

IRhelper (work in progress)

A play POC tool for first quick analysis of memory images for fun and learning!

IRHelper is meant to be a simple tool for automating as much as possible
the tasks an analyst would perform when acquiring a memory dump. It was
inspired by the SANS Windows Forensic Analysis poster which provides steps
to perform during DFIR assuming both disk and memory dumps are available.

https://digital-forensics.sans.org/community/cheat-sheets

https://digital-forensics.sans.org/media/poster-windows-forensics-2016.pdf

	Step 01: Prep Evidence/Data Reduction

	Step 02: Anti-Virus Checks

	Step 03: Indicators of compromise search

	Step 04: Automated memory analysis

	Step 05: Evidence of persistence

	Step 06: Packing/Entropy check

	Step 07: Review event logs

	Step 08: Super timeline examination

	Step 09: By-Hand memory analysis

	Step 10: By-Hand 3rd Party Hash lookups

	Step 11: MFT Anomalies

	Step 12: File time anomalies

	Step 13: If you got malware then Hurrey !!! If not look deeper!

IRHelper will cover for you the following steps which normally would be run By-Hand!

	Step 09: By-Hand memory analysis

	Step 10: By-Hand 3rd Party Hash lookups

	Bonus: Try to extract other information which would normally be found on the disk

The Bonus part is only best effort as data might be paged so we wont have enough information
to extract what we want.

So the high level objectives of IRHelper would be:

	To extract as much information as possible from a memory dump and present it to the user in well presented/readable format

	To enable even novice users to be able to use it and extend it

	Learn while you play with it (Python/Memory analysis/Writing Volatility plugins)

	Integrate with other tools which can help in your decision making progress

	Focus on what matters

	Experiment with new techniques of detecting suspicious patterns

	Utilize as much as possible the existing volatility plugins

	Have fun running memory analysis!

Volatility is an amazing and very powerful tool for performing memory analysis.
However for the novice user it does come with some drawbacks.

	Has to decide which plugins to run and what information is valuable for further analysis

	Requires scripting or development/coding skills to take full advantage of it

	Difficult to keep track of the different information and where to go next

	To detect some obvious patterns or leads can take long time

	Different OS versions require from the user to know by heart many OS internals

Similar tools

	Volutility

	VolatilityBot

	Evolve

	DAMM

DAMM and VolatilityBot have similar objectives to irhelper.
However DAMM is not easy to extend unless the user knows how to write volatility
code and does not provide standard report at the end of the analysis and integrations
with 3rd party tools. VolatilityBot was discovered after started writing irhelper :)
although they have quite different objectives.
IRHelper is also not meant to be very production code !

IRHelper concepts

	Information extraction: IRHelper modules used to extract as much information as possible from the memory image and store them for later processing. Usually sqlite is best option.

	Analysers: Analyser modules or code is used to run data analysis on the extracted information. Analysers can combine multiple information and logic to provide some results or indicators which are not readily available to the original plugin or would take multiple steps by hand to construct

Prerequisites

There are some 3rd party tools which are required to run the different modules. One basic one is Volatilty. Volatility has to
be available in your path otherwise it will not be found from the modules and and you have to specify the full path. Currently
volatility 2.5 was used for the development of the current code.

Other tools are used such as:

	Exiftool

	ClamAV

	RegRipper

Note: You might encounter problems with matplotlib. In which case disable from the settings file.

Install

Installation is quick and easy:

git clone https://github.com/etz69/irhelper.git
cd irhelper
virtualenv venv
source dev/bin/activate
pip install -r requirements.txt

Directory structure

The directory structure of the project is as follows:

irhelper.py
This is the main program to execute

vol_plugins
Contains custom or contrib unofficial Volatilty plugins

templates
Contains the report template

dump
Directory to dump code or artifacts from memory for further analysis

modules
Contains all irhelper modules

export
This is where you will find your shiny report !

docs
This amazing documentation !

