

Welcome to the documentation for the IRATE project

The IRATE (IRvine Astrophysical simulaTion structurE) package contain tools
for accessing and validating HDF5 files following the IRATE format, a format
for astropysical n-body and hydrodynamical simulations.

Contents:

	Getting and Installing IRATE
	Getting IRATE

	Installing

	IRATE Format Specification
	IRATE File Format
	Unit Information

	Other Metadata

	Particle Data

	Grid Data

	Halo Catalogs

	Galaxy Catalogs

	Merger Trees

	Examples

	Command Line Scripts and Conversion Tools
	IRATE Utilities
	Validate IRATE File Structure

	Gather IRATE File

	Format Converters
	Tipsy Binary -> IRATE

	Gadget Binary -> IRATE

	EnBiD -> IRATE

	Gadget Binary + EnBiD -> IRATE

	AHF ASCII -> IRATE

	AHF Particles -> IRATE

	Rockstar -> IRATE

	Custom Validators/Extending the IRATE Format
	Writing Validator Subclasses

	Tips for Using IRATE and writing I/O modules

	Reference Guide
	irate.core Module

	irate.validate Module

	irate.ahf Module

	irate.gadget Module

	irate.enbid Module

	irate.rockstar Module

	irate.tipsy Module

Indices and tables

	Index

	Module Index

	Search Page

Getting and Installing IRATE

Getting IRATE

You can get the latest version of the IRATE format from bitbucket [http://bitbucket.org/]
at the IRATE-format [http://bitbucket.org/eteq/irate-format/overview]
project page. You’ll need to install mercurial [http://mercurial.selenic.com/]
and just run the command at the top of the project page that begins with hg clone.
Once a release is ready, it will appear on PyPI [http://pypi.python.org/pypi]

Installing

Of course, you must have python [http://www.python.org/] installed before you
can do anything with IRATE, although most operating systems other than Windows
have it installed automatically.

Once you have a copy of the IRATE source code, you will need to be sure you
install the HDF5 libraries (libhdf5) which can be found on the HDF5 web site [http://www.hdfgroup.org/downloads/index.html], although it’s usually much
easier to just install using a package manager if your OS has one. IRATE
requires at least v1.8 of the HDF5 format.

Additionally, if you intend to convert Tipsy binary format files to IRATE, you
will need to have <Cython http://cython.org/>_ installed before you install
IRATE.

Two other packages are needed by IRATE - h5py [http://code.google.com/p/h5py/], and numpy [http://numpy.scipy.org/]. If
you so desire, you can install these yourself beforehand, although the install
process for IRATE should download and install it for you

Once you have the requirements satisfied, execute the following command in the
IRATE source code directory:

python setup.py install

Note that on most unix-like systems, you will have to run this command as root,
or (e.g. Ubuntu) include the command sudo in front of it. This should
install IRATE, and you can go ahead and use any of the scripts or library
components.

IRATE Format Specification

This document describes the specific required structure of the IRATE format for
format version 0.

All IRATE files are HDF5 [http://www.hdfgroup.org/HDF5/] files, and hence
usually have either an .h5 or .hdf5 extension.

IRATE File Format

The main data file for an IRATE format is referred to as simply an “IRATE file”.
These files may store any number of the actual outputs of a simulation (typically
meaning multiple snapshots), associated halo and/or galaxy catalogs and merger
trees, and any other data that might be associated with such a simulation
(e.g. black hole catalogs).

Note

An IRATE file is intended to hold at most one simulation. Multiple
simulations should be stored as multiple separate IRATE files. A single
simulation can, however, be spread over multiple files - see the
irate.core.scatter_files and irate.core.gather_files
functions for examples. In that case, the root file that contains the main
heirarchy is the “IRATE file” and the others are ancillary files.

To conform to the IRATE standard, such a file must satisfy the following
conditions:

	The root of the file must have an integer attribute named ‘IRATEVersion’
that specifies the version of the IRATE format that the file obeys. The
format version for this documentation is 0. The format version
for the currently-installed IRATE tools can always be accessed as an integer
via irate.formatversion.

	At the root of the file, there must be a Group ‘Cosmology’.
This Group must have the following HDF5 attributes to
specify the cosmology that defines the data:

	‘HubbleParam’

	‘OmegaMatter’

	‘OmegaLambda’

	‘OmegaBaryon’

	‘PowerSpectrumIndex’

	‘sigma_8’

Furthermore, if the cosmology used has an accepted name (e.g. WMAP-7), it is
strongly recommended that the Group have an additional
attribute, ‘Name’, for human readability; such an attribute, however, is not
required.

Some cosmologies may include additional parameters, in which case such
parameters can be included as attributes of the ‘Cosmology’ group, or as
datasets if such information can only be stored in array form. The naming
conventions used above are recommended for custom parameters.

For non-cosmological simulations, the ‘Cosmology’ Group must
still be present; however, to signify that the cosmology is unimportant, all
of the attributes should be set to zero and the ‘Name’ attribute should be
set to ‘Non-Cosmological.’

	The root of the file must also contain a Group named
‘SimulationProperties’. Various properties of the simulation, such as the
box size and assorted flags, should be provided in this Group.
If it’s possible, they should be given as attributes; however,
it is accepted in the format that this group contain datasets as well.

	Also at the root of the file, there may be any number of Groups with names of
the form ‘Snapshot#####’, where the # is typically a number identifying the
output in the context of the simulation, padded to be five digits long (e.g.
Snapshot 35 would be saved under /Snapshot00035). Each Snapshot
Group should have an attribute named ‘ScaleFactor’,
but if there’s neither particle nor grid data contained within the the
snapshot, it’s not required. It must contain only other Groups, which may be
‘ParticleData’ or ‘GridData’ (whose individual requirements are discussed in
Particle Data and Grid Data, repectively), along
with any number of halo or galaxy catalogs (described below in
Halo Catalogs and Galaxy Catalogs).

Todo

Developers, Should redshift be required? It’s not provided by halo catalogs usually, so
we’d be requiring users to manually type it in.)

Todo

Developers, Is requiring that the simulation groups be called “Snapshot#” too
restrictive? Should some other naming convention be required, instead? Or
just say any groups not explicitly called for here will be treated as
snapshots regardless of their names (that’s in conflict with the second bullet point below)?

	The root of the file may (but is not required to) contain a ‘MergerTrees’
Group, which holds information about the merger trees in the
simulation. If present, this group must obey the format specified in
Merger Trees.

	The root of the file may also contain any other Groups that are
desired, but their form is not specified in the format. Additionally, it is
strongly recommended that they follow the same conventions with regards to
units and naming structure that are laid out elsewhere in this documentation.

Todo

Developers, do we want to allow this, or should there be nothing else
allowed at the root level?

	There must not be spaces in any group names so as not to confuse some HDF5
tools that don’t play well with spaces.

Note

All group and attribute names are case-sensitive.

Unit Information

For all datasets that have units associated with them, those units should be
stored either in the individual datasets as attributes, or as
attributes of the Group that contains the datasets. In either
case, it should be presented in both human readable and in the form of a
conversion factor to CGS units. If a dataset does not have units, it will be
assumed to be dimensionless.

Todo

Developers, how do you like this method of including units sound? Its based
on Andrew’s and the yt/GDF format scheme...

If the units are attached directly to the Dataset that they
relate to, they must be named ‘unitname’ and ‘unitcgs’; if they are instead
attached to a Group above them, the names should be prepended
with the exact name of the Dataset that they relate to; e.g.
the units for the Dataset ‘R200b’ would be named ‘R200bunitname’
and ‘R200bunitcgs’, if they are attributes to the group that contains that
Dataset.

The ‘unitname’ attribute should be a string defining the unit, e.g. ‘kpc/h’.
The unitcgs attribute must be a three element array, where the stored values
are, in order, the numerical conversion factor to CGS, the value of the
exponent on the Hubble Parameter that the conversion factor should be
multiplied by, and lastly the value of the exponent on the scale factor that
the conversion factor should be multipled by.

For example, if ‘unitname’ is
‘comoving Mpc/h’, ‘unitcgs’ should be an array containing [3.0857e24, -1, 1].

Note that the core library provides utilities for accessing units - see
irate.core.get_units(), irate.core.set_units(), and
irate.core.get_cgs_factor().

Other Metadata

Other metadata associated with individual datasets should be included in the
same fashion as units. That is, they should either be attributes directly
attached to the dataset with the metadata field name, or they can be attributes
of groups further up the hierarchy, following the simple naming convention
datasetnamemetadataname. The core library provides utilities for accessing or
setting metadata in irate.core.get_metadata() and
irate.core.set_metadata().

Particle Data

The ParticleData Group, if it exists, must contain at least
one group, of which the most common are ‘Dark’, ‘Gas’, and ‘Star’;
these contain the data for dark matter, stars, and gas,
respectively. Users are free to use other names for particle blocks, e.g. if
the users want to separate high resolution from low resolution
particles, but any Group containing dark matter particles must
have a (case-sensitive) name that begins with ‘Dark’ (e.g. ‘Dark_HighRes’), any
Group containing gas particles must have a name that begins with
‘Gas’, and any Group containing star particles must have a name
beginning with ‘Star’. Users are free to store other particle types in IRATE
files; it is strongly recommended that they follow the same convention laid out
here (e.g. ‘BlackHole’). Tools that read in IRATE files, such as halo finders,
will assume the type of particle based on the group name.

Any groups within /Snapshot#/ParticleData/ may contain
only data sets. For particle data, the following Dataset
objects must be present in each group that exists, even if they have 0
particles:

	‘Position’ (N x d)

	‘Velocity’ (N x d)

	‘Mass’ (N)

	‘ID’ (N)

where d is the dimensionality (presumably pretty much always 3) and N is
the total number of particles. Additional data sets (e.g.
‘Metallicity’,’Entropy’, ‘Density’, etc.) may be present, but the above 4 are
the minimum required. Any other data sets are encouraged to either be shape
N for scalar data, or N x d for vector data.

Grid Data

The grid data specification has not yet been defined.

Halo Catalogs

Halo catalogs are stored as a Group that must have names that
begin with the phrase ‘HaloCatalog’, For example, both ‘HaloCatalog_AHF1’ and
‘HaloCatalog_Rockstar’ are valid names; ‘AHFCatalog’ and ‘Catalog_Rockstar’,
however, are not.

Any halo catalogs that are contained within a Snapshot Group
should have, as attributes, any parameters that are relevant to the halo
finder, such as FOF linking lengths, overdensity criterion, or the code used
to produce that catalog (though the former may be obvious from the name of
the group).

