
iPOPO Documentation
Release 0.8.1

Thomas Calmant

Jan 19, 2020

Contents

1 About this documentation 3

2 User’s Guide 5
2.1 Foreword . 5
2.2 Installation . 6
2.3 Quick-start . 8
2.4 Tutorials . 15
2.5 Reference Cards . 38

3 API Reference 117
3.1 API . 117

4 Additional Notes 129
4.1 Who uses iPOPO ? . 129
4.2 Release Notes . 131
4.3 License . 146

Python Module Index 151

Index 153

i

ii

iPOPO Documentation, Release 0.8.1

iPOPO is a Python-based Service-Oriented Component Model (SOCM) based on Pelix, a dynamic service platform.
They are inspired by two popular Java technologies for the development of long-lived applications: the iPOJO compo-
nent model and the OSGi Service Platform. iPOPO enables the conception of long-running and modular IT services.

This documentation is divided into three main parts. The Quick-start will guide you to install iPOPO and write your
first components. The Reference Cards section details the various concepts of iPOPO. Finally, the Tutorials explain
how to use the various built-in services of iPOPO. You can also take a look at the slides of the iPOPO tutorial to have
a quick overview of iPOPO.

iPOPO is released under the terms of the Apache Software License 2.0. It depends on a fork of jsonrpclib, called
jsonrpclib-pelix. The documentation of this library is available on GitHub.

Contents 1

http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
http://osgi.org/
https://github.com/tcalmant/ipopo-tutorials/releases
https://www.apache.org/licenses/LICENSE-2.0.html
https://github.com/joshmarshall/jsonrpclib
https://github.com/tcalmant/jsonrpclib
https://github.com/tcalmant/jsonrpclib

iPOPO Documentation, Release 0.8.1

2 Contents

CHAPTER 1

About this documentation

The previous documentation was provided as a wiki, which has been shut down for various reasons. A copy of the
previous content is available in the convert_doc branch, even though it’s starting to age. The documentation is now
hosted on Read the Docs. The main advantages are that it is now included in the Git repository of the project, and it
can include docstrings directly from the source code.

If you have any question which hasn’t been answered in the documentation, please ask on the users’ mailing list.

As always, all contributions to the documentation and the code are very appreciated.

3

https://github.com/tcalmant/ipopo/tree/convert_doc
https://readthedocs.org/
https://groups.google.com/forum/#!forum/ipopo-users

iPOPO Documentation, Release 0.8.1

4 Chapter 1. About this documentation

CHAPTER 2

User’s Guide

This chapter details how to install and use iPOPO.

2.1 Foreword

This section describes the purpose and goals of the iPOPO project, as well as some background history.

2.1.1 What is iPOPO ?

iPOPO is a Python-based Service-Oriented Component Model (SOCM). It is split into two parts:

• Pelix, a dynamic service platform

• iPOPO, the SOCM framework, hence the name.

Both are inspired on two popular Java technologies for the development of long-lived applications: the OSGi Service
Platform and the iPOJO component model.

iPOPO allows to conceive long-running and modular IT services in Python.

About the name, iPOPO is inspired from iPOJO, which stands for injected Plain Old Java Object. Java being replaced
by Python, the name became iPOPO. The logo comes from the similarity of pronunciation with the french word for
the hippo: hippopotame.

By the way, I pronounce the name iPOPO the french way, i.e. /i.p.p/ (International Phonetic Alphabet). The english
way, i.e. /a.p.p/, is the most commonly used by the users I had the chance to talk to.

2.1.2 A bit of history

During my PhD thesis, I had to monitor applications built as multiple instances of OSGi frameworks and based on
iPOJO components. This required to access some OS-specific low-level methods and was initially done in Java with
JNA.

5

http://osgi.org/
http://osgi.org/
http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html
https://en.wikipedia.org/wiki/International_Phonetic_Alphabet

iPOPO Documentation, Release 0.8.1

To ease the development of probes, the monitoring code has been translated to Python. At first, it was only a set of
scripts without any relations, but as the project grown, it was necessary to develop a framework to handle those various
parts and to link them together. In order to be consistent, I decided to develop a component model similar to what was
used used in Java, i.e. iPOJO, and keeping the concepts of OSGi.

A first draft, called python.injections was developed in December 2011. It was a proof of concept which was
good enough for my employer, isandlaTech (now Cohorte Technologies), to allow the development of what would
become iPOPO.

The first public release was version 0.3 in April 2012, under the GPLv3 license. In November 2013, iPOPO adopts
the Apache Software License 2.0 with release 0.5.5.

On March 2015, release 0.6 dropped support for Python 2.6. Since then, the development slowed down as the core
framework is considered stable.

As of 2018, the development of iPOPO is still active. iPOPO 1.0 will come out when some features, existing or
currently in development, will have been completed, tested and polished.

2.1.3 SOA and SOCM in Python

The Service-Oriented Architecture (SOA) consists in linking objects through provided contracts (services) registered
in a service registry.

A service is an object associated to properties describing it, including the names of the contracts it implements. It
is stored in the service registry of the framework by the service provider. The provider or the service itself (they are
often the same) must handle the requirements, i.e. looking for the services required to work and handling their late
un/registration.

A component is an object instantiated and handled by an instance manager created by iPOPO. The manager handles
the life cycle of the component, looking for its dependencies and handling their late registration, unregistration and
replacement. It eases the development and allows a lot of dynamism in an application.

The conclusion is that the parts of an application which only provide a feature can be written as a simple service,
whereas parts using other elements of the application should be written as components.

Continue to Installation, the Quick-start or the Tutorials.

2.2 Installation

iPOPO strongly depends on only one external library, jsonrpclib-pelix, which provides some utility methods and is
required to enable remote services based on JSON-RPC. It relies on other libraries for extended features, which are
listed in the requirements file.

To install iPOPO, you will need Python 2.7, Python 3.4 or newer. iPOPO is constantly tested, using Tox and Travis-CI,
on the following interpreters:

• Python 2.7

• Python 3.4, 3.5 and 3.6

Support for Python 2.6 has been dropped with iPOPO 0.6. The framework should run on Python 3.2 and 3.3 and also
on Pypy, but this is not guaranteed. Any feedback on those platforms is welcome.

There are many ways to install iPOPO, so let’s have a look to some of them.

6 Chapter 2. User’s Guide

http://www.cohorte-technologies.com/fr/
https://github.com/tcalmant/jsonrpclib
https://github.com/tcalmant/ipopo/blob/master/requirements.txt

iPOPO Documentation, Release 0.8.1

2.2.1 System-Wide Installation

This is the easiest way to install iPOPO, even though using virtual environments is recommended to develop your
applications.

For a system-wide installation, just run pip with root privileges:

$ sudo pip install iPOPO

If you don’t have root privileges and you can’t or don’t want to use virtual environments, you can install iPOPO for
your user only:

$ pip install --user iPOPO

2.2.2 Virtual Environment

Using virtual environments is the recommended way to install libraries in Python. It allows to try and develop with
specific versions of libraries, to test some packages, etc. without messing with your Python installation, nor your main
development environment.

It is also useful in production, as virtual environment allows to isolate libraries, avoiding incompatibilities.

Python 3.3+

Python 3.3 introduced the venv module, introducing a standard way to handle virtual environments. As this module
is included in the Python standard library, you shouldn’t have to install it manually.

Now you can create a new virtual environment, here called ipopo-venv:

$ python3 -m venv ipopo-venv

Continue to Then. . . to activate your new environment.

Older Python versions

Before Python 3.3, virtual environments were handled by a third-party package, virtualenv, which must be in-
stalled alongside Python.

If you are on Linux or Mac OS X, the following command should work:

$ sudo pip install virtualenv

On Linux, virtualenv is probably provided by your distribution. For example, you can use the following command on
Debian or Ubuntu:

$ sudo apt-get install python-virtualenv

Once virtualenv is installed, you can create you first virtual environment:

$ virtualenv ipopo-venv
New python executable in ipopo-venv/bin/python
Installing setuptools, pip............done.

2.2. Installation 7

iPOPO Documentation, Release 0.8.1

Then. . .

Now, whenever you want to work on this project, you will have to activate the virtual environment:

$. ipopo-venv/bin/activate

If you are a Windows user, the following command is for you:

> ipopo-venv\Scripts\activate

Either way, the python and pip commands you type in the shell should be those of your virtual environment. The
shell prompt indicates the name of the virtual environment currently in use.

Now you can install iPOPO using pip. As you are in a virtual environment, you don’t need administration rights:

$ pip install iPOPO

iPOPO is now installed and can be used in this environment. You can now try it and develop your components.

Once you are done, you can get out of the virtual environment using the following command (both on Linux and
Windows):

$ deactivate

2.2.3 Development version

If you want to work with the latest version of iPOPO, there are two ways: you can either let pip pull in the develop-
ment version, or you can tell it to operate on a git checkout. Either way, a virtual environment is recommended.

Get the git checkout in a new virtual environment and run in development mode:

$ git clone https://github.com/tcalmant/ipopo.git
Cloning into 'ipopo'...
$ cd ipopo
$ python3 -m venv ipopo-venv
New python executable in ipopo-venv/bin/python
Installing setuptools, pip............done.
$. ipopo-venv/bin/activate
$ python setup.py develop
...
Finished processing dependencies for iPOPO

This will pull the dependency (jsonrpclib-pelix) and activate the git head as the current version inside the virtual
environment. As the develop installation mode uses symbolic links, you simply have to run git pull origin to
update to the latest version of iPOPO in your virtual environment.

You can now continue to Quick-start

2.3 Quick-start

Eager to get started? This page gives a good introduction to iPOPO. It assumes you already have iPOPO installed. If
you do not, head over to the Installation section.

8 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

2.3.1 Play with the shell

The easiest way to see how iPOPO works is by playing with the builtin shell.

To start the shell locally, you can run the following command:

bash$ python -m pelix.shell

** Pelix Shell prompt **
$

Survival Kit

As always, the life-saving command is help:

$ help
=== Name space 'default' ===
- ? [<command>]

Prints the available methods and their documentation,
or the documentation of the given command.

- bd <bundle_id>
Prints the details of the bundle with the given ID
or name

- bl [<name>]
Lists the bundles in the framework and their state.
Possibility to filter on the bundle name.

...
$

The must-be-known shell commands of iPOPO are the following:

Command Description
help Shows the help
loglevel Prints/Changes the log level
exit Quits the shell (and stops the framework in console UI)
threads Prints the stack trace of all threads
run Runs a Pelix shell script

Bundle commands

The following commands can be used to handle bundles in the framework:

Command Description
install Installs a module as a bundle
start Starts the given bundle
update Updates the given bundle (restarts it if necessary)
uninstall Uninstalls the given bundle (stops it if necessary)
bl Lists the installed bundles and their state
bd Prints the details of a bundle

In the following example, we install the pelix.shell.remote bundle, and play a little with it:

2.3. Quick-start 9

iPOPO Documentation, Release 0.8.1

$ install pelix.shell.remote
Bundle ID: 14
$ start 14
Starting bundle 14 (pelix.shell.remote)...
$ bl
+----+--+--------+---------+
| ID | Name | State | Version |
+====+==+========+=========+
| 0 | pelix.framework | ACTIVE | 0.8.0 |
+----+--+--------+---------+
...
+----+--+--------+---------+
| 14 | pelix.shell.remote | ACTIVE | 0.8.0 |
+----+--+--------+---------+
15 bundles installed
$ update 14
Updating bundle 14 (pelix.shell.remote)...
$ stop 14
Stopping bundle 14 (pelix.shell.remote)...
$ uninstall 14
Uninstalling bundle 14 (pelix.shell.remote)...
$

While the install command requires the name of a module as argument, all other commands accepts a bundle ID
as argument.

Service Commands

Services are handles by bundles and can’t be modified using the shell. The following commands can be used to check
the state of the service registry:

Command Description
sl Lists the registered services
sd Prints the details of a services

This sample prints the details about the iPOPO core service:

$ sl
+----+---------------------------+--
→˓+---------+
| ID | Specifications | Bundle
→˓| Ranking |
+====+===========================+==+=========+
| 1 | ['ipopo.handler.factory'] | Bundle(ID=5, Name=pelix.ipopo.handlers.properties)
→˓| 0 |
+----+---------------------------+--
→˓+---------+
...
+----+---------------------------+--
→˓+---------+
| 8 | ['pelix.ipopo.core'] | Bundle(ID=1, Name=pelix.ipopo.core)
→˓| 0 |
+----+---------------------------+--
→˓+---------+
...

(continues on next page)

10 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

16 services registered
$ sd 8
ID............: 8
Rank..........: 0
Specifications: ['pelix.ipopo.core']
Bundle........: Bundle(ID=1, Name=pelix.ipopo.core)
Properties....:

objectClass = ['pelix.ipopo.core']
service.id = 8
service.ranking = 0

Bundles using this service:
Bundle(ID=4, Name=pelix.shell.ipopo)

$

iPOPO Commands

iPOPO provides a set of commands to handle the components and their factories:

Command Description
factories Lists registered component factories
factory Prints the details of a factory
instances Lists components instances
instance Prints the details of a component
waiting Lists the components waiting for an handler
instantiate Starts a new component instance
kill Kills a component
retry Retry the validation of an erroneous component

This snippets installs the pelix.shell.remote bundle and instantiate a new remote shell component:

$ install pelix.shell.remote
Bundle ID: 15
$ start 15
Starting bundle 15 (pelix.shell.remote)...
$ factories
+------------------------------+--+
| Factory | Bundle |
+==============================+==+
| ipopo-remote-shell-factory | Bundle(ID=15, Name=pelix.shell.remote) |
+------------------------------+--+
| ipopo-shell-commands-factory | Bundle(ID=4, Name=pelix.shell.ipopo) |
+------------------------------+--+
2 factories available
$ instantiate ipopo-remote-shell-factory rshell pelix.shell.address=0.0.0.0 pelix.
→˓shell.port=9000
Component 'rshell' instantiated.

A remote shell as been started on port 9000 and can be accessed using Netcat:

bash$ nc localhost 9000
--

** Pelix Shell prompt **

(continues on next page)

2.3. Quick-start 11

iPOPO Documentation, Release 0.8.1

(continued from previous page)

iPOPO Remote Shell
--
$

The remote shell gives access to the same commands as the console UI. Note that an XMPP version of the shell also
exists.

To stop the remote shell, you have to kill the component:

$ kill rshell
Component 'rshell' killed.

Finally, to stop the shell, simply run the exit command or press Ctrl+D.

2.3.2 Hello World!

In this section, we will create a service provider and its consumer using iPOPO. The consumer will use the provider
to print a greeting message as soon as it is bound to it. To simplify this first sample, the consumer can only be bound
to a single service and its life-cycle is highly tied to the availability of this service.

Here is the code of the provider component, which should be store in the provider module (provider.py). The
component will provide a service with of the hello.world specification.

from pelix.ipopo.decorators import ComponentFactory, Provides, Instantiate

Define the component factory, with a given name
@ComponentFactory("service-provider-factory")
Defines the service to provide when the component is active
@Provides("hello.world")
A component must be instantiated as soon as the bundle is active
@Instantiate("provider")
Don't forget to inherit from object, for Python 2.x compatibility
class Greetings(object):

def hello(self, name="World"):
print("Hello,", name, "!")

Start a Pelix shell like shown in the previous section, then install and start the provider bundle:

** Pelix Shell prompt **
$ install provider
Bundle ID: 14
$ start 14
Starting bundle 14 (provider)...
$

The consumer will require the hello.world service and use it when it is validated, i.e. once this service has been
injected. Here is the code of this component, which should be store in the consumer module (consumer.py).

from pelix.ipopo.decorators import ComponentFactory, Requires, Instantiate, \
Validate, Invalidate

Define the component factory, with a given name
@ComponentFactory("service-consumer-factory")
Defines the service required by the component to be active
The service will be injected in the '_svc' field

(continues on next page)

12 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

@Requires("_svc", "hello.world")
A component must be instantiated as soon as the bundle is active
@Instantiate("consumer")
Don't forget to inherit from object, for Python 2.x compatibility
class Consumer(object):

@Validate
def validate(self, context):

print("Component validated, calling the service...")
self._svc.hello("World")
print("Done.")

@Invalidate
def invalidate(self, context):

print("Component invalidated, the service is gone")

Install and start the consumer bundle in the active Pelix shell and play with the various commands described in the
previous section:

$ install consumer
Bundle ID: 15
$ start 15
Starting bundle 15 (consumer)...
Component validated, calling the service...
Hello, World !
Done.
$ update 14
Updating bundle 14 (provider)...
Component invalidated, the service is gone
Component validated, calling the service...
Hello, World !
Done.
$ uninstall 14
Uninstalling bundle 14 (provider)...
Component invalidated, the service is gone

2.3.3 Hello from somewhere else!

This section reuses the bundles written in the Hello World sample and starts them into two distinct frameworks. The
consumer will use the service provided from the other framework.

To achieve that, we will use the Pelix Remote Services, a set of bundles intending to share services across multiple
Pelix frameworks. A reference card provides more information about this feature.

Core bundles

First, we must install the core bundles of the remote services implementation: the Imports Registry (pelix.remote.
registry) and the Exports Dispatcher (pelix.remote.dispatcher). Both handle the description of the
shared services, not their link with the framework: this will be the job of the discovery and transport providers. The
discovery provider we will use requires to access the content of the Exports Dispatcher of the frameworks it finds,
through HTTP requests. A component, the dispatcher servlet, must be instantiated to answer to those requests:

bash$ python -m pelix.shell

** Pelix Shell prompt **
(continues on next page)

2.3. Quick-start 13

iPOPO Documentation, Release 0.8.1

(continued from previous page)

$ install pelix.remote.registry
Bundle ID: 14
$ start 14
Starting bundle 14 (pelix.remote.registry)...
$ install pelix.remote.dispatcher
Bundle ID: 15
$ start 15
Starting bundle 15 (pelix.remote.dispatcher)...
$ instantiate pelix-remote-dispatcher-servlet-factory dispatcher-servlet
Component 'dispatcher-servlet' instantiated.

The protocols we will use for discovery and transport depends on an HTTP server. As we are using two framework on
the same machine, don’t forget to use different HTTP ports for each framework:

$ install pelix.http.basic
Bundle ID: 16
$ start 16
Starting bundle 16 (pelix.http.basic)...
$ instantiate pelix.http.service.basic.factory httpd pelix.http.port=8000
INFO:httpd:Starting HTTP server: [0.0.0.0]:8000 ...
INFO:httpd:HTTP server started: [0.0.0.0]:8000
Component 'httpd' instantiated.

The dispatcher servlet will be discovered by the newly started HTTP server and will be able to answer to clients.

Discovery and Transport

Next, it is necessary to setup the remote service discovery layer. Here, we’ll use a Pelix-specific protocol based on
UDP multicast packets. By default, this protocol uses the UDP port 42000, which must therefore be accessible on any
machine providing or consuming a remote service.

Start two Pelix frameworks with their shell and, in each one, install the pelix.remote.discovery.
multicast bundle then instantiate the discovery component:

$ install pelix.remote.discovery.multicast
Bundle ID: 17
$ start 17
Starting bundle 17 (pelix.remote.discovery.multicast)...
$ instantiate pelix-remote-discovery-multicast-factory discovery
Component 'discovery' instantiated.

Finally, you will have to install the transport layer that will be used to send requests and to wait for their responses.
Here, we’ll use the JSON-RPC protocol (pelix.remote.json_rpc), which is the easiest to use (e.g. XML-RPC
has problems handling dictionaries of complex types). Transport providers often require to instantiate two components:
one handling the export of services and one handling their import. This allows to instantiate the export part only,
avoiding every single framework to know about all available services:

$ install pelix.remote.json_rpc
Bundle ID: 18
$ start 18
Starting bundle 18 (pelix.remote.json_rpc)...
$ instantiate pelix-jsonrpc-importer-factory importer
Component 'importer' instantiated.
$ instantiate pelix-jsonrpc-exporter-factory exporter
Component 'exporter' instantiated.

14 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Now, the frameworks you ran have all the necessary bundles and services to detect and use the services of their peers.

Export a service

Exporting a service is as simple as providing it: just add the service.exported.interfaces property while
registering it and will be exported automatically. To avoid typos, this property is defined in the pelix.remote.
PROP_EXPORTED_INTERFACES constant. This property can contain either a list of names of interfaces/contracts
or a star (*) to indicate that all services interfaces are exported.

Here is the new version of the hello world provider, with the export property:

from pelix.ipopo.decorators import ComponentFactory, Provides, \
Instantiate, Property

from pelix.remote import PROP_EXPORTED_INTERFACES

@ComponentFactory("service-provider-factory")
@Provides("hello.world")
Here is the new property, to authorize the export
@Property('_export_itfs', PROP_EXPORTED_INTERFACES, '*')
@Instantiate("provider")
class Greetings(object):

def hello(self, name="World"):
print("Hello,", name, "!")

That’s all!

Now you can install this provider in a framework, using:

$ install provider
Bundle ID: 19
$ start 19
Starting bundle 19 (provider)...

When installing a consumer in another framework, it will see the provider and use it:

$ install consumer
Bundle ID: 19
$ start 19
Component validated, calling the service...
Done.

You should then see the greeting message (Hello, World !) in the shell of the provider that has been used by the
consumer.

You can now continue to the Tutorials

2.4 Tutorials

This section provides tutorials for various parts of iPOPO.

2.4.1 iPOPO in 10 minutes

Authors Shadi Abras, Thomas Calmant

2.4. Tutorials 15

iPOPO Documentation, Release 0.8.1

This tutorial presents how to use the iPOPO framework and its associated service-oriented component model. The
concepts of the service-oriented component model are introduced, followed by a simple example that demonstrates
the features of iPOPO. This framework uses decorators to describe components.

Introduction

iPOPO aims to simplify service-oriented programming on OSGi frameworks in Python language; the name iPOPO
is an abbreviation for injected POPO, where POPO would stand for Plain Old Python Object. The name is in fact a
simple modification of the Apache iPOJO project, which stands for injected Plain Old Java Object

iPOPO provides a new way to develop OSGi/iPOJO-like service components in Python, simplifying service com-
ponent implementation by transparently managing the dynamics of the environment as well as other non-functional
requirements. The iPOPO framework allows developers to more clearly separate functional code (i.e. POPOs) from
the non-functional code (i.e. dependency management, service provision, configuration, etc.). At run time, iPOPO
combines the functional and non-functional aspects. To achieve this, iPOPO provides a simple and extensible service
component model based on POPOs.

Basic concepts

iPOPO is separated into two parts:

• Pelix, the underlying bundle and service registry

• iPOPO, the service-oriented component framework

It also defines three major concepts:

• A bundle is a single Python module, i.e. a .py file, that is loaded using the Pelix API.

• A service is a Python object that is registered to service registry using the Pelix API, associated to a set of
specifications and to a dictionary of properties.

• A component is an instance of component factory, i.e. a class manipulated by iPOPO decorators. Those decora-
tors injects information into the class that are later used by iPOPO to manage the components. Components are
defined inside bundles.

Simple example

In this tutorial we will present how to:

• Publish a service

• Require a service

• Use lifecycle callbacks to activate and deactivate components

Presentation of the Spell application

To illustrate some of iPOPO features, we will implement a very simple application. Three bundles compose this
application:

• A bundle that defines a component implementing a dictionary service (an English and a French dictionaries).

• One with a component requiring the dictionary service and providing a spell checker service.

• One that defines a component requiring the spell checker and providing a user line interface.

16 Chapter 2. User’s Guide

http://felix.apache.org/documentation/subprojects/apache-felix-ipojo.html

iPOPO Documentation, Release 0.8.1

The spell dictionary components provide the spell_dictionary_service specification. The spell checker
provides a spell_checker_service specification.

Preparing the tutorial

The example contains several bundles:

• spell_dictionary_EN.py defines a component that implements the Dictionary service, containing some English
words.

• spell_dictionary_FR.py defines a component that implements the Dictionary service, containing some French
words.

• spell_checker.py contains an implementation of a Spell Checker. The spell checker requires a dictionary service
and checks if an input passage is correct, according to the words contained in the wished dictionary.

• spell_client.py provides commands for the Pelix shell service. This component uses a spell checker service. The
user can interact with the spell checker with this command line interface.

Finally, a main_pelix_launcher.py script starts the Pelix framework. It is not considered as a bundle as it is not loaded
by the framework, but it can control the latter.

The English dictionary bundle: Providing a service

The spell_dictionary_EN bundle is a simple implementation of the Dictionary service. It contains few English
words.

1 #!/usr/bin/python
2 # -- Content-Encoding: UTF-8 --
3 """
4 This bundle provides a component that is a simple implementation of the
5 Dictionary service. It contains some English words.
6 """
7

8 # iPOPO decorators
9 from pelix.ipopo.decorators import ComponentFactory, Property, Provides, \

10 Validate, Invalidate, Instantiate
11

12

13 # Name the iPOPO component factory
14 @ComponentFactory("spell_dictionary_en_factory")
15 # This component provides a dictionary service
16 @Provides("spell_dictionary_service")
17 # It is the English dictionary
18 @Property("_language", "language", "EN")
19 # Automatically instantiate a component when this factory is loaded
20 @Instantiate("spell_dictionary_en_instance")
21 class SpellDictionary(object):
22 """
23 Implementation of a spell dictionary, for English language.
24 """
25

26 def __init__(self):
27 """
28 Declares members, to respect PEP-8.