Usage

(venv)fsck:irhelper dxl$ python irhelper.py -h

usage: irhelper.py [-h] [-p [PROFILE]] [-r [RISK]] [--cache] [--debug]
 [--initdb] [--hash] [--vt] [--osint] [-v]
 reportTemplate memoryImageFile

 ;)(;
 :----:
C|====|
 | |
 `----

The IR helper python tool!

positional arguments:
 reportTemplate Report template to use
 memoryImageFile The memory image file you want to analyse

optional arguments:
 -h, --help show this help message and exit
 -p [PROFILE], --profile [PROFILE]
 Volatility profile (Optional)
 -r [RISK], --risk [RISK]
 Risk level to show processes (default 2)
 --cache Enable cache
 --debug Run in debug
 --initdb Initialise local DB
 --hash Generate hashes
 --vt Check VirusTotal for suspicious hash (API KEY
 required)
 --osint Check C1fApp for OSINT of ip/domain (API KEY required)
 -v, --version show program's version number and exit

Run

To run irhelper just point to the image you want to analyse:

python irhelper.py --initdb --debug templates/report.html image_samples/conficker.img
DEBUG: Cleaning DB file
No cache, normal run

Gathering image initial information

KDBG: 0xf80002e400a0
DTB: 0x187000
KUSER_SHARED_DATA: 18446734727860715520
id: 1
Number of Processors: 1
KPCR for CPU 0: 18446735277665033472
AS Layer1: AMD64PagedMemory (Kernel AS)
Image date and time: 2012-04-06 21:28:39 UTC+0000
Image local date and time: 2012-04-06 17:28:39 -0400
PAE type: No PAE
Image Type (Service Pack): 1
Suggested Profile(s): WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)
AS Layer2: FileAddressSpace (irhelper/image_samples/conficker.img)

0) Win7SP0x64
1) Win7SP1x64
2) Win2008R2SP0x64
3) Win2008R2SP1x64

Final Report

[image: report_screenshot]

Contributing - We need you !

There are different ways you can contribute

	Write documentation

	Write code

	Report bugs

Development

You can also run each module on its own while testing:

python modules/cmds/vol_imageinfo_module.py run image_samples/conficker.img WinXPSP3x86

Python version: 2.7.10 (default, Oct 23 2015, 19:19:21)
[GCC 4.2.1 Compatible Apple LLVM 7.0.0 (clang-700.0.59.5)]

DEBUG: _cache: True
DEBUG: PLUGIN_DIR: /tmp/irhelper/vol_plugins/
DEBUG: _VOLATILITY_PROFILE: WinXPSP3x86

Gathering image initial information

DEBUG: ['vol.py', '--cache', '-f', 'image_samples/conficker.img', 'imageinfo', '--output=sqlite', '--output-file=results.db']
DEBUG: Child process pid: 38001
Volatility Foundation Volatility Framework 2.5
{
 "status": true,
 "message": "",
 "cmd_results": {
 "KDBG": "0xf80002e400a0",
 "DTB": "0x187000",
 "KUSER_SHARED_DATA": "18446734727860715520",
 "id": 1,
 "Number of Processors": "1",
 "KPCR for CPU 0": "18446735277665033472",
 "AS Layer1": "AMD64PagedMemory (Kernel AS)",
 "Image date and time": "2012-04-06 21:28:39 UTC+0000",
 "Image local date and time": "2012-04-06 17:28:39 -0400",
 "PAE type": "No PAE",
 "Image Type (Service Pack)": "1",
 "Suggested Profile(s)": "WinXPSP2x86, WinXPSP3x86 (Instantiated with WinXPSP2x86)",
 "AS Layer2": "FileAddressSpace (/tmp/irhelper/image_samples/conficker.img)"
 }
}

Logging

For logging purposes there are three methods used:

debug()
err()
print_header()

And the standard print!

Database

Various DB (sqlite) utils can be found in the modules.db.DBops

New module development

Edit cmd_processor.py and add your module as a method in the Modules() class. For example
you can follow the skeleton module. All you have to do is return the standard result dict
and create the appropriate section in jinja style (and bootstrap) in the templates/report.html file.

For example we want to create a new module to capture the command line executed by the user. This
will be done by running volatility with the cmdscan plugin, store the results in the sqlite and
finally return a dictionary with the cmds executed.

We will name our module vol_cmdline_module.py and place it inside modules/cmds/

Add our module class name in the cmd_processor.py:

def vol_cmdscan(self, **kwargs):
 '''
 Run cmdscan and record the command execution output

 Args:
 project (project): the project

 Returns:
 dict: Returns standard module response dict
 '''

 if 'project' in kwargs:
 _project = kwargs['project']

 #The module method to run
 ircmd.vol_cmdline_module.vol_cmdscan(_project)
 #Retrieve the results
 return ircmd.vol_cmdline_module.get_result()
 else:
 raise ValueError("Project info is missing")

Finally copy the skeleton_module.py in the new file and adjust!

