

ipymidicontrols

Version: 0.1.3

A Jupyter widget for interfacing with MIDI controllers.

Because Chrome is the only browser that implements the Web MIDI API [https://developer.mozilla.org/en-US/docs/Web/API/MIDIAccess], this package only works in Chrome. Firefox has recent discussion [https://bugzilla.mozilla.org/show_bug.cgi?id=836897] on how to move forward with implementing this standard. The webmidi JavaScript package mentions there is a Firefox plugin that possibly makes this work in Firefox (see https://www.npmjs.com/package/webmidi#browser-support).

Each midi controller needs a custom implementation exposing the interface for that specific midi controller as buttons, knobs, faders, etc. Currently we support the Behringer X-Touch Mini [https://www.behringer.com/Categories/Behringer/Computer-Audio/Desktop-Controllers/X-TOUCH-MINI/p/P0B3M#googtrans(en|en)] controller, which is currently available for around $60.

Installation and usage

	Installation

	Examples

Development

	Developer install

Installation

The simplest way to install ipymidicontrols is via pip:

pip install ipymidicontrols

or via conda:

conda install ipymidicontrols

If you installed via pip, and notebook version < 5.3, you will also have to
install / configure the front-end extension as well. If you are using classic
notebook (as opposed to Jupyterlab), run:

jupyter nbextension install [--sys-prefix / --user / --system] --py ipymidicontrols

jupyter nbextension enable [--sys-prefix / --user / --system] --py ipymidicontrols

with the appropriate flag [https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html#installing-and-enabling-extensions]. If you are using Jupyterlab, install the extension
with:

jupyter labextension install @jupyter-widgets/midicontrols

In JupyterLab, you will also need to install the ipywidgets extension:

jupyter labextension install @jupyter-widgets/jupyterlab-manager

Examples

	Behringer X-Touch Mini
	Rotary encoders (knobs)

	Buttons

	Faders

	Listening to changes

	Linking to other widgets

	Experimenting with options

	Clearing values

Behringer X-Touch Mini

This notebook can be downloaded
here [https://github.com/jupyter-widgets/midicontrols/blob/master/examples/Example.ipynb].

Because Chrome is the only browser that implements the Web MIDI
API [https://developer.mozilla.org/en-US/docs/Web/API/MIDIAccess],
this package only works in Chrome. Firefox has recent
discussion [https://bugzilla.mozilla.org/show_bug.cgi?id=836897] on
how to move forward with implementing this standard.

Each midi controller needs a custom implementation exposing the
interface for that specific midi controller as buttons, knobs, faders,
etc. Currently we support the Behringer X-Touch
Mini [https://www.behringer.com/Categories/Behringer/Computer-Audio/Desktop-Controllers/X-TOUCH-MINI/p/P0B3M#googtrans(en%7Cen)]
controller, which is currently available for around $60.

In []:

from ipymidicontrols import XTouchMini, xtouchmini_ui
x = XTouchMini()

We can work directly with the controls to assign values, listen for
value changes, etc., just like a normal widget. Run the cell below, then
turn the first knob or press the upper left button. You should see the
values below update. Note that the button value toggles when held down,
and the light on the physical button reflects this state, where true
means light on, false means light off.

In []:

left_knob = x.rotary_encoders[0]
upper_left_button = x.buttons[0]
display(left_knob)
display(upper_left_button)

You can also adjust the values from Python and the changes are reflected
in the kernel.

In []:

left_knob.value = 50

Rotary encoders (knobs)

Rotary encoders (i.e., knobs) have a min and max that can be set.

In []:

left_knob.min=0
left_knob.max=10

Knobs have a variety of ways to display the value in the lights around
the knob. If your value represents a deviation from some reference, you
might use the 'trim' light mode. If your value represents the width
of a symmetric range around some reference, you might use the
'spread' light mode.

In []:

light_mode can be 'single', 'wrap', 'trim', 'spread'
left_knob.light_mode = 'spread'

We’ll set the min/max back to the default (0, 100) range for the rest of
the example for consistency with other knobs.

In []:

left_knob.min = 0
left_knob.max = 100

Buttons

Since the button has a True/False state, and holding down the button
momentarily toggles the state, if we set the button to True when it is
not held down, we reverse the toggling (i.e., it is now True by default,
and pressing it toggles it to False).

