github.com/GoogleChrome/puppeteer], a software that can launch and
control a Chromium [https://www.chromium.org/] instance in headless [https://chromium.googlesource.com/chromium/src/+/lkgr/headless/README.md]
mode.

IRMA scenarios can be found in frontend/web/tests/functionals/*.feature and
actions used to perform these steps are available in the file
frontend/web/tests/functionals/support/steps.js.

When an error occured, you will get a screenshot of the page where the scenario
ends. It will be available on the VM at frontend/web/error.jpeg.

Debug

Using the headless mode of Chromium, it will be difficult to debug if an error
occured.

	You can launch the test using a real Chromium instance on your host:

	
	You’ll need NodeJS [https://nodejs.org/] and NPM [https://www.npmjs.com/]

	Install IRMA web interface devDependencies on your host

$ cd frontend/web
$ npm install --only=dev

	Update the ROOT_URL (see:
frontend/web/tests/functionals/support/steps.js) variable to the
location of your IRMA web url (for example: const
ROOT_URL="http://172.16.1.30") and toggle the HEADLESS variable to
false (see: frontend/web/tests/functionals/support/hooks.js)

	Run the tests:

$ npm run functional-tests

You can also use the power of X11 Forwarding through SSH to see a real browser
launching the tests on the VM and getting the result on the host, without
having to install NodeJS:

$ vagrant ssh # to connect as vagrant user/superuser
$ sudo apt-get install xorg # to install a X11 server to launch Chromium
$ sudo sed -i "s/^X11Forwarding .*/X11Forwarding yes/" /etc/ssh/sshd_config
$ sudo systemctl restart sshd
$ exit # disconnect from vagrant user
$ vagrant ssh -- -l deploy -X # to connect as deploy with XForwarding enable
$ cd /opt/irma/irma-frontend/current/web
$ sed -i "s/^const HEADLESS = true;/const HEADLESS = false;/" tests/functionals/support/hooks.js
$ npm run functional-tests

You should see an instance of a Chromium browser on your host machine, running
the tests.

Take a look at the argument pass to the puppeteer.launch() function in
frontend/web/tests/functionals/support/hooks.js. For example, by modifying
the SLOW_MOTION_DELAY you can force Puppeteer to slow down its operations.

Extending IRMA

	Adding a new probe
	Writing a Plugin for the probe
	For a probe that is not a antivirus

	For an antivirus

	Testing the new plugin

	Automatic provisioning
	Creating a new role

	Invoking the module role

	Defining hosts

Adding a new probe

Writing a Plugin for the probe

Note

To be a valid probe module, IRMA expects it to have a predefined structure. To save time, one can get a minimal working structure from the skeleton plugin. The new plugin is stored in the appropriate sub-directory of the directory probe/modules according to the type of the new probe (antivirus, metadata, external…).

For a probe that is not a antivirus

1. Copy the directory skeleton to the new module (appropriate localisation).
Example with a module my_module with metadata type :

$ cp -r probe/modules/custom/skeleton/ probe/modules/metadata/my_module

	If there are packages to install, specify them in the file requirements.txt. Otherwise remove the file

	Adjust the file plugin.py according to the module :

	Adjust the class’s name with the name of your probe

	Fill in the fields of the class :- _plugin_name_ = [the plugin name]

	_plugin_display_name_ = [the field _name of the class of the probe]

	_plugin_version_ = [the version number]

	_plugin_category = [the type of the probe: IrmaProbeType.]

	_plugin_description = [quick description]

	_plugin_dependencies = [list of dependencies: platform, binary or/and file] => if used import from lib.plugins PlatformDependency, BinaryDependency or/and FileDependency

	_mimetype_regexp = [mimetype corresponding]

	Implement the functions corresponding to the type of the plugin

For an antivirus

In the case of an antivirus, it is a little different because an Antivirus class was created to avoid code’s duplication.
You can use the skeleton below:

plugin.py:

#
Copyright (c) 2013-2018 Quarkslab.
This file is part of IRMA project.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License in the top-level directory
of this distribution and at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
No part of the project, including this file, may be copied,
modified, propagated, or distributed except according to the
terms contained in the LICENSE file.

from .skeleton import Skeleton

from ..interface import AntivirusPluginInterface
from irma.common.plugins import PluginMetaClass

class SkeletonPlugin(AntivirusPluginInterface, metaclass=PluginMetaClass):

 # =================
 # plugin metadata
 # =================
 _plugin_name_ = "Skeleton"
 _plugin_display_name_ = Skeleton._name
 _plugin_author_ = "IRMA (c) Quarkslab"
 _plugin_version_ = "1.0.0"
 _plugin_category_ = "custom"
 _plugin_description_ = "Plugin skeleton"
 _plugin_dependencies_ = []
 _mimetype_regexp = None

 # ================
 # interface data
 # ================

 module_cls = Skeleton

 # If needed, overload the `verify` classmethod in order to check your class
 # is instanciable. It should return if everything is alright, otherwise
 # raise an exception. By default it checks that the module's attribute
 # `self.scan_path` is an existing file (cf. `super()._chk_scanpath`)
 #
 # @classmethod
 # def verify(cls):
 # pass

The metaclass PluginMetaClass handles the registering of the plugin to a plugin manager. It also checks that the class is instanciable thanks to the verify method.

skeleton.py:

#
Copyright (c) 2013-2018 Quarkslab.
This file is part of IRMA project.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License in the top-level directory
of this distribution and at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
No part of the project, including this file, may be copied,
modified, propagated, or distributed except according to the
terms contained in the LICENSE file.

import logging

Choose the class you need to inherit from
from modules.antivirus.base import AntivirusUnix, AntivirusWindows

log = logging.getLogger(__name__)

Inhererit from AntivirusUnix or AntivirusWindows according to your plateform
class Skeleton(Antivirus):
 name = "Skeleton for Antivirus"

 # ==================================
 # Constructor and destructor stuff
 # ==================================

 def __init__(self, *args, **kwargs):
 # class super class constructor
 super().__init__(*args, **kwargs)

 # do your initialization stuff

The recipe is the same, the files with the corresponding module name and differents fields need to be updated.
The attributes in Antivirus._attributes are meant to be defined by the instanciation. One can either:

	leave it blank, in this case the super class will assign it a default value (eg. "unavailable" for self.version);

	define it directly (eg. self.scan_path = Path("/opt/skeleton/skeleton"));

	define a function to be called to assign it (eg. def get_scan_path(self): ...), the super class will take care of calling it and handling exceptions.