(continues on next page)

2.4. Tutorials 17

../_static/tutorials/spell_checker/spell_dictionary_EN.py
../_static/tutorials/spell_checker/spell_dictionary_FR.py
../_static/tutorials/spell_checker/spell_checker.py
../_static/tutorials/spell_checker/spell_client.py
../_static/tutorials/spell_checker/main_pelix_launcher.py

iPOPO Documentation, Release 0.8.1

(continued from previous page)

29 """
30 self.dictionary = None
31

32 @Validate
33 def validate(self, context):
34 """
35 The component is validated. This method is called right before the
36 provided service is registered to the framework.
37 """
38 # All setup should be done here
39 self.dictionary = {"hello", "world", "welcome", "to", "the", "ipopo",
40 "tutorial"}
41 print('An English dictionary has been added')
42

43 @Invalidate
44 def invalidate(self, context):
45 """
46 The component has been invalidated. This method is called right after
47 the provided service has been removed from the framework.
48 """
49 self.dictionary = None
50

51 def check_word(self, word):
52 """
53 Determines if the given word is contained in the dictionary.
54

55 @param word the word to be checked.
56 @return True if the word is in the dictionary, False otherwise.
57 """
58 word = word.lower().strip()
59 return not word or word in self.dictionary

• The @Component decorator is used to declare an iPOPO component. It must always be on top of other
decorators.

• The @Provides decorator indicates that the component provides a service.

• The @Instantiate decorator instructs iPOPO to automatically create an instance of our component. The
relation between components and instances is the same than between classes and objects in the object-oriented
programming.

• The @Property decorator indicates the properties associated to this component and to its services (e.g. French
or English language).

• The method decorated with @Validate will be called when the instance becomes valid.

• The method decorated with @Invalidate will be called when the instance becomes invalid (e.g. when one
its dependencies goes away) or is stopped.

For more information about decorators, see :ref:refcard_decorators.

The French dictionary bundle: Providing a service

The spell_dictionary_FR bundle is a similar to the spell_dictionary_EN one. It only differs in the
language component property, as it checks some French words declared during component validation.

18 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

1 #!/usr/bin/python
2 # -- Content-Encoding: UTF-8 --
3 """
4 This bundle provides a component that is a simple implementation of the
5 Dictionary service. It contains some French words.
6 """
7

8 # iPOPO decorators
9 from pelix.ipopo.decorators import ComponentFactory, Property, Provides, \

10 Validate, Invalidate, Instantiate
11

12

13 # Name the iPOPO component factory
14 @ComponentFactory("spell_dictionary_fr_factory")
15 # This component provides a dictionary service
16 @Provides("spell_dictionary_service")
17 # It is the French dictionary
18 @Property("_language", "language", "FR")
19 # Automatically instantiate a component when this factory is loaded
20 @Instantiate("spell_dictionary_fr_instance")
21 class SpellDictionary(object):
22 """
23 Implementation of a spell dictionary, for French language.
24 """
25

26 def __init__(self):
27 """
28 Declares members, to respect PEP-8.
29 """
30 self.dictionary = None
31

32 @Validate
33 def validate(self, context):
34 """
35 The component is validated. This method is called right before the
36 provided service is registered to the framework.
37 """
38 # All setup should be done here
39 self.dictionary = {"bonjour", "le", "monde", "au", "a", "ipopo",
40 "tutoriel"}
41 print('A French dictionary has been added')
42

43 @Invalidate
44 def invalidate(self, context):
45 """
46 The component has been invalidated. This method is called right after
47 the provided service has been removed from the framework.
48 """
49 self.dictionary = None
50

51 def check_word(self, word):
52 """
53 Determines if the given word is contained in the dictionary.
54

55 @param word the word to be checked.
56 @return True if the word is in the dictionary, False otherwise.
57 """

(continues on next page)

2.4. Tutorials 19

iPOPO Documentation, Release 0.8.1

(continued from previous page)

58 word = word.lower().strip()
59 return not word or word in self.dictionary

It is important to note that the iPOPO factory name must be unique in a framework: only the first one to be registered
with a given name will be taken into account. The name of component instances follows the same rule.

The spell checker bundle: Requiring a service

The spell_checker bundle aims to provide a spell checker service. However, to serve this service, this imple-
mentation requires a dictionary service. During this step, we will create an iPOPO component requiring a Dictionary
service and providing the Spell Checker service.

1 #!/usr/bin/python
2 # -- Content-Encoding: UTF-8 --
3 """
4 The spell_checker component uses the dictionary services to check the spell of
5 a given text.
6 """
7

8 # iPOPO decorators
9 from pelix.ipopo.decorators import ComponentFactory, Provides, \

10 Validate, Invalidate, Requires, Instantiate, BindField, UnbindField
11

12 # Standard library
13 import re
14

15

16 # Name the component factory
17 @ComponentFactory("spell_checker_factory")
18 # Provide a Spell Checker service
19 @Provides("spell_checker_service")
20 # Consume all Spell Dictionary services available (aggregate them)
21 @Requires("_spell_dictionaries", "spell_dictionary_service", aggregate=True)
22 # Automatic instantiation
23 @Instantiate("spell_checker_instance")
24 class SpellChecker(object):
25 """
26 A component that uses spell dictionary services to check the spelling of
27 given texts.
28 """
29

30 def __init__(self):
31 """
32 Define class members
33 """
34 # the spell dictionary service, injected list
35 self._spell_dictionaries = []
36

37 # the list of available dictionaries, constructed
38 self.languages = {}
39

40 # list of some punctuation marks could be found in the given passage,
41 # internal
42 self.punctuation_marks = None
43

(continues on next page)

20 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

44 @BindField('_spell_dictionaries')
45 def bind_dict(self, field, service, svc_ref):
46 """
47 Called by iPOPO when a spell dictionary service is bound to this
48 component
49 """
50 # Extract the dictionary language from its properties
51 language = svc_ref.get_property('language')
52

53 # Store the service according to its language
54 self.languages[language] = service
55

56 @UnbindField('_spell_dictionaries')
57 def unbind_dict(self, field, service, svc_ref):
58 """
59 Called by iPOPO when a dictionary service has gone away
60 """
61 # Extract the dictionary language from its properties
62 language = svc_ref.get_property('language')
63

64 # Remove it from the computed storage
65 # The injected list of services is updated by iPOPO
66 del self.languages[language]
67

68 @Validate
69 def validate(self, context):
70 """
71 This spell checker has been validated, i.e. at least one dictionary
72 service has been bound.
73 """
74 # Set up internal members
75 self.punctuation_marks = {',', ';', '.', '?', '!', ':', ' '}
76 print('A spell checker has been started')
77

78 @Invalidate
79 def invalidate(self, context):
80 """
81 The component has been invalidated
82 """
83 self.punctuation_marks = None
84 print('A spell checker has been stopped')
85

86 def check(self, passage, language="EN"):
87 """
88 Checks the given passage for misspelled words.
89

90 :param passage: the passage to spell check.
91 :param language: language of the spell dictionary to use
92 :return: An array of misspelled words or null if no words are misspelled
93 :raise KeyError: No dictionary for this language
94 """
95 # list of words to be checked in the given passage
96 # without the punctuation marks
97 checked_list = re.split("([!,?.:;])", passage)
98 try:
99 # Get the dictionary corresponding to the requested language

100 dictionary = self.languages[language]
(continues on next page)

2.4. Tutorials 21

iPOPO Documentation, Release 0.8.1

(continued from previous page)

101 except KeyError:
102 # Not found
103 raise KeyError('Unknown language: {0}'.format(language))
104

105 # Do the job, calling the found service
106 return [word for word in checked_list
107 if word not in self.punctuation_marks
108 and not dictionary.check_word(word)]

• The @Requires decorator specifies a service dependency. This required service is injected in a local variable
in this bundle. Its aggregate attribute tells iPOPO to collect the list of services providing the required
specification, instead of the first one.

• The @BindField decorator indicates that a new required service bounded to the platform.

• The @UnbindField decorator indicates that one of required service has gone away.

The spell client bundle

The spell_client bundle contains a very simple user interface allowing a user to interact with a spell checker
service.

1 #!/usr/bin/python
2 # -- Content-Encoding: UTF-8 --
3 """
4 This bundle defines a component that consumes a spell checker.
5 It provides a shell command service, registering a "spell" command that can be
6 used in the shell of Pelix.
7

8 It uses a dictionary service to check for the proper spelling of a word by check
9 for its existence in the dictionary.

10 """
11

12 # iPOPO decorators
13 from pelix.ipopo.decorators import ComponentFactory, Provides, \
14 Validate, Invalidate, Requires, Instantiate
15

16 # Specification of a command service for the Pelix shell
17 from pelix.shell import SHELL_COMMAND_SPEC
18

19

20 # Name the component factory
21 @ComponentFactory("spell_client_factory")
22 # Consume a single Spell Checker service
23 @Requires("_spell_checker", "spell_checker_service")
24 # Provide a shell command service
25 @Provides(SHELL_COMMAND_SPEC)
26 # Automatic instantiation
27 @Instantiate("spell_client_instance")
28 class SpellClient(object):
29 """
30 A component that provides a shell command (spell.spell), using a
31 Spell Checker service.
32 """
33

34 def __init__(self):
(continues on next page)

22 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

35 """
36 Defines class members
37 """
38 # the spell checker service
39 self._spell_checker = None
40

41 @Validate
42 def validate(self, context):
43 """
44 Component validated, just print a trace to visualize the event.
45 Between this call and the call to invalidate, the _spell_checker member
46 will point to a valid spell checker service.
47 """
48 print('A client for spell checker has been started')
49

50 @Invalidate
51 def invalidate(self, context):
52 """
53 Component invalidated, just print a trace to visualize the event
54 """
55 print('A spell client has been stopped')
56

57 def get_namespace(self):
58 """
59 Retrieves the name space of this shell command provider.
60 Look at the shell tutorial for more information.
61 """
62 return "spell"
63

64 def get_methods(self):
65 """
66 Retrieves the list of (command, method) tuples for all shell commands
67 provided by this component.
68 Look at the shell tutorial for more information.
69 """
70 return [("spell", self.spell)]
71

72 def spell(self, io_handler):
73 """
74 Reads words from the standard input and checks for their existence
75 from the selected dictionary.
76

77 :param io_handler: A utility object given by the shell to interact with
78 the user.
79 """
80 # Request the language of the text to the user
81 passage = None
82 language = io_handler.prompt("Please enter your language, EN or FR: ")
83 language = language.upper()
84

85 while passage != 'quit':
86 # Request the text to check
87 passage = io_handler.prompt(
88 "Please enter your paragraph, or 'quit' to exit:\n")
89

90 if passage and passage != 'quit':
91 # A text has been given: call the spell checker, which have been

(continues on next page)

2.4. Tutorials 23

iPOPO Documentation, Release 0.8.1

(continued from previous page)

92 # injected by iPOPO.
93 misspelled_words = self._spell_checker.check(passage, language)
94 if not misspelled_words:
95 io_handler.write_line("All words are well spelled!")
96 else:
97 io_handler.write_line(
98 "The misspelled words are: {0}", misspelled_words)

The component defined here implements and provides a shell command service, which will be consumed by the Pelix
Shell Core Service. It registers a spell shell command.

Main script: Launching the framework

We have all the bundles required to start playing with the application. To run the example, we have to start Pelix, then
all the required bundles.

1 #!/usr/bin/python
2 # -- Content-Encoding: UTF-8 --
3 """
4 Starts a Pelix framework and installs the Spell Checker bundles
5 """
6

7 # Pelix framework module and utility methods
8 import pelix.framework
9 from pelix.utilities import use_service

10

11 # Standard library
12 import logging
13

14

15 def main():
16 """
17 Starts a Pelix framework and waits for it to stop
18 """
19 # Prepare the framework, with iPOPO and the shell console
20 # Warning: we only use the first argument of this method, a list of bundles
21 framework = pelix.framework.create_framework((
22 # iPOPO
23 "pelix.ipopo.core",
24 # Shell core (engine)
25 "pelix.shell.core",
26 # Text console
27 "pelix.shell.console"))
28

29 # Start the framework, and the pre-installed bundles
30 framework.start()
31

32 # Get the bundle context of the framework, i.e. the link between the
33 # framework starter and its content.
34 context = framework.get_bundle_context()
35

36 # Start the spell dictionary bundles, which provide the dictionary services
37 context.install_bundle("spell_dictionary_EN").start()
38 context.install_bundle("spell_dictionary_FR").start()
39

(continues on next page)

24 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

40 # Start the spell checker bundle, which provides the spell checker service.
41 context.install_bundle("spell_checker").start()
42

43 # Sample usage of the spell checker service
44 # 1. get its service reference, that describes the service itself
45 ref_config = context.get_service_reference("spell_checker_service")
46

47 # 2. the use_service method allows to grab a service and to use it inside a
48 # with block. It automatically releases the service when exiting the block,
49 # even if an exception was raised
50 with use_service(context, ref_config) as svc_config:
51 # Here, svc_config points to the spell checker service
52 passage = "Welcome to our framwork iPOPO"
53 print("1. Testing Spell Checker:", passage)
54 misspelled_words = svc_config.check(passage)
55 print("> Misspelled_words are:", misspelled_words)
56

57 # Start the spell client bundle, which provides a shell command
58 context.install_bundle("spell_client").start()
59

60 # Wait for the framework to stop
61 framework.wait_for_stop()
62

63

64 # Classic entry point...
65 if __name__ == "__main__":
66 logging.basicConfig(level=logging.DEBUG)
67 main()

Running the application

Launch the main_pelix_launcher.py script. When the framework is running, type in the console: spell to
enter your language choice and then your passage.

Here is a sample run, calling python main_pelix_launcher.py:

INFO:pelix.shell.core:Shell services registered
An English dictionary has been added

** Pelix Shell prompt **
A French dictionary has been added
A dictionary checker has been started
1. Testing Spell Checker: Welcome to our framwork iPOPO
> Misspelled_words are: ['our', 'framwork']
A client for spell checker has been started

$ spell
Please enter your language, EN or FR: FR
Please enter your paragraph, or 'quit' to exit:
Bonjour le monde !
All words are well spelled !
Please enter your paragraph, or 'quit' to exit:
quit
$ spell
Please enter your language, EN or FR: EN
Please enter your paragraph, or 'quit' to exit:

(continues on next page)

2.4. Tutorials 25

iPOPO Documentation, Release 0.8.1

(continued from previous page)

Hello, world !
All words are well spelled !
Please enter your paragraph, or 'quit' to exit:
Bonjour le monde !
The misspelled words are: ['Bonjour', 'le', 'monde']
Please enter your paragraph, or 'quit' to exit:
quit
$ quit
Bye !
A spell client has been stopped
INFO:pelix.shell.core:Shell services unregistered

You can now go back to see other Tutorials or take a look at the Reference Cards.

2.4.2 RSA Remote Services between Python and Java

Authors Scott Lewis, Thomas Calmant

Introduction

This tutorial shows how to launch and use the sample application for OSGi R7 Remote Services Admin (RSA) between
Python and Java. This sample shows how to use the iPOPO RSA implementation to export and/or import remote
services from/to a OSGi/Java process to a Python iPOPO process.

Requirements

This sample requires Python 3 and launching the Java sample prior to proceeding with Starting the Python Sample
below.

It is also required to have installed the osgiservicebridge package (using pip or easy_install) before continuing.

This ECF tutorial page describes how to launch the Java-side sample. One can start via Bndtools project template, or
start via Apache Karaf.

Once the Java sample has been successfully started, proceed below.

Note: You may skip this part if you executed the Java sample following the instructions above.

It is recommended to read the whole Java part of the tutorial before continuing. However, for those who just want to
see things working, here are the commands to execute the Java sample:

Download Karaf from https://karaf.apache.org/download.html
wget http://archive.apache.org/dist/karaf/4.2.1/apache-karaf-4.2.1.tar.gz
tar xzf apache-karaf-4.2.1.tar.gz
cd apache-karaf-4.2.1.tar.gz
./bin/karaf

Once inside karaf, run the following commands:

feature:repo-add ecf
feature:install -v ecf-rs-examples-python.java-hello

26 Chapter 2. User’s Guide

https://wiki.eclipse.org/OSGi_R7_Remote_Services_between_Python_and_Java
https://wiki.eclipse.org/OSGi_R7_Remote_Services_between_Python_and_Java
https://pypi.org/project/osgiservicebridge/
https://wiki.eclipse.org/OSGi_R7_Remote_Services_between_Python_and_Java
https://wiki.eclipse.org/OSGi_R7_Remote_Services_between_Python_and_Java#Launching_via_Bndtools_Project_Template
https://wiki.eclipse.org/OSGi_R7_Remote_Services_between_Python_and_Java#Launching_via_Apache_Karaf

iPOPO Documentation, Release 0.8.1

This will add the ECF repository to the Karaf framework, then install and start all the necessary Java bundles.

Wait for a XML representation of an endpoint (in EDEF format) to be printed out: the Java side of the tutorial is now
ready.

Starting the Python Sample

In the iPOPO project root directory, start the top-level script for this sample:

$ python samples/run_rsa_py4java.py

This should produce output to the console like the following:

** Pelix Shell prompt **
Python IHello service consumer received sync response: Java says: Hi PythonSync, nice
→˓to see you
done with sayHelloAsync method
done with sayHelloPromise method
async response: JavaAsync says: Hi PythonAsync, nice to see you
promise response: JavaPromise says: Hi PythonPromise, nice to see you

This output indicates that

1. The Python process connected to the Java process using the Py4j distribution provider

2. RSA discovered and imported the Java-exported HelloImpl service

3. RSA created a Python proxy for the IHello service instance hosted from Java

4. iPOPO injected the IHello proxy into the sample consumer by setting the self._helloservice require-
ment to the IHello proxy

5. iPOPO then called the _validate method of the RemoteHelloConsumer class (in samples/rsa/
helloconsumer.py)

Here is the source code of the helloconsumer.py file, from the samples/rsa folder:

from pelix.ipopo.decorators import (
ComponentFactory,
Instantiate,
Requires,
Validate,

)

@ComponentFactory("remote-hello-consumer-factory")
The '(service.imported=*)' filter only allows remote services to be injected
@Requires(

"_helloservice",
"org.eclipse.ecf.examples.hello.IHello",
False,
False,
"(service.imported=*)",
False,

)
@Instantiate("remote-hello-consumer")
class RemoteHelloConsumer(object):

def __init__(self):
self._helloservice = None

(continues on next page)

2.4. Tutorials 27

iPOPO Documentation, Release 0.8.1

(continued from previous page)

self._name = "Python"
self._msg = "Hello Java"

@Validate
def _validate(self, bundle_context):

call it!
resp = self._helloservice.sayHello(self._name + "Sync", self._msg)

print(
self._name, "IHello service consumer received sync response:", resp

)

call sayHelloAsync which returns Future and we add lambda to print
the result when done
self._helloservice.sayHelloAsync(

self._name + "Async", self._msg
).add_done_callback(lambda f: print("async response:", f.result()))

print("done with sayHelloAsync method")

call sayHelloAsync which returns Future and we add lambda to print
the result when done
self._helloservice.sayHelloPromise(

self._name + "Promise", self._msg
).add_done_callback(lambda f: print("promise response:", f.result()))

print("done with sayHelloPromise method")

When the _validate method is called by iPOPO, it calls the self._helloservice.sayHello synchronous
method and prints out the result (resp) to the console:

@Validate
def _validate(self, bundle_context):

call it!
resp = self._helloservice.sayHello(self._name + "Sync", self._msg)
print(

self._name, "IHello service consumer received sync response:", resp
)

The print in the code above is responsible for the console output:

Python IHello service consumer received sync response:
Java says: Hi PythonSync, nice to see you

Then the sayHelloAsync method is called:

self._helloservice.sayHelloAsync(
self._name + "Async", self._msg

).add_done_callback(lambda f: print("async response:", f.result()))
print("done with sayHelloAsync method")

The print is responsible for the console output:

done with sayHelloAsync method

Then the sayHelloPromise method is called:

self._helloservice.sayHelloPromise(
self._name + "Promise", self._msg

(continues on next page)

28 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

).add_done_callback(lambda f: print("promise response:", f.result()))
print("done with sayHelloPromise method")

Resulting in the console output:

done with sayHelloPromise method

Note that the async response and promise response are received after the print('done with
sayHelloPromise') statement. Once the remote (Java) call is completed, the lambda expression callback
is executed via Future.add_done_callback. This results in the output ordering of:

Python IHello service consumer received sync response: Java says: Hi PythonSync, nice
→˓to see you
done with sayHelloAsync method
done with sayHelloPromise method
async response: JavaAsync says: Hi PythonAsync, nice to see you
promise response: JavaPromise says: Hi PythonPromise, nice to see you

The ‘done. . . ’ prints out prior to the execution of the print in the lambda expression callback passed to Fu-
ture.add_done_callback.

Note that at the same time as the Python-side console output above, in the Java console this will appear:

Java.sayHello called by PythonSync with message: 'Hello Java'
Java.sayHelloAsync called by PythonAsync with message: 'Hello Java'
Java.sayHelloPromise called by PythonPromise with message: 'Hello Java'

This is the output from the Java HelloImpl implementation code:

public String sayHello(String from, String message) {
System.out.println("Java.sayHello called by "+from+" with message: '"+message+"'

→˓");
return "Java says: Hi "+from + ", nice to see you";

}

Exporting a Hello implementation from Python to Java

In the iPOPO console, give the following command to register and export a IHello service instance from Python
impl to Java consumer.

$ start samples.rsa.helloimpl_py4j

This should result in the Python console output

$ start samples.rsa.helloimpl_py4j
Bundle ID: 18
Starting bundle 18 (samples.rsa.helloimpl_py4j)...
Python.sayHello called by: Java with message: 'Hello Python'
Python.sayHelloAsync called by: JavaAsync with message: 'Howdy Python'
Python.sayHelloPromise called by: JavaPromise with message: 'Howdy Python'

Here is the Python hello implementation from samples/helloimpl_py4j.py:

2.4. Tutorials 29

https://docs.python.org/3/library/concurrent.futures.html
https://docs.python.org/3/library/concurrent.futures.html

iPOPO Documentation, Release 0.8.1

from pelix.ipopo.decorators import Instantiate, ComponentFactory, Provides
from samples.rsa.helloimpl import HelloImpl

@ComponentFactory("helloimpl-py4j-factory")
Provides IHello interface as specified by Java interface.
@Provides("org.eclipse.ecf.examples.hello.IHello")
See https://github.com/ECF/Py4j-RemoteServicesProvider/blob/master/examples/org.
→˓eclipse.ecf.examples.hello/src/org/eclipse/ecf/examples/hello/IHello.java
@Instantiate(

"helloimpl-py4j",
{

"service.exported.interfaces": "*", # Required for export
Required to use py4j python provider for export
"service.exported.configs": "ecf.py4j.host.python",
Required to use osgi.async intent
"service.intents": ["osgi.async"],
"osgi.basic.timeout": 30000,

},
) # Timeout associated with remote calls (in ms)
class Py4jHelloImpl(HelloImpl):

"""
All method implementations handled by HelloImpl super-class.

See samples.rsa.helloimpl module.
"""
pass

and here is the HelloImpl super-class from samples/helloimpl.py:

class HelloImpl(object):
"""
Implementation of Java org.eclipse.ecf.examples.hello.IHello service
interface.
This interface declares on normal/synchronous method ('sayHello') and two
async methods as defined by the OSGi Remote Services osgi.async intent.

Note that the service.intents property above includes the 'osgi.async'
intent. It also declares a property 'osgi.basic.timeout' which will be used
to assure that the remote methods timeout after the given number of
milliseconds.

See the OSGi Remote Services specification at:
https://osgi.org/specification/osgi.cmpn/7.0.0/service.remoteservices.html

The specification defines the standard properties given above.
"""

def sayHello(self, name="Not given", message="nothing"):
"""
Synchronous implementation of IHello.sayHello synchronous method.
The remote calling thread will be blocked until this is executed and
responds.
"""
print(

"Python.sayHello called by: {0} with message: '{1}'".format(
name, message

(continues on next page)

30 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

)
)
return "PythonSync says: Howdy {0} that's a nice runtime you got there".format(

name
)

def sayHelloAsync(self, name="Not given", message="nothing"):
"""
Implementation of IHello.sayHelloAsync.
This method will be executed via some thread, and the remote caller
will not block.
This method should return either a String result (since the return type
of IHello.sayHelloAsync is CompletableFuture<String>, OR a Future that
returns a python string. In this case, it returns the string directly.
"""
print(

"Python.sayHelloAsync called by: {0} with message: '{1}'".format(
name, message

)
)
return "PythonAsync says: Howdy {0} that's a nice runtime you got there".format(

name
)

def sayHelloPromise(self, name="Not given", message="nothing"):
"""
Implementation of IHello.sayHelloPromise.
This method will be executed via some thread, and the remote caller
will not block.
"""
print(

"Python.sayHelloPromise called by: {0} with message: '{1}'".format(
name, message

)
)
return "PythonPromise says: Howdy {0} that's a nice runtime you got there".

→˓format(
name

)

You can now go back to see other Tutorials or take a look at the Reference Cards.