Any halo catalogs must contain a Dataset with the Name ‘Center’
that has shape N x d, where N is the number of halos in thecatalog, and d is the
dimensionality (typically 3). All other datasets in the catalog should have a
matching first dimension, and should be in the same order. That is, the ith entry
in ‘Center’ should correspond to the same halo as the ith entry in any of the
other datasets.

If the index of the most bound particle of each halo is included in the
halo catalog, it should be stored in a Dataset named
‘MostBoundParticleID’.

If particle data is included with the halo catalog, it must be saved in a
Group inside the halo catalog with the name ‘HaloParticleData’.
This group must contain at least two datasets. The first of these should be
named ‘HaloParticleIDs’, while the second should be named ‘ParticlePerHalo’.

‘HaloParticleIDs’ should contain integer particle IDs in order such that all
particles in the first halo come first, followed by those in the second halo,
and so on. Here, halo order is the same as the order of the halos in the
‘Center’ dataset. Note that the number of elements of this dataset is not
neccesarily the same as the number of total particles, because some particles
may be members of multiple halos, in which case they appear on ‘HaloParticleIDs’
more than once.

The ‘ParticlePerHalo’ Dataset, on the other hand, must be of a
length matching the first dimension of of the ‘Center’ dataset, and should give
the (integer) number of particles in each halo. The sum of all of the values in
this dataset must match the size of the ‘HaloParticleIDs’ dataset. This allows
‘HaloParticleIDs’ and ‘ParticlesPerHalo’ to provide all the information needed
determine which particles are in which halos.

Many users will find it convenient to store the type of particle as well. This
should be saved in a third Dataset named ‘HaloParticleTypes’, but
this dataset is not required by the format. If it is present, it should be of
the same size as ‘HaloParticleIDs’.

Galaxy Catalogs

Galaxy catalogs are stored as a Group that must have names that
begin with the phrase ‘GalaxyCatalog’, For example, both ‘GalaxyCatalog_Galacticus’ and
‘GalaxyCatalog_LGalaxies’ are valid names; ‘GalacticusCatalog’ and ‘Catalog_LGalaxies’,
however, are not.

Any galaxy catalogs that are contained within a Snapshot Group
should have, as attributes, any parameters that are relevant to the galaxy formation
code, such as input parameter values, or the version of the code used
to produce that catalog.

Any galaxy catalogs must contain two Dataset s with the
names ‘HaloID’ and ‘HaloSnapshot’, that have shape N, where N is the
number of galaxies in the catalog. All other datasets in the catalog
should have a matching first dimension, and should be in the same
order. That is, the ith entry in ‘HaloID’ should correspond to the same
halo as the ith entry in any of the other datasets. The ‘HaloID’ dataset
should give the ID of the halo in which the galaxy is located, while
‘HaloSnapshot’ should give the corresponding snapshot number at which
that halo exists. (Galaxies may be located in halos which exist at an
earlier snapshot if, for example, the halo can no longer be found at the
current snapshot, but the galaxy formation code determines that the
galaxy itself has not yet merged.) If corresponding halos are not
present in the file these two Dataset s should have all
values set to -1.

Merger Trees

Merger trees are stored as a Group that must have names
that begin with the phrase ‘MergerTrees’. For example, both
‘MergerTrees_yt’ and ‘MergerTrees_Millennium’ are valid names;
‘ytTrees’, however, is not.

Merger tree groups should have, as attributes, any parameters that are
relevant to the merger tree builder, such as the name of the code used
to build the trees.

Any merger tree groups must contain a Dataset with the
name ‘HaloID’ that has shape N, where N is the total number of halos
in all trees. The dataset should give the integer index of a halo in a
‘HaloCatalog’ Group. Also required are
Dataset s with the names ‘HaloSnapshot’,
‘DescendentID’ and ‘DescendentSnapshot’ which must have the same
shape, N, and should be in the same order. That is, the ith entry in
‘HaloID’ should correspond to the same halo as the ith entry in
‘HaloSnapshot’, ‘DescendentID’ and ‘DescendentSnapshot’. The
‘HaloSnapshot’ Dataset must give the index of the snapshot to
which this halo belongs. The ‘DescendentID’ and ‘DescendentSnapshot’
Dataset s must give the index and snapshot of the halo
into which this halo descends. For halos with no descendent (e.g. the
root halo of a tree), values of -1 should be used.

In addition, the MergerTrees Group must contain a
Dataset name ‘HalosPerTree’ must be of a length equal to
the total number of trees present in group, and should give the
(integer) number of halos in each tree. The sum of all of the values in
this dataset must match the size of the ‘HaloID’
Dataset. ‘HalosPerTree’ provides all the information
needed determine which halos are in which trees. Optionally, a
Dataset named ‘TreeID’, which should have the same
length as ‘HalosPerTree’ may be present, and should give a unique
identifying index for each tree.

Examples

Here we provide the structure of a sample IRATE Format file in the form output
by the h5dump utility (included in libhdf5 library). Note that the ‘Halo’,
‘Bulge’, and ‘Disk’ groups are not actually a part of the specification, but are
examples of possible ways one might wish to sub-divide the particle data. Also note
that a typical IRATE file will contain many more datasets, particularly in the
catalogs, which have been removed from here for
the sake of brevity:

HDF5 "SampleIRATEfile.hdf5" {
FILE_CONTENTS {
 group / (Contains attribute defining the version of the IRATE format that this file conforms to)
 group /Cosmology (Contains attributes defining the cosmology of the simulation)
 group /SimulationProperties (Contains attributes defining non-cosmological properties of the simulation)
 group /Snapshot00144 (Contains attributes defining redshift, scale factor, or both)
 group /Snapshot00144/HaloCatalog_AHF (Should contain attributes defining the parameters of the halo finding)
 dataset /Snapshot00144/HaloCatalog_AHF/Center (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Ekin (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Epot (Contains attributes with unit information)
 group /Snapshot00144/HaloCatalog_AHF/HaloParticleData
 ext link /Snapshot00144/HaloCatalog_AHF/HaloParticleData/HaloParticleTypes -> SampleIRATEfile-00144particles.hdf5 /HaloParticleTypes
 ext link /Snapshot00144/HaloCatalog_AHF/HaloParticleData/HaloParticleIDs -> SampleIRATEfile-00144particles.hdf5 /HaloParticleIDs
 ext link /Snapshot00144/HaloCatalog_AHF/HaloParticleData/ParticlesPerHalo -> SampleIRATEfile-00144particles.hdf5 /ParticlesPerHalo
 dataset /Snapshot00144/HaloCatalog_AHF/L (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Mvir (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Phi (Contains attributes with unit information)
 group /Snapshot00144/HaloCatalog_AHF/RadialProfiles
 dataset /Snapshot00144/HaloCatalog_AHF/RadialProfiles/L (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/RadialProfiles/M_in_r (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/RadialProfiles/dens (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/RadialProfiles/npart
 dataset /Snapshot00144/HaloCatalog_AHF/RadialProfiles/r (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/RadialProfiles/vcirc (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Rmax (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Rvir (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Velocity (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/Vmax (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_AHF/fMhires
 dataset /Snapshot00144/HaloCatalog_AHF/lambda
 dataset /Snapshot00144/HaloCatalog_AHF/nbins
 dataset /Snapshot00144/HaloCatalog_AHF/npart
 group /Snapshot00144/HaloCatalog_Rockstar (Should contain attributes defining the parameters of the halo finding)
 dataset /Snapshot00144/HaloCatalog_Rockstar/Center (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_Rockstar/M200b (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_Rockstar/R200b (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_Rockstar/Rmax (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_Rockstar/Spin
 dataset /Snapshot00144/HaloCatalog_Rockstar/Velocity (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_Rockstar/Vmax (Contains attributes with unit information)
 dataset /Snapshot00144/HaloCatalog_Rockstar/npart
 group /Snapshot00144/ParticleData (Contains attributes with unit information for all datasets within it)
 group /Snapshot00144/ParticleData/Dark_Bulge
 dataset /Snapshot00144/ParticleData/Dark_Bulge/ID
 dataset /Snapshot00144/ParticleData/Dark_Bulge/Mass
 dataset /Snapshot00144/ParticleData/Dark_Bulge/Position
 dataset /Snapshot00144/ParticleData/Dark_Bulge/Velocity
 group /Snapshot00144/ParticleData/Dark_Disk
 dataset /Snapshot00144/ParticleData/Dark_Disk/ID
 dataset /Snapshot00144/ParticleData/Dark_Disk/Mass
 dataset /Snapshot00144/ParticleData/Dark_Disk/Position
 dataset /Snapshot00144/ParticleData/Dark_Disk/Velocity
 group /Snapshot00144/ParticleData/Dark_Halo
 dataset /Snapshot00144/ParticleData/Dark_Halo/ID
 dataset /Snapshot00144/ParticleData/Dark_Halo/Mass
 dataset /Snapshot00144/ParticleData/Dark_Halo/Position
 dataset /Snapshot00144/ParticleData/Dark_Halo/Velocity
 group /Snapshot00153 (Contains attributes defining redshift, scale factor, or both)
 group /Snapshot00153/HaloCatalog_AHF (Should contain attributes defining the parameters of the halo finding)
 dataset /Snapshot00153/HaloCatalog_AHF/Center (Contains attributes with unit information)
 group /Snapshot00153/HaloCatalog_AHF/HaloParticleData
 ext link /Snapshot00153/HaloCatalog_AHF/HaloParticleData/HaloParticleTypes -> SampleIRATEfile-00153particles.hdf5 /HaloParticleTypes
 ext link /Snapshot00153/HaloCatalog_AHF/HaloParticleData/HaloParticleIDs -> SampleIRATEfile-00153particles.hdf5 /HaloParticleIDs
 ext link /Snapshot00153/HaloCatalog_AHF/HaloParticleData/ParticlesPerHalo -> SampleIRATEfile-00153particles.hdf5 /ParticlesPerHalo
 dataset /Snapshot00153/HaloCatalog_AHF/L (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/Mvir (Contains attributes with unit information)
 group /Snapshot00153/HaloCatalog_AHF/RadialProfiles
 dataset /Snapshot00153/HaloCatalog_AHF/RadialProfiles/M_in_r (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/RadialProfiles/r (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/RadialProfiles/vcirc (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/Rmax (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/Rvir (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/Velocity (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/Vmax (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_AHF/nbins
 dataset /Snapshot00153/HaloCatalog_AHF/npart
 group /Snapshot00153/HaloCatalog_Rockstar (Should contain attributes defining the parameters of the halo finding)
 dataset /Snapshot00153/HaloCatalog_Rockstar/Center (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_Rockstar/M200b (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_Rockstar/Mbound200b (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_Rockstar/R200b (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_Rockstar/Rmax (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_Rockstar/Velocity (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_Rockstar/Vmax (Contains attributes with unit information)
 dataset /Snapshot00153/HaloCatalog_Rockstar/npart (Contains attributes with unit information)
 group /Snapshot00153/ParticleData (Contains attributes with unit information for all datasets within it)
 group /Snapshot00153/ParticleData/Dark_Bulge
 dataset /Snapshot00153/ParticleData/Dark_Bulge/ID
 dataset /Snapshot00153/ParticleData/Dark_Bulge/Mass
 dataset /Snapshot00153/ParticleData/Dark_Bulge/Position
 dataset /Snapshot00153/ParticleData/Dark_Bulge/Velocity
 group /Snapshot00153/ParticleData/Dark_Disk
 dataset /Snapshot00153/ParticleData/Dark_Disk/ID
 dataset /Snapshot00153/ParticleData/Dark_Disk/Mass
 dataset /Snapshot00153/ParticleData/Dark_Disk/Position
 dataset /Snapshot00153/ParticleData/Dark_Disk/Velocity
 group /Snapshot00153/ParticleData/Dark_Halo
 dataset /Snapshot00153/ParticleData/Dark_Halo/ID
 dataset /Snapshot00153/ParticleData/Dark_Halo/Mass
 dataset /Snapshot00153/ParticleData/Dark_Halo/Position
 dataset /Snapshot00153/ParticleData/Dark_Halo/Velocity
 }
}