Testing the new plugin

Before testing, module’s necessary stuff (binaries, files, etc) must be provisioned to the VM.

$ cd ansible
$ vagrant rsync
$ vagrant ssh
$ sudo su deploy
$ cd /opt/irma/irma-probe/current
$ venv/bin/python -m extras.tools.run_module

This last command lists available modules.

Now, if the new module is available, its launching can be done:

$ venv/bin/python -m extras.tools.run_module my_module file

Automatic provisioning

Creating a new role

Create a new directory with this structure:

cd ansible
tree roles/quarsklab.my_module
roles/quarkslab.my_module/
+-- defaults
| +-- main.yml
+-- tasks
 +-- main.yml

tasks/main.yml is the default entry point for a role containing Ansible tasks.
In this file, write the instruction to install the module.
Add the file tasks/update.yml to write the informations for the update if necessary.
In defaults/main.yml it is usual to store default variables for this role.
If there are particular instructions, for example how to obtain a licence for a antivirus, add a README file.

Invoking the module role

Modify playbooks/provisioning.yml : add the module

-name : my_module
 hosts: my_module
 roles:
 - { role: quarkslab.my_module, tags: 'my_module'}

If a task update was defined, add the module in playbooks/updating.yml :

-name : my_module
 hosts: my_module
 roles:
 - { role: quarkslab.module, tags: 'my_module', task_from : update}

Defining hosts

Modify the environment to add the new probe.

For example for the allinone_dev :

$ cat environments/allinone_dev.yml
[... snip ...]
 virustotal:
 - brain.irma
 my_module:
 - brain.irma
 "probe:children":
 - clamav
 - comodo
 - mcafee
 - static-analyzer
 - virustotal
 - my_module

Troubleshooting

	Check Celery configuration
	Celery Workers

	Verifying RabbitMQ configuration
	Checking for vhosts

	Checking for users

	Changing password
	Restarting the service

	Check SFTP accounts

	FTP-TLS accounts

	Restful API

	Logs

	How to debug
	Collect debug files

	Switch debug log on

	Debug a probe

	Debug Ansible Provisioning

Check Celery configuration

Celery Workers

Before going further, you should check that the python applications manages to
communicate with the RabbitMQ server through Celery. To ensure that, from the
installation directory, execute both Celery workers:

On GNU/Linux:

$ cd /opt/irma/irma-brain/current
$./venv/bin/python -m brain.scan_tasks

 -------------- celery@brain v3.1.23 (Cipater)
---- **** -----
--- * *** * -- Linux-3.16.0-4-amd64-x86_64-with-debian-8.2
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: scantasks:0x7fbd7ee4c350
- ** ---------- .> transport: amqp://brain:**@127.0.0.1:5672/mqbrain
- ** ---------- .> results: amqp://
- *** --- * --- .> concurrency: 2 (prefork)
-- ******* ----
--- ***** ----- [queues]
 -------------- .> brain exchange=celery(direct) key=brain

[2016-07-15 15:00:36,155: WARNING/MainProcess] celery@brain ready.

This worker is responsible for splitting the whole scan job in multiples job
per probe per file.

$ cd /opt/irma/irma-brain/current
$./venv/bin/python -m brain.results_tasks

 -------------- celery@brain v3.1.23 (Cipater)
---- **** -----
--- * *** * -- Linux-3.16.0-4-amd64-x86_64-with-debian-8.2
-- * - **** ---
- ** ---------- [config]
- ** ---------- .> app: resultstasks:0x7fa68f9aa590
- ** ---------- .> transport: amqp://probe:**@127.0.0.1:5672/mqprobe
- ** ---------- .> results: disabled://
- *** --- * --- .> concurrency: 2 (prefork)
-- ******* ----
--- ***** ----- [queues]
 -------------- .> results exchange=celery(direct) key=results

[2016-07-15 14:59:01,799: WARNING/MainProcess] celery@brain ready.

And this worker is responsible for collecting and tracking results.

If your Celery worker does not output something similar to the above output,
you should check twice the parameters in the application configuration file you
are using.

Verifying RabbitMQ configuration

We can verify that the RabbitMQ server has taken into account our modifications
with some commands:

Checking for vhosts

$ sudo rabbitmqctl list_vhosts
Listing vhosts ...
mqbrain
/
mqfrontend
mqprobe
mqadmin
...done.

If the defined virtual host are not listed by the above command, please execute
once more the script.

Checking for users

$ sudo rabbitmqctl list_users
Listing users ...
probe []
brain []
frontend []
...done.

If the defined users are not listed by the above command, please execute
once more the script.

Changing password

If you do not remember the password you just typed, you can change it with
rabbitmqctl command:

$ sudo rabbitmqctl change_password brain brain-rmq-password
Changing password for user "brain" ...
...done.

Restarting the service

You may want to restart the service. Thus, the following command can be done:

$ sudo invoke-rc.d rabbitmq-server restart

Check SFTP accounts

Try to login as frontend and upload a sample file in home dir (should raise an error as
it is non writeable) then in uploads dir.

$ sftp frontend@localhost
frontend@localhost's password:
Connected to localhost.
sftp> put test
Uploading test to /test
remote open("/test"): Permission denied
sftp> ls
uploads
sftp> cd uploads/
sftp> put test
Uploading test to /uploads/test
test 100% 10 0.0KB/s 00:00

FTP-TLS accounts

Additionnally, if you have configured IRMA to use FTP-TLS, you can check
whether the configured account is valid. On Debian, this can be done with the
ftp-ssl package:

$ sudo apt-get install ftp-ssl
[...]
$ ftp-ssl <hostname of the brain>
Connected to brain.
220---------- Welcome to Pure-FTPd [privsep] [TLS] ----------
220-You are user number 1 of 50 allowed.
220-Local time is now 18:55. Server port: 21.
220-This is a private system - No anonymous login
220-IPv6 connections are also welcome on this server.
220 You will be disconnected after 15 minutes of inactivity.
Name (brain:root): frontend-ftp
500 This security scheme is not implemented
234 AUTH TLS OK.
[SSL Cipher DHE-RSA-AES256-GCM-SHA384]
200 PBSZ=0
200 Data protection level set to "private"
331 User probe OK. Password required
Password: frontend-ftp-password
230 OK. Current directory is /
Remote system type is UNIX.
Using binary mode to transfer files.
ftp>

Restful API

One can verify that the restful API is up and running by querying a specific
route on the web server or by checking the system logs:

$ curl http://localhost/api/v1.1/probes
{"total": 9, "data": ["ClamAV", "ComodoCAVL", "EsetNod32", "FProt", "Kaspersky", "McAfeeVSCL", "NSRL", "StaticAnalyzer", "VirusTotal"]}