2.4.3 RSA Remote Services using XmlRpc transport

Authors Scott Lewis, Thomas Calmant

Introduction

This tutorial shows how to create and run a simple remote service using the XmlRpc provider. The XmlRpc distribution
provider is one of several supported by the RSA Remote Services (OSGi R7-compliant) implementation.

Requirements

This tutorial sample requires Python 3.4+ or Python 2.7, and version 0.8.0+ of iPOPO.

2.4. Tutorials 31

iPOPO Documentation, Release 0.8.1

Defining the Remote Service with a Python Class

We’ll start by defining a Python hello service that can to be exported by RSA for remote access.

In the sample.rsa package is the helloimpl_xmlrpc module, containing the XmlRpcHelloImpl class

@ComponentFactory("helloimpl-xmlrpc-factory")
@Provides(

"org.eclipse.ecf.examples.hello.IHello"
)
@Instantiate(

"helloimpl-xmlrpc",
{

uncomment to automatically export upon creation
"service.exported.interfaces":"*",
"osgi.basic.timeout": 60000,

},
)
class XmlRpcHelloImpl(HelloImpl):

pass

The XmlRpcHelloImpl class has no body/implementation as it inherits its implementation from the HelloImpl
class, which we will discuss in a moment.

The important parts of this class declaration for remote services are the @Provides class decorator and the
commented-out service.exported.interfaces and osgi.basic.timeout properties in the @Instantiate decorator.

The @Provides class decorator gives the name of the service specification provided by this instance. This is the
name that both local and remote consumers use to lookup this service, even if it’s local-only (i.e. not a remote service).
In this case, since the original IHello interface is a java interface class, the fully-qualified name of the interface class
is used. For an example of JavaPython remote services see this tutorial.

For Python-only remote services it’s not really necessary for this service specification be the name of a Java class, any
unique String could have been used.

The osgi.basic.timeout is an optional property that gives a maximum time (in milliseconds) that the consumer will
wait for a response before timing out.

The service.exported.interfaces property is a required property for remote service export. If one wants to have a
remote service exported immediately upon instantiation and registration as an iPOPO service, this property can be set
to value * which means to export all service interfaces.

The service.exported.interfaces property is commented out so that it is not exported immediately upon instantiation
and registration. Instead, for this tutorial the export is performed via iPOPO console commands. If these comments
were to be removed, the RSA impl will export this service as soon as it is instantiated and registered, making it
unnecessary to explicitly export the service as shown in Exporting the XmlRpcHelloImpl as a Remote Service section
below.

The HelloImpl Implementation

The XmlRpcHelloImpl class delegates all the actual implementation to the HelloImpl class, which has the code
for the methods defined for the “org.eclipse.ecf.examples.hello.IHello” service specification name, with the main
method sayHello:

class HelloImpl(object):
def sayHello(self, name='Not given', message='nothing'):

print(
"Python.sayHello called by: {0} with message: '{1}'".format(

(continues on next page)

32 Chapter 2. User’s Guide

https://github.com/ECF/Py4j-RemoteServicesProvider/blob/master/examples/org.eclipse.ecf.examples.hello/src/org/eclipse/ecf/examples/hello/IHello.java
https://github.com/ECF/Py4j-RemoteServicesProvider/blob/master/examples/org.eclipse.ecf.examples.hello/src/org/eclipse/ecf/examples/hello/IHello.java
https://github.com/tcalmant/ipopo/blob/rsa-integration/docs/tutorials/rsa_pythonjava.rst
https://osgi.org/specification/osgi.cmpn/7.0.0/service.remoteservices.html#i1710847

iPOPO Documentation, Release 0.8.1

(continued from previous page)

name, message))
return "PythonSync says: Howdy {0} that's a nice runtime you got there".

→˓format(
name)

The sayHello method is invoked via a remote service consumer once the service has been exporting.

Exporting the XmlRpcHelloImpl as a Remote Service

Go to the pelix home directory and start the run_rsa_xmlrpc.py main program

ipopo-0.8.0$ python -m samples.run_rsa_xmlrpc

** Pelix Shell prompt **
$

To load the module and instantiate and register an XmlRpcHelloImpl instance type

$ start samples.rsa.helloimpl_xmlrpc
Bundle ID: 18
Starting bundle 18 (samples.rsa.helloimpl_xmlrpc)...

In your environment, bundle number might not be 18. . . that is fine.

If you list services using the sl console command you should see an instance of IHello service

$ sl org.eclipse.ecf.examples.hello.IHello
+----+---+------------------------------------
→˓--------------+---------+
| ID | Specifications | Bundle
→˓ | Ranking |
+====+===+==+=========+
| 20 | ['org.eclipse.ecf.examples.hello.IHello'] | Bundle(ID=18, Name=samples.rsa.
→˓helloimpl_xmlrpc) | 0 |
+----+---+------------------------------------
→˓--------------+---------+
1 services registered

The service ID (20 in this case) may not be the same in your environment. . . again that is ok. . . but make a note of
what the service ID is.

To export this service instance as remote service and make it available for remote access, use the exportservice
command in the pelix console, giving the number (20 from above) of the service to export:

$ exportservice 20 # use the service id for the org.eclipse.ecf.examples.hello.
→˓IHello service if not 20
Service=ServiceReference(ID=20, Bundle=18, Specs=['org.eclipse.ecf.examples.hello.
→˓IHello']) exported by 1 providers. EDEF written to file=edef.xml
$

This means that the service has been successfully exported. To see this use the listexports console command:

$ listexports
+--------------------------------------+-------------------------------+------------+
| Endpoint ID | Container ID | Service ID |
+======================================+===============================+============+
| b96927ad-1d00-45ad-848a-716d6cde8443 | http://127.0.0.1:8181/xml-rpc | 20 |

(continues on next page)

2.4. Tutorials 33

iPOPO Documentation, Release 0.8.1

(continued from previous page)

+--------------------------------------+-------------------------------+------------+
$ listexports b96927ad-1d00-45ad-848a-716d6cde8443
Endpoint description for endpoint.id=b96927ad-1d00-45ad-848a-716d6cde8443:
<?xml version='1.0' encoding='cp1252'?>
<endpoint-descriptions xmlns="http://www.osgi.org/xmlns/rsa/v1.0.0">

<endpoint-description>
<property name="objectClass" value-type="String">

<array>
<value>org.eclipse.ecf.examples.hello.IHello</value>

</array>
</property>
<property name="remote.configs.supported" value-type="String">

<array>
<value>ecf.xmlrpc.server</value>

</array>
</property>
<property name="service.imported.configs" value-type="String">

<array>
<value>ecf.xmlrpc.server</value>

</array>
</property>
<property name="remote.intents.supported" value-type="String">

<array>
<value>osgi.basic</value>
<value>osgi.async</value>

</array>
</property>
<property name="service.intents" value-type="String">

<array>
<value>osgi.async</value>

</array>
</property>
<property name="endpoint.service.id" value="20" value-type="Long">

</property>
<property name="service.id" value="20" value-type="Long">

</property>
<property name="endpoint.framework.uuid" value="4d541077-ee2a-4d68-

→˓85f5-be529f89bec0" value-type="String">
</property>

<property name="endpoint.id" value="b96927ad-1d00-45ad-848a-
→˓716d6cde8443" value-type="String">

</property>
<property name="service.imported" value="true" value-type="String">

</property>
<property name="ecf.endpoint.id" value="http://127.0.0.1:8181/xml-rpc"

→˓value-type="String">
</property>

<property name="ecf.endpoint.id.ns" value="ecf.namespace.xmlrpc" value-
→˓type="String">

</property>
<property name="ecf.rsvc.id" value="3" value-type="Long">

</property>
<property name="ecf.endpoint.ts" value="1534119904514" value-type="Long

→˓">
</property>

<property name="osgi.basic.timeout" value="60000" value-type="Long">
</property>

(continues on next page)

34 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

</endpoint-description>
</endpoint-descriptions>
$

Note that listexports produced a small table with Endpoint ID, Container ID, and Service ID columns. As
shown above, if the Endpoint ID is copied and used in listexports, it will then print out the endpoint description
(XML) for the newly-created endpoint.

Also as indicated in the exportservice command output, a file edef.xml has also been written to the filesystem
containing the endpoint description XML known as EDEF). EDEF is a standardized XML format that gives all of
the remote service meta-data required for a consumer to import an endpoint. The edef.xml file will contain the same
XML printed to the console via the listexports b96927ad-1d00-45ad-848a-716d6cde8443 console
command.

Importing the XmlRpcHelloImpl Remote Service

For a consumer to use this remote service, another python process should be started using the same command:

ipopo-0.8.0$ python -m samples.run_rsa_xmlrpc

** Pelix Shell prompt **
$

If you have started this second python process from the same location, all that’s necessary to trigger the import of
the remote service, and have a consumer sample start to call it’s methods is to use the importservice console
command:

$ importservice
Imported 1 endpoints from EDEF file=edef.xml
Python IHello service consumer received sync response: PythonSync says: Howdy
→˓PythonSync that's a nice runtime you got there
done with sayHelloAsync method
done with sayHelloPromise method
Proxy service=ServiceReference(ID=21, Bundle=7, Specs=['org.eclipse.ecf.examples.
→˓hello.IHello']) imported. rsid=http://127.0.0.1:8181/xml-rpc:3
$ async response: PythonAsync says: Howdy PythonAsync that's a nice runtime you got
→˓there
promise response: PythonPromise says: Howdy PythonPromise that's a nice runtime you
→˓got there

This indicates that the remote service was imported, and the methods on the remote service were called by the con-
sumer.

Here is the code for the consumer (also in samples/rsa/helloconsumer_xmlrpc.py)

from pelix.ipopo.decorators import ComponentFactory, Instantiate, Requires, Validate

from concurrent.futures import ThreadPoolExecutor

@ComponentFactory("remote-hello-consumer-factory")
The '(service.imported=*)' filter only allows remote services to be injected
@Requires("_helloservice", "org.eclipse.ecf.examples.hello.IHello",

False, False, "(service.imported=*)", False)
@Instantiate("remote-hello-consumer")
class RemoteHelloConsumer(object):

(continues on next page)

2.4. Tutorials 35

https://osgi.org/specification/osgi.cmpn/7.0.0/service.remoteserviceadmin.html#i1889341

iPOPO Documentation, Release 0.8.1

(continued from previous page)

def __init__(self):
self._helloservice = None
self._name = 'Python'
self._msg = 'Hello Java'
self._executor = ThreadPoolExecutor()

@Validate
def _validate(self, bundle_context):

call it!
resp = self._helloservice.sayHello(self._name + 'Sync', self._msg)
print(

"{0} IHello service consumer received sync response: {1}".format(
self._name,
resp))

call sayHelloAsync which returns Future and we add lambda to print
the result when done
self._executor.submit(

self._helloservice.sayHelloAsync,
self._name + 'Async',
self._msg).add_done_callback(
lambda f: print(

'async response: {0}'.format(
f.result())))

print("done with sayHelloAsync method")
call sayHelloAsync which returns Future and we add lambda to print
the result when done
self._executor.submit(

self._helloservice.sayHelloPromise,
self._name + 'Promise',
self._msg).add_done_callback(
lambda f: print(

'promise response: {0}'.format(
f.result())))

print("done with sayHelloPromise method")

For having this remote service injected, the important part of things is the @Requires decorator

@Requires("_helloservice", "org.eclipse.ecf.examples.hello.IHello",
False, False, "(service.imported=*)", False)

This gives the specification name required org.eclipse.ecf.examples.hello.IHello, and it also gives an OSGi filter

"(service.imported=*)"

As per the Remote Service spec this requires that the IHello service is a remote service, as all proxies must have the
service.imported property set, indicating that it was imported.

When importservice is executed the RSA implementation does the following:

1. Reads the edef.xml from filesystem (i.e. ‘discovers the service’)

2. Create a local proxy for the remote service using the edef.xml file

3. The proxy is injected by iPOPO into the RemoteHelloConsumer._helloservice member

4. The _activated method is called by iPOPO, which uses the self._helloservice proxy to send the
method calls to the remote service, using HTTP and XML-RPC to serialize the sayHello method arguments,
send the request via HTTP, get the return value back, and print the return value to the consumer’s console.

36 Chapter 2. User’s Guide

https://osgi.org/specification/osgi.cmpn/7.0.0/service.remoteservices.html#i1710847

iPOPO Documentation, Release 0.8.1

Note that with Export, rather than using the console’s exportservice command, it may be invoked pro-
grammatically, or automatically by the topology manager (for example upon service registration). For Import,
the importservice command may also be invoked automatically, or via remote service discovery (e.g. etcd,
zookeeper, zeroconf, custom, etc). The use of the console commands in this example was to demonstrate the dynamics
and flexibility provided by the OSGi R7-compliant RSA implementation.

Exporting Automatically upon Service Registration

To export automatically upon service registration, all that need be done is to un-comment the setting the ser-
vice.exported.interfaces property in the Instantiate decorator:

@ComponentFactory("helloimpl-xmlrpc-factory")
@Provides(

"org.eclipse.ecf.examples.hello.IHello"
)
@Instantiate(

"helloimpl-xmlrpc",
{

"service.exported.interfaces": "*",
"osgi.basic.timeout": 60000,

},
)
class XmlRpcHelloImpl(HelloImpl):

pass

Unlike in the example above, when this service is instantiated and registered, it will also be automatically exported,
making unnecessary to use the exportservice command.

Using Etcd Discovery

Rather than importing remote services manually via the importservice command, it’s also possible to import
using supported network discovery protocols. One discovery mechanism used in systems like kubernetes is etcd, and
there is an etcd discovery provider available in the pelix.rsa.providers.discovery.discovery_etcd
module.

This is the list of bundles included in the samples.run_rsa_etcd_xmlrpc program:

bundles = ['pelix.ipopo.core',
'pelix.shell.core',
'pelix.shell.ipopo',
'pelix.shell.console',
'pelix.rsa.remoteserviceadmin', # RSA implementation
'pelix.http.basic', # httpservice
xmlrpc distribution provider (opt)
'pelix.rsa.providers.distribution.xmlrpc',
etcd discovery provider (opt)
'pelix.rsa.providers.discovery.discovery_etcd',
basic topology manager (opt)
'pelix.rsa.topologymanagers.basic',
'pelix.rsa.shell', # RSA shell commands (opt)
'samples.rsa.helloconsumer_xmlrpc'] # Example helloconsumer. Only uses

→˓remote proxies

Note the presence of the etcd discovery provider: pelix.rsa.providers.discovery.discovery_etcd

To start a consumer with etcd discovery run the samples.run_rsa_etcd_xmlrpc program:

2.4. Tutorials 37

https://kubernetes.io/
https://github.com/coreos/etcd

iPOPO Documentation, Release 0.8.1

$ python -m samples.run_rsa_etcd_xmlrpc

** Pelix Shell prompt **
$ start samples.rsa.helloimpl_xmlrpc
Bundle ID: 19
Starting bundle 19 (samples.rsa.helloimpl_xmlrpc)...
$ sl org.eclipse.ecf.examples.hello.IHello
+----+---+------------------------------------
→˓--------------+---------+
| ID | Specifications | Bundle
→˓ | Ranking |
+====+===+==+=========+
| 21 | ['org.eclipse.ecf.examples.hello.IHello'] | Bundle(ID=19, Name=samples.rsa.
→˓helloimpl_xmlrpc) | 0 |
+----+---+------------------------------------
→˓--------------+---------+
1 services registered
$ exportservice 21
Service=ServiceReference(ID=21, Bundle=19, Specs=['org.eclipse.ecf.examples.hello.
→˓IHello']) exported by 1 providers. EDEF written to file=edef.xml
$ lexps
+--------------------------------------+-------------------------------+------------+
| Endpoint ID | Container ID | Service ID |
+======================================+===============================+============+
| 0b5a6bf1-494e-41ef-861c-4c302ae75141 | http://127.0.0.1:8181/xml-rpc | 21 |
+--------------------------------------+-------------------------------+------------+
$

Then start a consumer process

$ python -m samples.run_rsa_etcd_xmlrpc

** Pelix Shell prompt **
$ Python IHello service consumer received sync response: PythonSync says: Howdy
→˓PythonSync that's a nice runtime you got there
done with sayHelloAsync method
done with sayHelloPromise method
async response: PythonAsync says: Howdy PythonAsync that's a nice runtime you got
→˓there
promise response: PythonPromise says: Howdy PythonPromise that's a nice runtime you
→˓got there

This consumer uses etcd to discover the IHello remote service, a proxy is created and injected into the consumer
(using the same consumer code shown above), and the consumer calls this proxy producing the text output above on
the consumer and this output on the remote service implementation:

$ Python.sayHello called by: PythonSync with message: 'Hello Java'
Python.sayHelloAsync called by: PythonAsync with message: 'Hello Java'
Python.sayHelloPromise called by: PythonPromise with message: 'Hello Java'

The consumer discovered the org.eclipse.ecf.examples.hello.IHello service published via etcd dis-
covery, injected it into the consumer and the consumer called the methods on the IHello remote service, producing
output on both the consumer and the remote service implementation.

2.5 Reference Cards

This section contains some short introductions to the services provided by Pelix/iPOPO.

38 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

2.5.1 Bundles

A bundle is a Python module installed using the Pelix Framework instance or a BundleContext object.

Each bundle is associated to an ID, an integer that is unique for a framework instance, and to a symbolic name, i.e. its
module name. The framework itself is seen as the bundle which ID is always 0.

Because installing a bundle is in fact importing a module, no code should be written to be executed at module-level
(except the definition of constants, the import of dependencies, . . .). Initialization must be done in the bundle activator
(see below).

Life-cycle

Unlike a module, a bundle has a life-cycle and can be in one of the following states:

State Description
INSTALLED The Python module has been correctly imported, the bundle goes to the RESOLVED state
RESOLVED The bundle has not been started yet or has been stopped
STARTING The start() method of the bundle activator is being called (transition to ACTIVE or RE-

SOLVED)
ACTIVE The bundle activator has been called and didn’t raise any error
STOPPING The stop() method of the bundle activator is being called (transition to RESOLVED)
UNIN-
STALLED

The bundle has been removed from the framework (only visible by remaining references to the
bundle)

The update process of a bundle is simple:

• if it was active, the bundle is stopped: other bundles are notified of this transition, and its services are unregis-
tered

2.5. Reference Cards 39

iPOPO Documentation, Release 0.8.1

• the module is updated, using the importlib.reload() method (or imp.reload() when not available)

• if the update fails, the previous version of the module is kept, but the bundle is not restarted.

• if the update succeeds and the bundle was active, the bundle its restarted

Bundle Activator

A bundle activator is a class defining the start() and stop() methods, which are called by the framework accord-
ing to the bundle life-cycle.

The framework is locked during transitions in bundles states, which means during the calls to start() and stop().
Therefore, it is heavily recommended to return fast from those methods. For example, it may be necessary to use
threads to complete the initialization before registering services when the bundle starts. On the other hand, it is
recommended to wait for all resources to be released before exiting the stop() , e.g. to wait for all threads started
by the bundle to terminate.

class pelix.constants.BundleActivator
This decorator must be applied to the class that will be notified of the life-cycle events concerning the bundle.
A bundle can only have one activator, which must implement the following methods:

start(context)
This method is called when the bundle is in STARTING state. If this method doesn’t raise an exception,
the bundle goes immediately into the ACTIVE state. If an exception is raised, the bundle is stopped.

During the call of this method, the framework is locked. It is therefore necessary that this method returns
as soon as possible: all time-consuming tasks should be executed in a new thread.

stop(context)
This method is called when the bundle is in STOPPING state. After this method returns or raises an
exception, the bundle goes into the RESOLVED state.

All resources consumed by the bundle should be released before this method returns.

A class is defined as the bundle activator if it is decorated with @BundleActivator, as shown in the following
snippet:

import pelix.constants

@pelix.constants.BundleActivator
class Activator(object):

"""
Bundle activator template
"""
def start(self, context):

"""
Bundle is starting
"""
print("Start")

def stop(self, context):
"""
Bundle is stopping
"""
print("Stop")

Note: The previous declaration of the activator, i.e. declaring module member named activator, is deprecated
and its support will be removed in version 1.0.

40 Chapter 2. User’s Guide

https://docs.python.org/3/library/importlib.html#importlib.reload
https://docs.python.org/3/library/imp.html#imp.reload

iPOPO Documentation, Release 0.8.1

Bundle Context

A context is associated to each bundle, and allows it to interact with the framework. It is unique for a bundle and can be
used until the latter is removed from the framework. It is not recommended to keep references to BundleContext
objects as they can imply a stall reference to the bundle they describe. A bundle must use its context to register and to
look up services, to request framework information, etc..

All the available methods are described in the API chapter. Here are the most used ones concerning the handling of
bundles:

class pelix.framework.BundleContext(framework, bundle)
The bundle context is the link between a bundle and the framework. It is unique for a bundle and is created by
the framework once the bundle is installed.

Parameters

• framework – Hosting framework

• bundle – The associated bundle

add_bundle_listener(listener)
Registers a bundle listener, which will be notified each time a bundle is installed, started, stopped or
updated.

The listener must be a callable accepting a single parameter:

• event – The description of the event (a BundleEvent object).

Parameters listener – The bundle listener to register

Returns True if the listener has been registered, False if it already was

get_bundle(bundle_id=None)
Retrieves the Bundle object for the bundle matching the given ID (int). If no ID is given (None), the
bundle associated to this context is returned.

Parameters bundle_id – A bundle ID (optional)

Returns The requested Bundle object

Raises BundleException – The given ID doesn’t exist or is invalid

get_bundles()
Returns the list of all installed bundles

Returns A list of Bundle objects

install_bundle(name, path=None)
Installs the bundle (module) with the given name.

If a path is given, it is inserted in first place in the Python loading path (sys.path). All modules loaded
alongside this bundle, i.e. by this bundle or its dependencies, will be looked after in this path in priority.

Note: Before Pelix 0.5.0, this method returned the ID of the installed bundle, instead of the Bundle object.

Warning: The behavior of the loading process is subject to changes, as it does not allow to safely run
multiple frameworks in the same Python interpreter, as they might share global module values.

Parameters

2.5. Reference Cards 41

iPOPO Documentation, Release 0.8.1

• name – The name of the bundle to install

• path – Preferred path to load the module (optional)

Returns The Bundle object of the installed bundle

Raises BundleException – Error importing the module or one of its dependencies

install_package(path, recursive=False)
Installs all the modules found in the given package (directory). It is a utility method working like
install_visiting(), with a visitor accepting every module found.

Parameters

• path – Path of the package (folder)

• recursive – If True, installs the modules found in sub-directories

Returns A 2-tuple, with the list of installed bundles (Bundle) and the list of the names of the
modules which import failed.

Raises ValueError – The given path is invalid

install_visiting(path, visitor)
Looks for modules in the given path and installs those accepted by the given visitor.

The visitor must be a callable accepting 3 parameters:

• fullname – The full name of the module

• is_package – If True, the module is a package

• module_path – The path to the module file

Parameters

• path – Root search path (folder)

• visitor – The visiting callable

Returns A 2-tuple, with the list of installed bundles (Bundle) and the list of the names of the
modules which import failed.

Raises ValueError – Invalid path or visitor

remove_bundle_listener(listener)
Unregisters the given bundle listener

Parameters listener – The bundle listener to remove

Returns True if the listener has been unregistered, False if it wasn’t registered

2.5.2 Services

A service is an object that is registered to the service registry of the framework, associated to a set of specifications it
implements and to properties.

The bundle that registers the service must keep track of the ServiceRegistration object returned by the frame-
work. It allows to update the service properties and to unregister the service. This object shall not be accessible by
other bundles/services, as it gives access and control over the life cycle of the service it represents. Finally, all services
must be unregistered when their bundle is stopped.

A consumer can look for a service that matches a specification and a set of properties, using its BundleContext.
The framework will return a ServiceReference object, which provides a read-only access to the description of
its associated service: properties, registering bundle, bundles using it, etc..

42 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Properties

When registered and while it is available, the properties of a service can be set and updated by its provider.

Although, some properties are reserved for the framework; each service has at least the following properties:

Name Type Description
objectClass list of str List of the specifications implemented by this service
service.id int Identifier of the service. Unique in a framework instance

The framework also uses the following property to sort the result of a service look up:

Name Type Description
service.ranking int The rank/priority of the service. The lower the rank, the more priority

Service Factory

Warning: Service factories are a very recent feature of iPOPO and might be prone to bugs: please report any bug
encounter on the project GitHub.

A service factory is a pseudo-service with a specific flag, which can create individual instances of service objects for
different bundles. Sometimes a service needs to be differently configured depending on which bundle uses the service.
For example, the log service needs to be able to print the logging bundle’s id, otherwise the log would be hard to read.

A service factory is registered in exactly the same way as a normal service, using register_service(), with the
factory argument set to True. The only difference is an indirection step before the actual service object is handed
out.

The client using the service need not, and should not, care if a service is generated by a factory or by a plain object.

A simple service factory example

class ServiceInstance:
def __init__(self, value):

self.__value = value

def cleanup(self):
self.__value = None

def get_value(self):
return self.__value

class ServiceFactory:
def __init__(self):

Bundle -> Instance
self._instances = {}

def get_service(self, bundle, registration):
"""
Called each time a new bundle requires the service
"""
instance = ServiceInstance(bundle.get_bundle_id())
self._instances[bundle] = instance

(continues on next page)

2.5. Reference Cards 43

https://github.com/tcalmant/ipopo/issues

iPOPO Documentation, Release 0.8.1

(continued from previous page)

return instance

def unget_service(self, bundle, registration):
"""
Called when a bundle has released all its references
to the service
"""
Release connections, ...
self._instances.pop(bundle).cleanup()

bundle_context.register_service(
"sample.factory", ServiceFactory(), {}, factory=True)

Note: The framework will cache generated service objects. Thus, at most one service can be generated per client
bundle.