In addition, we include here an example of a file with merger trees:

HDF5 "treesIRATE.hdf5" {
FILE_CONTENTS {
 group /
 group /Cosmology
 group /MergerTrees
 dataset /MergerTrees/DescendentID
 dataset /MergerTrees/DescendentSnapshot
 dataset /MergerTrees/HaloID
 dataset /MergerTrees/HaloSnapshot
 dataset /MergerTrees/HalosPerTree
 dataset /MergerTrees/HostID
 dataset /MergerTrees/TreeID
 group /SimulationProperties
 group /Snapshot00016
 group /Snapshot00016/HaloCatalog
 dataset /Snapshot00016/HaloCatalog/AngularMomentum
 dataset /Snapshot00016/HaloCatalog/Center
 dataset /Snapshot00016/HaloCatalog/HalfMassRadius
 dataset /Snapshot00016/HaloCatalog/Index
 dataset /Snapshot00016/HaloCatalog/Mass
 dataset /Snapshot00016/HaloCatalog/MostBoundParticleID
 dataset /Snapshot00016/HaloCatalog/Velocity
 group /Snapshot00016/ParticleData
 group /Snapshot00016/ParticleData/Dark
 dataset /Snapshot00016/ParticleData/Dark/ID
 dataset /Snapshot00016/ParticleData/Dark/Mass
 dataset /Snapshot00016/ParticleData/Dark/Position
 dataset /Snapshot00016/ParticleData/Dark/Velocity
 }
}

Command Line Scripts and Conversion Tools

One of the main intents of the IRATE format is to unify the variety of formats
currently used for simulations into a standard format that many tools can access
efficiently. Hence, the IRATE package provides a number of conversion tools from
various formats

IRATE Utilities

Validate IRATE File Structure

The iratevalidate script tests whether or not a file conforms to the IRATE
format. It can also be used to show the general structure of a supplied file
(or files).

Options:

	
-v, --verbose

	Prints detailed messages during validation

	
-i, --immediate

	Causes the script to immediately exit on first validaton error instead of
reporting all errors.

	
-c, --print-cosmology

	Print cosmology information from the supplied IRATE file(s) in addition to
validating.

	
-p, --print-structure

	Print group and dataset structure information for the supplied IRATE file(s)
in addition to validating.

	
-t, --type

	The type of IRATE file to assume for validation - used to load custom
validators.

	
-l, --list-types

	Lists all valid types and immediately exits.

	
-s, --skips

	Skips the validation stage.

Gather IRATE File

The irategather script takes an IRATE file (or really any HDF5 file) and
combines any externally linked datasets or groups into a single monolithic file.
See irate.core.gather_files() for additional information.

Options:

	
-o, --output

	File to output gathered file to. If not given, the input file will be overwritten.

	
-d, --delete-gathered

	Delete all files that were combined to make the output file after gathering is complete.

	
-v, --validate

	Validate before gathering. If validation fails, gathering will not occur.

Format Converters

Tipsy Binary -> IRATE

The tipsy2irate script converts files in the tipsy binary format to IRATE.
Use it as tipsy2irate [options] infile [outfile]. If outfile is not
specified, it will be the same as infile with ‘.h5’ added.

Options:

add options

Gadget Binary -> IRATE

The gadget2irate script converts files in the Gadget format to IRATE.
Use it as gadget2irate input-file output-file [options].

Options:

	
-i, --inits

	Specifies that the input file is an initial conditions file, in which case
gas densities and smoothing lengths are skipped.

	
-p, --potential

	Specifies that the gravitational potential is contained in the GADGET file,
which is controlled via the Makefile of GADGET2. Has no effect if –type2
is enabled.

	
-a, --acceleration

	Specifies that the acceleration is contained in the GADGET file, which is
controlled via the Makefile of GADGET2. No effect if –type2 is enabled.

	
-s, --entropy

	Specifies that the rate of change of entropy of gas particles is included
in the GADGET file, which is controlled via the Makefile of GADGET2. Has
no effect if –type2 is enabled.

	
-t, --timestep

	Specifies that the timestep of each particle is contained in the GADGET
file, which is controlled via the Makefile of GADGET2. Has no effect if
–type2 is enabled.

	
--t0name, --gasname

	Name of the group that the particles in the gas group of the GADGET file
is given, under the specified tree.

	
--t1name, --haloname

	Name of the group that the particles in the halo group of the GADGET file
is given, under the specified tree.

	
--t2name, --diskname

	Name of the group that the particles in the disk group of the GADGET file
is given, under the specified tree.

	
--t3name, --bulgename

	Name of the group that the particles in the bulge group of the GADGET file
is given, under the specified tree.

	
--t4name, --starname

	Name of the group that the particles in the star group of the GADGET file
is given, under the specified tree.

	
--t5name, --bndryname

	Name of the group that the particles in the boundary group of the GADGET
file is given, under the specified tree.

	
--s8, --sigma8

	Specify the cosmology parameter sigma8 for inclusion in the Cosmology group

	
--ns, --n_s

	Specify the Power Spectrum Index for inclusion in the Cosmology group

	
--snap, --snapshot

	Explicitely identify the snapshot number that data will be saved under in
the IRATE file, rather than using the GADGET convention

	
-L

	Human readable string the specifies the units of length in the file

	
-v

	Human readable string the specifies the units of velocity in the file

	
-M

	Human readable string the specifies the units of mass in the file

	
--_unit

	Factor to convert units for the property given by the underscore to CGS

	
--_hfact

	The exponent of the reduced Hubble Parameter as it appears in the units for
the quantity given by the underscore

	
--_afact

	The exponent of the scale factor as it appears in the units for the quantity
given by the underscore

EnBiD -> IRATE

The enbid2irate script adds the data from files produced by EnBiD in the
GADGET format to existing IRATE files. Use it as
enbid2irate enbid-file irate-file [output-file] [options].
If outfile is not specified, it defaults to irate-file with ‘-wenbid.hdf5’
added. enbid-file should be a binary file as produced by EnBiD, and
irate-file should be an existing IRATE file. All data is saved under /Analysis

Warning

This script hasn’t been updated to conform to the new IRATE standard, and,
as such, should probably not be used yet.

Options:

	
--t0tree, --gastree

	Tree (either gas, dark, or star) that the particles in the gas group of the
GADGET file will be saved under.

	
--t1tree, --halotree

	Tree (either gas, dark, or star) that the particles in the halo group of
the GADGET file will be saved under.

	
--t2tree, --disktree

	Tree (either gas, dark, or star) that the particles in the disk group of
the GADGET file will be saved under.

	
--t3tree, --bulgetree

	Tree (either gas, dark, or star) that the particles in the bulge group of
the GADGET file will be saved under.

	
--t4tree, --startree

	Tree (either gas, dark, or star) that the particles in the star group of
the GADGET file will be saved under.

	
--t5tree, --bndrytree

	Tree (either gas, dark, or star) that the particles in the boundary group
of the GADGET file will be saved under.

	
--t0name, --gasname

	Name of the group that the particles in the gas group of the GADGET file
is given, under the specified tree.

	
--t1name, --haloname

	Name of the group that the particles in the halo group of the GADGET file
is given, under the specified tree.

	
--t2name, --diskname

	Name of the group that the particles in the disk group of the GADGET file
is given, under the specified tree.

	
--t3name, --bulgename

	Name of the group that the particles in the bulge group of the GADGET file
is given, under the specified tree.

	
--t4name, --starname

	Name of the group that the particles in the star group of the GADGET file
is given, under the specified tree.

	
--t5name, --bndryname

	Name of the group that the particles in the boundary group of the GADGET
file is given, under the specified tree.

Gadget Binary + EnBiD -> IRATE

The gb2-enbid2irate script combines the gb2irate and enbid2irate scripts
into one step. Use it as gb-enbid2irate gadget-file enbid-file [output-file]
[options]. If outfile isn’t specified, it defaults to gadget-file with
‘-enbid-irate.hdf5’ added. Takes the same options as gb2irate.

Warning

This script hasn’t been updated to conform to the new IRATE standard, and,
as such, should probably not be used yet.

AHF ASCII -> IRATE

The ahf2irate script converts files in the AHF ASCII format to IRATE.
Use it as ahf2irate input-file-base output-file snapshot-number [options].
The input file base should be provided as *.AHF_; i.e. everything up to
the “halos” or “particles” or “profiles” part of the filename.

Options:

	
--name

	The name that will be used for the group that the halo catalog is saved in.

	
--particles

	Include particle data from input-file-base + ‘particles’. If given, the
data will be saved in a second HDF5 file that will be linked to the
main IRATE catalog file.

	
--profiles

	Include radial profiles from input-file-base + ‘profiles’. Data will be
saved under /Catalog/RadialProfiles/

	
-p

	Include both particles and profiles data; i.e. enables both –particles
and –particles.

	
--nogas

	Enable if AHF was not compiled with -DGAS_PARTICLES or code will fail in
trying to combine spatial datasets related to gas and star particles.