$ sudo cat /var/log/supervisor/frontend_api.log
[...]
added /opt/irma/irma-frontend/current/venv/ to pythonpath.
*** uWSGI is running in multiple interpreter mode ***
spawned uWSGI master process (pid: 3943)
spawned uWSGI worker 1 (pid: 3944, cores: 1)
spawned uWSGI worker 2 (pid: 3945, cores: 1)
spawned uWSGI worker 3 (pid: 3946, cores: 1)
spawned uWSGI worker 4 (pid: 3947, cores: 1)
mounting frontend/api/base.py on /api
mounting frontend/api/base.py on /api
mounting frontend/api/base.py on /api
mounting frontend/api/base.py on /api
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3945 (default app)
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3946 (default app)
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3944 (default app)
WSGI app 0 (mountpoint='/api') ready in 0 seconds on interpreter 0x99a3e0 pid: 3947 (default app)

Logs

How to debug

Collect debug files

An Ansible playbook is available in order to gather logs and other useful
files.

The playbook is ansible/playbooks/collect_debug.yml and it will allow you
to retrieve on each host:

	IRMA Files (located on the multiples hosts);

	Systemd logs;

	Application logs (Nginx, RabbitMQ, PostgreSQL).

After running the playbook, all the files are available in the directory
specified in the debug_directory variable of the playbook. The files are
store in directories named after the host they where retrieve from
(<debug_directory>/<host_name>/<debug_files_or_directory>).
Most of the files are plain text but Systemd logs are using a binary format.
To explore and read them, you’ll need the journalctl command, for example:

$ journalctl -D debug/brain.irma/var/log/journal

Switch debug log on

Configuration file for frontend, brain and probe is located by default in the config folder and
is named respectively frontend.ini, brain.ini and probe.ini.

To turn on debug log just add the following line:

 [log]
 syslog = 0
 debug = 1

and restart all related applications.

To turn on SQL debug log (warning: its verbose) just add the following line:

 [log]
 syslog = 0
 debug = 1
 sql_debug = 1

and restart all related applications.

Debug a probe

Open a session on the probe machine and change directory to
the irma-probe location. Try the run_module tool on a file
to see what analyzer is detected and what is its output on a
file.

 $ sudo su deploy
 $ cd /opt/irma/irma-probe/current
 $./venv/bin/python -m extras.tools.run_module

 [...]
 usage: run_module.py [-h] [-v]
 {Unarchive,StaticAnalyzer,ClamAV,VirusTotal} filename
 [filename ...]
 run_module.py: error: too few arguments

Here 4 probes are automatically detected. Now try one on a file:

$./venv/bin/python -m extras.tools.run_module ClamAV requirements.txt
{'database': {'/var/lib/clamav/bytecode.cvd': {'ctime': 1458640823.285298,
 'mtime': 1458640823.069295,
 'sha256': '82972e6cc5f1204829dba913cb1a0b5f8152eb73d3407f6b86cf388626cff1a1'},
 '/var/lib/clamav/daily.cvd': {'ctime': 1458640822.8932924,
 'mtime': 1458640822.6692889,
 'sha256': '9804c9b9aaf983f85b4f13a7053f98eb7cca5a5a88d3897d49b22182b228885f'},
 '/var/lib/clamav/main.cvd': {'ctime': 1458640821.6972747,
 'mtime': 1458640813.9771628,
 'sha256': '4a8dfbc4c44704186ad29b5a3f8bdb6674b679cecdf83b156dd1c650129b56f2'}},
 'duration': 0.0045299530029296875,
 'error': None,
 'name': 'Clam AntiVirus Scanner',
 'platform': 'linux2',
 'results': None,
 'status': 0,
 'type': 'antivirus',
 'version': '0.99'}

And check the output.

Debug Ansible Provisioning

To debug errors while provisioning (same goes with deployment) with following typical command:

$ ansible-playbook --private-key=~/.vagrant.d/insecure_private_key --inventory-file=.vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory -u vagrant playbooks/provisioning.yml

Example output:

TASK [Mayeu.RabbitMQ : add rabbitmq user and set privileges] *******************
[DEPRECATION WARNING]: Using bare variables is deprecated. Update your playbooks so that the environment value uses the
full variable syntax ('{{rabbitmq_users_definitions}}').
This feature will be removed in a future release. Deprecation
warnings can be disabled by setting deprecation_warnings=False in ansible.cfg.
failed: [brain.irma] (item={u'vhost': u'mqbrain', u'password': u'brain', u'user': u'brain'}) => {"failed": true, "item": {"password": "brain", "user": "brain", "vhost": "mqbrain"}, "module_stderr": "", "module_stdout": "Traceback (most recent call last):\r\n File \"/tmp/ansible_wKXoO5/ansible_module_rabbitmq_user.py\", line 302, in <module>\r\n main()\r\n File \"/tmp/ansible_wKXoO5/ansible_module_rabbitmq_user.py\", line 274, in main\r\n if rabbitmq_user.get():\r\n File \"/tmp/ansible_wKXoO5/ansible_module_rabbitmq_user.py\", line 155, in get\r\n users = self._exec(['list_users'], True)\r\n File \"/tmp/ansible_wKXoO5/ansible_module_rabbitmq_user.py\", line 150, in _exec\r\n rc, out, err = self.module.run_command(cmd + args, check_rc=True)\r\n File \"/tmp/ansible_wKXoO5/ansible_modlib.zip/ansible/module_utils/basic.py\", line 1993, in run_command\r\n File \"/usr/lib/python2.7/posixpath.py\", line 261, in expanduser\r\n if not path.startswith('~'):\r\nAttributeError: 'list' object has no attribute 'startswith'\r\n", "msg": "MODULE FAILURE", "parsed": false}

You could first increase ansible verbosity by adding -vvv option (-vvvv on windows for winrm debug), it will help is the problem is linked to arguments.