Prototype Service Factory

Warning: Prototype Service factories are a very recent feature of iPOPO and might be prone to bugs: please
report any bug encounter on the project GitHub.

A prototype service factory is a pseudo-service with a specific flag, which can create multiple instances of service
objects for different bundles.

Each time a bundle requires the service, the prototype service factory is called and can return a different instance. When
called, the framework gives the factory the Bundle object requesting the service and the ServiceRegistration
of the requested service. This allows a single factory to be registered for multiple services.

Note that there is no Prototype Service Factory implemented in the core Pelix/iPOPO Framework (unlike the Log
Service simple service factory).

A Prototype Service Factory is registered in exactly the same way as a normal service, using
register_service(), with the prototype argument set to True.

A simple prototype service factory example:

class ServiceInstance:
def __init__(self, value):

self.__value = value

def cleanup(self):
self.__value = None

def get_value(self):
return self.__value

class PrototypeServiceFactory:
def __init__(self):

Bundle -> [instances]
self._instances = {}

def get_service(self, bundle, registration):

(continues on next page)

44 Chapter 2. User’s Guide

https://github.com/tcalmant/ipopo/issues

iPOPO Documentation, Release 0.8.1

(continued from previous page)

"""
Called each time ``get_service()`` is called
"""
bnd_instances = self._instances.setdefault(bundle, [])
instance = ServiceInstance(

[bundle.get_bundle_id(), len(bnd_instances)])
bnd_instances.append(instance)
return instance

def unget_service_instance(self, bundle, registration, service):
"""
Called when a bundle releases an instance of the service
"""
bnd_instances[bundle].remove(service)
service.cleanup()

def unget_service(self, bundle, registration):
"""
Called when a bundle has released all its references
to the service
"""
Release global resources...

When this method is called, all instances will have been cleaned
up individually in ``unget_service_instance``
if len(self._instances.pop(bundle)) != 0:

raise ValueError("Should never happen")

bundle_context.register_service(
"sample.proto", PrototypeServiceFactory(), {}, factory=True)

Note: A Prototype Service Factory is considered as a Service Factory, hence both is_factory() and
is_prototype() will return True for this kind of service

API

The service provider has access to the ServiceRegistration object created by the framework when
register_service() is called.

class pelix.framework.ServiceRegistration(framework, reference, properties, up-
date_callback)

Represents a service registration object

Parameters

• framework – The host framework

• reference – A service reference

• properties – A reference to the ServiceReference properties dictionary object

• update_callback – Method to call when the sort key is modified

get_reference()
Returns the reference associated to this registration

Returns A ServiceReference object

2.5. Reference Cards 45

iPOPO Documentation, Release 0.8.1

set_properties(properties)
Updates the service properties

Parameters properties – The new properties

Raises TypeError – The argument is not a dictionary

unregister()
Unregisters the service

Consumers can access the service using its ServiceReference object, unique and constant for each service. This
object can be retrieved using the BundleContext and its get_service_reference* methods. A consumer
can check the properties of a service through this object, before consuming it.

class pelix.framework.ServiceReference(bundle, properties)
Represents a reference to a service

Parameters

• bundle – The bundle registering the service

• properties – The service properties

Raises BundleException – The properties doesn’t contain mandatory entries

get_bundle()
Returns the bundle that registered this service

Returns the bundle that registered this service

get_properties()
Returns a copy of the service properties

Returns A copy of the service properties

get_property(name)
Retrieves the property value for the given name

Returns The property value, None if not found

get_property_keys()
Returns an array of the keys in the properties of the service

Returns An array of property keys.

get_using_bundles()
Returns the list of bundles that use this service

Returns A list of Bundle objects

is_factory()
Returns True if this reference points to a service factory

Returns True if the service provides from a factory

is_prototype()
Returns True if this reference points to a prototype service factory

Returns True if the service provides from a prototype factory

Finally, here are the methods of the BundleContext class that can be used to handle services:

class pelix.framework.BundleContext(framework, bundle)
The bundle context is the link between a bundle and the framework. It is unique for a bundle and is created by
the framework once the bundle is installed.

Parameters

46 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

• framework – Hosting framework

• bundle – The associated bundle

add_service_listener(listener, ldap_filter=None, specification=None)
Registers a service listener

The service listener must have a method with the following prototype:

def service_changed(self, event):
'''
Called by Pelix when some service properties changes

event: A ServiceEvent object
'''
...

Parameters

• bundle_context – This bundle context

• listener – The listener to register

• ldap_filter – Filter that must match the service properties (optional, None to accept
all services)

• specification – The specification that must provide the service (optional, None to
accept all services)

Returns True if the listener has been successfully registered

get_all_service_references(clazz, ldap_filter=None)
Returns an array of ServiceReference objects. The returned array of ServiceReference objects contains
services that were registered under the specified class and match the specified filter expression.

Parameters

• clazz – Class implemented by the service

• ldap_filter – Service filter

Returns The sorted list of all matching service references, or None

get_service(reference)
Returns the service described with the given reference

Parameters reference – A ServiceReference object

Returns The service object itself

get_service_reference(clazz, ldap_filter=None)
Returns a ServiceReference object for a service that implements and was registered under the specified
class

Parameters

• clazz – The class name with which the service was registered.

• ldap_filter – A filter on service properties

Returns A service reference, None if not found

get_service_references(clazz, ldap_filter=None)
Returns the service references for services that were registered under the specified class by this bundle and
matching the given filter

2.5. Reference Cards 47

iPOPO Documentation, Release 0.8.1

Parameters

• clazz – The class name with which the service was registered.

• ldap_filter – A filter on service properties

Returns The list of references to the services registered by the calling bundle and matching the
filters.

register_service(clazz, service, properties, send_event=True, factory=False, prototype=False)
Registers a service

Parameters

• clazz – Class or Classes (list) implemented by this service

• service – The service instance

• properties – The services properties (dictionary)

• send_event – If not, doesn’t trigger a service registered event

• factory – If True, the given service is a service factory

• prototype – If True, the given service is a prototype service factory (the factory argu-
ment is considered True)

Returns A ServiceRegistration object

Raises BundleException – An error occurred while registering the service

remove_service_listener(listener)
Unregisters a service listener

Parameters listener – The service listener

Returns True if the listener has been unregistered

unget_service(reference)
Disables a reference to the service

Returns True if the bundle was using this reference, else False

2.5.3 iPOPO Components

A component is an object with a life-cycle, requiring services and providing ones, and associated to properties. The
code of a component is reduced to its functional purpose: its life-cycle, dependencies, etc. are handled by iPOPO. In
iPOPO, a component is an instance of component factory, i.e. a Python class manipulated with the iPOPO decorators.

Note: Due to the use of Python properties, all component factories must be new-style classes. It is the case of all
Python 3 classes, but Python 2.x classes must explicitly inherit from the object class.

Life-cycle

The component life cycle is handled by an instance manager created by the iPOPO service. This instance manager will
inject control methods, run-time dependencies, and will register the component services. All changes will be notified
to the component using the callback methods it decorated.

48 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

State Description
INSTANTI-
ATED

The component has been instantiated. Its constructor has been called and the control methods have
been injected

VALI-
DATED

All required dependencies have been injected. All services provided by the component will be
registered right after this method returned

KILLED The component has been invalidated and won’t be usable again
ERRO-
NEOUS

The component raised an error during its validation. It is not destroyed and a validation can be
retried manually

API

iPOPO components are handled through the iPOPO core service, which can itself be accessed through the Pelix API
or the utility context manager use_ipopo(). The core service provides the pelix.ipopo.core specification.

pelix.ipopo.constants.use_ipopo(bundle_context)
Utility context to use the iPOPO service safely in a “with” block. It looks after the the iPOPO service and
releases its reference when exiting the context.

Parameters bundle_context – The calling bundle context

Returns The iPOPO service

Raises BundleException – Service not found

The following snippet shows how to use this method:

from pelix.ipopo.constants import use_ipopo

... considering "context" being a BundleContext object
with use_ipopo(context) as ipopo:

use the iPOPO core service with the "ipopo" variable

(continues on next page)

2.5. Reference Cards 49

iPOPO Documentation, Release 0.8.1

(continued from previous page)

ipopo.instantiate("my.factory", "my.component",
{"some.property": [1, 2, 3], "answer": 42})

... out of the "with" context, the iPOPO service has been released
and shouldn't be used

Here are the most commonly used methods from the iPOPO core service to handle components and factories:

class pelix.ipopo.core._IPopoService(bundle_context)
The iPOPO registry and service.

This service is registered automatically and must not be started manually.

Parameters bundle_context – The iPOPO bundle context

add_listener(listener)
Register an iPOPO event listener.

The event listener must have a method with the following prototype:

def handle_ipopo_event(self, event):
'''
event: A IPopoEvent object
'''
...

Parameters listener – The listener to register

Returns True if the listener has been added to the registry

get_factories()
Retrieves the names of the registered factories

Returns A list of factories. Can be empty.

get_factory_details(name)
Retrieves a dictionary with details about the given factory

• name: The factory name

• bundle: The Bundle object of the bundle providing the factory

• properties: Copy of the components properties defined by the factory

• requirements: List of the requirements defined by the factory

– id: Requirement ID (field where it is injected)

– specification: Specification of the required service

– aggregate: If True, multiple services will be injected

– optional: If True, the requirement is optional

• services: List of the specifications of the services provided by components of this factory

• handlers: Dictionary of the non-built-in handlers required by this factory. The dictionary keys are
handler IDs, and it contains a tuple with:

– A copy of the configuration of the handler (0)

– A flag indicating if the handler is present or not

50 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Parameters name – The name of a factory

Returns A dictionary describing the factory

Raises ValueError – Invalid factory

get_instance_details(name)
Retrieves a snapshot of the given component instance. The result dictionary has the following keys:

• name: The component name

• factory: The name of the component factory

• bundle_id: The ID of the bundle providing the component factory

• state: The current component state

• services: A {Service ID → Service reference} dictionary, with all services pro-
vided by the component

• dependencies: A dictionary associating field names with the following dictionary:

– handler: The name of the type of the dependency handler

– filter (optional): The requirement LDAP filter

– optional: A flag indicating whether the requirement is optional or not

– aggregate: A flag indicating whether the requirement is a set of services or not

– binding: A list of the ServiceReference the component is bound to

• properties: A dictionary key → value, with all properties of the component. The value is con-
verted to its string representation, to avoid unexpected behaviours.

Parameters name – The name of a component instance

Returns A dictionary of details

Raises ValueError – Invalid component name

get_instances()
Retrieves the list of the currently registered component instances

Returns A list of (name, factory name, state) tuples.

instantiate(factory_name, name, properties=None)
Instantiates a component from the given factory, with the given name

Parameters

• factory_name – Name of the component factory

• name – Name of the instance to be started

• properties – Initial properties of the component instance

Returns The component instance

Raises

• TypeError – The given factory is unknown

• ValueError – The given name or factory name is invalid, or an instance with the given
name already exists

• Exception – Something wrong occurred in the factory

2.5. Reference Cards 51

iPOPO Documentation, Release 0.8.1

kill(name)
Kills the given component

Parameters name – Name of the component to kill

Raises ValueError – Invalid component name

remove_listener(listener)
Unregister an iPOPO event listener.

Parameters listener – The listener to register

Returns True if the listener has been removed from the registry

retry_erroneous(name, properties_update=None)
Removes the ERRONEOUS state of the given component, and retries a validation

Parameters

• name – Name of the component to retry

• properties_update – A dictionary to update the initial properties of the component

Returns The new state of the component

Raises ValueError – Invalid component name

2.5.4 A word on Python 3.7 Data classes

These indications have to be taken into account when using iPOPO decorators on data classes. They are also valid
when using the dataclasses package for Python 3.6.

Important notes

• All fields of the Data Class must have a default value. This will let the @dataclass decorator generate an
__init__ method without explicit arguments, which is a requirement for iPOPO.

• If the init=False argument is given to @dataclass, it is necessary to implement your own __init__,
defining all fields, otherwise generated methods like __repr__ won’t work.

Good to know

• Injected fields (@Property, @Requires, . . .) will lose the default value given in the class definition, in favor
to the ones given to the iPOPO decorators. This is due to the redefinition of the fields by those decorators. Other
fields are not touched at all.

• The @dataclass decorator can be used before or after the iPOPO decorators

2.5.5 iPOPO Decorators

Component definition

Those decorators describe the component. They must decorate the factory class itself.

52 Chapter 2. User’s Guide

https://www.python.org/dev/peps/pep-0557/
https://pypi.org/project/dataclasses/

iPOPO Documentation, Release 0.8.1

Factory definition

The factory definition decorator must be unique per class and must always be the last one executed, i.e. the top one in
the source code.

class pelix.ipopo.decorators.ComponentFactory(name=None, excluded=None)
Manipulates the component class according to a FactoryContext object filled by other decorators.

This must be the last executed decorator, i.e. the one on top of others in the source code.

It accepts the following arguments:

Parameters

• name – the name of the component factory

• excluded – the list of the IDs of the handlers which configuration must not be inherited
from a parent component class

If no factory name is given, it will be generated as ClassNameFactory, e.g. a Foo class will have the factory
name FooFactory.

The __init__() method of a component factory must not require any parameter.

@ComponentFactory()
class Foo(object):

def __init__(self):
pass

@ComponentFactory('my-factory')
class Bar(object):

pass

Parameters

• name – Name of the component factory

• excluded – List of IDs of handlers which configuration must not be inherited from the
parent class

class pelix.ipopo.decorators.SingletonFactory(name=None, excluded=None)
This decorator is a specialization of the ComponentFactory: it accepts the same arguments and follows the
same rule, but it allows only one instance of component from this factory at a time.

If the factory is instantiated while another already exist, a ValueError will be raised.

@SingletonFactory()
class Foo(object):

def __init__(self):
pass

@SingletonFactory('my-factory')
class Bar(object):

pass

Parameters

• name – Name of the component factory

• excluded – List of IDs of handlers which configuration must not be inherited from the
parent class

2.5. Reference Cards 53

iPOPO Documentation, Release 0.8.1

Component properties

class pelix.ipopo.decorators.Property(field, name=None, value=None)
The @Property decorator defines a component property. A property can be used to configure the component
at validation time and to expose the state of a component. Note that component properties are exposed in the
properties of the services it provides.

This decorator accepts the following parameters:

Parameters

• field – The property field in the class (can’t be None nor empty)

• name – The property name (if None, this will be the field name)

• value – The property value (None by default)

Handler ID pelix.ipopo.constants.HANDLER_PROPERTY

If no initial value is given, the value stored in the field in the __init__() method will be used.

Warning: In Python 2, it is required that the component class inherits object for properties to work.

@ComponentFactory()
@Property('_answer', 'some.answer', 42)
class Foo(object):

pass

Parameters

• field – The property field in the class (can’t be None nor empty)

• name – The property name (if None, this will be the field name)

• value – The property value (None by default)

Raises

• TypeError – Invalid argument type

• ValueError – If the name or the name is None or empty

class pelix.ipopo.decorators.HiddenProperty(field, name=None, value=None)
The @HiddenProperty decorator defines a component property which won’t be visible in the properties of
the services it provides. This kind of property is also not accessible using iPOPO reflection methods.

This decorator accepts the same parameters and follows the same rules as Property .

@ComponentFactory()
@HiddenProperty('_password', 'some.password', "secret")
class Foo(object):

pass

Parameters

• field – The property field in the class (can’t be None nor empty)

• name – The property name (if None, this will be the field name)

• value – The property value (None by default)

54 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Raises

• TypeError – Invalid argument type

• ValueError – If the name or the name is None or empty

Special properties

Note that some properties have a special meaning for iPOPO and Pelix.

Name Type Description
instance.name str The name of the iPOPO component instance
service.id int The registration number of a service
service.ranking int The rank (priority) of the services provided by this component

@ComponentFactory()
@Property('_name', 'instance.name') # Special property
@Property('_value', 'my.value') # Some property
@Property('_answer', 'the.answer', 42) # Some property, with a default value
class Foo(object):

def __init__(self):
self._name = None # This will overwritten by iPOPO
self._value = 12 # 12 will be used if this property is not configured
self._answer = None # 42 will be used by default

Provided Services

class pelix.ipopo.decorators.Provides(specifications, controller=None, factory=False, proto-
type=False)

The @Provides decorator defines a service to be exposed by component instances. This service will be
registered (visible) in the Pelix service registry while the component is valid and the service controller is set to
True.

This decorator accepts the following parameters:

Parameters

• specifications – A list of provided specification(s), or the single provided specifica-
tion (can’t be empty)

• controller – The name of the service controller class field (optional)

• factory – If True, this service is a service factory (optional)

• prototype – If True, this service is prototype service factory (optional)

Handler ID pelix.ipopo.constants.HANDLER_PROVIDES

All the properties of the component defined with the Property decorator will be visible in the service prop-
erties.

The controller is a Python property that must contain a boolean. By default, the controller is set to True, i.e.
the service will be provided by the component when it is validated.

2.5. Reference Cards 55

iPOPO Documentation, Release 0.8.1

@ComponentFactory()
'answer.value' will be a property of the service
@Property('_answer', 'answer.value')
@Provides('hello.world')
class Foo(object):

pass

@ComponentFactory()
This service will provide multiple specifications
@Provides(['hello.world', 'hello.world.extended'], '_svc_flag')
class Bar(object):

self._svc_flag = False ; to forbid the service to be provided
self._svc_flag = True ; to provide the service
pass

Sets up a provided service. A service controller can be defined to enable or disable the service.

Parameters

• specifications – A list of provided interface(s) name(s) (can’t be empty)

• controller – Name of the service controller class field (optional)

• factory – If True, this service is a service factory

• prototype – If True, this service is prototype service factory

Raises ValueError – If the specifications are invalid

Requirements

class pelix.ipopo.decorators.Requires(field, specification, aggregate=False, optional=False,
spec_filter=None, immediate_rebind=False)

The @Requires decorator defines the requirement of a service. It accepts the following parameters:

Parameters

• field – The field where to inject the requirement

• specification – The specification of the service to inject

• aggregate – If True, injects a list of services, else the first matching service

• optional – If True, this injection is optional: the component can be valid without it

• spec_filter – An LDAP query to filter injected services according to their properties

• immediate_rebind – If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES

The field and specification attributes are mandatory. By default, a requirement is neither aggregated
nor optional (both are set to False and no specification filter is used.

Note: Since iPOPO 0.5.4, only one specification can be given.

56 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

@ComponentFactory()
@Requires('_hello', 'hello.world')
class Foo(object):

pass

@ComponentFactory()
@Requires('_hello', 'hello.world', aggregate=True, optional=False,

spec_filter='(language=fr)')
class Bar(object):

pass

Parameters

• field – The injected field

• specification – The injected service specification

• aggregate – If True, injects a list

• optional – If True, this injection is optional

• spec_filter – An LDAP query to filter injected services upon their properties

• immediate_rebind – If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Raises

• TypeError – A parameter has an invalid type

• ValueError – An error occurred while parsing the filter or an argument is incorrect

class pelix.ipopo.decorators.Temporal(field, specification, optional=False, spec_filter=None,
timeout=10)

The @Temporal decorator defines a single immediate rebind requirement with a grace time when the injected
service disappears.

This decorator acts like :class:Requires except it doesn’t support immediate_rebind (set to True) nor
aggregate. It also adds the following argument:

Parameters timeout – Temporal timeout, in seconds (must be greater than 0)

Handler ID pelix.ipopo.constants.HANDLER_TEMPORAL

When the injected service disappears, the component won’t be invalidated before the given timeout. If a match-
ing is found, it is injected in-place and the component instance continues its operations. If the service is used
while no service is available, the call is put in hold and blocks until a new service is injected or until the timeout
is reached. In the latter case, a TemporalException is raised.

@ComponentFactory()
@Temporal('_hello', 'hello.world', timeout=5)
class Bar(object):

pass

Parameters

• field – The injected field

• specification – The injected service specification

• optional – If true, this injection is optional

2.5. Reference Cards 57

iPOPO Documentation, Release 0.8.1

• spec_filter – An LDAP query to filter injected services upon their properties

• timeout – Temporal timeout, in seconds (must be greater than 0)

Raises

• TypeError – A parameter has an invalid type

• ValueError – An error occurred while parsing the filter or an argument is incorrect

class pelix.ipopo.decorators.RequiresBest(field, specification, optional=False,
spec_filter=None, immediate_rebind=True)

The @RequiresBest decorator acts like Requires, but it always injects the service with the best rank
(service.ranking property).

Unlike most of the other requirement decorators, @RequiresBest doesn’t support the injection of a list of
services: only the best service can be injected.

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES_BEST

@ComponentFactory()
@RequiresBest('_hello', 'hello.world')
class Foo(object):

pass

@ComponentFactory()
@RequiresBest('_hello', 'hello.world', optional=True,

spec_filter='(language=fr)')
class Bar(object):

pass

Parameters

• field – The injected field

• specification – The injected service specification

• optional – If true, this injection is optional

• spec_filter – An LDAP query to filter injected services upon their properties

• immediate_rebind – If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Raises

• TypeError – A parameter has an invalid type

• ValueError – An error occurred while parsing the filter or an argument is incorrect

class pelix.ipopo.decorators.RequiresMap(field, specification, key, allow_none=False,
aggregate=False, optional=False,
spec_filter=None)

The @RequiresMap decorator defines a requirement that must be injected in a dictionary.

In addition to the arguments of :class:Requires, this decorator also accepts or redefines the following ones:

Parameters

• key – The name of the service property to use as a dictionary key

• allow_none – If True, also injects services with the property value set to None or missing

58 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

• aggregate – If true, injects a list of services with the same property value, else injects
only one service per value

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES_MAP

@ComponentFactory()
@RequiresMap('_hello', 'hello.world', 'language')
class Bar(object):

self._hello['fr'].hello('le monde')
pass

Parameters

• field – The injected field

• specification – The injected service specification

• key – Name of the service property to use as a dictionary key

• allow_none – If True, inject services with a None property value

• aggregate – If true, injects a list

• optional – If true, this injection is optional

• spec_filter – An LDAP query to filter injected services upon their properties

Raises

• TypeError – A parameter has an invalid type

• ValueError – An error occurred while parsing the filter or an argument is incorrect

class pelix.ipopo.decorators.RequiresVarFilter(field, specification, aggregate=False, op-
tional=False, spec_filter=None, imme-
diate_rebind=False)

The @RequiresVarFilter decorator acts like Requires, but its LDAP filter dynamically adapts to the
properties of this component.

Handler ID pelix.ipopo.constants.HANDLER_REQUIRES_VARIABLE_FILTER

@ComponentFactory()
@Property('_lang', 'lang', 'fr')
@RequiresVarFilter('_hello', 'hello.world', optional=True,

spec_filter='(language={lang})')
class Bar(object):

pass

Parameters

• field – The injected field

• specification – The injected service specification

• aggregate – If True, injects a list

• optional – If True, this injection is optional

• spec_filter – An LDAP query to filter injected services upon their properties

• immediate_rebind – If True, the component won’t be invalidated then re-validated if a
matching service is available when the injected dependency is unbound

Raises

2.5. Reference Cards 59

iPOPO Documentation, Release 0.8.1

• TypeError – A parameter has an invalid type

• ValueError – An error occurred while parsing the filter or an argument is incorrect

Instance definition

class pelix.ipopo.decorators.Instantiate(name, properties=None)
This decorator tells iPOPO to instantiate a component instance from this factory as soon as its bundle is in
ACTIVE state.

It accepts the following arguments:

Parameters

• name – The name of the component instance (mandatory)

• properties – The initial properties of the instance

If no properties are given, the default value declared in @Property decorators will be used.

The properties are associated to the component instance but not added to it. This means that new (meta-) prop-
erties can be added to add information to the component (like the Remote Services export properties), but those
won’t be accessible directly by the component. Those extra properties will be visible in component’s services
properties and in the instance properties returned by the iPOPO get_instance_details() method, but
no new field will be injected in the component instance.

@ComponentFactory()
@Property('_name', 'name', 'foo')
@Instantiate('component-1')
@Instantiate('component-2', {'name': 'bar'})
class Foo(object):

pass

Parameters

• name – Instance name

• properties – Instance properties

Life-cycle events

Those decorators store behavioural information on component methods. They must decorate methods in the compo-
nent class.

Component state

When all its requirements are fulfilled, the component goes into the VALID state. During the transition, it is in
VALIDATING state and the following decorators indicate which method must be called at that time. If the decorated
method raises an exception, the component goes into the ERRONEOUS state.

class pelix.ipopo.decorators.ValidateComponent(*args)
The @ValidateComponent decorator declares a callback method for component validation.

Currently, the arguments given to the callback are read-only, to avoid messing with the validation life-cycle. In
the future, it will be possible to modify the properties and to use the component context in order to customize
the component early.

60 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

The decorator accepts an ordered list of arguments. They define the signature of the decorated method.