Research

Step 1: Prep evidence and data reduction

action: Hash lists from NSRL
description: Download known MD5 hashes from NSRL for minimizing the false positives
references:

	https://www.nsrl.nist.gov/Downloads.htm

	http://nsrlquery.sourceforge.net

feature:

Step 02: AV Checks

action: Run AV scans
description: Run AV scan on extracted executables and dlls. Download yara rules
and search on the different memory artifacts. ClamAv also supports yara
references:

feature:

Step 03: IOC search

action: Search for IOCs
description: Download yara rules and search on the different memory
artifacts. ClamAv also supports yara
references:

	https://github.com/Yara-Rules/rules

	https://malwareconfig.com/stats/

feature:

Step 04: Automated memory analysis

action: Automate daunting tasks for memory analysis
description: Currently this is work in progress
references:

feature:

Step 06: Packing/Entropy check

action: Calculate the density (entropy) of specific filetypes (exe and dll)

description: Files with low entropy than normal (what is normal?) may be packed executables
which may lead you to potential malware on the system. The tool we select to carry out
the scan is DensityScout! We will also try standard entropy with python implementation (slower)
and slightly different than DensityScout and other approaches to detect packing
Most likely files with “entropy” less than 0.1 (DensityScout) we can bring to the attention of the analyst.
However in a default Windows installation we can see that there several legitimate files
below 0.1 . This technique is likely to produce false positives.Here we can use outliers

references:

	https://www.cert.at/downloads/software/densityscout_en.html

	https://github.com/bridgeythegeek/regentropy

	https://github.com/dchad/malware-detection

feature: Packing entropy information of extracted files

Indices and tables

	Index

	Module Index

	Search Page

Module documentation

	
class modules.utils.helper.Project(settings_path)

	Project class for all related data and methods of the project. This is
the main class we have to load at the start of the project. It contains
the necessary values for most of the project details such as the profile
, directory locations, flags for features.
It also provides several methods to provide access globally to the
standard vars

	
clean_db()

	Deletes the DB, cache and all files from dump dir

	
get_plugins_dir()

	Returns the plugin directory for our custom plugins

	
get_root()

	Return the root directory of the project. This is defined in the
settings.py file and it is mandatory

	
init_db(db_name)

	Set the DB name to be used from now on

@db_name (str): the db name

	
static load_properties()

	Load the settings.py file

	
class modules.cmd_processor.CommandProcessor

	

	
class modules.cmd_processor.Modules

	Simple command processor for adding new modules and retrieving results
All modules return a dict which is of the following format:

result = {'status': True, 'message': '', 'cmd_results': ''}

status: If the module completely fails set this to False

message: A descriptive message , usually to show why it failed

cmd_results: This is usually a dict containing all the data which will be put in the report template

	
vol_cmdscan(**kwargs)

	Run cmdscan and record the command execution output

	Args:

	project (project): the project

	Returns:

	dict: Returns standard module response dict

	
vol_getosversion(**kwargs)

	Reads registry keys and tries to identify OS version information

	Args:

	project (project): the project

	Returns:

	dict: Returns standard module response dict

	
vol_imageinfo(**kwargs)

	Retrieves basic image info such as the type, profiles, KDBG etc..

	Args:

	project (project): the project

	Returns:

	dict: Returns standard module response dict

	
vol_malfind_extend(**kwargs)

	Run malfind and analyses the output. ToDo ML for asm

	Args:

	project (project): the project

	Returns:

	dict: Returns standard module response dict

	
vol_netscan(**kwargs)

	Runs different modules to discover network connectivity

	Args:

	project (project): the project

	Returns:

	dict: Returns standard module response dict

	
vol_pslist(**kwargs)

	Get as much as possible process information and dump pslist binaries
to disk. This module will also run exiftool

	Args:

	project (project): the project

	Returns:

	dict: Returns standard module response dict

	
vol_regdump(**kwargs)

	Dumps SAM registry and tries to extract user information

	Args:

	project (project): the project

	Returns:

	dict: Returns standard module response dict

	
class modules.db.DBops.DBOps(db)

	
	
clean_db(db)

	Deletes the sqlite file (cleans the db)

@db: Target db name (file)

	
get_all_rows(table_name)

	Retrieve all rows from a table

@table_name: the table name

	
insert_into_table(table_name, row)

	Insert data into a table

@table_name: the table name

@data: Data is an array containing list of dictionary items in the form
of columnName:value

	
new_table(table_name, table_fields)

	Create a new db table

@table_name: the table name

@table_fields: Table fields is a dict containing the name of the
column as the key and the data type as the value
{‘id’:’integer’,’name’:’text’,’path’:’text’}

	
new_table_from_keys(table_name, table_keys)

	Create a new db table based on table keys with default type text

@table_name: the table name

@table_fields: Table fields is a dict containing the name of the
column as the key and the data type as the value
{‘id’:’integer’,’name’:’text’,’path’:’text’}

	
patch_table(table_name, column_name, column_type)