 $ ansible-playbook -vvv --private-key=~/.vagrant.d/insecure_private_key --inventory-file=.vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory -u vagrant playbooks/provisioning.yml
 TASK [Mayeu.RabbitMQ : add rabbitmq user and set privileges] *******************
 task path: /home/alex/repo/irma-ansible/roles/Mayeu.RabbitMQ/tasks/vhost.yml:13
 [DEPRECATION WARNING]: Using bare variables is deprecated. Update your playbooks so that the environment value uses the full
 variable syntax ('{{rabbitmq_users_definitions}}').
 This feature will be removed in a future release. Deprecation warnings can be
 disabled by setting deprecation_warnings=False in ansible.cfg.
 <127.0.0.1> ESTABLISH SSH CONNECTION FOR USER: vagrant
 <127.0.0.1> SSH: EXEC ssh -C -q -o ForwardAgent=yes -o Port=2222 -o 'IdentityFile="/home/alex/.vagrant.d/insecure_private_key"' -o KbdInteractiveAuthentication=no -o PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 127.0.0.1 '/bin/sh -c '"'"'(umask 77 && mkdir -p "` echo $HOME/.ansible/tmp/ansible-tmp-1468570550.09-211613386938202 `" && echo ansible-tmp-1468570550.09-211613386938202="` echo $HOME/.ansible/tmp/ansible-tmp-1468570550.09-211613386938202 `") && sleep 0'"'"''
 <127.0.0.1> PUT /tmp/tmpiysJ6l TO /home/vagrant/.ansible/tmp/ansible-tmp-1468570550.09-211613386938202/rabbitmq_user
 <127.0.0.1> SSH: EXEC sftp -b - -C -o ForwardAgent=yes -o Port=2222 -o 'IdentityFile="/home/alex/.vagrant.d/insecure_private_key"' -o KbdInteractiveAuthentication=no -o PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 '[127.0.0.1]'
 <127.0.0.1> ESTABLISH SSH CONNECTION FOR USER: vagrant
 <127.0.0.1> SSH: EXEC ssh -C -q -o ForwardAgent=yes -o Port=2222 -o 'IdentityFile="/home/alex/.vagrant.d/insecure_private_key"' -o KbdInteractiveAuthentication=no -o PreferredAuthentications=gssapi-with-mic,gssapi-keyex,hostbased,publickey -o PasswordAuthentication=no -o User=vagrant -o ConnectTimeout=10 -tt 127.0.0.1 '/bin/sh -c '"'"'sudo -H -S -n -u root /bin/sh -c '"'"'"'"'"'"'"'"'echo BECOME-SUCCESS-rbeeckncuxenewcwkayivqiwvarchlrd; LANG=fr_FR.UTF-8 LC_ALL=fr_FR.UTF-8 LC_MESSAGES=fr_FR.UTF-8 /usr/bin/python /home/vagrant/.ansible/tmp/ansible-tmp-1468570550.09-211613386938202/rabbitmq_user; rm -rf "/home/vagrant/.ansible/tmp/ansible-tmp-1468570550.09-211613386938202/" > /dev/null 2>&1'"'"'"'"'"'"'"'"' && sleep 0'"'"''
 failed: [brain.irma] (item={u'vhost': u'mqbrain', u'password': u'brain', u'user': u'brain'}) => {"failed": true, "invocation": {"module_name": "rabbitmq_user"}, "item": {"password": "brain", "user": "brain", "vhost": "mqbrain"}, "module_stderr": "", "module_stdout": "Traceback (most recent call last):\r\n File \"/tmp/ansible_Qo3lZl/ansible_module_rabbitmq_user.py\", line 302, in <module>\r\n main()\r\n File \"/tmp/ansible_Qo3lZl/ansible_module_rabbitmq_user.py\", line 274, in main\r\n if rabbitmq_user.get():\r\n File \"/tmp/ansible_Qo3lZl/ansible_module_rabbitmq_user.py\", line 155, in get\r\n users = self._exec(['list_users'], True)\r\n File \"/tmp/ansible_Qo3lZl/ansible_module_rabbitmq_user.py\", line 150, in _exec\r\n rc, out, err = self.module.run_command(cmd + args, check_rc=True)\r\n File \"/tmp/ansible_Qo3lZl/ansible_modlib.zip/ansible/module_utils/basic.py\", line 1993, in run_command\r\n File \"/usr/lib/python2.7/posixpath.py\", line 261, in expanduser\r\n if not path.startswith('~'):\r\nAttributeError: 'list' object has no attribute 'startswith'\r\n", "msg": "MODULE FAILURE", "parsed": false}

In this particular case, verbose doesn’t add much information as the problem is linked to ansible scripts. Let’s go one level deeper so.
Ansible output the temporary script executed on guest (highlighted in previous code block) but delete it just after execution. To further debug it we will set ansible to keep remote files and the debug session will now takes place inside the guest.

$ ANSIBLE_KEEP_REMOTE_FILES=1 ansible-playbook -vvv --private-key=~/.vagrant.d/insecure_private_key --inventory-file=.vagrant/provisioners/ansible/inventory/vagrant_ansible_inventory -u vagrant playbooks/provisioning.yml

in debug log get the temporary ansible path to remote script:

/usr/bin/python /home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/rabbitmq_user

Log in to remote machine and go to the temporary ansible dir. Explode the compressed script and run it locallly:

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ ls
rabbitmq_user

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ python rabbitmq_user explode
Module expanded into:
/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_dir

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ ls debug_dir/
ansible
ansible_module_rabbitmq_user.py
args

$ vagrant@brain:~/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275$ python rabbitmq_user execute
Traceback (most recent call last):
 File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_dir/ansible_module_rabbitmq_user.py", line 302, in <module>
 main()
 File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_dir/ansible_module_rabbitmq_user.py", line 274, in main
 if rabbitmq_user.get():
 File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_dir/ansible_module_rabbitmq_user.py", line 155, in get
 users = self._exec(['list_users'], True)
 File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_dir/ansible_module_rabbitmq_user.py", line 150, in _exec
 rc, out, err = self.module.run_command(cmd + args, check_rc=True)
 File "/home/vagrant/.ansible/tmp/ansible-tmp-1468571039.87-134696488633275/debug_dir/ansible/module_utils/basic.py", line 1993, in run_command
 args = [os.path.expandvars(os.path.expanduser(x)) for x in args if x is not None]
 File "/usr/lib/python2.7/posixpath.py", line 261, in expanduser
 if not path.startswith('~'):
AttributeError: 'list' object has no attribute 'startswith'

You could now add debug to source files and properly understand where the problem is. In our example case, it is an ansible
problem related to module_rabbitmq_user present in 2.1.0.0 see github PR [https://github.com/ansible/ansible-modules-extras/pull/2310]

References

	Disclaimer

	License

	Apache License, version 2.0

	Authors

Disclaimer

IRMA is distributed as it is, in the hope that it will be useful, but without
any warranty neither the implied merchantability or fitness for a particular
purpose.

Whatever you do with this tool is uniquely your own responsibility.

License

IRMA source code is licensed under Apache License, version 2.0.

The full license text can be found below (Apache License, version 2.0).