	
--paramfile=<parameter file>

	Specify an AHF parameter file to be saved as attributes to
the group that contains the halo catalog.

	
-s, --size

	Maximum size that particle data will be in memory before writing to a file,
in GB. Note that this only has an effect if using HDF5 1.8; otherwise,
all the particles will be read before anything is written.

	
--hdf5-16

	Force the usage of HDF5 1.6 API, even if 1.8 is found. At present, the
benefits that 1.8 provides aren’t working, so this is always enabled.

	
--pos

	Human readable string that identifies the units used for position

	
--vel

	Human readable string that identifies the units used for velocity

	
--mass

	Human readable string that identifies the units used for mass

	
--rad

	Human readable string that identifies the units used for radius

	
--energy

	Human readable string that identifies the units used for energy

	
--phi

	Human readable string that identifies the units used for Phi0

	
--ang

	Human readable string that identifies the units used for angular momentum

	
--___unit

	Factor to convert the units for the quantity given by the underscore to CGS

	
--___hfact

	The exponent of the reduced Hubble Parameter as it appears in the units for
the quantity given by the underscore

	
--___afact

	The exponent of the scale factor as it appears in the units for the quantity
given by the underscore

AHF Particles -> IRATE

The ahfparticles2irate script reads an AHF _particles file, saves it to
an HDF5 file, then links the resulting datasets to an existing IRATE catalog
file. Use it as
ahfparticles2irate particle-file irate-file output-file snapshot-number
[options]. If output-file isn’t specified, it defaults to irate-file
+ ‘-{snapshot number}particles.hdf5’.

Options:

	
-o, --overwrite

	Overwrite the existing output file, if it exists.

	
-s, --size

	Maximum size that particle data will be in memory before writing to a file,
in GB. Note that this only has an effect if using HDF5 1.8; otherwise,
all the particles will be read before anything is written.

	
--hdf5-16

	Force the usage of HDF5 1.6 API, even if 1.8 is found. At present, the
benefits that 1.8 provides aren’t working, so this is always enabled.

	
--name

	The name of the group that the halo catalog is saved under. Must match
what is already in the file.

Rockstar -> IRATE

The rockstar2irate script converts Rockstar halo catalogs to IRATE catalog
files. Use it as
rockstar2irate input-file output-file snapshot-number [format] [options].
If output-file isn’t specified, it defaults to input-file with ‘-irate.hdf5’
added.

Options:

	
-b

	Specifies that the input file is a Rockstar binary file.

	
-a

	Specifies that the input file is a Rockstar ASCII file.

	
-n, --name

	Specify the name of the group that the halo catalog is to be saved under.

	
--ns, --n_s

	Specify the Power Spectrum Index for inclusion in the Cosmology group

	
--s8, --sigma8

	Specify the cosmological parameter sigma8 for inclusion in the Cosmology
group.

Custom Validators/Extending the IRATE Format

The IRATE format includes functionality for providing custom validators to allow
more specific checking of a file than just for conformance to the IRATE format
(outlined in IRATE Format Specification). This is done by subclassing the
irate.validate.Validator class to make objects that test whether or not
a given file conforms to the extended format.

The validator structure is contained within irate.validate. The most
straightforward way to provide a set of validators for a given file format
(called “validator types” in the IRATE documentation and scripts) is to use the
custom type directory. This directory is typically $HOME/.irate, but for the
exact directory for your platform and machine, call the
irate.validate.find_custom_validator_dir() function, which will return the
directory to place validator type scripts.

Any file that ends in ‘.py’ in the directory will be executed and searched for
Validator subclasses. Those classes will be
automatically added to a type taken from the name of the file (e.g. if the
script is myformat.py, the validator type will be myformat). Normally, you
will want to include all the default validators (these ensure the IRATE format
is being followed), but if not, add a global variable to the file named
includedefaults and set it to False.

Once this file has been created (or given to you by someone else and placed in
the correct directory), the function
irate.validate.activate_validator_type() can be called to activator that
validator type, or the iratevalidate script can be used with the -t
option (see Command Line Scripts and Conversion Tools).

Writing Validator Subclasses

Writing validators is quite straightforward and the full reference is in the
docstrings for the irate.validate.Validator class. A basic validator
simply looks like:

from irate.validate import Validator)

class MyGroupNameValidator(Validator):

 groupname = 'MyGroupName'

 def validate(self,grp):
 if 'SpecialData' not in grp:
 self.invalid('SpecialData dataset not present')

Validating will then fail for any group that has “MyGroupName” (case-sensitive)
as part of its name that does not have a “SpecialData” element (i.e. Group or
Dataset). The validator will automatically call the appropriate validator on
child groups - all that’s necessary is to check if the particular group being
validated here meets whatever standards are set for the group. If the group
fails, a call to self.invalid('a message here about the problem') will
properly report the format error.

An additional useful utility is the irate.validate.Validator.check_units()
method. This can be called as self.check_units(grp['somedatasetname') to
check that a dataset has units. Alternatively, it can be called as
self.check_units(grp['otherdataset'],'unitname) to check that a particular
dataset has units with a particular name. Note that this should be used instead
of directly checking attributes on the dataset because the IRATE format
supports storing units on groups above the dataset in the HDF5 heirarchy (see
Unit Information for details on how units are stored in the IRATE format).

Tips for Using IRATE and writing I/O modules

An extremely useful tool for parallel simulations is HDF5’s external links.
These allow an HDF5 file to be scattered over many logical files while still
looking to someone accessing the file as though it were all one file. A typical
use case might be a simulation where multiple nodes of a cluster are processing
a single snapshot simultaneously. For the sake of example, imagine a simulation
where a single snapshot is processed by two seperate nodes that each create
hdf5 files “node1.h5” and “node2.h5”, that contain datasets containing dark
matter particles following the format standard specified in
Particle Data. An IRATE file might be generated to house these
datasets like so:

import h5py

#assume simulation.h5 already has the Cosmology and SimulationProperties groups

f = h5py.File('simulation.h5')

snap1 = f.create_group('Snapshot0001')
snap1data = snap1.create_group('ParticleData')

snap1data['Dark_node1'] = h5py.ExternalLink('node1.h5','/')
snap1data['Dark_node2'] = h5py.ExternalLink('node2.h5','/')

The file ‘simulation.h5’ can now be loaded and manipulated just like any IRATE
file, and as long as the “node1.h5” and “node2.h5” files are kept in the same
directory, everything will work fine.

Reference Guide

This page documents the public function and class library for the IRATE format
tool package. These modules can be used by other programs or users to simplify
various processing tasks relating to the IRATE format. The following modules are
present:

	core

General tools of use with the IRATE format, such as creating standard
sections or quickly extracting particles. Note that these functions should
be imported directly from the irate namespace.

	validate

Code for testing if a file obeys the IRATE format and tools for extending
this process (see Custom Validators/Extending the IRATE Format)

	ahf

	gadget

	enbid

	rockstar

	tipsy

These modules all contain functions used by the Command Line Scripts and Conversion Tools to convert
files in other formats from or to IRATE. This documentation is provided
to allow other programs to easily script such conversions without using
the command line tools.

Not that the base irate module contains most of the irate.core
functionality, as well as __version__, which contains a string with the
version of the IRATE tools, and formatversion, which contains an
integer specifying the format version.

irate.core Module

The irate.core module contains the core utilities used by IRATE. These
include a variety of convinience functions for working with IRATE format files.
While they are technically part of the irate.core module, they are all
also included in the base irate namespace, so the best way to import these is to
do:

from irate import create_irate

rather than importing from irate.core.

	
irate.core.add_cosmology(iratefile, omegaM=None, omegaL=None, h=None, s8=None, ns=None, omegaB=None, cosmoname=None, update=True, verbose=False)

	Creates or updates a cosmology section of an IRATE file.

This function creates an IRATE file or opens it if it already exists, and
either adds the given cosmology-related values to it, checks that they match
with what’s in the existing file, or updates the cosmology with the given
values.

	Parameters:	
	iratefile – The name of the file to open or a h5py.File object.

	omegaM (float [https://docs.python.org/2/library/functions.html#float]) – The present day matter density or None to skip this parameter.

	omegaL (float [https://docs.python.org/2/library/functions.html#float]) – The present day dark energy density or None to skip this parameter.

	h (float [https://docs.python.org/2/library/functions.html#float]) – The reduced Hubble Parameter [image: h=H_0/100] or None to skip this
parameter.

	s8 (float [https://docs.python.org/2/library/functions.html#float]) – [image: \sigma_8], the amplitude of the power spectrum at 8 Mpc/h, or None
to skip this parameter.

	ns (float [https://docs.python.org/2/library/functions.html#float]) – The index of the primordial power spectrum or None to skip this
parameter.

	omegaB (float [https://docs.python.org/2/library/functions.html#float]) – The present day baryon density or None to skip this parameter

	cosmoname (str [https://docs.python.org/2/library/functions.html#str]) – The name of the cosmology as a string or None to skip this value. This
attribute is optional in the IRATE format.

	update (bool [https://docs.python.org/2/library/functions.html#bool]) – If an existing file is given and this is True, the parameters will be
updated with those given to this function. Otherwise, the file will be
checked to ensure the file matches. If this is False and the file does
not exist, an exception will be raised.

	verbose (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, informational messages are printed as the function does various
actions.

	Raises:	
	TypeError – If the iratefile input is invalid

	ValueError – If update is False and the file’s values don’t match those passed into
the function, or the file does not exist.

	KeyError – If update is False and there are values passed that aren’t in the file.

	
irate.core.add_standard_cosmology(iratefile, cname, update=True, verbose=False)

	Adds or updates a cosmology from the name of a standard cosmology.

The cname parameter gives the name of the cosmology to be used from the
list below, while all other parameters are the same as for the
add_cosmology() function.

	‘WMAP7’

LCDM Cosmological parameters for the 7-year WMAP data (Komatsu et al.
2011). For details, see
http://lambda.gsfc.nasa.gov/product/map/dr4/params/lcdm_sz_lens_wmap7.cfm

	‘WMAP5’

LCDM Cosmological parameters for the 5-year WMAP data (Komatsu et al.
2009). For details, see
http://lambda.gsfc.nasa.gov/product/map/dr3/params/lcdm_sz_lens_wmap7.cfm

	‘WMAP3’

LCDM Cosmological parameters for the 3-year WMAP data (Spergel et al.
2007). For details, see
http://lambda.gsfc.nasa.gov/product/map/dr2/params/lcdm_sz_lens_wmap7.cfm

	‘WMAP1’

LCDM Cosmological parameters for the 1-year WMAP data. For details, see
Spergel et al. 2003.

	
irate.core.get_irate_particle_nums(fn, validate=True)

	Convinience function to determine the number of particles of each type
in an IRATE format file.