	Add a column to an exisitng table

@table_name: the table name

@column_name: the new column name

@column_type: The type of the new column

	
sqlite_query_to_json(query)

	Execute a query and return all results in json format

@query (str): A string which describes the query for sqlite.
Complex queries with filters do not work always

	
table_exists(table_name)

	Check if a table exists

@table_name: the table name

	
update_value(table_name, column_name, value, key_name, key)

	Update a value in a table

@table_name: The table name

@column_name: The column name

@value: The new value

@key_name: The key name you want to filter on

@key: The key value you want to filter on

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 modules	

 	
 	
 modules.cmd_processor	

 	
 	
 modules.db.DBops	

 	
 	
 modules.utils.helper	

Index

 C
 | D
 | G
 | I
 | L
 | M
 | N
 | P
 | S
 | T
 | U
 | V

C

 	
 	clean_db() (modules.db.DBops.DBOps method)

 	(modules.utils.helper.Project method)

 	
 	CommandProcessor (class in modules.cmd_processor)

D

 	
 	DBOps (class in modules.db.DBops)

G

 	
 	get_all_rows() (modules.db.DBops.DBOps method)

 	
 	get_plugins_dir() (modules.utils.helper.Project method)

 	get_root() (modules.utils.helper.Project method)

I

 	
 	init_db() (modules.utils.helper.Project method)

 	
 	insert_into_table() (modules.db.DBops.DBOps method)

L

 	
 	load_properties() (modules.utils.helper.Project static method)

M

 	
 	Modules (class in modules.cmd_processor)

 	modules.cmd_processor (module)

 	
 	modules.db.DBops (module)

 	modules.utils.helper (module)

N

 	
 	new_table() (modules.db.DBops.DBOps method)

 	
 	new_table_from_keys() (modules.db.DBops.DBOps method)

P

 	
 	patch_table() (modules.db.DBops.DBOps method)

 	
 	Project (class in modules.utils.helper)

S

 	
 	sqlite_query_to_json() (modules.db.DBops.DBOps method)

T

 	
 	table_exists() (modules.db.DBops.DBOps method)

U

 	
 	update_value() (modules.db.DBops.DBOps method)

V

 	
 	vol_cmdscan() (modules.cmd_processor.Modules method)

 	vol_getosversion() (modules.cmd_processor.Modules method)

 	vol_imageinfo() (modules.cmd_processor.Modules method)

 	
 	vol_malfind_extend() (modules.cmd_processor.Modules method)

 	vol_netscan() (modules.cmd_processor.Modules method)

 	vol_pslist() (modules.cmd_processor.Modules method)

 	vol_regdump() (modules.cmd_processor.Modules method)

 nav.xhtml

 Table of Contents

 		IRhelper (work in progress)

_images/ScreenShotReport.png
Image information [./POCArea/irhelper/sample_images/stuxnet.img]

Suggested Profiles
Selected Profile

KDBG

Number of Processors
Image date and time
Analysis date and time
MD5

SHA1

Users

Username
Administrator
Guest
HelpAssistant
SUPPORT_388945a0

ASPNET

Process Risk index

PID Name

600 csrss.exe
1928 Isass.exe
1928 Isass.exe

WinXPSP2x86,WinXPSP3x86

WIinXPSP3x86

0x805450e0

1

2011-06-03 04:31:36 UTC+0000

2017-10-30 09:50:22 UTC

NONE

NONE

Group(s)

Not implemented
Not implemented
Not implemented
Not implemented

Not implemented

MD5

Last Login

29 October 2010 - 17:11:47
Never

Never

Never

Never

8bb13e084996bb2bfa7b4e18bdf9a85¢c

e1e00c2d5815e4129d8ac503f6fac095

e1e00c2d5815e4129d8ac503f6fac095

OS Version

SP
CurrentVersion
Edition
Organization
Owner
Domain

Computer name

Account creation

22 August 2010 - 13:32:25
22 August 2010 - 13:32:25
22 August 2010 - 17:35:11
22 August 2010 - 17:35:56

26 August 2010 - 00:00:47

VirusTotal

9 1/64

$ 46/65

$ 46/65

Microsoft Windows XP
Service Pack 3

5.1

Jan

JAN-DF663B3DBF1

Account type
Default Admin User
Default Guest Acct
Custom Limited Acct
Custom Limited Acct

Custom Limited Acct

g
g
|||i
g

_static/plus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

_static/comment.png

_static/down.png

_static/up-pressed.png

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