The arguments can be the following ones, declared in the pelix.ipopo.constants module:

• ARG_BUNDLE_CONTEXT: Gives access to the bundle context

• ARG_COMPONENT_CONTEXT: Gives access to the component context

• ARG_PROPERTIES: Gives access to component properties (dict)

Here are some sample uses of the decorator. Note that the number and order of arguments only has to match the
list given to the decorator:

from pelix.constants import ARG_COMPONENT_CONTEXT, ARG_BUNDLE_CONTEXT,
→˓ ARG_PROPERTIES

@ValidateComponent(ARG_COMPONENT_CONTEXT)
def validate_component(self, component_ctx):

...

@ValidateComponent(ARG_BUNDLE_CONTEXT, ARG_COMPONENT_CONTEXT)
def validate_component(self, bundle_ctx, component_ctx):

...

@ValidateComponent(ARG_BUNDLE_CONTEXT, ARG_COMPONENT_CONTEXT,
ARG_PROPERTIES)

def validate_component(self, bundle_ctx, component_ctx, props):
...

Parameters args – An ordered list of argument descriptors.

Raises TypeError – A parameter has an invalid type or the decorated object is not a method

pelix.ipopo.decorators.Validate(method)
The validation callback decorator is called when a component becomes valid, i.e. if all of its required depen-
dencies has been injected.

This is an alias to ValidateComponent. It is not possible to have both @Validate and
@ValidateComponent decorators used in the same class.

The decorated method must accept the bundle’s BundleContext as argument:

@Validate
def validation_method(self, bundle_context):

'''
bundle_context: The component's bundle context
'''
...

If the validation callback raises an exception, the component goes into ERRONEOUS state.

If the component provides a service, the validation method is called before the provided service is registered to
the framework.

Parameters method – The validation method

Raises TypeError – The decorated element is not a valid function

When one of its requirements is missing, or when it is killed, the component goes into the INVALID state. During
the transition, it is in INVALIDATING state and the following decorators indicate which method must be called at that
time.

2.5. Reference Cards 61

iPOPO Documentation, Release 0.8.1

Exceptions raised by the decorated method are ignored.

pelix.ipopo.decorators.InvalidateComponent(*args)
The @InvalidateComponent decorator declares a callback method for component invalidation.

Its arguments and their order describes the ones of the callback it decorates. They are the same as those of
ValidateComponent.

Exceptions raised by an invalidation callback are ignored.

If the component provides a service, the invalidation method is called after the provided service has been unreg-
istered to the framework.

pelix.ipopo.decorators.Invalidate(method)
The invalidation callback decorator is called when a component becomes invalid, i.e. if one of its required
dependencies disappeared.

This is an alias to InvalidateComponent. It is not possible to have both @Invalidate and
@InvalidateComponent decorators used in the same class.

The decorated method must accept the bundle’s BundleContext as argument:

@Invalidate
def invalidation_method(self, bundle_context):

'''
bundle_context: The component's bundle context
'''
...

Exceptions raised by an invalidation callback are ignored.

If the component provides a service, the invalidation method is called after the provided service has been unreg-
istered to the framework.

Parameters method – The decorated method

Raises TypeError – The decorated element is not a function

Injections

pelix.ipopo.decorators.Bind(method)
The @Bind callback decorator is called when a component is bound to a dependency.

The decorated method must accept the injected service object and its ServiceReference as arguments:

@Bind
def bind_method(self, service, service_reference):

'''
service: The injected service instance.
service_reference: The injected service ServiceReference
'''
...

If the service is a required one, the bind callback is called before the component is validated.

The service reference can be stored if it is released on unbind.

Exceptions raised by a bind callback are ignored.

Parameters method – The decorated method

Raises TypeError – The decorated element is not a valid function

62 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

class pelix.ipopo.decorators.BindField(field, if_valid=False)
The @BindField callback decorator is called when a component is bound to a dependency, injected in the
given field.

This decorator accepts the following arguments:

Parameters

• field – The field associated to the binding

• if_valid – If True, call the decorated method only when the component is valid

The decorated method must accept the field where the service has been injected, the service object and its
ServiceReference as arguments:

@BindField('_hello')
def bind_method(self, field, service, service_reference):

'''
field: Field wherein the dependency is injected
service: The injected service instance.
service_reference: The injected service ServiceReference
'''
...

If the service is a required one, the bind callback is called before the component is validated. The bind field
callback is called after the global bind method.

The service reference can be stored if it is released on unbind.

Exceptions raised by a bind callback are ignored.

Parameters

• field – Field associated to the binding

• if_valid – Call the method only if the component is valid

pelix.ipopo.decorators.Update(method)
The @Update callback decorator is called when the properties of an injected service have been modified.

The decorated method must accept the injected service object and its ServiceReference and the previous
properties as arguments:

@Update
def update_method(self, service, service_reference, old_properties):

'''
service: The injected service instance.
service_reference: The injected service ServiceReference
old_properties: The previous service properties
'''
...

Exceptions raised by an update callback are ignored.

Parameters method – The decorated method

Raises TypeError – The decorated element is not a valid function

class pelix.ipopo.decorators.UpdateField(field, if_valid=False)
The @UpdateField callback decorator is called when the properties of a service injected in the given field
have been updated.

This decorator accepts the following arguments:

2.5. Reference Cards 63

iPOPO Documentation, Release 0.8.1

Parameters

• field – The field associated to the binding

• if_valid – If True, call the decorated method only when the component is valid

The decorated method must accept the field where the service has been injected, the service object, its
ServiceReference and its previous properties as arguments:

@UpdateField('_hello')
def update_method(self, service, service_reference, old_properties):

'''
field: Field wherein the dependency is injected
service: The injected service instance.
service_reference: The injected service ServiceReference
old_properties: The previous service properties
'''
...

Exceptions raised by an update callback are ignored.

Parameters

• field – Field associated to the binding

• if_valid – Call the method only if the component is valid

pelix.ipopo.decorators.Unbind(method)
The @Unbind callback decorator is called when a component dependency is unbound.

The decorated method must accept the injected service object and its ServiceReference as arguments:

@Unbind
def unbind_method(self, service, service_reference):

'''
service: The previously injected service instance.
service_reference: Its ServiceReference
'''
...

If the service is a required one, the unbind callback is called after the component has been invalidated.

Exceptions raised by an unbind callback are ignored.

Parameters method – The decorated method

Raises TypeError – The decorated element is not a valid function

class pelix.ipopo.decorators.UnbindField(field, if_valid=False)
The @UnbindField callback decorator is called when an injected dependency is unbound.

This decorator accepts the following arguments:

Parameters

• field – The field associated to the binding

• if_valid – If True, call the decorated method only when the component is valid

The decorated method must accept the field where the service has been injected, the service object, its
ServiceReference and its previous properties as arguments:

64 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

@UnbindField('_hello')
def unbind_method(self, field, service, service_reference):

'''
field: Field wherein the dependency was injected
service: The injected service instance.
service_reference: The injected service ServiceReference
'''
...

If the service is a required one, the unbind callback is called after the component has been invalidated. The
unbind field callback is called before the global unbind method.

Exceptions raised by an unbind callback are ignored.

Parameters

• field – Field associated to the binding

• if_valid – Call the method only if the component is valid

Service state

pelix.ipopo.decorators.PostRegistration(method)
The service post-registration callback decorator is called after a service of the component has been registered to
the framework.

The decorated method must accept the ServiceReference of the registered service as argument:

@PostRegistration
def callback_method(self, service_reference):

'''
service_reference: The ServiceReference of the provided service
'''
...

Parameters method – The decorated method

Raises TypeError – The decorated element is not a valid function

pelix.ipopo.decorators.PostUnregistration(method)
The service post-unregistration callback decorator is called after a service of the component has been unregis-
tered from the framework.

The decorated method must accept the ServiceReference of the registered service as argument:

@PostUnregistration
def callback_method(self, service_reference):

'''
service_reference: The ServiceReference of the provided service
'''
...

Parameters method – The decorated method

Raises TypeError – The decorated element is not a valid function

2.5. Reference Cards 65

iPOPO Documentation, Release 0.8.1

2.5.6 Initial Configuration File

The pelix.misc.init_handler module provides the InitFileHandler class. It is able to load the config-
uration of an iPOPO framework, from one or multiple files.

This configuration allows to setup environment variables, additional Python paths, framework properties, a list of
bundles to start with the framework and a list of components to instantiate.

File Format

Configuration files are in JSON format, with a root object which can contain the following entries:

• properties: a JSON object defining the initial properties of the framework. The object keys must be strings,
but can be associated to any valid JSON value.

• environment: a JSON object defining new environment variables for the process running the framework.
Both keys and values must be strings.

• paths: a JSON array containing paths to add to the Python lookup paths. The given paths will be prioritized,
i.e. if a path was already defined in sys.path, it will be moved forward. The given paths can contains
environment variables and the user path marker (~).

Note that the current working directory (cwd) will always be the first element of sys.path when using an
initial configuration handler.

• bundles: a JSON array containing the names of the bundles to install and start with the framework.

• components: a JSON array of JSON objects defining the components to instantiate. Each component de-
scription has the following entries:

– factory: the name of the component factory

– name: the name of the instance

– properties (optional): a JSON object defining the initial properties of the component

Note: The components entry requires iPOPO to work. Therefore, the pelix.ipopo.core bundle must be
declared in the bundles entry of the initial configuration file.

Here is a sample initial configuration file:

{
"properties": {
"some.value": 42,
"framework.uuid": "custom-uuid",
"arrays": ["they", "work", "too", 123],
"dicts": {"why": "not?"}

},
"environment": {
"new_path": "/opt/foo",
"LANG": "en_US.UTF-8"

},
"paths": [
"/opt/bar",
"$new_path/mylib.zip"

],
"bundles": [
"pelix.ipopo.core",

(continues on next page)

66 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

(continued from previous page)

"pelix.misc.log",
"pelix.shell.log",
"pelix.http.basic"

],
"components": [
{

"factory": "pelix.http.service.basic.factory",
"name": "httpd",
"properties": {

"pelix.http.address": "127.0.0.1"
}

}
]

}

Configuration override

The initial configuration can be split in multiple files in order to ease the specialisation of frameworks sharing a
common base configuration. This is explained in the following File Lookup section.

Sometimes, it can be necessary to redefine some entries, e.g in order to change a set of components but keeping the
bundles to be started. If the root object contains a reset_<name> entry, then the previously loaded configuration
for the <name> entry are forgotten: the current configuration will replace the old one instead of updating it.

For example:

{
"bundles": [

"pelix.ipopo.core",
"pelix.http.basic"

],
"reset_bundles": true

}

When this file will be loaded, the list of bundles declared by previously loaded configuration files will be cleared and
replaced by the one in this file.

File lookup

An InitFileHandler object updates its internal state with the content of the files it parses. As a result, multiple
configuration files can be used to start framework with a common basic configuration.

When calling load() without argument, the handler will try to load all the files named .pelix.conf in the
following folders and order:

• /etc/default

• /etc

• /usr/local/etc

• ~/.local/pelix

• ~/.config

• ~ (user directory)

2.5. Reference Cards 67

iPOPO Documentation, Release 0.8.1

• . (current working directory)

When giving a file name to load(), the handler will merge the newly loaded configuration with the current state of
the handler.

Finally, after having updated a configuration, the InitFileHandler will remove the duplicated elements of the
Python path and bundles entries.

Support in Pelix shell

The framework doesn’t start a InitFileHandler on its own: the handler must be created and loaded before
creating the framework.

Currently, all the Pelix Shell interfaces (local console, remote shell and XMPP) support the initial configuration, using
the following arguments:

• no argument: the .pelix.conf files are loaded as described in File lookup.

• -e, --empty-conf: no initial configuration file will be loaded

• -c <filename>, --conf <filename>: the default configuration files, then given one will be loaded.

• -C <filename>, --exclusive-conf <filename>: only the given configuration file will be loaded.

API

class pelix.misc.init_handler.InitFileHandler
Parses and handles the instructions of initial configuration files

clear()
Clears the current internal state (cleans up all loaded content)

instantiate_components(context)
Instantiate the defined components

Note: This method requires the iPOPO core service to be registered. This means that the pelix.
ipopo.core must have been declared in the list of bundles (or installed and started programmatically).

Parameters context – A BundleContext object

Raises BundleException – Error looking for the iPOPO service or starting a component

load(filename=None)
Loads the given file and adds its content to the current state. This method can be called multiple times to
merge different files.

If no filename is given, this method loads all default files found. It returns False if no default configuration
file has been found

Parameters filename – The file to load

Returns True if the file has been correctly parsed, False if no file was given and no default file
exist

Raises IOError – Error loading file

68 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

normalize()
Normalizes environment variables and the Python path.

This method first updates the environment variables (os.environ). Then, it normalizes the Python path
(sys.path) by resolving all references to the user directory and environment variables.

bundles

Returns The list of names of bundles to install and start

properties

Returns The initial framework properties

Note that the pelix.shell.console module provides a handle_common_arguments() method to auto-
mate the use of an initial configuration with the arguments common to all Pelix Shell scripts:

pelix.shell.console.handle_common_arguments(parsed_args)
Handles the arguments defined by make_common_parser()

Parameters parsed_args – Argument parsed with argparse (Namespace)

Returns An InitFileHandler object

Raises IOError – Initial or run script not found

Sample API Usage

This sample starts a framework based on the default configuration files (see File lookup), plus a given one named
some_file.json.

import pelix.framework as pelix
from pelix.misc.init_handler import InitFileHandler

Read the initial configuration script
init = InitFileHandler()

Load default configuration
init.load()

Load the given configuration file
init.load("some_file.json")

Normalize configuration (forge sys.path)
init.normalize()

Use the utility method to create, run and delete the framework
framework = pelix.create_framework(init.bundles, init.properties)
framework.start()

Instantiate configured components, if possible
if "pelix.ipopo.core" in init.bundles:

init.instantiate_components(framework.get_bundle_context())
else:

print("iPOPO has not been setup in the configuration file.")

Let the framework live
try:

framework.wait_for_stop()

(continues on next page)

2.5. Reference Cards 69

iPOPO Documentation, Release 0.8.1

(continued from previous page)

except KeyboardInterrupt:
framework.stop()

2.5.7 Logging

The best way to log traces in iPOPO is to use the logging module from the Python Standard Library. Pelix/iPOPO
relies on this module for its own logs, using a module level constant providing a logger with the name of the module,
like this:

import logging
_logger = logging.getLogger(__name__)

That being said, Pelix/iPOPO provides a utility log service matching the OSGi LogService specification, which logs
to and reads traces from the standard Python logging system.

The log service is provided by the pelix.misc.log bundle. It handles LogEntry object keeping track of the log
timestamp, source bundle and message. It also registers as a handler to the Python logging system, which means it can
also keep track of all traces logged with the logging module.

API

Once install and started, the pelix.misc.log bundle provides two services:

• pelix.log: The main log service, which allows to log entries;

• pelix.log.reader: The log reader service, which gives a read-only access to previous log entries. Those
entries can be stored using either the log service or the Python logging system.

Log Service

The log service provides the following method:

class pelix.misc.log.LogServiceInstance(reader, bundle)
Instance of the log service given to a bundle by the factory

Parameters

• reader – The Log Reader service

• bundle – Bundle associated to this instance

log(level, message, exc_info=None, reference=None)
Logs a message, possibly with an exception

Parameters

• level – Severity of the message (Python logging level)

• message – Human readable message

• exc_info – The exception context (sys.exc_info()), if any

• reference – The ServiceReference associated to the log

70 Chapter 2. User’s Guide

https://docs.python.org/3/library/logging.html

iPOPO Documentation, Release 0.8.1

Log Reader Service

The log reader provides the following methods:

class pelix.misc.log.LogReaderService(context, max_entries)
The LogReader service

Parameters

• context – The bundle context

• max_entries – Maximum stored entries

add_log_listener(listener)
Subscribes a listener to log events.

A log listener is an object providing with a logged method, with the following signature:

def logged(self, log_entry):
'''
A log entry (LogEntry) has been added to the log service
'''
...

Parameters listener – A new listener

get_log()
Returns the logs events kept by the service

Returns A tuple of log entries

remove_log_listener(listener)
Unsubscribes a listener from log events.

Parameters listener – The listener to remove

The result of get_log() and the argument to listeners registered with add_log_listener() is a LogEntry
object, giving read-only access to the following properties:

class pelix.misc.log.LogEntry(level, message, exception, bundle, reference)
Represents a log entry

Parameters

• level – The Python log level of the entry

• message – A human readable message

• exception – The exception associated to the entry

• bundle – The bundle that created the entry

• reference – The service reference associated to the entry

bundle
The bundle that created this entry

exception
The exception associated to this entry

level
The log level of this entry (Python constant)

2.5. Reference Cards 71

iPOPO Documentation, Release 0.8.1

message
The message associated to this entry

osgi_level
The log level of this entry (OSGi constant)

reference
The reference to the service associated to this entry

time
The timestamp of this entry

Note: LogEntry is a read-only bean which can’t be un-marshalled by Pelix Remote Services transport providers.
As a consequence, it is not possible to get the content of a remote log service as is.

Sample Usage

Using the shell is pretty straightforward, as it can be seen in the pelix.shell.log bundle.

import logging

from pelix.ipopo.decorators import ComponentFactory, Requires, Instantiate, \
Validate, Invalidate

from pelix.misc import LOG_SERVICE, LOG_READER_SERVICE

@ComponentFactory("log-sample-factory")
@Requires("_logger", LOG_SERVICE)
@Requires("_reader", LOG_READER_SERVICE)
@Instantiate("log-sample")
class SampleLog(object):

"""
Provides shell commands to print the content of the log service
"""
def __init__(self):

self._logger = None
self._reader = None

@Validate
def _validate(self, context):

self._reader.add_log_listener(self)
self._logger.log(logging.INFO, "Component validated")

@Invalidate
def _invalidate(self, context):

self._logger.log(logging.WARNING, "Component invalidated")
self._reader.remove_log_listener(self)

def logged(self, entry):
print("Got a log:", entry.message, "at level", entry.level)

The log service is provided by a service factory, therefore the components of a same bundle share the same service,
and each bundle has a different instance of the logger. The log reader service is a singleton service.

72 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Shell Commands

The pelix.shell.log bundle provides a set of commands in the log shell namespace, to interact with the log
services:

Command Description
log Prints the last N entries with level higher than the given one (WARNING by default)
debug Logs a message at DEBUG level
info Logs a message at INFO level
warning Logs a message at WARNING level
warn An alias of the warning command
error Logs a message at ERROR level

$ install pelix.misc.log
Bundle ID: 12
$ start $?
Starting bundle 12 (pelix.misc.log)...
$ install pelix.shell.log
Bundle ID: 13
$ start $?
Starting bundle 13 (pelix.shell.log)...
$ debug "Some debug log"
$ info "..INFO.."
$ warning !!WARN!!
$ error oops
$ log 3
WARNING :: 2017-03-10 12:06:29.131131 :: pelix.shell.log :: !!WARN!!
ERROR :: 2017-03-10 12:06:31.884023 :: pelix.shell.log :: oops

$ log info
INFO :: 2017-03-10 12:06:26.331350 :: pelix.shell.log :: ..INFO..

WARNING :: 2017-03-10 12:06:29.131131 :: pelix.shell.log :: !!WARN!!
ERROR :: 2017-03-10 12:06:31.884023 :: pelix.shell.log :: oops

$ log info 2
WARNING :: 2017-03-10 12:06:29.131131 :: pelix.shell.log :: !!WARN!!
ERROR :: 2017-03-10 12:06:31.884023 :: pelix.shell.log :: oops

$

2.5.8 HTTP Service

The HTTP service is a basic servlet container, dispatching HTTP requests to the handler registered for the given
path. A servlet can be a simple class or a component, registered programmatically to the HTTP service, or a service
registered in the Pelix framework and automatically registered by the HTTP service.

Note: Even if it borrows the concept of servlets from Java, the Pelix HTTP service doesn’t follow the OSGi specifi-
cation. The latter inherits a lot from the existing Java APIs, while this is an uncommon way to work in Python.

The basic implementation of the HTTP service is defined in pelix.http.basic. It is based on the HTTP server
available in the standard Python library (see http.server). Future implementations might appear in the future Pelix
implementations, based on more robust requests handlers.

2.5. Reference Cards 73

https://docs.python.org/3/library/http.server.html

iPOPO Documentation, Release 0.8.1

Configuration properties

All implementations of the HTTP service must support the following property:

Property Default Description
pelix.http.address 0.0.0.0 The address the HTTP server is bound to
pelix.http.port 8080 The port the HTTP server is bound to

Instantiation

The HTTP bundle defines a component factory which name is implementation-dependent. The HTTP service factory
provided by Pelix/iPOPO is pelix.http.service.basic.factory.

Here is a snippet that starts a HTTP server component, named http-server, which only accepts local clients on
port 9000:

from pelix.framework import FrameworkFactory
from pelix.ipopo.constants import use_ipopo

Start the framework
framework = FrameworkFactory.get_framework()
framework.start()
context = framework.get_bundle_context()

Install & start iPOPO
context.install_bundle('pelix.ipopo.core').start()

Install & start the basic HTTP service
context.install_bundle('pelix.http.basic').start()

Instantiate a HTTP service component
with use_ipopo(context) as ipopo:

ipopo.instantiate(
'pelix.http.service.basic.factory', 'http-server',
{'pelix.http.address': 'localhost',
'pelix.http.port': 9000})

This code starts an HTTP server which will be listening on port 9000 and the HTTP service will be ready to handle
requests. As no servlet service has been registered, the server will only return 404 errors.

API

HTTP service

The HTTP service provides the following interface:

class pelix.http.basic.HttpService
Basic HTTP service component

get_access()
Retrieves the (address, port) tuple to access the server

static get_hostname()
Retrieves the server host name

Returns The server host name

74 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

get_registered_paths()
Returns the paths registered by servlets

Returns The paths registered by servlets (sorted list)

get_servlet(path)
Retrieves the servlet matching the given path and its parameters. Returns None if no servlet matches the
given path.

Parameters path – A request URI

Returns A tuple (servlet, parameters, prefix) or None

is_https()
Returns True if this is an HTTPS server

Returns True if this server uses SSL

register_servlet(path, servlet, parameters=None)
Registers a servlet

Parameters

• path – Path handled by this servlet

• servlet – The servlet instance

• parameters – The parameters associated to this path

Returns True if the servlet has been registered, False if it refused the binding.

Raises ValueError – Invalid path or handler

unregister(path, servlet=None)
Unregisters the servlet for the given path

Parameters

• path – The path to a servlet

• servlet – If given, unregisters all the paths handled by this servlet

Returns True if at least one path as been unregistered, else False

The service also provides two utility methods to ease the display of error pages:

class pelix.http.basic.HttpService
Basic HTTP service component

make_exception_page(path, stack)
Prepares a page printing an exception stack trace in a 500 error

Parameters

• path – Request path

• stack – Exception stack trace

Returns A HTML page

make_not_found_page(path)
Prepares a “page not found” page for a 404 error

Parameters path – Request path

Returns A HTML page

2.5. Reference Cards 75

iPOPO Documentation, Release 0.8.1

Servlet service

To use the whiteboard pattern, a servlet can be registered as a service providing the pelix.http.servlet speci-
fication. It must also have a valid pelix.http.path property, or it will be ignored.

The binding methods described below have a parameters argument, which represents a set of properties of the
server, given as a dictionary. Some parameters can also be given when using the register_servlet() method,
with the parameters argument.

In any case, the following entries must be set by all implementations of the HTTP service and can’t be overridden
when register a servlet. Note that their content and liability is implementation-dependent:

• http.address: the binding address (str) of the HTTP server;

• http.port: the real listening port (int) of the HTTP server;

• http.https: a boolean flag indicating if the server is listening to HTTP (False) or HTTPS (True) requests;

• http.name: the name (str) of the server. If the server is an iPOPO component, it should be the instance name;

• http.extra: an implementation dependent set of properties.

A servlet for the Pelix HTTP service has the following methods:

class HttpServlet
These are the methods that the HTTP service can call in a servlet. Note that it is not necessary to implement
them all: the service has a default behaviour for missing methods.

accept_binding(path, parameters)
This method is called before trying to bind the servlet. If it returns False, the servlet won’t be bound to the
server. This allows a servlet service to be bound to a specific server.

If this method doesn’t exist or returns None or anything else but False, the calling HTTP service will
consider that the servlet accepts to be bound to it.

Parameters

• path (str) – The path of the servlet in the server

• parameters (dict) – The parameters of the server

bound_to(path, parameters)
This method is called when the servlet is bound to a path. If it returns False or raises an Exception, the
registration is aborted.

Parameters

• path (str) – The path of the servlet in the server

• parameters (dict) – The parameters of the server

unbound_from(path, parameters)
This method is called when the servlet is bound to a path. The parameters are the ones given in
accept_binding() and bound_to().

Parameters

• path (str) – The path of the servlet in the server

• parameters (dict) – The parameters of the server

do_GET(request, response)
Each request is handled by the method call do_XXXwhere XXX is the name of an HTTP method (do_GET,
do_POST, do_PUT, do_HEAD, . . .).

76 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

If it raises an exception, the server automatically sends an HTTP 500 error page. In nominal behaviour,
the method must use the response argument to send a reply to the client.