Apache License, version 2.0

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the
 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

Authors

IRMA is a project co-funded by the following actors:

	CEA DAM

	DCNS

	GOVCERT.LU (governmental CERT of Luxembourg)

	Airbus Group

	Quarkslab

	Orange Group IS&T

The PRIMARY AUTHORS are (and/or have been):

	Alexandre Quint - Lead Developer, Quarkslab

	David Carle - Quarkslab

	Guillaume Dedrie - Quarkslab

	Fernand Lone-Sang - Quarkslab

And here is an inevitably incomplete list of MUCH-APPRECIATED CONTRIBUTORS –
people who have submitted patches, reported bugs, helped answer newbie questions,
and generally made IRMA that much better:

	lpecheur

	y0ug

	mdeloitte

Resources

	Project website [http://irma.quarkslab.com]

	IRC (irc.freenode.net, #qb_irma)

	Twitter [https://twitter.com/qb_irma] (@qb_irma)

Screenshots

Command Line Interface

A sample script can be found in frontend repository. Add your own frontend address before testing it.

[image: Command Line Interface]

Web Interface

Some screenshots of the irma user interface shipped with frontend package.

[image: File Upload Interface]
[image: Uploading ...]
[image: Scanning ...]
[image: Scan Details]
[image: Scan Details suite]

Index

Adding a new probe

Writing a Plugin for the probe

Note

To be a valid probe module, IRMA expects it to have a predefined structure. To save time, one can get a minimal working structure from the skeleton plugin. The new plugin is stored in the appropriate sub-directory of the directory probe/modules according to the type of the new probe (antivirus, metadata, external…).

For a probe that is not a antivirus

1. Copy the directory skeleton to the new module (appropriate localisation).
Example with a module my_module with metadata type :

$ cp -r probe/modules/custom/skeleton/ probe/modules/metadata/my_module

	If there are packages to install, specify them in the file requirements.txt. Otherwise remove the file

	Adjust the file plugin.py according to the module :

	Adjust the class’s name with the name of your probe

	Fill in the fields of the class :- _plugin_name_ = [the plugin name]

	_plugin_display_name_ = [the field _name of the class of the probe]

	_plugin_version_ = [the version number]

	_plugin_category = [the type of the probe: IrmaProbeType.]

	_plugin_description = [uick description]

	_plugin_dependencies = [list of dependencies: platform, binary or/and file] => if used import from lib.plugins PlatformDependency, BinaryDependency or/and FileDependency

	_mimetype_regexp = [mimetype corresponding]

	Implement the functions corresponding to the type of the plugin

For an antivirus

In the case of an antivirus, it is a little different because an Antivirus class was created to avoid code’s duplication.
You can use the skeleton below:

plugin.py:

#
Copyright (c) 2013-2018 Quarkslab.
This file is part of IRMA project.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License in the top-level directory
of this distribution and at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
No part of the project, including this file, may be copied,
modified, propagated, or distributed except according to the
terms contained in the LICENSE file.

from .skeleton import Skeleton

from ..interface import AntivirusPluginInterface
from irma.common.plugins import PluginMetaClass

class SkeletonPlugin(AntivirusPluginInterface, metaclass=PluginMetaClass):

 # =================
 # plugin metadata
 # =================
 _plugin_name_ = "Skeleton"
 _plugin_display_name_ = Skeleton._name
 _plugin_author_ = "IRMA (c) Quarkslab"
 _plugin_version_ = "1.0.0"
 _plugin_category_ = "custom"
 _plugin_description_ = "Plugin skeleton"
 _plugin_dependencies_ = []
 _mimetype_regexp = None

 # ================
 # interface data
 # ================

 module_cls = Skeleton

 # If needed, overload the `verify` classmethod in order to check your class
 # is instanciable. It should return if everything is alright, otherwise
 # raise an exception. By default it checks that the module's attribute
 # `self.scan_path` is an existing file (cf. `super()._chk_scanpath`)
 #
 # @classmethod
 # def verify(cls):
 # pass

The metaclass PluginMetaClass handles the registering of the plugin to a plugin manager. It also checks that the class is instanciable thanks to the verify method.

skeleton.py:

#
Copyright (c) 2013-2018 Quarkslab.
This file is part of IRMA project.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License in the top-level directory
of this distribution and at:
#
http://www.apache.org/licenses/LICENSE-2.0
#
No part of the project, including this file, may be copied,
modified, propagated, or distributed except according to the
terms contained in the LICENSE file.

import logging

Choose the class you need to inherit from
from modules.antivirus.base import AntivirusUnix, AntivirusWindows

log = logging.getLogger(__name__)

Inhererit from AntivirusUnix or AntivirusWindows according to your plateform
class Skeleton(Antivirus):
 name = "Skeleton for Antivirus"

 # ==================================
 # Constructor and destructor stuff
 # ==================================

 def __init__(self, *args, **kwargs):
 # class super class constructor
 super().__init__(*args, **kwargs)

 # do your initialization stuff

The recipe is the same, the files with the corresponding module name and differents fields need to be updated.
The attributes in Antivirus._attributes are meant to be defined by the instanciation. One can either:

	leave it blank, in this case the super class will assign it a default value (eg. "unavailable" for self.version);

	define it directly (eg. self.scan_path = Path("/opt/skeleton/skeleton"));

	define a function to be called to assign it (eg. def get_scan_path(self): ...), the super class will take care of calling it and handling exceptions.

Testing the new plugin

Before testing, module’s necessary stuff (binaries, files, etc) must be provisioned to the VM.

$ cd ansible
$ vagrant rsync
$ vagrant ssh
$ sudo su deploy
$ cd /opt/irma/irma-probe/current
$ venv/bin/python -m extras.tools.run_module

This last command lists available modules.

Now, if the new module is available, its launching can be done:

$ venv/bin/python -m extras.tools.run_module my_module file

Automatic provisioning

Creating a new role

Create a new directory with this structure:

cd ansible
tree roles/quarsklab.my_module
roles/quarkslab.my_module/
+-- defaults
| +-- main.yml
+-- tasks
 +-- main.yml

tasks/main.yml is the default entry point for a role containing Ansible tasks.
In this file, write the instruction to install the module.
Add the file tasks/update.yml to write the informations for the update if necessary.
In defaults/main.yml it is usual to store default variables for this role.
If there are particular instructions, for example how to obtain a licence for a antivirus, add a README file.