	Parameters:	
	fn (str [https://docs.python.org/2/library/functions.html#str]) – The filename of an IRATE formatted file or a h5py.File object.

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the file will be validate as IRATE format. If ‘strict’, strict
validation will be used. Otherwise no validation will be performed.

	Returns:	a 3-namedtuple (ndark,nstar,ngas)

	
irate.core.get_irate_catalog_halo_nums(fn, validate=True)

	Convinience function to determine the number of entries in an IRATE halo
catalog file.

	Parameters:	
	fn (str [https://docs.python.org/2/library/functions.html#str]) – The filename of an IRATE halo catalog file or a h5py.File
object.

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the file will be validate as IRATE halo catalog format.

	Returns:	an integer with the total number of halos

	
irate.core.create_irate(fn, dark, star, gas, headername, headerdict=None, compression=None)

	A Convinience function to create an IRATE format file data as numpy
arrays. This will overwrite a currently existing file.

	Parameters:	
	fn (str [https://docs.python.org/2/library/functions.html#str]) – The file name to use for the new file

	dark – The data for the dark matter particles. Should be a dict with keys
‘Position’, ‘Velocity’, ‘Mass’, (and possibly others) mapping to
numpy.ndarray arrays. Alternatively, it can be a structured
array (i.e. dtype with names and formats) with the names of the dtype
giving the names of the resulting datasets.

	star – The data for the star particles. See dark for format.

	gas – The data for the gas particles. See dark for format.

	headername (str [https://docs.python.org/2/library/functions.html#str]) – The group name to use for the header entry or None to create no header.

	headerdict – A dictionary mapping strings to attribute values. These will be used for
the attributes of the header entry. If None, an attribute will be added
to indicate header content is missing.

	compression – The type of compression to use for the datasets. Can be any of the
compression that h5py supports on your system (‘gzip’,’lzf’, or ‘szip’)
or None to do no compression.

	Returns:	The h5py.File of the newly-created file (still open).

	Raises:	
	IRATEFormatError – If any of the data arrays are missing the necessary fields.

	ValueError – If the input data is invalid.

	
irate.core.get_all_particles(fn, ptype, dataname, subsample=None, validate=True)

	Convinience function to build an array with all the particles of a
requested type or types (i.e. all subgroups, if present, will be visited).

	Parameters:	
	fn (str [https://docs.python.org/2/library/functions.html#str]) – The filename of an IRATE formatted file or a h5py.File object.

	ptype (str [https://docs.python.org/2/library/functions.html#str]) – The particle type: ‘Dark’,’Star’, ‘Gas’, a sequence of a mix of those
three, or None for all particles of all types.

	dataname (str [https://docs.python.org/2/library/functions.html#str]) – The dataset name to extract (e.g. ‘Position’, ‘Mass’)

	subsample (int [https://docs.python.org/2/library/functions.html#int]) – Gives the stride of the data - e.g. each array will be spliced to only
return every subsample data point. If None, all the data will be
returned.

	validate (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the file will be validate as IRATE format. If ‘strict’, strict
validation will be used. Otherwise no validation will be performed.

	Returns:	A 3-tuple (data,grpidx,grpmap) where data is the data arrays,
grpidx is an int array with the same first dimension as data, and
grpmap is a dictionary mapping the values in grpidx to group names.

	Raises:	ValueError – If a group does not have the requested dataname.

	
irate.core.scatter_files(infile, outfile=None, splitgroups=False)

	Splits a single IRATE file into separate files for each dataset.

	Parameters:	
	infile – A file name or an h5py.File object to be scattered.

	outfile – The filename or an h5py.File object to use as the new base IRATE format
file or None to overwrite the old name. Other output files will be placed
in the same directory as this file.

	splitgroups (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, also split groups into separate files.

	Returns:	A list of filenames that were created with the base name as the first.

	
irate.core.gather_files(infile, outfile=None)

	Combine all external file that are part of a master IRATE file into a
single monolithic file.

Note

This function can be driven from the command line via the irategather
script. See Command Line Scripts and Conversion Tools for details.

	Parameters:	
	infile – A file name or an h5py.File object to be gathered.

	outfile – The filename or an h5py.File object to use as the new IRATE format file
or None to overwrite the old name.

	Returns:	(outfilename,filelist) where outfilename is the name of the output
file, and filelist is a list of all the files gathered together to
create this file.

	
irate.core.get_metadata(dataset, metadataname)

	Gets a metadata value from an IRATE file dataset.

	Parameters:	
	dataset – An Dataset object in an IRATE file.

	metadataname (str [https://docs.python.org/2/library/functions.html#str]) – The name of the meteadata field requested.

	Returns:	The value of the metadata requested, or None if the metadata with the
requested name does not exist.

	Raises:	TypeError – If the dataset is not a dataset

	
irate.core.set_metadata(dataset, metadataname, value, group=None)

	Sets a metadata value for an IRATE file dataset.

	Parameters:	
	dataset – An Dataset object in an IRATE file.

	metadataname (str [https://docs.python.org/2/library/functions.html#str]) – The name of the meteadata field requested.

	value – The name of the meteadata field requested.

	group – The group this metadata should be set for, or None.

Note

Any other datasets with the same as this one below this group in the
heirarchy will be assigned the same units (unless that dataset overrides
them itself).

	Raises:	
	TypeError – If dataset is not a dataset.

	ValueError – If group is not a parent of dataset.

Note

A MetadataHiddenWarning will be issued as a warning if the
metadata for this dataset has already been set somewhere lower down in
the heirarchy than the requested group. The result of this is that
this function will not alter the resulting units for the dataset
because it will be overshadowed by the metadata setting further down.
(see warnings [https://docs.python.org/2/library/warnings.html#module-warnings] for an explanation of warnings)

	
irate.core.get_units(dataset)

	Gets the units for a dataset in an IRATE file.

Because units are typically expressed in factors of the hubble constant and
may or may not be comoving or otherwise varying with scale factor, two
additional factors are needed beyond the raw unit conversion. To use these
together, the appropriate factor to multiple the dataset by to get to
physical units for an assumed hubble parameter h and scale factor a is:
tocgs`*h^`hubbleexponent`*a^`scalefactorexponent . Hence, for example,
comoving Mpc/h would have tocgs =3.0857e24 , hubbleexponent =-1, and
scalefactorexponent =1 .

	Parameters:	dataset – A Dataset object in an IRATE file

	Returns:	name,tocgs,hubbleexponent,scalefactorexponent. name is the
name of the unit for this dataset, tocgs is a factor to multiply the
dataset by to get cgs units, hubleexponent is the exponent of the
reduced hubble parameter (h=H0/100) for this unit, and
scalefactorexponent is the exponent describing how this unit varies
with the scale factor. Alternatively, if no unit is found, None
is returned.

Note

I f you are not working with a file where you know for sure what the
units are, is important to check whether or not the unit is None,
because the IRATE format does not require units for all datasets, as
some quantities are dimensionless. The easiest way to do this is:

res = get_units(mydataset)
if res is None:
 ... do something if it is unitless ...
else:
 nm,tocgs,hexp,sfexp = res
 ... do something with the units ...

	Raises:	TypeError – If dataset is not a dataset

	
irate.core.set_units(dataset, unitname, tocgs, hubbleexponent, scalefactorexponent, unitgroup=None)

	Sets the units of a dataset to the provided values.

Because units are typically expressed in factors of the hubble constant and
may or may not be comoving or otherwise varying with scale factor, two
additional factors are needed beyond the raw unit conversion. To use these
together, the appropriate factor to multiple the dataset by to get to
physical units for an assumed hubble parameter h and scale factor a is:
tocgs`*h^`hubbleexponent`*a^`scalefactorexponent . Hence, for example,
comoving Mpc/h would have tocgs =3.0857e24 , hubbleexponent =-1, and
scalefactorexponent =1 .

	Parameters:	
	dataset – The dataset for which to set the units.

	unitname (str [https://docs.python.org/2/library/functions.html#str]) – A human-readable name of the unit.

	tocgs (str [https://docs.python.org/2/library/functions.html#str]) – A numerical factor to multiply the dataset by to convert to cgs units.

	hubbleexponent (str [https://docs.python.org/2/library/functions.html#str]) – The exponent of the hubble parameter for this unit.

	scalefactorexponent (str [https://docs.python.org/2/library/functions.html#str]) – The exponent of the scale factor for this unit.

	Raises:	TypeError – If an input is not the correct type

	
irate.core.get_cgs_factor(dataset, h=0.7, a=1)

	Retrieves the factor to multiply by the dataset to convert to physical
CGS units at a given scale factor and hubble constant.

	Parameters:	
	dataset – An Dataset for which to read the units.

	h – Reduced hubble parameter to assume for the conversion.

	a – Scale factor to assume for the conversion = 1/(z+1).

	Raises:	
	TypeError – If dataset is not a dataset

	ValueError – If the dataset is dimensionless

irate.validate Module

The irate.validate module contains classes and functions for testing if
a file conforms to the IRATE specification. It also contains tools for easily
extending the validator to allow 3rd parties to provide validator modules for
their formats.

See Custom Validators/Extending the IRATE Format for more details on how to write custom extensions to the
IRATE format.

	
exception irate.validate.IRATEFormatError(msg, h5grpname=None, validator=None)

	This exception is raised if a file is loaded that does not conform to
the IRATE Format.

	
class irate.validate.RootValidator(parentvalidator, printmsg=None, immediatefail=None)

	Validates the root level of an IRATE file.

	
class irate.validate.Validator(parentvalidator, printmsg=None, immediatefail=None)

	The base class for classes that are intended to validate IRATE format files.

To implement a validator, a subclass must override validate(), which
will be valled to validate a Group. If not, an object of the
subclass will not be able to be created, as this is an abstract class.
See the Validator.validate docstring for the correct way to
report format errors when they are encountered.

A subclass should also define a groupname attribute at the class level -
that name will be used to identify groups that are to be assigned to that
validator.

	
check_units(dataset, unitname=None, invalidate=True)

	Check the units on a dataset

	Parameters:	
	dataset – The Dataset to check for units.

	unitname – The name the unit should have, or None to just check if any units
are present for this dataset.

	invalidate (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, invalid() will be called if the check fails with a
message indicating a unit check failed.

	Returns:	True if the unit check succeeded, False if it failed because the
name of the units does not match unitname, or None if it failed
because no units are present.