Parameters

• request – A AbstractHTTPServletRequest representation of the request

• response – The AbstractHTTPServletResponse object to use to reply to the
client

HTTP request

Each request method has a request helper argument, which implements the AbstractHTTPServletRequest
abstract class.

class pelix.http.AbstractHTTPServletRequest
Abstract HTTP Servlet request helper

get_client_address()
Returns the address of the client

Returns A (host, port) tuple

get_command()
Returns the HTTP verb (GET, POST, . . .) used for the request

get_header(name, default=None)
Returns the value of a header

Parameters

• name – Header name

• default – Default value if the header doesn’t exist

Returns The header value or the default one

get_headers()
Returns a copy all headers, with a dictionary interface

Returns A dictionary-like object

get_path()
Returns the request full path

Returns A request full path (string)

get_prefix_path()
Returns the path to the servlet root

Returns A request path (string)

get_rfile()
Returns the request input as a file stream

Returns A file-like input stream

get_sub_path()
Returns the servlet-relative path, i.e. after the prefix

Returns A request path (string)

read_data()
Reads all the data in the input stream

2.5. Reference Cards 77

iPOPO Documentation, Release 0.8.1

Returns The read data

HTTP response

Each request method also has a response helper argument, which implements the
AbstractHTTPServletResponse abstract class.

class pelix.http.AbstractHTTPServletResponse
HTTP Servlet response helper

end_headers()
Ends the headers part

get_wfile()
Retrieves the output as a file stream. end_headers() should have been called before, except if you
want to write your own headers.

Returns A file-like output stream

is_header_set(name)
Checks if the given header has already been set

Parameters name – Header name

Returns True if it has already been set

send_content(http_code, content, mime_type=’text/html’, http_message=None, content_length=-1)
Utility method to send the given content as an answer. You can still use get_wfile or write afterwards, if
you forced the content length.

If content_length is negative (default), it will be computed as the length of the content; if it is positive, the
given value will be used; if it is None, the content-length header won’t be sent.

Parameters

• http_code – HTTP result code

• content – Data to be sent (must be a string)

• mime_type – Content MIME type (content-type)

• http_message – HTTP code description

• content_length – Forced content length

set_header(name, value)
Sets the value of a header. This method should not be called after end_headers().

Parameters

• name – Header name

• value – Header value

set_response(code, message=None)
Sets the response line. This method should be the first called when sending an answer.

Parameters

• code – HTTP result code

• message – Associated message

78 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

write(data)
Writes the given data. end_headers() should have been called before, except if you want to write your
own headers.

Parameters data – Data to be written

Write a servlet

This snippet shows how to write a component providing the servlet service:

from pelix.ipopo.decorators import ComponentFactory, Property, Provides, \
Requires, Validate, Invalidate, Unbind, Bind, Instantiate

@ComponentFactory(name='simple-servlet-factory')
@Instantiate('simple-servlet')
@Provides(specifications='pelix.http.servlet')
@Property('_path', 'pelix.http.path', "/servlet")
class SimpleServletFactory(object):
"""
Simple servlet factory
"""
def __init__(self):

self._path = None

def bound_to(self, path, params):
"""
Servlet bound to a path
"""
print('Bound to ' + path)
return True

def unbound_from(self, path, params):
"""
Servlet unbound from a path
"""
print('Unbound from ' + path)
return None

def do_GET(self, request, response):
"""
Handle a GET
"""
content = """<html>

<head>
<title>Test SimpleServlet</title>
</head>
<body>

Client address: {clt_addr[0]}
Client port: {clt_addr[1]}
Host: {host}
Keys: {keys}

</body>
</html>""".format(clt_addr=request.get_client_address(),

host=request.get_header('host', 0),
keys=request.get_headers().keys())

(continues on next page)

2.5. Reference Cards 79

iPOPO Documentation, Release 0.8.1

(continued from previous page)

response.send_content(200, content)

To test this snippet, install and start this bundle and the HTTP service bundle in a framework, then open a browser to
the servlet URL. If you used the HTTP service instantiation sample, this URL should be http://localhost:9000/servlet.

2.5.9 HTTP Routing utilities

The pelix.http.routing module provides a utility class and a set of decorators to ease the development of
REST-like servlets.

Decorators

Important: A servlet which uses the utility decorators must inherit from the pelix.http.routing.
RestDispatcher class.

The pelix.http.routing.RestDispatcher class handles all do_* methods and calls the corresponding
decorated methods in the child class.

The child class can declare as many methods as necessary, with any name (public, protected or private) and decorate
them with the following decorators. Note that a method can be decorated multiple times.

class pelix.http.routing.Http(route, methods=None)
Decorator indicating which route a method handles

Parameters

• route – Path handled by the method (beginning with a ‘/’)

• methods – List of HTTP methods allowed (GET, POST, . . .)

class pelix.http.routing.HttpGet(route)
Bases: pelix.http.routing.Http

Decorates a method handling GET requests

Parameters route – Path handled by the method (beginning with a ‘/’)

class pelix.http.routing.HttpPost(route)
Bases: pelix.http.routing.Http

Decorates a method handling POST requests

Parameters route – Path handled by the method (beginning with a ‘/’)

class pelix.http.routing.HttpPut(route)
Bases: pelix.http.routing.Http

Decorates a method handling PUT requests

Parameters route – Path handled by the method (beginning with a ‘/’)

class pelix.http.routing.HttpHead(route)
Bases: pelix.http.routing.Http

Decorates a method handling HEAD requests

80 Chapter 2. User’s Guide

http://localhost:9000/servlet

iPOPO Documentation, Release 0.8.1

Parameters route – Path handled by the method (beginning with a ‘/’)

class pelix.http.routing.HttpDelete(route)
Bases: pelix.http.routing.Http

Decorates a method handling DELETE requests

Parameters route – Path handled by the method (beginning with a ‘/’)

The decorated methods muse have the following signature:

decorated_method(request, response, **kwargs)
Called by the dispatcher to handle a request.

The keyword arguments must have the same name as the ones given in the URL pattern in the decorators.

Parameters

• request – An AbstractHTTPServletRequest object

• response – An AbstractHTTPServletResponse object

Supported types

Each argument in the URL can be automatically converted to the requested type. If the conversion fails, an error 500
is automatically sent back to the client.

Type Description
string Simple string used as is. The string can’t contain a slash (/)
int The argument is converted to an integer. The input must be of base 10. Floats are rejected.
float The argument is converted to a float. The input must be of base 10.
path A string representing a path, containing slashes.
uuid The argument is converted to a uuid.UUID class.

Multiple arguments can be given at a time, but can only be of one type.

Sample

from pelix.ipopo.decorators import ComponentFactory, Provides, Property, \
Instantiate

from pelix.http import HTTP_SERVLET, HTTP_SERVLET_PATH
from pelix.http.routing import RestDispatcher, HttpGet, HttpPost, HttpPut

@ComponentFactory()
@Provides(HTTP_SERVLET)
@Property('_path', HTTP_SERVLET_PATH, '/api/v0')
@Instantiate("some-servlet")
class SomeServlet(RestDispatcher):

@HttpGet("/list")
def list_elements(self, request, response):

response.send_content(200, "<p>The list</p>")

@HttpPost("/form/<form_id:uuid>")
def handle_form(self, request, response, form_id):

response.send_content(200, "<p>Handled {}</p>".format(form_id))

@HttpPut("/upload/<some_id:int>/<filename:path>")
(continues on next page)

2.5. Reference Cards 81

iPOPO Documentation, Release 0.8.1

(continued from previous page)

@HttpPut("/upload/<filename:path>")
def handle_upload(
self, request, response,

some_id=None, filename=None):
response.send_content(200, "<p>Handled {} : {}</p>" \

.format(some_id, filename))

2.5.10 Remote Services

Pelix/iPOPO provides support for remote services, i.e. consuming services provided from another framework instance.
This provider can run on the same machine as the consumer, or on another one.

Concepts

Pelix/iPOPO remote services implementation is a based on a set of services. This architecture eases the development
of new providers and allows to plug in or update protocols providers at run time.

In this section, we will shortly describe the basic concepts of Pelix Remote Services, i.e.:

• the concept of import and export endpoints

• the core services required to activate remote services

• the discovery providers

• the transport providers

The big picture of the Pelix Remote Services can be seen as:

Note that Pelix Remote Services implementation has been inspired from the OSGi Remote Services specification, and
tries to reuse most of its constants, to ease compatibility.

Before that, it is necessary to see the big picture: how does Pelix Remote Services works.

How does it work?

The export and import of a service follows this sequence diagram, described below:

When a service declares it can be exported, the export dispatcher detects it (as it is a service listener) notifies all
transport providers which matches the service properties. Each transport provider then tests if it can/must create an
endpoint for it and, if so, returns an export endpoint description to the exports dispatcher. The endpoint implementation
is transport-dependent: it can be a servlet (HTTP-based protocols), a serial-port listener, . . . As a result, there can be
multiple export endpoints for a single service: (at least) one per transport provider. The description of each export
endpoint is then stored in the exports dispatcher, one of the core services of Pelix Remote Services.

When an endpoint (or a set of endpoints) is stored in the exports dispatcher, the discovery providers are notified and
send there protocol-specific events. They can target other Pelix frameworks, but also any other kind of frameworks
(OSGi/Java, . . .) or of software (like a Node.js server with mDNS support). Those events indicate that new export
endpoints are available: they can point to the description of this endpoint or contain its serialized form. Note that the
description sent over the network must be an import-side description: it should contain all information required to
connect and use the endpoint, stored in import properties so that the newly imported services don’t get exported by
mistake.

82 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Another framework using the same discovery provider can capture this event and handle the new set of import end-
points. Those endpoints will be stored in the imports registry, the other core service of Pelix Remote Services. If
multiple discovery providers find the same endpoints, don’t worry, they will be filtered out according to their unique
identifier (UUID).

The imports registry then notifies the transport providers to let them create a local proxy to the remote service and
register it as a local service (with import properties). This remote service is now usable by local consumers.

Note: In the current implementation of Pelix Remote Services, the same remote service can be imported multiple
times by the same consumer framework. This is due to the fact that the imported service is created by the transport
providers and not by the centralized imports registry.

This behaviour is useful when you want to consume a service from a specific provider, or if you can sort transport
providers by efficiency. This has to been taken into account in some cases, like when consuming multiple services of
the same specification while multiple transport providers are active.

This behaviour is subject to debate but is also used in some projects. It could be modified if enough problems are
reported either on the mailing list or in GitHub issues.

Finally, Pelix Remote Services also supports the update of service properties, which can be handled as a minimalist
event by the discovery providers, e.g. containing only the endpoint UID and the new properties. The unregistration is
often the simplest event of a discovery provider, sending only the endpoint UID.

Export/Import Endpoints

The endpoints objects are declared in pelix.remote.beans by the ExportEndpoint and
ImportEndpoint classes.

Both contain the following information:

• UID: the unique identifier of the endpoint. It is a class-4 UUID, which should be unique across frameworks.

• Framework: the UID of the framework providing the endpoint. It is mainly used to clean up the endpoints of a
lost framework. If too many endpoint UID collisions are reported, it could be used as a secondary key.

• Name: the name of the endpoint. It can have a meaning for the transport provider, but isn’t used by Pelix itself.

• Properties: a copy of the current properties of the remote service.

• Specifications: the list of service exported specifications. A service can choose to export a subset of its specifi-
cations, as some could be private or using non-serializable types.

• Configurations: the list of transports allowed to export this endpoint or used for importing it.

Finally, the ExportEndpoint object also gives access to the service reference and implementation, in order to let
transport providers access the methods and properties of the service.

Core Services

The core services of the Pelix Remote Services implementation is based on two services:

• the exports dispatcher which keeps track of and notifies the discovery providers about the export endpoints
created/updated/deleted by transport providers. If a discovery provider appears after the creation of an export
endpoint, it will still be notified by the exports dispatcher.

This service is provided by an auto-instantiated component from the pelix.remote.dispatcher bundle.
It provides a pelix.remote.dispatcher service.

2.5. Reference Cards 83

https://groups.google.com/forum/#!forum/ipopo-users
https://github.com/tcalmant/ipopo/issues

iPOPO Documentation, Release 0.8.1

• the imports registry which keeps track of and notifies the transports providers about the import endpoints, ac-
cording to the notifications from the discovery providers. If a transport provider appears after the registration of
an import endpoint, it will nevertheless be notified by the imports registry of existing endpoints.

This service is provided by an auto-instantiated component from the pelix.remote.registry bundle. It
provides a pelix.remote.registry service.

Dispatcher Servlet

The content of the exports dispatcher can be exposed by the dispatcher servlet, provided by the same bundle as the
exports dispatcher, pelix.remote.dispatcher. Most discovery providers rely on this servlet as it allows to get
the list of exported endpoints, or the details of a single one, in JSON format.

This servlet must be instantiated explicitly using its pelix-remote-dispatcher-servlet-factory factory.
As it is a servlet, it requires the HTTP service to be up and running to provide it to clients.

Its API is very simple:

• /framework: returns the framework UID as a JSON string

• /endpoints: returns the whole list of the export endpoints registered in the exports dispatcher, as a JSON
array of JSON objects.

• /endpoint/<uid>: returns the export endpoint with the given UID as a JSON object.

Discovery Providers

A framework must discover a service before being able to use it. Pelix/iPOPO provides a set of discovery protocols:

• a home-made protocol based on UDP multicast packets, which supports addition, update and removal of ser-
vices;

• a home-made protocol based on MQTT, which supports addition, update and removal of services;

• mDNS, which is a standard but doesn’t support service update;

• a discovery service based on Redis.

Transport Providers

The remote services implementation supports XML-RPC (using the xmlrpc standard package), but it is recommended
to use JSON-RPC instead (using the jsonrpclib-pelix third-party module). Indeed, the JSON-RPC layer has a better
handling of dictionaries and custom types. iPOPO also supports a variant of JSON-RPC, Jabsorb-RPC, which adds
Java type information to the arguments and results. As long as a Java interface is correctly implementing, this protocol
allows a Python service to be used by a remote OSGi Java framework, and vice-versa. The OSGi framework must host
the Java implementation of the Pelix Remote Services.

All those protocols require the HTTP service to be up and running to work. Finally, iPOPO also supports a kind of
MQTT-RPC protocol, i.e. JSON-RPC over MQTT.

Providers included with Pelix/iPOPO

This section gives more details about the usage of the discovery and transport providers included in Pelix/iPOPO.
You’ll need at least a discovery and a compatible transport provider for Pelix Remote Services to work.

Apart MQTT, the discovery and transport providers are independent and can be used with one another.

84 Chapter 2. User’s Guide

https://redis.io
https://docs.python.org/3/library/xmlrpc.html
https://github.com/tcalmant/jsonrpclib/
https://github.com/isandlaTech/cohorte-remote-services

iPOPO Documentation, Release 0.8.1

Multicast Discovery

Bundle pelix.remote.discovery.multicast

Factory pelix-remote-discovery-multicast-factory

Requires HTTP Service, Dispatcher Servlet

Libraries nothing (based on the Python Standard Library)

Pelix comes with a home-made UDP multicast discovery protocol, implemented in the pelix.remote.
discovery.multicast bundle. This is the original discovery protocol of Pelix/iPOPO and the most reliable
one in small local area networks. A Java version of this protocol is provided by the Cohorte Remote Services imple-
mentation.

This protocol consists in minimalist packets on remote service registration, update and unregistration. They mainly
contain the notification event type, the port of the HTTP server of the framework and the path to the dispatcher servlet.
The IP of the framework is the source IP of the multicast packet: this allows to get a valid address for frameworks on
servers with multiple network interfaces.

This provider relies on the HTTP server and the dispatcher servlet. It doesn’t have external dependencies.

The bundle provides a pelix-remote-discovery-multicast-factory iPOPO factory, which must be
instantiated to work. It can be configured with the following properties:

Property Default value Description
multicast.group 239.0.0.1 The multicast group (address) to join to send and receive discovery messages.
multicast.port 42000 The multicast port to listen to

To use this discovery provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic
start $?
instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start $?
install pelix.remote.dispatcher
start $?

Instantiate the dispatcher servlet
instantiate pelix-remote-dispatcher-servlet-factory dispatcher-servlet

Install and start the multicast discovery with the default parameters
install pelix.remote.discovery.multicast
start $?
instantiate pelix-remote-discovery-multicast-factory discovery-mcast

mDNS Discovery

Bundle pelix.remote.discovery.mdns

Factory pelix-remote-discovery-zeroconf-factory

Requires HTTP Service, Dispatcher Servlet

2.5. Reference Cards 85

https://github.com/isandlaTech/cohorte-remote-services
https://github.com/isandlaTech/cohorte-remote-services

iPOPO Documentation, Release 0.8.1

Libraries pyzeroconf

The mDNS protocol, also known as Zeroconf, is a standard protocol based on multicast packets. It provides a Service
Discovery layer (mDNS-SD) based on the DNS-SD specification.

Unlike the home-made multicast protocol, this one doesn’t support service updates and gives troubles with service
unregistrations (frameworks lost, . . .). As a result, it should be used only if it is required to interact with other mDNS
devices.

In order to work with the mDNS discovery from the Eclipse Communication Framework, the pyzeroconf library
must be patched: the .local. check in zeroconf.mdns.DNSQuestion must be removed (around line 220).

This provider is implemented in the pelix.remote.discovery.mdns bundle, which provides a
pelix-remote-discovery-zeroconf-factory iPOPO factory, which must be instantiated to work. It
can be configured with the following properties:

Property Default value Description
zeroconf.service.type _pelix_rs._tcp.local. Zeroconf service type of exported services
zeroconf.ttl 60 Time To Live of services (in seconds)

To use this discovery provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic
start $?
instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start $?
install pelix.remote.dispatcher
start $?

Instantiate the dispatcher servlet
instantiate pelix-remote-dispatcher-servlet-factory dispatcher-servlet

Install and start the mDNS discovery with the default parameters
install pelix.remote.discovery.mdns
start $?
instantiate pelix-remote-discovery-zeroconf-factory discovery-mdns

Redis Discovery

Bundle pelix.remote.discovery.redis

Factory pelix-remote-discovery-redis-factory

Requires nothing (all is stored in the Redis database)

Libraries redis

The Redis discovery is the only one working well in Docker (Swarm) networks. It uses a Redis database to store the
host name of each framework and the description of each exported endpoint of each framework. Those description are
stored in the OSGi standard EDEF XML format, so it should be possible to implement a Java version of this discovery
provider. The Redis discovery uses the key events of the database to be notified by the latter when a framework or an
exported service is registered, updated, unregistered or timed out, which makes it both robust and reactive.

86 Chapter 2. User’s Guide

https://github.com/mcfletch/pyzeroconf
https://pypi.python.org/pypi/redis
https://redis.io/

iPOPO Documentation, Release 0.8.1

This provider is implemented in the pelix.remote.discovery.redis bundle, which provides a
pelix-remote-discovery-redis-factory iPOPO factory, which must be instantiated to work. It can be
configured with the following properties:

Property Default value Description
redis.host localhost The hostname of the Redis server
redis.port 46379 The port the Redis server listens to
redis.db 0 The Redis database to use (integer)
redis.password None Password to access the Redis database
heartbeat.delay 10 Delay in seconds between framework heart beats

To use this discovery provider, you’ll need to install the following bundles and instantiate the associated components:

Install Remote Services Core
install pelix.remote.registry
start $?
install pelix.remote.dispatcher
start $?

Install and start the Redis discovery with the default parameters
install pelix.remote.discovery.redis
start $?
instantiate pelix-remote-discovery-redis-factory discovery-redis

XML-RPC Transport

Bundle pelix.remote.xml_rpc

Factories pelix-xmlrpc-exporter-factory, pelix-xmlrpc-importer-factory

Requires HTTP Service

Libraries nothing (based on the Python Standard Library)

The XML-RPC transport is the first one having been implemented in Pelix/iPOPO. Its main advantage is that is doesn’t
depend on an external library, XML-RPC being supported by the Python Standard Library.

It has some troubles with complex and custom types (dictionaries, . . .), but can be used without problems on primitive
types. The JSON-RPC transport can be preferred in most cases.

Like most of the transport providers, this one is split in two components: the exporter and the importer. Both must be
instantiated manually.

The exporter instance can be configured with the following property:

Property Default value Description
pelix.http.path /XML-RPC The path to the XML-RPC exporter servlet

To use this transport provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic
start $?
instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core

(continues on next page)

2.5. Reference Cards 87

iPOPO Documentation, Release 0.8.1

(continued from previous page)

install pelix.remote.registry
start $?
install pelix.remote.dispatcher
start $?

Install and start the XML-RPC importer and exporter with the default
parameters
install pelix.remote.xml_rpc
start $?
instantiate pelix-xmlrpc-exporter-factory xmlrpc-exporter
instantiate pelix-xmlrpc-importer-factory xmlrpc-importer

JSON-RPC Transport

Bundle pelix.remote.json_rpc

Factories pelix-jsonrpc-exporter-factory, pelix-jsonrpc-importer-factory

Requires HTTP Service

Libraries jsonrpclib-pelix (installation requirement of iPOPO)

The JSON-RPC transport is the recommended one in Pelix/iPOPO. It depends on an external library, jsonrpclib-pelix
which has no transient dependency. It has way less troubles with complex and custom types than the XML-RPC
transport, which eases the development of most of Pelix/iPOPO applications.

Like most of the transport providers, this one is split in two components: the exporter and the importer. Both must be
instantiated manually.

The exporter instance can be configured with the following property:

Property Default value Description
pelix.http.path /JSON-RPC The path to the JSON-RPC exporter servlet

To use this transport provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic
start $?
instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start $?
install pelix.remote.dispatcher
start $?

Install and start the JSON-RPC importer and exporter with the default
parameters
install pelix.remote.json_rpc
start $?
instantiate pelix-jsonrpc-exporter-factory jsonrpc-exporter
instantiate pelix-jsonrpc-importer-factory jsonrpc-importer

88 Chapter 2. User’s Guide

https://github.com/tcalmant/jsonrpclib
https://github.com/tcalmant/jsonrpclib

iPOPO Documentation, Release 0.8.1

Jabsorb-RPC Transport

Bundle pelix.remote.transport.jabsorb_rpc

Factories pelix-jabsorbrpc-exporter-factory, pelix-jabsorbrpc-importer-factory

Requires HTTP Service

Libraries jsonrpclib-pelix (installation requirement of iPOPO)

The JABSORB-RPC transport is based on a variant of the JSON-RPC protocol. It adds Java typing hints to ease
unmarshalling on Java clients, like the Cohorte Remote Services implementation. The additional information comes
at small cost, but this transport shouldn’t be used when no Java frameworks are expected: it doesn’t provide more
features than JSON-RPC in a 100% Python environment.

Like the JSON-RPC transport, it depends on an external library, jsonrpclib-pelix which has no transient dependency.

Like most of the transport providers, this one is split in two components: the exporter and the importer. Both must be
instantiated manually.

The exporter instance can be configured with the following property:

Property Default value Description
pelix.http.path /JABSORB-RPC The path to the JABSORB-RPC exporter servlet

To use this transport provider, you’ll need to install the following bundles and instantiate the associated components:

Start the HTTP service with default parameters
install pelix.http.basic
start $?
instantiate pelix.http.service.basic.factory httpd

Install Remote Services Core
install pelix.remote.registry
start $?
install pelix.remote.dispatcher
start $?

Install and start the JABSORB-RPC importer and exporter with the default
parameters
install pelix.remote.transport.jabsorb_rpc
start $?
instantiate pelix-jabsorbrpc-exporter-factory jabsorbrpc-exporter
instantiate pelix-jabsorbrpc-importer-factory jabsorbrpc-importer

MQTT discovery and MQTT-RPC Transport

Bundle pelix.remote.discovery.mqtt, pelix.remote.transport.mqtt_rpc

Factories pelix-remote-discovery-mqtt-factory, pelix-mqttrpc-exporter-factory, pelix-mqttrpc-importer-
factory

Requires nothing (everything goes through MQTT messages)

Libraries paho

Finally, the MQTT discovery and transport protocols have been developed as a proof of concept with the fabMSTIC
fablab of the Grenoble Alps University.

2.5. Reference Cards 89

https://github.com/tcalmant/jsonrpclib
https://github.com/isandlaTech/cohorte-remote-services
https://github.com/tcalmant/jsonrpclib
https://www.eclipse.org/paho/
http://fabmstic.liglab.fr/

iPOPO Documentation, Release 0.8.1

The idea was to rely on the lightweight MQTT messages to provide both discovery and transport mechanisms, and to
let them be handled by low-power devices like small Arduino boards. Mixed results were obtained: it worked but the
performances were not those intended, mainly in terms of latencies.

Those providers are kept in Pelix/iPOPO as they work and provide a non-HTTP way to communicate, but they won’t
be updated without new contributions (pull requests, . . .).

They rely on the Eclipse Paho library, previously known as the Mosquitto library.

The discovery instance can be configured with the following properties:

Property Default value Description
mqtt.host localhost Host of the MQTT server
mqtt.port 1883 Port of the MQTT server
topic.prefix pelix/{appid}/remote-

services
Prefix of all MQTT messages (format string accepting the appid
entry)

applica-
tion.id

None Application ID, to allow multiple applications on the same server

The transport exporter and importer instances should be configured with the same mqtt.host and mqtt.port
properties as the discovery service.