Invoking the module role

Modify playbooks/provisioning.yml : add the module

-name : my_module
 hosts: my_module
 roles:
 - { role: quarkslab.my_module, tags: 'my_module'}

If a task update was defined, add the module in playbooks/updating.yml :

-name : my_module
 hosts: my_module
 roles:
 - { role: quarkslab.module, tags: 'my_module', task_from : update}

Defining hosts

Modify the environment to add the new probe.

For example for the allinone_dev :

$ cat environments/allinone_dev.yml
[... snip ...]
 virustotal:
 - brain.irma
 my_module:
 - brain.irma
 "probe:children":
 - clamav
 - comodo
 - mcafee
 - static-analyzer
 - virustotal
 - my_module

To evolve IRMA

	Adding a new probe
	Writing a Plugin for the probe
	For a probe that is not a antivirus

	For an antivirus

	Testing the new plugin

	Automatic provisioning
	Creating a new role

	Invoking the module role

	Defining hosts

Running Frontend applications at startup

We have ensured that the freshly installed Frontend is ready to be integrated to
your IRMA platform. Now, we can go a step further and make it launch
automatically all daemons when the system starts up so you will not need to
relaunch them manually every time.

We are using systemd to manage our celery daemons. Systemd is enabled by
default in most of modern Linux distributions (Archlinux, Debian, Ubuntu, RHEL,
CentOS, etc.). If your distribution does not provide systemd, brace yourself
and install it or manage your daemons in your own way.

We will create two new units called irma.frontend_app.service and
irma.frontend_api.service.

Configure Frontend APP

Create a file called irma.fontend_app.service located at
/etc/systemd/system/ with the following content:

/etc/systemd/system/irma.fontend_app.service
[Service]
ExecStart=/opt/irma/irma-frontend/current/venv/bin/python -m api.tasks.frontend_app
User=irma
WorkingDirectory=/opt/irma/irma-frontend/current
ProtectSystem=full
SyslogIdentifier=[irma.frontend]
StandardOutput=syslog
StandardError=syslog

Configure Frontend API

Create a file called irma.fontend_api.service located at
/etc/systemd/system/ with the following content:

/etc/systemd/system/irma.fontend_api.service
[Service]
ExecStart=/opt/irma/irma-frontend/current/venv/bin/uwsgi -s 127.0.0.1:8081 --disable-logging --master --workers 4 --need-app --chdir /opt/irma/irma-frontend/current --home /opt/irma/irma-frontend/current/venv
User=irma
ProtectSystem=full
SyslogIdentifier=[irma.frontend.api]

Manage IRMA with systemd

	There are two ways to enable IRMA in systemd

	
	Make all IRMA services wanted by the already setup multi-user.target.

	Create a new target irma.target for IRMA units and ask your system to reach
this target (performed by the automated installation).

Attach to multi-user.target

Advertise every IRMA unit to attach to multi-user.target. Simply add the
following line to every IRMA unit file.

...
WantedBy=multi-user.target

Create irma.target

Create a new file /etc/systemd/system/irma.target containing

/etc/systemd/system/irma.target
[Unit]
Description=IRMA target
Requires=multi-user.target
After=multi-user.target

Then, link every IRMA service to the IRMA target. Finally reload the systemd
configuration and launch IRMA.

$ sudo mkdir /etc/systemd/system/irma.target.wants
$ for unit in /etc/systemd/system/irma.*.service; do sudo ln -sf "$unit" /etc/systemd/system/irma.target.wants/"$unit"; done
$ sudo systemctl set-default irma.target
$ sudo systemctl daemon-reload
$ sudo systemctl isolate irma.target

Running Probe applications at startup

We have ensured that the freshly installed Probe is ready to be integrated to
your IRMA platform. Now, we can go a step further and make it launch
automatically all daemons when the system starts up so you will not need to
relaunch them manually every time.

On Linux, we are using systemd to manage our celery daemons. Systemd is enabled
by default in most of modern Linux distributions (Archlinux, Debian, Ubuntu,
RHEL, CentOS, etc.). If your distribution does not provide systemd, brace
yourself and install it or manage your daemons in your own way.

We will create a new unit called irma.probe_app.service.

Configure Probe APP

Create a file called irma.probe_app.service located at
/etc/systemd/system/ with the following content:

/etc/systemd/system/irma.probe_app.service
[Service]
ExecStart=/opt/irma/irma-brain/current/venv/bin/python -m brain.probe_tasks
User=irma
WorkingDirectory=/opt/irma/irma-brain/current
ProtectSystem=full
SyslogIdentifier=[irma.probe]
StandardOutput=syslog
StandardError=syslog

Manage IRMA with systemd

	There are two ways to enable IRMA in systemd

	
	Make all IRMA services wanted by the already setup multi-user.target.

	Create a new target irma.target for IRMA units and ask your system to reach
this target (performed by the automated installation).

Attach to multi-user.target

Advertise every IRMA unit to attach to multi-user.target. Simply add the
following line to every IRMA unit file.

...
WantedBy=multi-user.target

Create irma.target

Create a new file /etc/systemd/system/irma.target containing

/etc/systemd/system/irma.target
[Unit]
Description=IRMA target
Requires=multi-user.target
After=multi-user.target

Then, link every IRMA service to the IRMA target. Finally reload the systemd
configuration and launch IRMA.

$ sudo mkdir /etc/systemd/system/irma.target.wants
$ for unit in /etc/systemd/system/irma.*.service; do sudo ln -sf "$unit" /etc/systemd/system/irma.target.wants/"$unit"; done
$ sudo systemctl set-default irma.target
$ sudo systemctl daemon-reload
$ sudo systemctl isolate irma.target

 _images/scan6.png
“: JRMA

Back to the scan summary

File informations

eicarcomxt

68

EICAR virus test files

MDs. 440886 12feaBa8i360e82e1278abb02f

SHA1 '33058560e8112b7382066726021798b642114140

SHA256 2753021bbib6489e54d471899170b9d 16631c695ec2le2a2c4538aabi651id0f
First Scan Feb 13,2018 6:50 PM

LastScan Feb 14,2018 136 AM

_images/scan7.png
SHA256 2752021bbfb6489e54d47189917db9d 1663fc695ec2fe2a2c4538aabi6511d0f

First Scan Feb 13, 2018 6:50 PM

Last Scan Feb 14, 2018 1:36 AM
Antivirus

Name Result

Comodo Antivirus (Linux) ApplicUnwnt
eScan Antivirus (Linux)
AVG Antivirus Free (Linux) @

FSecure Antivirus (Linux) EICAR Test_File [FSE]

Metadata

TrID File Identifier

Responded in 0.09 s
Description

EICAR antivirus test file (7057/5)