Note

If the dataset provided is not a dataset, this method will call
invalid() with a message indicating that this occured.

	
validate(grp)

	Subclasses should override this - it is called to validate a particular
h5py.Group that is matched to this validator.

If a problem is encountered, the validator should call
Validator.invalid() with a message describing the problem.
If a dataset on the validated group should have units, the
check_units() method should be called on the dataset to check
for units (or a specific unit name, if desired)

After this method finishes, all subgroups will also be validated - to
skip validation for some subgroups, set the skipsubgroups attribute
of this object to either a list of names to skip, or True to
not validate any subgroups.

Thus, a simple example might be:

def validate(self,grp):
 if 'somegroup' not in grp:
 self.invalid('somegroup missing!')
 self.skipsubgroups = ['ignorethisgroupname']
 self.check_units(grp['datasetwunits'])
 self.check_units(grp['distance'],'kpc')

	
irate.validate.activate_validator_type(tnames, defaultlast=True)

	Sets the active list of validators to those for the requested type.

	Parameters:	
	tnames – The name of the type (group of validators) to activate or a list of
types to activiate. Note that the order of types determines the
order in which validators are checked for matching a particular group
in an IRATE file.

	defaultlast – If True, when a list of types is given and the default validators are
present, the default validators will be set to run only after all other
validators have been run.

	Raises:	KeyError – If tname is not a validator type name.

	
irate.validate.add_validator_type(tname, validators, includedefaults=True)

	Adds a set of validator classes as a type.

	Parameters:	
	tname – The name for this type (group of validators).

	validators – A sequence of subclasses of Validator to use as validators for
this type.

	includedefaults (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, the default validators are added after the supplied validators.
This is usually what you want because otherwise there’s no guarantee the
file will actually follow the IRATE format.

	Raises:	TypeError – If something in validators is not a Validator subclass.

	
irate.validate.find_custom_validator_dir()

	Identifies and returns the directory that stores custom validators.

	Returns:	The directory where validator files are supposed to live

	Raises:	OSError – If no suitable directory can be found.

	
irate.validate.find_validator(groupname)

	Locates the appropriate validator based on the given group name.

	Parameters:	groupname – The name of the group to match against a Validator groupname.

	Returns:	The class matched to the provided group name or False if the search
failed.

	
irate.validate.get_validator_types(tname=None)

	Returns a list of all the validator types available, or all the
validator classes associated with a given validator type.

	Parameters:	tname – If None, returns a list of validator types, or if a validator type,
returns a list of Validator subclasses for that type.

	Returns:	A list of types if tname is None or a list of Validator
subclasses

	Raises:	KeyError – If tname is not a validator type name.

	
irate.validate.register_validator(valcls, front=True)

	Registers a Validator class for use by the
find_validator() function.

	Parameters:	
	valcls – A class that is a subclass of Validator. The matching group
names will be inferred from its groupname attribute.

	front – If True, the given validator will be registered in front of others -
e.g. a group that matches its name will not move on to the others.
Otherwise it will be placed in the back.

	
irate.validate.remove_validator_type(tname)

	Removes a set of type validators.
:param tname: The name of the type to have its validators removed.

	Raises:	KeyError – If tname is not a validator type name.

	
irate.validate.validate_file(fnorfile, verbose=False, immediatefail=False)

	Tests whether or not the file conforms to the IRATE format.

	Parameters:	
	fnorfile – The filename or h5py.File to test.

	verbose (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, informational messages will be printed to stdout, and if False
no messages will be printed. Can also be a callable f(str) that will
be called each time a message is to be printed.

	immediatefail (bool [https://docs.python.org/2/library/functions.html#bool]) – If True, an exception is raise when the first invalid aspect of the file
is encountered. Otherwise, the function completes and returns all
errors.

	Returns:	A list of errors encountered (or an empty list if valid).

	Raises:	IRATEFormatError – If any part of the file does not conform to the standard and
immediatefail is True.

irate.ahf Module

	
irate.ahf.ahf_halos(fname, outname, snapnum, name='HaloCatalog_AHF', posname='comoving Mpc/h', posunit=[3.08568025e+24, -1, 1], velname='km/s', velunit=[100000.0, 0, 0], mname='M_sun/h', munit=[1.98892e+33, -1, 0], radname='comoving kpc/h', radunit=[3.08568025e+21, -1, 1], enname='M_sun/h*(km/s)^2', enunit=[1.98892e+43, -1, 0], phiname='(km/s)^2', phiunit=[10000000000.0, 0, 0])

	Reads an AHF_halos file, then collimates it such that a list of column
headers and a list of arrays, each of which corresponds to a column.
All entries in the columns will be in the same order–i.e. the ith
entry in column x corresponds to the same halo as the ith entry in
column y.

	Parameters:	
	fname – The file to be read; should be in ASCII format with column
headers preceeded by a #

	outname – The IRATE format file to either be created or to have data added to it,
if it already exists.

	snapnum (int [https://docs.python.org/2/library/functions.html#int]) – Specifies the snapshot number that the data will be saved under
in the IRATE file; that is, the data ends up in the group
“Snapshot”+snapnum

	name – Specifies the name of the group that holds the datasets. Data is
saved under “Snapshot”+snapnum+”/”+name

	____name – A human readable string that identifies the units used for
the property specified by ____ (position, velocity, mass, radius, energy,
and phi0)

	____units – A three element array that gives, in order, the conversion
factor between the units used for the property given by * to CGS, the
exponent on the reduced Hubble Parameter that appears in that unit, and
the exponent on the scale factor that appears in that unit.

	Returns:	An array that contains the number of bins used for each halo in the
radial profiles file, for the purpose of reading the .AHF_profiles
file.

	
irate.ahf.ahf_param(pfile, outname, snapnum, name='HaloCatalog_AHF')

	Reads an AHF .parameter file and adds it to an existing IRATE file
as attributes to the /CatalogHeader/AHF group.

	Parameters:	
	pfile – The parameter file to be read. Should be standard AHF
ASCII parameter file format.

	outname – The IRATE file to store the parameters in.

	
irate.ahf.ahf_particles(fname, outname, snapnum, pfilename=None, name='HaloCatalog_AHF')

	Read a .AHF_particles file and save an array with all the
particles in it in order, along with a list of the number of particles
in each halo to an IRATE file. If there’s a particle identifier, also
save an array with the particle type.

uses external progrms to re-format the data to make the read quicker.

	Parameters:	
	fname – The .AHF_particles file to be read. Must be in ASCII format

	outname – The IRATE file that the data is linked to

	pfilename – The HDF5 file that the data is saved in

	snapnum – The snapshot number that identifies the group that the
halo catalog belongs to in the IRATE file

	name – The name of the halo catalog in the IRATE file that the
particles correlate to.

	
irate.ahf.ahf_profiles(fname, nhalos, nbins, outname, snapnum, name='HaloCatalog_AHF', radname='comoving kpc/h', radunits=[3.08568025e+21, -1, 1], mname='M_sun/h', munits=[1.98892e+33, -1, 0], velname='km/s', velunits=[100000.0, 0, 0], angname='(M_sun/h)*(Mpc/h)*(km/s)', angunits=[6.137171162830001e+62, -2, 1], enname='M_sun/h*(km/s)^2', enunits=[1.98892e+43, -1, 0])

	Read an ASCII .AHF_profiles file, collimate it, and return a list of
data and a list of column headers. The list of data is a list over
columns, then each halo has it’s own list within the columns.

	Parameters:	
	fname – The ASCII format .AHF_profiles file to be read.

	nhalos (int [https://docs.python.org/2/library/functions.html#int]) – The number of halos contained in the file

	nbins – An array or list that tells you the number of
radial bins for each halo

	outname – The existing IRATE file to save radial profile data to

	snapnum (int [https://docs.python.org/2/library/functions.html#int]) – The number of the snapshot that the halo catalog that this
data belongs to is under in the existing IRATE file

	name – The name of the group that contains the halo catalog

	____name – A human readable string that gives the units for the given
property: radius, mass, velocity, angular momentum, or energy

	____units – A three element array, the first of which tells the
conversion factor between the units of * and CGS, the second of which
gives the exponent on h as it appears in those units, and the third
gives the exponent on a as it appears in those units.

	
irate.ahf.awked_ahf_particles(fname, outname, snapnum, filename=None, name='HaloCatalog_AHF')

	Read a .AHF_particles file that has been run through the awk script that
accompanies IRATE, which is faster, and save an array with all the
particles in it in order, along with a list of the number of particles
in each halo to an IRATE file. If there’s a particle identifier, the array
is Nx2 with the identifier in the second column.

	Parameters:	
	fname – The .AHF_particles file to be read. Must be in ASCII format

	outname – The IRATE file that the data is linked to

	pfilename – The HDF5 file that the data is saved in

	snapnum – The snapshot number that identifies the group that the
halo catalog belongs to in the IRATE file

	name – The name of the halo catalog in the IRATE file that the
particles correlate to.

	
irate.ahf.read_and_write_particles(infile, outfile, maxsize)

	The HDF5 v 1.8 method of reading and writing particles should allow
me to use a lot less memory by periodically writing to the file (since
v 1.8 allows for appending to datasets). Note that this will probably be
slower than the 1.6 method, at least for small files, but if memory is a
problem, this is probably the way to go.

Warning

THIS DOESN’T WORK RIGHT NOW. I can’t get the appending to work, so
if you desperately want to use this function, you’ll have to fix it.
In fact, I should probably just delete it, but I always hate doing that
Furthermore, since it isn’t working, it hasn’t been updated to work
adhere to the new IRATE format, so this function absolutely does NOT
work.

	Parameters:	
	infile – The AHF_particles file to read. Must be in ASCII format.

	outfile – The IRATE catalog file to save the particle data to.

	maxsize – The maximum amount of memory that can be used at any given
time, in GB.

irate.gadget Module

	
irate.gadget.gadget_hdf5_to_irate(inname, outname, snapnum, t0_name='Gas', t1_name='Dark_Halo', t2_name='Dark_Disk', t3_name='Dark_Bulge', t4_name='Star', t5_name='Dark_Boundary', s8=None, ns=None, omegaB=None, lenient=False, lname='comoving Mpc/h', lunits=[3.08568025e+24, -1, 1], vname='(km/s)*sqrt(a)', vunits=[100000.0, 0, 0.5], mname='1e10 M_sun/h', munits=[1.98892e+43, -1, 0])

	Transforms Gadget type 3 (HDF5) snapshots into a format that meets the
IRATE specifications. This will automatically check for Makefile
enabled blocks.