In []:

upper_left_button.value = True
Now press the button to see it toggle to false.

We can change this toggling behavior in the button by setting the button
mode. It defaults to 'momentary', which means the button state
toggles only when the button is held down. Setting mode to
'toggle' makes the button toggle its value each time it is pressed.
Run the following cell and press the button several times. Notice how
the toggle behavior is different.

In []:

upper_left_button.mode = 'toggle'

Each rotary encoder can also be pressed as a button and the toggle mode
can be set as well. Run the cell below and press the left knob.

In []:

left_knob_button = x.rotary_buttons[0]
left_knob_button.mode = 'toggle'
display(left_knob_button)

Faders

The fader can send its value to Python and has min, max, and
value properties.

In []:

fader = x.faders[0]
display(fader)

Because the X-Touch Mini does not have motorized faders, the fader
cannot be moved to represent a value set from Python. Any value set from
Python is overridden by the next fader movement.

Listening to changes

As with any widget, we can observe changes from any control to run a
function.

In []:

from ipywidgets import Output

out = Output()

@out.capture()
def f(change):
 print('upper left button is %s'%(change.new))

upper_left_button.observe(f, 'value')
display(out)

Linking to other widgets

You can synchronize these widgets up to other widgets using link()
to give a nicer GUI. Run the cell below and then try turning the left
knob or pressing the upper left button. Also try adjusting the slider
and checkbox below to see that the values are synchronized both ways.

In []:

from ipywidgets import link, IntSlider, Checkbox, VBox
slider = IntSlider(description="Left knob", min=left_knob.min, max=left_knob.max)
checkbox = Checkbox(description="Upper left button")

link((left_knob, 'value'), (slider, 'value'))
link((upper_left_button, 'value'), (checkbox, 'value'))

display(VBox([slider, checkbox]))

This package includes a convenience function, xtouchmini_ux(), to
link each control up to a slider or checkbox widget in a GUI that
roughly approximates the physical layout.

In []:

xtouchmini_ui(x)

Experimenting with options

Let’s set various controls to explore the available button and knob
light modes, as well as some random values to see what they look like on
the controller.

In []:

for b in x.buttons:
 b.mode='toggle'
for b in x.rotary_buttons[:4]:
 b.mode='toggle'
for b in x.rotary_buttons[4:]:
 b.mode='momentary'
for b in x.side_buttons:
 b.mode='momentary'
for b, mode in zip(x.rotary_encoders, ['single', 'single', 'trim', 'trim', 'wrap', 'wrap', 'spread', 'spread']):
 b.light_mode = mode

In []:

Set some random values
import secrets
for b in x.buttons:
 b.value=secrets.choice([False, True])
for b in x.rotary_encoders:
 b.value = secrets.randbelow(101)

Clearing values

Finally, let’s clear all of the values.

In []:

Clear all values
for b in x.buttons:
 b.value = False
for b in x.rotary_buttons:
 b.value = False
for b in x.rotary_encoders:
 b.value = 0

In []:

Developer install

To install a developer version of ipymidicontrols, you will first need to clone
the repository:

git clone https://github.com/jupyter-widgets/midicontrols
cd midicontrols

Next, install it with a develop install using pip:

pip install -e .

If you are planning on working on the JS/frontend code, you should also do
a link installation of the extension:

jupyter nbextension install [--sys-prefix / --user / --system] --symlink --py ipymidicontrols

jupyter nbextension enable [--sys-prefix / --user / --system] --py ipymidicontrols

with the appropriate flag [https://jupyter-notebook.readthedocs.io/en/stable/extending/frontend_extensions.html#installing-and-enabling-extensions]. Or, if you are using Jupyterlab:

jupyter labextension install .

Index

 nav.xhtml

 Table of Contents

 		
 ipymidicontrols

 		
 Installation

 		
 Examples

 		
 Behringer X-Touch Mini

 		
 Rotary encoders (knobs)

 		
 Buttons

 		
 Faders

 		
 Listening to changes

 		
 Linking to other widgets

 		
 Experimenting with options

 		
 Clearing values

 		
 Developer install

_static/minus.png

_static/plus.png

_static/file.png