Version Virus DB Version Duration (in secs)
1.1.268025.1 2018-02-13 2.02
7.021 7.74964 (13/02/2018) 219
13.0.3114 4793/15398 (13 Feb 2018) 10.07
11.10 2018-02-13_09 0.08
File Extension Ratio (in %)
.coMm 100.0

_images/scan4.png

_images/scan5.png
IRMA

30%

Files details

eicar.com.txt
eicarmsc
eicar.plain
eicar_msc.bin

Scan status:

Download report:

Scan Id:

Tasks:

Scan

(i)
e

6bd779a3-a1cc-4dd8-8954-1caba77453bd

_images/search_tag1.png
e O

Byname v

Type your search here

Last seen

SHA256

size

10

25

100

_images/search_tag2.png
e] 720

Byname v

Type your search here

Name Last seen

attachmentLexe Jan 8, 2016 10:06 AM

SHA256

'3462e869f7c7ac7394196ded4abAclcde0d1345048457003106¢1a0481fhas53

25

size

152402

_images/scan_flow.jpg
IRMA SCAN Workflow

SYNC TAsK DB READ
~SMOTA,,, . IDOREAD,,,
ASYNC TASK. DBWRITE
—SWC TR, DOWRTE,

_images/search_name.png
IRMA

Name

eicar.com
eicar.com.ixt
eicarmsc
efcar_msc.bin
eicar_niveau14.bin
eicar_niveau14.Jog

elcar_niveaut zip

Go!

Last seen
Feb 14,2018 1:02 AM
Feb 14,2018 1:02 AM
Feb 14,2018 1:02 AM
Feb 14,2018 1:02 AM
Feb 14, 2018 12:58 AM
Feb 14, 2018 12:58 AM

Feb 14, 2018 12:57 AM

Search

SHA256

2752021bbfb6489e54d47189917db9d 1663fc695ec2fe2a2c4538aabi6511d0f

2752021bbfb6489e54d47189917db9d 1663fc695ec2fe2a2c4538aabi6511d0f

23847cBadce5a82cc88971c7a27i7e16511997123dcee75a0739f4bBa3gd6eda

23847cBadce5a82cc88971c7a27i7e16511997123dcee75a0739f4bBa3gd6eda

b9c0b390638e6662082a8afad4cdcd 11ddeaseid7a48b85bead 12883607 ce0af

b9c0b390638e6662082a8afad4cdcd 11ddeaseid7a48b85bead 12883607 ce0af

46bb5416d6d4aal787b291ab41bboafbagc28decac2230ee499787aadfB6icat

Size

68

68

91

91

34573

34573

474

_images/swagger1.png
[172.16.1.30/swagger/

+} swagger

IRMA API

Apache 2.0

Show/Hide | List Operations | Expand Operations

Listall scans

Create ascan

/scans/{scanld}

Retrieve a scan

/scans/{scanld)/launch
/scans/{scanld}/cancel

Iscans/{scanld)/files

Launch a scan

Cancel ascan

Create a file upload

H /scans/{scanldy/results

List all results from a scan

Results

Show/Hide | List Operations | Expand Operations

Probes

Show/Hide | List Operations | Expand Operations

Files

[ase urt: /api/v1. 1, apt version: 1.1.0]

Show/Hide | List Operations | Expand Operations

_images/swagger2.png
/ ® swagger ut S\ R

Swagger UI- Google Chrome

»

<+ » O @& [} 172.16.1.30/swagger/#/Probes/get_probes

O%is| & @

IEEN /scansiiscanldy/cancel
EZR /scans/iscantdyfiles
Iscans/{scanld}/results

Cancel a scan

Create afile upload

List all results from a scan

[sase ure: /api/v1.1, apr version: 1.1.0]

Results Show/Hide | List Operations | Expand Operations
Probes Show/Hide | List Operations ~ Expand Operations
/Iprobes Retrieve active probes information
Implementation Notes
Returns Information about availables probes for a scan.
Response Class (Status 200)
Mode! Model Schema
o
Response Content Type |application/json ¥
Response Messages
HTTP Status Code Reason Response Model Headers.
default Unexpected error Model Model Schema
€
“type": "api_error”,
"message”: "string"
1
Files Show/Hide | List Operations | Expand Operations

.

_images/scan1.png
IRMA

Selection

Drop your files in here Please select the files to scan for malwares

Or choose them with this: | Choose file

_images/scan2.png
IRMA

Selection

Drop your files in here

Or choose them with this:

Choose file

eicar_msc.bin
eicar.plain
eicarmse

elcar.com.txt

Scan for malwares

X X X x

_images/irma_cli.png
irna@demo ~/irma-frontend/frontend/cli $./irma.py -h
usage: irma.py [-h] [-v] {list,scan,results,cancel} ...

command line interface for IRMA

positional arguments:
{list,scan, results, cancel}
sub-comnand help
list list available analysis
scan scan given filename list
results print scan results
cancel cancel scan

optional arguments:
-h, --help show this help message and exit
v verbose output

irma@demo ~/irma-frontend/frontend/cli $

_images/overview.jpg

_images/scan3.png
IRMA

Selection

eicar_msc.bin
Drop your files in here elcarplain

elcarmsc

elcar.com.txt
Or choose them with this: | Choose file

Scan parameters

Scan for malwares

X X X x

_images/swagger3.png
€
"type": "api_error”,
"message": "string"

3

Hide Response

Request URL

http://172.16.1.30/api/v1.1/probes

Response Body

L
"StaticAnalyzer™,
“ClamAv",
“Unarchive

Response Code

200

Response Headers

{
"date": "Fri, 08 Jan 2016 10:40:42 GMT"

“content-encoding": "gzip",
“server”: "nginx”,
keép-alive”,

“connection’
“transfer-encoding”: “chunked”,
“content-type”: "application/jSon”