To use the MQTT providers, you’ll need to install the following bundles and instantiate the associated components:

Install Remote Services Core
install pelix.remote.registry
start $?
install pelix.remote.dispatcher
start $?

Install and start the MQTT discovery and the MQTT-RPC importer and exporter
with the default parameters
install pelix.remote.discovery.mqtt
start $?
instantiate pelix-remote-discovery-mqtt-factory mqttrpc-discovery

install pelix.remote.transport.mqtt_rpc
start $?
instantiate pelix-mqttrpc-exporter-factory mqttrpc-exporter
instantiate pelix-mqttrpc-importer-factory mqttrpc-importer

API

Endpoints

ExportEndpoint objects are created by transport providers and stored in the registry of the exports dispatcher. It
is used by discovery providers to create a description of the endpoint to send over the network and suitable for the
import-side.

class pelix.remote.beans.ExportEndpoint(uid, fw_uid, configurations, name, svc_ref, service,
properties)

Represents an export end point (one per group of configuration types)

Parameters

• uid – Unique identified of the end point

• fw_uid – The framework UID

90 Chapter 2. User’s Guide

https://www.eclipse.org/paho/
http://mosquitto.org/

iPOPO Documentation, Release 0.8.1

• configurations – Kinds of end point (xmlrpc, . . .)

• name – Name of the end point

• svc_ref – ServiceReference of the exported service

• service – Instance of the exported service

• properties – Extra properties

Raises ValueError – Invalid UID or the end point exports nothing (all specifications have been
filtered)

get_properties()
Returns merged properties

Returns Endpoint merged properties

make_import_properties()
Returns the properties of this endpoint where export properties have been replaced by import ones

Returns A dictionary with import properties

rename(new_name)
Updates the endpoint name

Parameters new_name – The new name of the endpoint

configurations
Configurations of this end point

framework
Framework UID

instance
Service instance

name
Name of the end point

reference
Service reference

specifications
Returns the exported specifications

uid
End point unique identifier

ImportEndpoint objects are the description of an endpoint on the consumer side. They are given by the imports
registry to the transport providers on the import side.

class pelix.remote.beans.ImportEndpoint(uid, framework, configurations, name, specifica-
tions, properties)

Represents an end point to access an imported service

Parameters

• uid – Unique identified of the end point

• framework – UID of the framework exporting the end point (can be None)

• configurations – Kinds of end point (xmlrpc, . . .)

• name – Name of the end point

• specifications – Specifications of the exported service

2.5. Reference Cards 91

iPOPO Documentation, Release 0.8.1

• properties – Properties of the service

configurations
Kind of end point

framework
UID of the framework exporting this end point

name
Name of the end point

properties
Properties of the imported service

specifications
Specifications of the service

uid
End point unique identifier

Core Services

The exports dispatcher service provides the pelix.remote.dispatcher (constant string stored in pelix.
remote.SERVICE_DISPATCHER) service, with the following API:

class pelix.remote.dispatcher.Dispatcher
Common dispatcher for all exporters

get_endpoint(uid)
Retrieves an end point description, selected by its UID. Returns None if the UID is unknown.

Parameters uid – UID of an end point

Returns An ExportEndpoint or None.

get_endpoints(kind=None, name=None)
Retrieves all end points matching the given kind and/or name

Parameters

• kind – A kind of end point

• name – The name of the end point

Returns A list of ExportEndpoint matching the parameters

The import registry service provides the pelix.remote.registry (constant string stored in pelix.remote.
SERVICE_REGISTRY) service, with the following API:

class pelix.remote.registry.ImportsRegistry
Registry of discovered end points. End points are identified by their UID

add(endpoint)
Registers an end point and notifies listeners. Does nothing if the endpoint UID was already known.

Parameters endpoint – An ImportEndpoint object

Returns True if the end point has been added

contains(endpoint)
Checks if an endpoint is in the registry

Parameters endpoint – An endpoint UID or an ImportEndpoint object

92 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Returns True if the endpoint is known, else False

lost_framework(uid)
Unregisters all the end points associated to the given framework UID

Parameters uid – The UID of a framework

remove(uid)
Unregisters an end point and notifies listeners

Parameters uid – The UID of the end point to unregister

Returns True if the endpoint was known

update(uid, new_properties)
Updates an end point and notifies listeners

Parameters

• uid – The UID of the end point

• new_properties – The new properties of the end point

Returns True if the endpoint is known, else False

2.5.11 Remote Service Admin

Pelix/iPOPO now includes an implementation of the Remote Service Admin OSGi specification. It has been con-
tributed by Scott Lewis, leader of the Eclipse Communication Framework project.

This feature can be use to let multiple iPOPO and OSGi frameworks share their services. Note that Java is not
mandatory when used only between iPOPO frameworks.

Note: This is a brand new feature, which might still contain some bugs and might not work with all versions of
Python (especially 2.7).

As always, feedback is welcome: don’t hesitate to report bugs on GitHub.

Links to ECF

The Remote Service Admin implementation in iPOPO is based an architecture similar to the Eclipse Communication
Framework (implemented in Java). Most of the concepts have been kept in the Python implementation, it is therefore
useful to check the documentation of this Eclipse project.

• ECF project page, the formal project page

• ECF wiki, where most of the documentation can be found

• ECF blog, providing news and description of new features

Some pages of the wiki are related to the links between Java and Python worlds:

• OSGi R7 Remote Services between Python and Java describes how to share remote services between an iPOPO
Framework and an OSGi Framework.

2.5. Reference Cards 93

https://osgi.org/specification/osgi.cmpn/7.0.0/service.remoteserviceadmin.html
https://github.com/scottslewis
http://www.eclipse.org/ecf/
https://github.com/tcalmant/ipopo/issues
http://www.eclipse.org/ecf/
https://wiki.eclipse.org/Eclipse_Communication_Framework_Project
http://eclipseecf.blogspot.com/
https://wiki.eclipse.org/OSGi_R7_Remote_Services_between_Python_and_Java

iPOPO Documentation, Release 0.8.1

Package description

The implementation of Remote Service Admin is provided by the pelix.rsa package, which is organized as follows
(all names must be prefixed by pelix.rsa):

Module / Package Description
edef Definition of the EDEF XML endpoint description format
endpointdescription EndpointDescription beans
remoteserviceadmin Core implementation of RSA
shell Shell commands to control/debug RSA
providers.discovery Package of discovery providers
providers.distribution Package of transport providers
topologymanagers.basic Basic implementation of a Topology Manager

Providers included with Pelix/iPOPO

iPOPO includes some discovery and transport providers. More of them will be added in future releases.

etcd Discovery

Bundle pelix.rsa.providers.discovery.discovery_etcd

Requires none

Libraries python-etcd

This discovery provider uses etcd as a store of descriptions of endpoints. It depends on the python-etcd third-party
package.

This discovery provider is instantiated immediately as the bundle is started. The instance configuration must therefore
be given as Framework properties. Another solution is to kill the etcd-endpoint-discovery component and
restart it with custom properties.

This provider can be configured with the following properties:

Property Default value Description
etcd.hostname localhost Address of the etcd server
etcd.port 2379 Port of the etcd server
etcd.toppath /org.eclipse.ecf.provider.etcd.EtcdDiscoveryContainer Path in etcd where to store end-

points
etcd.
sessionttl

30 Session Time To Live

XML-RPC Distribution

Bundle pelix.rsa.providers.transport.xmlrpc

Requires HTTP Service

Libraries nothing (based on the Python Standard Library)

The XML-RPC distribution is the recommended provider for inter-Python communications. Note that it also supports
communications between Python and Java applications. Its main advantage is that is doesn’t depend on an external
library, XML-RPC being supported by the Python Standard Library.

94 Chapter 2. User’s Guide

https://github.com/jplana/python-etcd
http://etcd.readthedocs.io/en/latest/
https://github.com/jplana/python-etcd

iPOPO Documentation, Release 0.8.1

All components of this provider are automatically instantiated when the bundle starts. They can be configured using
framework properties or by killing and restarting its components with custom properties.

Property Default
value

Description

ecf.xmlrpc.server.
hostname

localhost Hostname of the HTTP server (None for auto-
detection)

ecf.xmlrpc.server.path /xml-rpc Path to use in the HTTP server
ecf.xmlrpc.server.timeout 30 XML-RPC requests timeout

Other properties are available but not presented here as they describe constants used to mimic the Java side configura-
tion.

A sample usage of this provider can be found in the tutorial section: RSA Remote Services using XmlRpc transport.

Py4J Distribution

Bundle pelix.rsa.providers.transport.py4j

Requires HTTP Service

Libraries py4j, osgiservicebridge

Note: This provider works only in Python 3

This provider allows to discover and share a Python service with its Py4J gateway and vice versa.

It can be configured with the following properties:

Property Default value Description
ecf.py4j.javaport 25333 Port of the Java proxy
ecf.py4j.pythonport 25334 Port of the Python proxy
ecf.py4j.defaultservicetimeout 30 Timeout before gateway timeout

A sample usage of this provider can be found in the tutorial section: RSA Remote Services between Python and Java.

2.5.12 Pelix Shell

Most of the time, it is necessary to access a Pelix application locally or remotely in order to monitor it, to update
its components or simply to check its sanity. The easiest to do those tasks is to use the Pelix Shell: it provides an
extensible set of commands that allows to work on bundles, iPOPO components, . . .

The shell is split into two parts:

• the core shell, handling and executing commands

• the UI, which handles input/output operations with the user

Pelix comes with some bundles providing shell commands for various actions, and a few UI implementations. Feel
free to implement and, maybe, publish new commands UIs according to your needs.

In order to use the shell, the pelix.shell.core bundle must be installed and running. It doesn’t require iPOPO
and can therefore be used in minimalist applications.

2.5. Reference Cards 95

https://www.py4j.org/
https://github.com/ECF/Py4j-RemoteServicesProvider

iPOPO Documentation, Release 0.8.1

Provided user interfaces

Pelix includes 3 main user interfaces:

• Text UI: the one to use when running a basic Pelix application

• Remote Shell: useful when managing an application running on a server

• XMPP Shell: useful to access applications behind firewalls

Common script arguments

Before looking at the available user interfaces, note that all of them support arguments to handle the Initial Configura-
tion files (see Initial Configuration File).

In addition to their specific arguments, the scripts starting the user interfaces also accept the following ones:

Argument Description
-h, --help Prints the script usage
--version Prints the script version
-D KEY=VALUE Sets up a framework property
-v, --verbose Sets the logger to DEBUG mode
--init FILE Start by running a Pelix shell script
--run FILE Run a Pelix shell script then exit
-c FILE, --conf FILE Use a configuration file, above the system configuration
-C FILE, --exclusive-conf FILE Use a configuration file, ignore the system configuration
-e, --empty-conf Don’t use any initial configuration

Text UI

The Text UI is the easiest way to manage or test your programs with Pelix/iPOPO. It provides the most basic yet
complete interaction with the Pelix Shell core service.

If it is available, the Text UI relies on readline to provide command and arguments completion.

Script startup

The text (or console) UI can be started using the python -m pelix.shell command. This command will start
a Pelix framework, with iPOPO and the most commonly used shell command providers.

This script only accepts the common shell parameters.

Programmatic startup

This UI is provided by the pelix.shell.console bundle. It is a raw bundle, which does not provide a component
factory: the UI is available while the bundle is active. There is no configuration available when starting the Text UI
programmatically.

96 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Remote Shell

Pelix frameworks are often started on remote locations, but still need to be managed with the Pelix shell. Instead of
using an SSH connection to work on a foreground server, you can use the Pelix Remote Shell.

The Pelix Remote Shell is a simple interface to the Pelix Shell core service of its framework instance, based on a TCP
server. Unlike the console UI, multiple users can connect the framework at the same time, each with his own shell
session (variables, . . .).

By default, the remote shell starts a TCP server listening the local interface (localhost) on port 9000. It is possible
to enforce the server by setting up OpenSSL certificates. The server will have its own certificate, which should be
checked by the clients, and each client will have to connect with its own certificate, signed by an authority recognized
by the server. See How to prepare certificates for the Remote Shell for more information on how to setup this kind of
certificates.

Note: TLS features and arguments are available only if the Python interpreters fully provides the ssl module, i.e. if
it has been built with OpenSSL.

Script startup

The remote shell UI can be started using the python -m pelix.shell.remote command. This command will
start a Pelix framework with iPOPO, and will start a Python console locally.

In addition to the common parameters, the script accepts the following ones:

Argument Default Description
--no-input not set If set, don’t start the Python console (useful for server/daemon

mode)
-a ADDR, --address ADDR local-

host
Server binding address

-p PORT, --port PORT 9000 Server binding port
--ca-chain FILE None Path to the certificate authority chain file (to authenticate clients)
--cert FILE None Path to the server certificate file
--key FILE None Path to the server private key file
--key-password
PASSWORD

None Password of the server private key

Programmatic startup

The remote shell is provided as the ipopo-remote-shell-factory component factory defined in the pelix.
shell.remote bundle. You should use the constant pelix.shell.FACTORY_REMOTE_SHELL instead of the
factory name when instantiating the component.

This factory accepts the following properties:

2.5. Reference Cards 97

iPOPO Documentation, Release 0.8.1

Name Default Description
pelix.shell.address localhost Server binding address
pelix.shell.port 9000 Server binding port
pelix.shell.ssl.ca None Path to the clients certificate authority chain file
pelix.shell.ssl.cert None Path to the server’s SSL certificate file
pelix.shell.ssl.key None Path to the server’s private key
pelix.shell.ssl.key_password None Password of the server’s private key

XMPP Shell

The XMPP shell interface allows to communicate with a Pelix framework using an XMPP client, e.g. Pidgin, Psi. The
biggest advantages of this interface are the possibility to use TLS to encrypt conversations and the fact that it is an
output-only communication. This allows to protect Pelix applications behind hardened firewalls, letting them only to
connect the XMPP server.

It requires an XMPP account to connect an XMPP server. Early tests of this bundle were made against Google Talk
(with a GMail account, not to be confused with Google Hangout) and a private OpenFire server.

Script startup

The XMPP UI can be started using the python -m pelix.shell.xmpp command. This command will start a
Pelix framework with iPOPO, and will start a Pelix console UI locally.

In addition to the common parameters, the script accepts the following ones:

Argument Default Description
-j JID, --jid JID None Jabber ID (user account)
--password PASSWORD None Account password
-s ADDR, --server ADDR None Address of the XMPP server (found in the Jabber ID by default)
-p PORT, --port PORT 5222 Port of the XMPP server
--tls not set If set, use a STARTTLS connection
--ssl not set If set, use an SSL connection

Programmatic startup

This UI depends on the sleekxmpp third-party package, which can be installed using the following command:

pip install sleekxmpp

The XMPP shell is provided as the ipopo-xmpp-shell-factory component factory defined in the pelix.
shell.xmpp bundle. You should use the constant pelix.shell.FACTORY_XMPP_SHELL instead of the fac-
tory name when instantiating the component.

This factory accepts the following properties:

98 Chapter 2. User’s Guide

http://pidgin.im/
https://psi-im.org/
http://www.igniterealtime.org/projects/openfire/

iPOPO Documentation, Release 0.8.1

Name Default Description
shell.xmpp.server localhost XMPP server hostname
shell.xmpp.port 5222 XMPP server port
shell.xmpp.jid None JID (XMPP account) to use
shell.xmpp.password None User password
shell.xmpp.tls 1 Use a STARTTLS connection
shell.xmpp.ssl 0 Use an SSL connection

Provided command bundles

Pelix/iPOPO comes with some batteries included. Here is the list of the bundles which provide commands for specific
services.

Note that the commands themselves won’t be described here: it is recommended to use the help command in the
shell to have the latest usage information.

Bundle name Description
pelix.shell.
ipopo

Handles iPOPO factories and instances.

pelix.shell.
configadmin

Handles the Configuration Admin service (provided by pelix.misc.
configadmin). See Configuration Admin.

pelix.shell.
eventadmin

Handles the Event Admin service (provided by pelix.misc.eventadmin). See
EventAdmin service.

pelix.shell.log Looks into the Log Service (provided by pelix.misc.log). See Logging.
pelix.shell.
report

Generates framework state reports. See Shell reports.

How to provide commands

Shell Command service

Shell commands are detected by the Shell Core Service when a Shell Command service (use the pelix.shell.
SERVICE_SHELL_COMMAND constant) is registered.

First, the Shell Core calls the get_namespace() method of the new service, in order to prepare the (potentially
new) command namespace. Each shell command provider should have a unique, human-readable, namespace. Some-
times it can be interesting to have multiple services providing sets of optional commands in the same namespace, but
this can lead to some unexpected behaviour, e.g. when trying to provide the same command name twice in the same
namespace. A namespace must not contain spaces nor separator characters (dot, comma, . . .).

Then, the Shell Core calls get_methods(), which must a return a list of (command name, command method)
couples. Like its namespace, a command name must not contain spaces nor separator characters (dot, comma, . . .).

Each command method must accept at least one argument: the ShellSession object representing the current
session and handling interactions with the client. Note that the Python docstring of the method will be what is shown
by the core help command.

The shell core bundle also provides a utility service, pelix.shell.SERVICE_SHELL_UTILS, which can be used
to generate ASCII tables to print out to the user. This is the service used by the core method to print the list of bundles,
services, iPOPO instances, etc..

Here is an example of a simple command service providing the echo and hello shell commands. echo accepts an
unlimited list of arguments and prints it back to the client. hello asks a name if it wasn’t given as parameter then says

2.5. Reference Cards 99

iPOPO Documentation, Release 0.8.1

hello.

from pelix.ipopo.decorators import ComponentFactory, Provides, Instantiate
import pelix.shell

@ComponentFactory("sample-commands-factory")
@Provides(pelix.shell.SERVICE_SHELL_COMMAND)
@Instantiate("sample-shell-commands")
class SampleCommands(object):

"""
Sample shell commands
"""
@staticmethod
def get_namespace():

"""
Retrieves the name space of this command handler
"""
return "sample"

def get_methods(self):
"""
Retrieves the list of tuples (command, method) for this command handler
"""
return [("echo", self.echo), ("hello", self.hello)]

def hello(self, session, name=None):
"""
Says hello
"""
if not name:

Name not given as parameter, ask for it
name = session.prompt("What's your name? ")

session.write_line("Hello, {0} !", name)

def echo(self, session, *words):
"""
Prints back the words it has been given
"""
session.write_line(" ".join(words))

To use this sample, simply start a framework with the Shell Core, a Shell UI and iPOPO, then install and start the
sample bundle. For example:

bash:~ $ python -m pelix.shell

** Pelix Shell prompt **
$ start pelix.shell.toto
Bundle ID: 14
Starting bundle 14 (pelix.shell.toto)...
$ sample.echo Hello, world !
Hello, world !
$ hello World
Hello, World !
$ hello
What's your name? Thomas
Hello, Thomas !

The I/O handling of the session argument is implemented by the shell UI and hides the ways used to communicate
with the client. The code of this example works with all UIs: local text UI, remote shell and XMPP shell.

100 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

API

class pelix.shell.beans.ShellSession(io_handler, initial_vars=None)
Represents a shell session. This is the kind of object given as parameter to shell commands

Sets up the shell session

Parameters

• io_handler – The I/O handler associated to the session

• initial_vars – Initial variables

Note: This class is instantiated by Shell UI implementations and its instances shouldn’t be shared nor stored
by command providers.

prompt(prompt=None)
Waits for a line to be written by the user

Parameters prompt – An optional prompt message

Returns The read line, after a conversion to str

write_line(line=None, *args, **kwargs)
Formats and writes a line to the output. This method has the same signature as str.format. If necessary,
a new-line marker (\n) is added at the end of the given string. The output stream is flushed to ensure that
the text is written.

Parameters

• line – A line for str.format markers

• args – Content for the positional markers

• kwargs – Content for the keyword markers

write_line_no_feed(line=None, *args, **kwargs)
Formats and writes a line to the output. This method has the same signature as str.format. If the given
line ended with a new-line marker, the latter is removed. The output stream is flushed to ensure that the
text is written.

Parameters

• line – A line for str.format markers

• args – Content for the positional markers

• kwargs – Content for the keyword markers

get(name)
Returns the value of a variable

Parameters name – Name of the variable

Returns The value of the variable

Raises KeyError – Unknown name

set(name, value)
Sets/overrides the value of a variable

Parameters

• name – Variable name

2.5. Reference Cards 101

iPOPO Documentation, Release 0.8.1

• value – New value

unset(name)
Unsets the variable with the given name

Parameters name – Variable name

Raises KeyError – Unknown name

last_result
Returns the content of $result

variables
A copy of the session variables

class pelix.shell.core._ShellUtils
Utility methods for the shell

Note: This class shouldn’t be instantiated directly. The developer must instead look for and the pelix.
shell.SERVICE_SHELL_UTILS service.

static bundlestate_to_str(state)
Converts a bundle state integer to a string

static make_table(headers, lines, prefix=None)
Generates an ASCII table according to the given headers and lines

Parameters

• headers – List of table headers (N-tuple)

• lines – List of table lines (N-tuples)

• prefix – Optional prefix for each line

Returns The ASCII representation of the table

Raises ValueError – Different number of columns between headers and lines

How to prepare certificates for the Remote Shell

In order to use certificate-based client authentication with the Remote Shell in TLS mode, you will have to prepare a
certificate authority, which will be used to sign server and clients certificates.

The following commands are a summary of OpenSSL Certificate Authority page by Jamie Nguyen.

Prepare the root certificate

• Prepare the environment of the root certificate:

mkdir ca
cd ca/
mkdir certs crl newcerts private
chmod 700 private/
touch index.txt
echo 1000 > serial

• Download the sample openssl.cnf file to the ca/ directory and edit it to fit your needs.

102 Chapter 2. User’s Guide

https://jamielinux.com/docs/openssl-certificate-authority/index.html
https://jamielinux.com/
https://jamielinux.com/docs/openssl-certificate-authority/appendix/root-configuration-file.html

iPOPO Documentation, Release 0.8.1

• Create the root certificate. The following snippet creates a 4096 bits private key and creates a certificate valid
for 7300 days (20 years). The v3_ca extension allows to use the certificate as an authority.

openssl genrsa -aes256 -out private/ca.key.pem 4096
chmod 400 private/ca.key.pem

openssl req -config openssl.cnf -key private/ca.key.pem \
-new -x509 -days 7300 -sha256 -extensions v3_ca \
-out certs/ca.cert.pem

chmod 444 certs/ca.cert.pem

openssl x509 -noout -text -in certs/ca.cert.pem

Prepare an intermediate certificate

Using intermediate certificates allows to hide the root certificate private key from the network: once the intermediate
certificate has signed, the root certificate private key should be hidden in a server somewhere not accessible from the
outside. If your intermediate certificate is compromised, you can use the root certificate to revoke it.

• Prepare the environment of the intermediate certificate:

mkdir intermediate
cd intermediate/
mkdir certs crl csr newcerts private
chmod 700 private/
touch index.txt
echo 1000 > serial
echo 1000 > crlnumber

• Download the sample intermediate/openssl.cnf file to the ca/intermediate folder and edit it to your needs.

• Generate the intermediate certificate and sign it with the root certificate. The v3_intermediate_ca exten-
sion allows to use the certificate as an intermediate authority. Intermediate certificates are valid less time than
the root certificate. Here we consider a validity of 10 years.

openssl genrsa -aes256 -out intermediate/private/intermediate.key.pem 4096
chmod 400 intermediate/private/intermediate.key.pem

openssl req -config intermediate/openssl.cnf \
-new -sha256 -key intermediate/private/intermediate.key.pem \
-out intermediate/csr/intermediate.csr.pem

openssl ca -config openssl.cnf -extensions v3_intermediate_ca \
-days 3650 -notext -md sha256 \
-in intermediate/csr/intermediate.csr.pem \
-out intermediate/certs/intermediate.cert.pem

chmod 444 intermediate/certs/intermediate.cert.pem

openssl x509 -noout -text -in intermediate/certs/intermediate.cert.pem

openssl verify -CAfile certs/ca.cert.pem \
intermediate/certs/intermediate.cert.pem

• Generate the Certificate Authority chain file. This is simply the bottom list of certificates of your authority:

2.5. Reference Cards 103

https://jamielinux.com/docs/openssl-certificate-authority/appendix/intermediate-configuration-file.html

iPOPO Documentation, Release 0.8.1

cat intermediate/certs/intermediate.cert.pem certs/ca.cert.pem \
> intermediate/certs/ca-chain.cert.pem

chmod 444 intermediate/certs/ca-chain.cert.pem

Prepare the server certificate

The steps to generate the certificate is simple. For simplicity, we consider we are in the same folder hierarchy as
before.

This certificate must has a validity period shorter than the intermediate certificate.

1. Generate a server private key. This can be done on any machine:

openssl genrsa -aes256 -out intermediate/private/server.key.pem 2048
openssl genrsa -out intermediate/private/server.key.pem 2048
chmod 400 intermediate/private/server.key.pem

2. Prepare a certificate signing request

openssl req -config intermediate/openssl.cnf \
-key intermediate/private/server.key.pem -new -sha256 \
-out intermediate/csr/server.csr.pem

3. Sign the certificate with the intermediate certificate. The server_cert extension indicates a server certificate
which can’t sign other ones.

openssl ca -config intermediate/openssl.cnf -extensions server_cert \
-days 375 -notext -md sha256 \
-in intermediate/csr/server.csr.pem \
-out intermediate/certs/server.cert.pem

chmod 444 intermediate/certs/server.cert.pem

openssl x509 -noout -text -in intermediate/certs/server.cert.pem

openssl verify -CAfile intermediate/certs/ca-chain.cert.pem \
intermediate/certs/server.cert.pem

Prepare a client certificate

The steps to generate the client certificates are the same as for the server.