	Parameters:	
	inname – Gadget type 3 snapshot to convert to IRATE

	outname – IRATE file to output

	snapnum (int [https://docs.python.org/2/library/functions.html#int]) – The number to add to ‘Snapshot’ that becomes the name of
the group that particle data is added to.

	#name – Name of group that particles of type # are given

	s8 (float [https://docs.python.org/2/library/functions.html#float]) – sigma_8, for the purposes of adding it to the Cosmology group

	ns (float [https://docs.python.org/2/library/functions.html#float]) – n_s, for the purposes of adding it to the Cosmology group

	omegaB (float [https://docs.python.org/2/library/functions.html#float]) – omegaB, for the purposes of adding it to the Cosmology group

	lenient (bool [https://docs.python.org/2/library/functions.html#bool]) – allow for discrepancies in SimulationProperties.
discrepancies will be printed, but won’t halt the conversion.
old values will be retained.

	___name – A human readable string that defines the units for either
length (l), velocity (v), or mass (m)

	___units – A three-element array. The first entry defines the
conversion factor to convert either length (l), velocity (v),
or mass (m) to CGS units. The second element is the exponent on the
reduced Hubble Parameter that appears in that unit, and the third
is the exponent on the scale factor that appears in that unit.

refers to the same names as Gadget2:

	0 = gas particles

	1 = halo particles

	2 = disk particles

	3 = bulge particles

	4 = star particles

	5 = bndry particles

	
irate.gadget.gadget_multihdf5_to_irate(inbase, outname, snapnum, t0_name='Gas', t1_name='Dark_Halo', t2_name='Dark_Disk', t3_name='Dark_Bulge', t4_name='Star', t5_name='Dark_Boundary', s8=None, ns=None, omegaB=None, lenient=False, lname='comoving Mpc/h', lunits=[3.08568025e+24, -1, 1], vname='(km/s)*sqrt(a)', vunits=[100000.0, 0, 0.5], mname='1e10 M_sun/h', munits=[1.98892e+43, -1, 0])

	Transform a Gadget type 3 (HDF5) snapshot that is split into multiple blocks into a
format that meets the IRATE specifications. This will automatically check for Makefile
enabled blocks.

	Parameters:	
	inbase – Wildcard basename of a Gadget type 3 snapshot with multiple blocks to
convert to IRATE

	outname – IRATE file to output

	snapnum (int [https://docs.python.org/2/library/functions.html#int]) – The number to add to ‘Snapshot’ that becomes the name of
the group that particle data is added to.

	#name – Name of group that particles of type # are given

	s8 (float [https://docs.python.org/2/library/functions.html#float]) – sigma_8, for the purposes of adding it to the Cosmology group

	ns (float [https://docs.python.org/2/library/functions.html#float]) – n_s, for the purposes of adding it to the Cosmology group

	omegaB (float [https://docs.python.org/2/library/functions.html#float]) – omegaB, for the purposes of adding it to the Cosmology group

	lenient (bool [https://docs.python.org/2/library/functions.html#bool]) – allow for discrepancies in SimulationProperties.
discrepancies will be printed, but won’t halt the conversion.
old values will be retained.

	___name – A human readable string that defines the units for either
length (l), velocity (v), or mass (m)

	___units – A three-element array. The first entry defines the
conversion factor to convert either length (l), velocity (v),
or mass (m) to CGS units. The second element is the exponent on the
reduced Hubble Parameter that appears in that unit, and the third
is the exponent on the scale factor that appears in that unit.

refers to the same names as Gadget2:

	0 = gas particles

	1 = halo particles

	2 = disk particles

	3 = bulge particles

	4 = star particles

	5 = bndry particles

	
irate.gadget.gbin2_to_irate(inname, outname, snapnum, t0_name='Gas', t1_name='Dark_Halo', t2_name='Dark_Disk', t3_name='Dark_Bulge', t4_name='Star', t5_name='Dark_Boundary', s8=None, ns=None, omegaB=None, fprec=4, zfields=3, lenient=False, lname='comoving Mpc/h', lunits=[3.08568025e+24, -1, 1], vname='(km/s)*sqrt(a)', vunits=[100000.0, 0, 0.5], mname='1e10 M_sun/h', munits=[1.98892e+43, -1, 0])

	Reads a GADGET type 2 snapshot file block by block (e.g. coordinate
block for gas particles), writes the block to an IRATE formate HDF5 file,
and then deletes that block from memory. If a given block identifier isn’t
recognized, one of two things will happen: either the script will figure
out which particles that data belongs to and add it automatically with
the dataset named according to the label used, or if it’s not obvious
what particles the data belongs to, the user will be given the option to
skip it or to exit entirely.

	Parameters:	
	inname – The name of the gadget binary file to be read

	outname – The name of the IRATE file to be written,

	snapnum (int [https://docs.python.org/2/library/functions.html#int]) – The number to add to ‘Snapshot’ that becomes the name of
the group that particle data is added to.

	t#_name – Determines the name of the group that contains the data
from #

	s8 (float [https://docs.python.org/2/library/functions.html#float]) – sigma_8, for the purposes of adding it to the Cosmology group

	ns (float [https://docs.python.org/2/library/functions.html#float]) – n_s, for the purposes of adding it to the Cosmology group

	omegaB (float [https://docs.python.org/2/library/functions.html#float]) – omegaB, for the purposes of adding it to the Cosmology group

	fprec – Precision of the file. Single (4) or double (8). Assumed
single precision. Warning! Right now changing this parameter
to double prec (8) will probably not work but I hope it is a
good start point.

	zfields – Fields in the Z block for each particle.

	lenient (bool [https://docs.python.org/2/library/functions.html#bool]) – allow for discrepancies in SimulationProperties.
discrepancies will be printed, but won’t halt the conversion.
old values will be retained.

	___name – A human readable string that defines the units for either
length (l), velocity (v), or mass (m)

	___units – A three-element array. The first entry defines the
conversion factor to convert either length (l), velocity (v),
or mass (m) to CGS units. The second element is the exponent on the
reduced Hubble Parameter that appears in that unit, and the third
is the exponent on the scale factor that appears in that unit.

refers to the same names as Gadget2:

	0 = gas particles

	1 = halo particles

	2 = disk particles

	3 = bulge particles

	4 = star particles

	5 = bndry particles

	
irate.gadget.gbin_to_irate(inname, outname, snapnum, potential=False, accel=False, entropy=False, timestep=False, t0_name='Gas', t1_name='Dark_Halo', t2_name='Dark_Disk', t3_name='Dark_Bulge', t4_name='Star', t5_name='Dark_Boundary', ics=False, s8=None, ns=None, omegaB=None, lenient=False, lname='comoving Mpc/h', lunits=[3.08568025e+24, -1, 1], vname='(km/s)*sqrt(a)', vunits=[100000.0, 0, 0.5], mname='1e10 M_sun/h', munits=[1.98892e+43, -1, 0])

	
Reads a GADGET format file block by block (e.g. coordinate block for gas
particles), writes the block to an IRATE formate HDF5 file, and then
deletes that block from memory.

	param inname:	The name of the gadget binary file to be read

	param outname:	The name of the IRATE file to be written

	param int snapnum:

	 	The number to add to ‘Snapshot’ that becomes the name of
the group that particle data is added to.

	param bool potential:

	 	True to read the Makefile enabled potential block

	param bool accel:

	 	True to read the Makefile enabled acceleration block

	param bool entropy:

	 	True to read the Makefile enabled dA/dt block

	param bool timestep:

	 	True to read the Makefile enabled timestep block

	param t#_name:	Determines the name of the group that contains the data from #

	param bool ics:	True if the file being converted is an initial conditions
file, in which case the gas density and smoothing length blocks won’t
be looked for.

	param float s8:	sigma_8, for the purposes of adding it to the Cosmology group

	param float ns:	n_s, for the purposes of adding it to the Cosmology group

	param bool lenient:

	 	allow for discrepancies in SimulationProperties.
discrepancies will be printed, but won’t halt the conversion.
old values will be retained.

	param ___name:	A human readable string that defines the units for either
length (l), velocity (v), or mass (m)

	param ___units:	A three-element array. The first entry defines the
conversion factor to convert either length (l), velocity (v),
or mass (m) to CGS units. The second element is the exponent on the
reduced Hubble Parameter that appears in that unit, and the third
is the exponent on the scale factor that appears in that unit.

refers to the same names as Gadget2:

	0 = gas particles

	1 = halo particles

	2 = disk particles

	3 = bulge particles

	4 = star particles

	5 = bndry particles

	
irate.gadget.irate_to_gbin(inname, outname, snapnum)

	Converts a single snapshot in an IRATE format file into a SnapFormat = 1
Gadget binary file. If there are groups with “Star” in the name, they’re
assumed to contain star particles and will be placed in Gadget group 4;
likewise, if there are groups with “Gas” in the name, their particles will
be placed in Gadget group 0. Dark matter particles with the lowest mass will
be plced in group 1 and all other particles will be placed in Gadget group 5.

	Parameters:	
	inname – The input IRATE format file.

	outname – The name of the output Gadget file

	snapnum (int [https://docs.python.org/2/library/functions.html#int]) – The integer identifying where the data is stored; that is,
particle data is expected to be under ‘/Snapshot{snapnum}/ParticleData.

	
irate.gadget.read_gbin(fname, potential, accel, entropy, timestep)

	Reads a GADGET format file and returns the data in lists, one for
each type of particle that contains arrays for each bit of data about
each particle.

Warning

Currently unused in the IRATE suite, and definitely not
maintained either. Use at your own risk.

	Parameters:	
	fname – The name of the gadget binary file to be read

	potential (bool [https://docs.python.org/2/library/functions.html#bool]) – True to read the Makefile enabled potential block

	accel (bool [https://docs.python.org/2/library/functions.html#bool]) – True to read the Makefile enabled acceleration block

	entropy (bool [https://docs.python.org/2/library/functions.html#bool]) – True to read the Makefile enabled dA/dt block

	timestep (bool [https://docs.python.org/2/library/functions.html#bool]) – True to read the Makefile enabled timestep block

irate.enbid Module

irate.rockstar Module

	
irate.rockstar.rockstar_ascii(fname, outname, snapnum, name='HaloCatalog_Rockstar', s8=None, ns=None, omegaB=None)

	Reads a Rockstar ASCII file and collimates it, then saves the data in
an IRATE format file (creating one if it doesn’t exist).