‘Swagger UI - Google Chrome -+ x
/ ® swagger ut <\ la)
<« > O @ |[)17216.1.30/swagger/#/Probes/get_probes Oy B® =
RESPONSe Vessages =
HTTP Status Code Reason Response Model Headers
default Unexpected error Model | Model Schema

nav.xhtml

 Table of Contents

 		
 IRMA: Incident Response & Malware Analysis

 		
 Introduction

 		
 Purpose

 		
 File Analysis Process

 		
 Supported Analyzers

 		
 Antiviruses

 		
 External analysis platforms

 		
 File database

 		
 Metadata

 		
 Installation

 		
 Software requirements

 		
 Hardware requirements

 		
 Automated Installation

 		
 Environment file

 		
 Vagrant setup

 		
 Ansible setup

 		
 Windows provisioning

 		
 Production environment

 		
 Extras

 		
 Use IRMA

 		
 Web Interface

 		
 How to do a scan

 		
 How to do a research

 		
 Playing with tags

 		
 Command Line Interface

 		
 Installation

 		
 Administration

 		
 Environment configuration

 		
 Components configuration

 		
 Frontend configuration

 		
 Brain configuration

 		
 Probe configuration

 		
 SSL settings

 		
 HTTPS

 		
 RabbitMQ

 		
 Postgresql

 		
 External PKI

 		
 Database migration

 		
 Requirements

 		
 Content

 		
 Usage

 		
 Tips and tricks

 		
 Technical description

 		
 API documentation

 		
 Frontend

 		
 Installation

 		
 Architecture

 		
 Brain

 		
 Installation

 		
 Architecture

 		
 Nginx

 		
 SQL server

 		
 Probe

 		
 Architecture

 		
 Scan workflow

 		
 Frontend API Part (frontend_api/uwsgi+hug)

 		
 Frontend Celery Part (frontend_app/celery)

 		
 Brain Celery Part (scan_app/celery)

 		
 Probe Celery Part (probe_app/celery)

 		
 Brain Celery Part (result_app/celery)

 		
 Frontend Celery Part (frontend_app/celery)

 		
 Functional Testing

 		
 Debug

 		
 Extending IRMA

 		
 Adding a new probe

 		
 Writing a Plugin for the probe

 		
 Testing the new plugin

 		
 Automatic provisioning

 		
 Troubleshooting

 		
 Check Celery configuration

 		
 Celery Workers

 		
 Verifying RabbitMQ configuration

 		
 Checking for vhosts

 		
 Checking for users

 		
 Changing password

 		
 Check SFTP accounts

 		
 FTP-TLS accounts

 		
 Restful API

 		
 Logs

 		
 How to debug

 		
 Collect debug files

 		
 Switch debug log on

 		
 Debug a probe

 		
 Debug Ansible Provisioning

 		
 References

 		
 Disclaimer

 		
 License

 		
 Apache License, version 2.0

 		
 Authors

 		
 Resources

 		
 Screenshots

 		
 Command Line Interface

 		
 Web Interface

_images/add_tag2.png
Back to the scan summary

File informations

maware x| Addaiag

Filename attachmentL.exe
size (bytes) 152402

Mimetype PE32 executable (GUI) Intel 80386, for MS Windows

MDs 37¢8801ea500Cd5TTc6ide12c131640

SHAL b0a9BBD50C45493757514cd6/04930542a5778

SHA256 3462686017c7ac7304196e44abAcTcde001345048457003106C 1048102853

First Scan Jan 8, 2016 10:06 AM

Last Scan Jan 8, 2016 10:06 AM

_images/webui3.png
IRMA

Scanstatus: [T

Scan Id: 1ic46d12-2940-461f-9271-280588dcea56

Scan

Tasks: 55/60

o

attachment1.exe
attachment2.exe
attachment3.exe
attachmentd.exe

attachmentS.exe

_images/infra.jpg
IRMA Overview

N/
y PROBE =)

< m y

CELERY
. AMQP SFTP_, HTTP
ﬁ HUG

_images/webui4.png
File informations

File informations

Antivi
Extemal

Filename attachment3.exe

Size (bytes) 282624

MD5 374c8005214b6ce57200aa23571219b0

SHA1 edbbf7abclcade1e6b7064e4b73241b50913c830

SHA256 feBe6492fe665ae2ecalb9aBh9i355iee22322438530923a4b638511 d7icd49b
Apr 15,2015 2:13 PM

Apr 15,2015 2:13 PM

Antivirus

Name Result Version Duration (in secs)
AVG AntiVirus Free Win32/Wapomi 1303114 266

Avast Core Security Win32:GenMalicious-GHB [Tl 1.2.0 008

Bitdefender Antivirus Scanner for Unices. Win32.Viking. AY 7141118 358

Clam AntiVirus Scanner Win.Trojan. Agent-863531 0986

Comodo Antivirus for Linux VirusWin32.Qvod.~Gen 1.1.268025.1

eScan Antivirus for Linux Desktop Win32.Viking.AY(DB) 706

FSecure Antivirus for Linux Desktop Win32.Viking. AY [Aquarius] 1020

McAfee VirusScan Command Line scanner W32/Fujacks be virus 6.0.4.564

VirusBlokAda (Console Scanner) BScope. Trojan.Dropper.we

Zoner Antivirus for Linux Desktop

External

_images/webui1.png
LIRMA

Selection

attachment!.exe

Drop your files in here attachment2.exe

attachment3.exe
attachmentd.exe

Or choose them with this: | Choose file | attachments.exe

Scan parameters

Scan for malwares

_images/add_tag1.png
Back to the scan summary

Add atag

Filename attachment.exe
Size (bytes) 152402

Mimetype PE32 executable (GUI Inel 80385, for MS Windows

D5 37cBBd1ea50dcdSTcEIde12c1361640

sHAL D0a9BES0CAS497STSHACABI0493454225T78

SHAzs6 3463686917c7ac7394106deddabAclcde0d134504845703106¢120481102853
First Scan Jan’®, 2016 10:06 AM

Last Scan Jan 8, 2016 10:06 AM

_images/webui2.png

_static/comment-bright.png

_images/webui5.png
Metadata

PEID

Responded in 0.04

Warning:

"No match found"

StaticAnalyzer
Responded in 0.09 s

v object
mports: Array [5]
v e: Object
- imports: Array [15]
dll: "ADVAPI32.d11"
- 1: object
- 2: object
- 3: object
- 4: Object
peid_signatures: null
- pe_exports: Array [6]
imported_dll_count: 5
v pe_resources: Array [4
v e: Object
name: "RT_DIALOG"
language: "LANG_ENGLISH"
filetype: “data”
sublanguage: "SUBLANG_ENGLISH_US"
offset: "0x00006200"
size: "0x00000102"
v 1: Object
name: "RT_DIALOG"
language: "LANG_ENGLISH"
filetype: “data”
sublanguage: "SUBLANG_ENGLISH_US"
offset: "0x00006200"
size: "0x00000102"
v 2: Object
name: "RT_STRING"
language: "LANG_ENGLISH"
filetype: “data”
sublanguage: "SUBLANG_ENGLISH_US"
offset: "0x00006950"
size: "0x00000836"
- 3: object
- pe_versioninfo: Array [19]
- pe_sections: Array [4

_static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