	Parameters:	
	fname – The input ASCII file to read and collimate.

	outname – The IRATE file to save the data in

	snapnum – The integer snapshot number, which the data will be saved under in the
IRATE file.

	name – The name of the group that will contain the datasets that hold the data

	s8 – sigma_8, for inclusion in the cosmology group. May be None.

	ns – Power Spectrum Index, for inclusion in the cosmology group. May be
None.

	
irate.rockstar.rockstar_param(fname, outname, snapnum, name='HaloCatalog_Rockstar')

	This functions read in a Rockstar .cfg file, parses it, and then saves it’s
contents as attributes to the group that the halo catalog is expected to be
saved in; that is /Snapshot{snapnum}/{name} in {outname}.

	Parameters:	
	fname – The ASCII rockstar.cfg file to open and read.

	outname – The existing IRATE file to add the attributes to

	snapnum – Identifies the snapshot number that the halo catalog that rockstar.cfg
belongs to.

	name – The name of the group that holds the halo catalog that rockstar.cfg
belongs to.

irate.tipsy Module

 Python Module Index

 i

 		 	

 		
 i	

 	[image: -]
 	
 irate	

 	
 	
 irate.ahf	

 	
 	
 irate.core	

 	
 	
 irate.gadget	

 	
 	
 irate.rockstar	

 	
 	
 irate.validate	

Index

 Symbols
 | A
 | C
 | E
 | F
 | G
 | I
 | R
 | S
 | V

Symbols

 	
 	
 --___afact

 	ahf2irate command line option

 	
 --___hfact

 	ahf2irate command line option

 	
 --___unit

 	ahf2irate command line option

 	
 --_afact

 	gadget2irate command line option

 	
 --_hfact

 	gadget2irate command line option

 	
 --_unit

 	gadget2irate command line option

 	
 --ang

 	ahf2irate command line option

 	
 --energy

 	ahf2irate command line option

 	
 --hdf5-16

 	ahf2irate command line option

 	ahfparticles2irate command line option

 	
 --mass

 	ahf2irate command line option

 	
 --name

 	ahf2irate command line option

 	ahfparticles2irate command line option

 	
 --nogas

 	ahf2irate command line option

 	
 --ns, --n_s

 	gadget2irate command line option

 	rockstar2irate command line option

 	
 --paramfile=<parameter file>

 	ahf2irate command line option

 	
 --particles

 	ahf2irate command line option

 	
 --phi

 	ahf2irate command line option

 	
 --pos

 	ahf2irate command line option

 	
 --profiles

 	ahf2irate command line option

 	
 --rad

 	ahf2irate command line option

 	
 --s8, --sigma8

 	gadget2irate command line option

 	rockstar2irate command line option

 	
 --snap, --snapshot

 	gadget2irate command line option

 	
 --t0name, --gasname

 	enbid2irate command line option

 	gadget2irate command line option

 	
 --t0tree, --gastree

 	enbid2irate command line option

 	
 --t1name, --haloname

 	enbid2irate command line option

 	gadget2irate command line option

 	
 --t1tree, --halotree

 	enbid2irate command line option

 	
 --t2name, --diskname

 	enbid2irate command line option

 	gadget2irate command line option

 	
 --t2tree, --disktree

 	enbid2irate command line option

 	
 --t3name, --bulgename

 	enbid2irate command line option

 	gadget2irate command line option

 	
 	
 --t3tree, --bulgetree

 	enbid2irate command line option

 	
 --t4name, --starname

 	enbid2irate command line option

 	gadget2irate command line option

 	
 --t4tree, --startree

 	enbid2irate command line option

 	
 --t5name, --bndryname

 	enbid2irate command line option

 	gadget2irate command line option

 	
 --t5tree, --bndrytree

 	enbid2irate command line option

 	
 --vel

 	ahf2irate command line option

 	
 -a

 	rockstar2irate command line option

 	
 -a, --acceleration

 	gadget2irate command line option

 	
 -b

 	rockstar2irate command line option

 	
 -c, --print-cosmology

 	iratevalidate command line option

 	
 -d, --delete-gathered

 	irategather command line option

 	
 -i, --immediate

 	iratevalidate command line option

 	
 -i, --inits

 	gadget2irate command line option

 	
 -L

 	gadget2irate command line option

 	
 -l, --list-types

 	iratevalidate command line option

 	
 -M

 	gadget2irate command line option

 	
 -n, --name

 	rockstar2irate command line option

 	
 -o, --output

 	irategather command line option

 	
 -o, --overwrite

 	ahfparticles2irate command line option

 	
 -p

 	ahf2irate command line option

 	
 -p, --potential

 	gadget2irate command line option

 	
 -p, --print-structure

 	iratevalidate command line option

 	
 -s, --entropy

 	gadget2irate command line option

 	
 -s, --size

 	ahf2irate command line option

 	ahfparticles2irate command line option

 	
 -s, --skips

 	iratevalidate command line option

 	
 -t, --timestep

 	gadget2irate command line option

 	
 -t, --type

 	iratevalidate command line option

 	
 -v

 	gadget2irate command line option

 	
 -v, --validate

 	irategather command line option

 	
 -v, --verbose

 	iratevalidate command line option

A

 	
 	activate_validator_type() (in module irate.validate)

 	add_cosmology() (in module irate.core)

 	add_standard_cosmology() (in module irate.core)

 	add_validator_type() (in module irate.validate)

 	
 ahf2irate command line option

 	--___afact

 	--___hfact

 	--___unit

 	--ang

 	--energy

 	--hdf5-16

 	--mass

 	--name

 	--nogas

 	--paramfile=<parameter file>

 	--particles

 	--phi

 	--pos

 	--profiles

 	--rad

 	--vel

 	-p

 	-s, --size

 	
 	ahf_halos() (in module irate.ahf)

 	ahf_param() (in module irate.ahf)

 	ahf_particles() (in module irate.ahf)

 	ahf_profiles() (in module irate.ahf)

 	
 ahfparticles2irate command line option

 	--hdf5-16

 	--name

 	-o, --overwrite

 	-s, --size

 	awked_ahf_particles() (in module irate.ahf)

C

 	
 	check_units() (irate.validate.Validator method)

 	
 	create_irate() (in module irate.core)

E

 	
 	
 enbid2irate command line option

 	--t0name, --gasname

 	--t0tree, --gastree

 	--t1name, --haloname

 	--t1tree, --halotree

 	--t2name, --diskname

 	--t2tree, --disktree

 	--t3name, --bulgename

 	--t3tree, --bulgetree

 	--t4name, --starname

 	--t4tree, --startree

 	--t5name, --bndryname

 	--t5tree, --bndrytree

F

 	
 	find_custom_validator_dir() (in module irate.validate)

 	
 	find_validator() (in module irate.validate)

G

 	
 	
 gadget2irate command line option

 	--_afact

 	--_hfact

 	--_unit

 	--ns, --n_s

 	--s8, --sigma8

 	--snap, --snapshot

 	--t0name, --gasname

 	--t1name, --haloname

 	--t2name, --diskname

 	--t3name, --bulgename

 	--t4name, --starname

 	--t5name, --bndryname

 	-L

 	-M

 	-a, --acceleration

 	-i, --inits

 	-p, --potential

 	-s, --entropy

 	-t, --timestep

 	-v

 	
 	gadget_hdf5_to_irate() (in module irate.gadget)

 	gadget_multihdf5_to_irate() (in module irate.gadget)

 	gather_files() (in module irate.core)

 	gbin2_to_irate() (in module irate.gadget)

 	gbin_to_irate() (in module irate.gadget)

 	get_all_particles() (in module irate.core)

 	get_cgs_factor() (in module irate.core)

 	get_irate_catalog_halo_nums() (in module irate.core)

 	get_irate_particle_nums() (in module irate.core)

 	get_metadata() (in module irate.core)

 	get_units() (in module irate.core)

 	get_validator_types() (in module irate.validate)

I

 	
 	irate (module)

 	irate.ahf (module)

 	irate.core (module)

 	irate.gadget (module)

 	irate.rockstar (module)

 	irate.validate (module)

 	irate_to_gbin() (in module irate.gadget)

 	IRATEFormatError

 	
 irategather command line option

 	-d, --delete-gathered

 	-o, --output

 	-v, --validate

 	
 	
 iratevalidate command line option

 	-c, --print-cosmology

 	-i, --immediate

 	-l, --list-types

 	-p, --print-structure

 	-s, --skips

 	-t, --type

 	-v, --verbose

R

 	
 	read_and_write_particles() (in module irate.ahf)

 	read_gbin() (in module irate.gadget)

 	register_validator() (in module irate.validate)

 	remove_validator_type() (in module irate.validate)

 	
 rockstar2irate command line option

 	--ns, --n_s

 	--s8, --sigma8

 	-a

 	-b

 	-n, --name

 	
 	rockstar_ascii() (in module irate.rockstar)

 	rockstar_param() (in module irate.rockstar)

 	RootValidator (class in irate.validate)

S

 	
 	scatter_files() (in module irate.core)

 	
 	set_metadata() (in module irate.core)

 	set_units() (in module irate.core)

V

 	
 	validate() (irate.validate.Validator method)

 	
 	validate_file() (in module irate.validate)

 	Validator (class in irate.validate)

 _static/down.png

_static/comment-close.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/comment.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Welcome to the documentation for the IRATE project

 		Getting and Installing IRATE

 		Getting IRATE

 		Installing

 		IRATE Format Specification

 		IRATE File Format

 		Unit Information

 		Other Metadata

 		Particle Data

 		Grid Data

 		Halo Catalogs

 		Galaxy Catalogs

 		Merger Trees

 		Examples

 		Command Line Scripts and Conversion Tools

 		IRATE Utilities

 		Validate IRATE File Structure

 		Gather IRATE File

 		Format Converters

 		Tipsy Binary -> IRATE

 		Gadget Binary -> IRATE

 		EnBiD -> IRATE

 		Gadget Binary + EnBiD -> IRATE

 		AHF ASCII -> IRATE

 		AHF Particles -> IRATE

 		Rockstar -> IRATE

 		Custom Validators/Extending the IRATE Format

 		Writing Validator Subclasses

 		Tips for Using IRATE and writing I/O modules

 		Reference Guide

 		irate.core Module

 		irate.validate Module

 		irate.ahf Module

 		irate.gadget Module

 		irate.enbid Module

 		irate.rockstar Module

 		irate.tipsy Module

_images/math/d67e417cb552448b5562da21b714f5e7d7e512e7.png
R

_images/math/33ca2dd636df6bdff84818e0163e2c419b2ffa10.png
h = Hy/100

_static/comment-bright.png