1. Generate a client private key. This can be done on any machine:

openssl genrsa -out intermediate/private/client1.key.pem 2048
chmod 400 intermediate/private/client1.key.pem

2. Prepare a certificate signing request

openssl req -config intermediate/openssl.cnf \
-key intermediate/private/client1.key.pem -new -sha256 \
-out intermediate/csr/client1.csr.pem

3. Sign the certificate with the intermediate certificate. The usr_cert extension indicates this is a client certifi-
cate, which cannot be used to sign other certificates.

104 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

openssl ca -config intermediate/openssl.cnf -extensions usr_cert \
-days 375 -notext -md sha256 \
-in intermediate/csr/client1.csr.pem \
-out intermediate/certs/client1.cert.pem

chmod 444 intermediate/certs/client1.cert.pem

openssl x509 -noout -text -in intermediate/certs/client1.cert.pem

openssl verify -CAfile intermediate/certs/ca-chain.cert.pem \
intermediate/certs/client1.cert.pem

Connect a TLS Remote Shell

To connect a basic remote shell, you can use netcat, which is available for nearly all operating systems and all
architectures.

To connect a TLS remote shell, you should use the OpenSSL client: s_client. It is necessary to indicate the client
certificate in order to be accepted by the server. It is also recommended to indicate the authority chain to ensure that
the server is not a rogue one.

Here is a sample command line to connect a TLS remote shell on the local host, listening on port 9001.

openssl s_client -connect localhost:9001 \
-cert client1.cert.pem -key client1.key.pem \
-CAfile ca-chain.cert.pem

2.5.13 Shell reports

Pelix/iPOPO comes with a bundle, pelix.shell.report, which provides commands to generate reports describ-
ing the current framework and its host. This main purpose of this feature is to debug a faulty framework by grabbing
all available information. It can also be used to have a quick overview of the operating system, either to check the
installation environment or to identify the host machine.

Setup

This feature requires an active Pelix Shell (pelix.shell.core) and a UI. See Pelix Shell for more information on
this subject. The iPOPO service is not required for this feature to work.

It can therefore be started programmatically using the following snippet:

Start the framework, with the required bundles and the report bundle
framework = create_framework(

["pelix.shell.core", "pelix.shell.report"])

... or install & start it using the BundleContext
bundle_context.install_bundle("pelix.shell.report").start()

It can only be installed from a Shell UI using the command start pelix.shell.report.

Usage

The bundle provides the following commands in the report namespace:

2.5. Reference Cards 105

iPOPO Documentation, Release 0.8.1

Command Description
clear Clears the last report
levels Lists the available levels of reporting
make [<levels ...>] Prepares a report with the indicated levels (all levels if none set)
show [<levels ...>] Shows the latest report. Prepares it if levels have been indicated
write <filename> Write the latest report as a JSON file

Report levels

The reports are made of multiple “level information” sections. They describe the current state of the application and
its environment.

Here are some of the available levels.

Framework information

Level Description
pelix_basic Framework properties and version
pelix_bundles Bundles ID, name, version, state and location
pelix_services Services ID, bundle and properties
ipopo_factories Description of iPOPO factories (with their bundle)
ipopo_instances Details of iPOPO instances

Process information

Level Description
process Details about the current process (PID, user, working directory, . . .)
threads Lists the current process threads and their stacktrace

Python information

Level Description
python Python interpreter details (version, compiler, path, . . .)
python_modules Lists all Python modules imported by the application
python_path Lists the content of the Python Path

Host information

Level Description
os Details about the OS (version, architecture, CPUs, . . .) and the host name
os_env Lists the environment variables and their value
network Lists the IPs (v4 and v6) of the host, its name and FQDN.

106 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Group levels

Some levels are groups of lower levels. They are subject to change, therefore the following table is given as an
indication. Always refer to the report.levels shell command to check available ones.

Level Description
pelix Combines pelix_infos, pelix_bundles and pelix_services
ipopo Combines ipopo_factories and ipopo_instances
app Combines os, os_env, process, python and python_path
debug Combines app (except os_env), pelix, ipopo and python_modules
standard Like debug, but without pelix_services nor ipopo_instances
full Combines debug, os_env, network and threads

Those groups were defined according to the most common combinations of levels used during iPOPO development
and live setup.

2.5.14 Configuration Admin

Concept

The Configuration Admin service allows to easily set, update and delete the configuration (a dictionary) of managed
services.

The Configuration Admin service can be used by any bundle to configure a service, either by creating, updating or
deleting a Configuration object.

The Configuration Admin service handles the persistence of configurations and distributes them to their target services.

Two kinds of managed services exist: * Managed Services, which handle the configuration as is * Managed Service
Factories, which can handle multiple configuration of a kind

Note: Even if iPOPO doesn’t fully respect it, you can find details about the Configuration Admin Service Specification
in the chapter 104 of the OSGi Compendium Services Specification.

Note: This page is highly inspired from the Configuration Admin tutorial from the Apache Felix project.

Basic Usage

Here is a very basic example of a managed service able to handle a single configuration. This configuration contains
a single entry: the length of a pretty printer.

The managed service must provide the pelix.configadmin.managed specification, associated to a persistent
ID (PID) identifying its configuration (service.pid).

The PID is just a string, which must be globally unique. Assuming a simple case where your pretty printer configurator
receives the configuration has a unique class name, you may well use that name.

So lets assume, our managed service is called PrettyPrinter and that name is also used as the PID. The class
would be:

2.5. Reference Cards 107

http://felix.apache.org/documentation/subprojects/apache-felix-config-admin.html
http://felix.apache.org/

iPOPO Documentation, Release 0.8.1

class PrettyPrinter:
def updated(self, props):

"""
A configuration has been updated
"""
if props is None:

Configuration have been deleted
pass

else:
Apply configuration from config admin
pass

Now, in your bundle activator’s start() method you can register PrettyPrinter as a managed service:

@BundleActivator
class Activator:

def __init__(self):
self.svc_reg = None

def start(self, context):
svc_props = {"service.pid": "pretty.printer"}
self.svc_reg = context.register_service(

"pelix.configadmin.managed", PrettyPrinter(), svc_props)

def stop(self, context):
if self.svc_reg is not None:

self.svc_reg.unregister()
self.svc_reg = None

That’s more or less it. You may now go on to use your favourite tool to create and edit the configuration for the Pretty
Printer, for example something like this:

Get the current configuration
pid = "pretty.printer"
config = config_admin_svc.get_configuration(pid)
props = config.get_properties()
if props is None:

props = {}

Set properties
props.put("key", "value")

Update the configuration
config.update(props)

After the call to update() the Configuration Admin service persists the new configuration data and sends an update
to the managed service registered with the service PID pretty.printer, which happens to be our PrettyPrinter
class as expected.

Managed Service Factory example

Registering a service as a Managed Service Factory means that it will be able to receive several different configuration
dictionaries. This can be useful when used by a Service Factory, that is, a service responsible for creating a distinct
instance of a service according to the bundle consuming it.

A Managed Service Factory needs to provide the pelix.configadmin.managed.factory specification, as
shown below:

108 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

class SmsSenderFactory:
def __init__(self):

self.existing = {}

def updated(pid, props):
"""
Called when a configuration has been created or updated
"""
if pid in self.existing:

Service already exist
self.existing[pid].configure(props)

else:
Create the service
svc = self.create_instance()
svc.configure(props)
self.existing[pid] = service

def deleted(pid):
"""
Called when a configuration has been deleted
"""
self.existing[pid].close()
del self.existing[pid]

The example above shows that, differently from a managed service, the managed service factory is designed to manage
multiple instances of a service.

In fact, the updated method accept a PID and a dictionary as arguments, thus allowing to associate a certain config-
uration dictionary to a particular service instance (identified by the PID).

Note also that the managed service factory specification requires to implement (besides the getName method) a
deleted method: this method is invoked when the Configuration Admin service asks the managed service factory
to delete a specific instance.

The registration of a managed service factory follows the same steps of the managed service sample:

@BundleActivator
class Activator:

def __init__(self):
self.svc_reg = None

def start(self, context):
svc_props = {"service.pid": "sms.sender"}
self.svc_reg = context.register_service(

"pelix.configadmin.managed.factory", SmsSenderFactory(),
svc_props)

def stop(self, context):
if self.svc_reg is not None:

self.svc_reg.unregister()
self.svc_reg = None

Finally, using the ConfigurationAdmin interface, it is possible to send new or updated configuration dictionaries to the
newly created managed service factory:

@BundleActivator
class Activator:

def __init__(self):

(continues on next page)

2.5. Reference Cards 109

iPOPO Documentation, Release 0.8.1

(continued from previous page)

self.configs = {}

def start(self, context):
svc_ref = context.get_service_reference("pelix.configadmin")
if svc_ref is not None:

Get the configuration admin service
config_admin_svc = context.get_service(svc_ref)

Create a new configuration for the given factory
config = config_admin_svc.create_factory_configuration(

"sms.sender")

Update it
props = {"key": "value"}
config.update(props)

Store it for future use
self.configs[config.get_pid()] = config

def stop(self, context):
Clear all configurations (for this example)
for config in self.configs:

config.delete()

self.configs.clear()

2.5.15 EventAdmin service

Description

The EventAdmin service defines an inter-bundle communication mechanism.

Note: This service is inspired from the EventAdmin specification in OSGi, but without the Event class.

It is a publish/subscribe communication service, using the whiteboard pattern, that allows to send an event:

• the publisher of an event uses the EventAdmin service to send its event

• the handler (or subscriber or listener) publishes a service with filtering properties

An event is the association of:

• a topic, a URI-like string that defines the nature of the event

• a set of properties associated to the event

Some properties are defined by the EventAdmin service:

Property Type Description
event.sender.framework.uid str UID of the framework that emitted the event. Useful in remote services
event.timestamp float Time stamp of the event, computed when the event is given to EventAdmin

Usage

110 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Instantiation

The EventAdmin service is implemented in pelix.services.eventadmin bundle, as a single iPOPO
component. This component must be instantiated programmatically, by using the iPOPO service and the
pelix-services-eventadmin-factory factory name.

from pelix.ipopo.constants import use_ipopo
import pelix.framework

Start the framework (with iPOPO)
framework = pelix.framework.create_framework(['pelix.ipopo.core'])
framework.start()
context = framework.get_bundle_context()

Install & start the EventAdmin bundle
context.install_bundle('pelix.services.eventadmin').start()

Get the iPOPO the service
with use_ipopo(context) as ipopo:

Instantiate the EventAdmin component
ipopo.instantiate('pelix-services-eventadmin-factory',

'EventAdmin', {})

It can also be instantiated via the Pelix Shell:

$ install pelix.services.eventadmin
Bundle ID: 12
$ start 12
Starting bundle 12 (pelix.services.eventadmin)...
$ instantiate pelix-services-eventadmin-factory eventadmin
Component 'eventadmin' instantiated.

The EventAdmin component accepts the following property as a configuration:

Property Default value Description
pool.threads 10 Number of threads in the pool used for asynchronous delivery

Interfaces

EventAdmin service

The EventAdmin service provides the pelix.services.eventadmin specification:

class pelix.services.eventadmin.EventAdmin
The EventAdmin implementation

post(topic, properties=None)
Sends asynchronously the given event

Parameters

• topic – Topic of event

• properties – Associated properties

send(topic, properties=None)
Sends synchronously the given event

2.5. Reference Cards 111

iPOPO Documentation, Release 0.8.1

Parameters

• topic – Topic of event

• properties – Associated properties

Both send and post methods get the topic as first parameter, which must be a URI-like string, e.g. sensor/
temperature/changed and a dictionary as second parameter, which can be None.

When sending an event, each handler is notified with a different copy of the property dictionary, avoiding to propagate
changes done by a handler.

EventHandler service

An event handler must provide the pelix.services.eventadmin.handler specification, which defines by
the following method:

handle_event(topic, properties)
Called by the EventAdmin service to notify a handler of a new event

Parameters

• topic – The topic of the event (str)

• properties – The properties associated to the event (dict)

Warning: Events sent using the post() are delivered from another thread. It is unlikely but possible that
sometimes the handle_event() method may be called whereas the handler service has been unregistered, for
example after the handler component has been invalidated.

It is therefore recommended to check that the injected dependencies used in this method are not None before
handling the event.

An event handler must associate at least one the following properties to its service:

Prop-
erty

Type Description

event.topicsList of
str

A list of strings that indicates the topics the topics this handler expects. EventAdmin supports
“file name” filters, i.e. with * or ? jokers.

event.filter str A LDAP filter string that will be tested on the event properties

Example

In this example, a component will publish an event when it is validated or invalidated. These events will be:

• example/publisher/validated

• example/publisher/invalidated

The event handler component will provide a service with a topic filter that accepts both topics: example/
publisher/*

Publisher

The publisher requires the EventAdmin service, which specification is defined in the pelix.services module.

112 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

iPOPO
from pelix.ipopo.decorators import *
import pelix.ipopo.constants as constants

EventAdmin constants
import pelix.services

@ComponentFactory('publisher-factory')
Require the EventAdmin service
@Requires('_event', pelix.services.SERVICE_EVENT_ADMIN)
Inject our component name in a field
@Property('_name', constants.IPOPO_INSTANCE_NAME)
Auto-instantiation
@Instantiate('publisher')
class Publisher(object):
"""
A sample publisher
"""
def __init__(self):

"""
Set up members, to be OK with PEP-8
"""
EventAdmin (injected)
self._event = None

Component name (injected property)
self._name = None

@Validate
def validate(self, context):

"""
Component validated
"""
Send a "validated" event
self._event.send("example/publisher/validated",

{"name": self._name})

@Invalidate
def invalidate(self, context):

"""
Component invalidated
"""
Post an "invalidated" event
self._event.send("example/publisher/invalidated",

{"name": self._name})

Handler

The event handler has no dependency requirement. It has to provide the EventHandler specification, which is defined
in the pelix.services module.

iPOPO
from pelix.ipopo.decorators import *
import pelix.ipopo.constants as constants

(continues on next page)

2.5. Reference Cards 113

iPOPO Documentation, Release 0.8.1

(continued from previous page)

EventAdmin constants
import pelix.services

@ComponentFactory('handler-factory')
Provide the EventHandler service
@Provides(pelix.services.SERVICE_EVENT_HANDLER)
The event topic filters, injected as a component property that will be
propagated to its services
@Property('_event_handler_topic', pelix.services.PROP_EVENT_TOPICS,

['example/publisher/*'])
The event properties filter (optional, here set to None by default)
@Property('_event_handler_filter', pelix.services.PROP_EVENT_FILTER)
Auto-instantiation
@Instantiate('handler')
class Handler(object):

"""
A sample event handler
"""
def __init__(self):

"""
Set up members
"""
self._event_handler_topic = None
self._event_handler_filter = None

def handle_event(self, topic, properties):
"""
Event received
"""
print('Got a {0} event from {1} at {2}' \

.format(topic, properties['name'],
properties[pelix.services.EVENT_PROP_TIMESTAMP]))

It is recommended to define an event filter property, even if it is set to None by default: it allows to customize the
event handler when it is instantiated using the iPOPO API:

This handler will be notified only of events with a topic matching
'example/publisher/*' (default value of 'event.topics'), and in which
the 'name' property is 'foobar'.
ipopo.instantiate('handler-factory', 'customized-handler',

{pelix.services.PROP_EVENT_FILTER: '(name=foobar)'})

Shell Commands

It is possible to send events from the Pelix shell, after installing the pelix.shell.eventadmin bundle.

This bundle defines two commands, in the event scope:

Command Description
post <topic> [<property=value> [...
]]

Posts an event on the given topic, with the given properties

send <topic> [<property=value> [...
]]

Sends an event on the given topic, with the given proper-
ties

114 Chapter 2. User’s Guide

iPOPO Documentation, Release 0.8.1

Here is a sample shell session, considering the sample event handler above has been started. It installs and start the
EventAdmin shell bundle:

$ install pelix.shell.eventadmin
13
$ start 13
$ event.send example/publisher/activated name=foobar
Got a example/publisher/activated from foobar at 1369125501.028135

Events printer utility component

A pelix-misc-eventadmin-printer-factory component factory is provided by the pelix.misc.
eventadmin_printer bundle. It can be used to instantiate components that will print and/or log the event match-
ing a given filter.

Here is a Pelix Shell snippet to instantiate a printer and to send it some events:

$ install pelix.shell.eventadmin
13
$ start 13
$ install pelix.misc.eventadmin_printer
14
$ start 14
$ instantiate pelix-misc-eventadmin-printer-factory printerA event.topics=foo/*
Component 'printerA' instantiated.
$ instantiate pelix-misc-eventadmin-printer-factory printerB evt.log=True event.
→˓topics=foo/bar/*
Component 'printerB' instantiated.
$ send foo/abc
Event: foo/abc
Properties:
{'event.sender.framework.uid': 'aa180e9b-bb45-4cbf-8092-d45fbe12464f',
'event.timestamp': 1492698306.1903257}

$ send foo/bar/def
Event: foo/bar/def
Properties:
{'event.sender.framework.uid': 'aa180e9b-bb45-4cbf-8092-d45fbe12464f',
'event.timestamp': 1492698324.9549854}

Event: foo/bar/def
Properties:
{'event.sender.framework.uid': 'aa180e9b-bb45-4cbf-8092-d45fbe12464f',
'event.timestamp': 1492698324.9549854}

The second event is printed twice as it is handled by both printers.

MQTT Bridge

Pelix provides a bridge to send EventAdmin events to an MQTT server and vice-versa. This can be used to send events
between various Pelix frameworks, without the need of the remote services layer, or between different entities sharing
an MQTT server.

The component factory, pelix-services-eventadmin-mqtt-factory, is provided by the pelix.
services.eventadmin_mqtt bundle. It can be configured with the following properties:

2.5. Reference Cards 115

iPOPO Documentation, Release 0.8.1

Property Default Value Description
event.topics * The filter to select the events to share
mqtt.host localhost The host name of the MQTT server
mqtt.port 1883 The port the MQTT server is bound to
mqtt.topic.prefix /pelix/eventadmin The prefix to add to events before sending them over MQTT

Events handled by this component, i.e. matching the filter given at instantiation time, and having the event.
propagate property set to any value (even False) will be sent as messages to the MQTT server with the following
modifications:

• the MQTT message topic will be the event topic prefixed by the value of the mqtt.topic.prefix property

• if the event topic starts with a slash (/), a pelix.eventadmin.mqtt.start_slash property is added to
the event and is set to True

• a pelix.eventadmin.mqtt.source is added to the event, containing the UUID of the emitting frame-
work, to avoid loops.

The event properties are then converted to JSON and used as the body the MQTT message.

When an MQTT message starting with the configured prefix is received, it is converted back to an event, given to
EventAdmin. Loopback messages are detected and ignored to avoid loops.

116 Chapter 2. User’s Guide

CHAPTER 3

API Reference

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

3.1 API

This part of the documentation covers all the core classes and services of iPOPO.

3.1.1 BundleContext Object

The bundle context is the link between a bundle and the framework. It’s by the context that you can register services,
install other bundles.

class pelix.framework.BundleContext(framework, bundle)
The bundle context is the link between a bundle and the framework. It is unique for a bundle and is created by
the framework once the bundle is installed.

Parameters

• framework – Hosting framework

• bundle – The associated bundle

add_bundle_listener(listener)
Registers a bundle listener, which will be notified each time a bundle is installed, started, stopped or
updated.

The listener must be a callable accepting a single parameter:

• event – The description of the event (a BundleEvent object).

Parameters listener – The bundle listener to register

Returns True if the listener has been registered, False if it already was

117

iPOPO Documentation, Release 0.8.1

add_framework_stop_listener(listener)
Registers a listener that will be called back right before the framework stops

The framework listener must have a method with the following prototype:

def framework_stopping(self):
'''
No parameter given
'''
...

Parameters listener – The framework stop listener

Returns True if the listener has been registered

add_service_listener(listener, ldap_filter=None, specification=None)
Registers a service listener

The service listener must have a method with the following prototype:

def service_changed(self, event):
'''
Called by Pelix when some service properties changes

event: A ServiceEvent object
'''
...

Parameters

• bundle_context – This bundle context

• listener – The listener to register

• ldap_filter – Filter that must match the service properties (optional, None to accept
all services)

• specification – The specification that must provide the service (optional, None to
accept all services)

Returns True if the listener has been successfully registered

get_all_service_references(clazz, ldap_filter=None)
Returns an array of ServiceReference objects. The returned array of ServiceReference objects contains
services that were registered under the specified class and match the specified filter expression.

Parameters

• clazz – Class implemented by the service

• ldap_filter – Service filter

Returns The sorted list of all matching service references, or None

get_bundle(bundle_id=None)
Retrieves the Bundle object for the bundle matching the given ID (int). If no ID is given (None), the
bundle associated to this context is returned.

Parameters bundle_id – A bundle ID (optional)

Returns The requested Bundle object

118 Chapter 3. API Reference

iPOPO Documentation, Release 0.8.1

Raises BundleException – The given ID doesn’t exist or is invalid

get_bundles()
Returns the list of all installed bundles

Returns A list of Bundle objects

get_framework()
Returns the Framework that created this bundle context

Returns The Framework object

get_property(name)
Returns the value of a property of the framework, else returns the OS environment value.

Parameters name – A property name

get_service(reference)
Returns the service described with the given reference

Parameters reference – A ServiceReference object

Returns The service object itself

get_service_objects(reference)
Returns the ServiceObjects object for the service referenced by the specified ServiceReference object.

Parameters reference – Reference to a prototype service factory

Returns An intermediate object to get more instances of a service

get_service_reference(clazz, ldap_filter=None)
Returns a ServiceReference object for a service that implements and was registered under the specified
class

Parameters

• clazz – The class name with which the service was registered.

• ldap_filter – A filter on service properties

Returns A service reference, None if not found

get_service_references(clazz, ldap_filter=None)
Returns the service references for services that were registered under the specified class by this bundle and
matching the given filter

Parameters

• clazz – The class name with which the service was registered.

• ldap_filter – A filter on service properties

Returns The list of references to the services registered by the calling bundle and matching the
filters.

install_bundle(name, path=None)
Installs the bundle (module) with the given name.

If a path is given, it is inserted in first place in the Python loading path (sys.path). All modules loaded
alongside this bundle, i.e. by this bundle or its dependencies, will be looked after in this path in priority.

Note: Before Pelix 0.5.0, this method returned the ID of the installed bundle, instead of the Bundle object.

3.1. API 119

iPOPO Documentation, Release 0.8.1

Warning: The behavior of the loading process is subject to changes, as it does not allow to safely run
multiple frameworks in the same Python interpreter, as they might share global module values.

Parameters

• name – The name of the bundle to install

• path – Preferred path to load the module (optional)

Returns The Bundle object of the installed bundle

Raises BundleException – Error importing the module or one of its dependencies

install_package(path, recursive=False)
Installs all the modules found in the given package (directory). It is a utility method working like
install_visiting(), with a visitor accepting every module found.

Parameters

• path – Path of the package (folder)

• recursive – If True, installs the modules found in sub-directories

Returns A 2-tuple, with the list of installed bundles (Bundle) and the list of the names of the
modules which import failed.

Raises ValueError – The given path is invalid

install_visiting(path, visitor)
Looks for modules in the given path and installs those accepted by the given visitor.

The visitor must be a callable accepting 3 parameters:

• fullname – The full name of the module

• is_package – If True, the module is a package

• module_path – The path to the module file

Parameters

• path – Root search path (folder)

• visitor – The visiting callable

Returns A 2-tuple, with the list of installed bundles (Bundle) and the list of the names of the
modules which import failed.

Raises ValueError – Invalid path or visitor

register_service(clazz, service, properties, send_event=True, factory=False, prototype=False)
Registers a service

Parameters

• clazz – Class or Classes (list) implemented by this service

• service – The service instance

• properties – The services properties (dictionary)

• send_event – If not, doesn’t trigger a service registered event

• factory – If True, the given service is a service factory

120 Chapter 3. API Reference

iPOPO Documentation, Release 0.8.1

• prototype – If True, the given service is a prototype service factory (the factory argu-
ment is considered True)

Returns A ServiceRegistration object

Raises BundleException – An error occurred while registering the service

remove_bundle_listener(listener)
Unregisters the given bundle listener

Parameters listener – The bundle listener to remove

Returns True if the listener has been unregistered, False if it wasn’t registered

remove_framework_stop_listener(listener)
Unregisters a framework stop listener

Parameters listener – The framework stop listener

Returns True if the listener has been unregistered

remove_service_listener(listener)
Unregisters a service listener

Parameters listener – The service listener

Returns True if the listener has been unregistered

unget_service(reference)
Disables a reference to the service

Returns True if the bundle was using this reference, else False

3.1.2 Framework Object

The Framework object is a singleton and can be accessed using get_bundle(0). This class inherits the methods
from pelix.framework.Bundle.

class pelix.framework.Framework(properties=None)
The Pelix framework (main) class. It must be instantiated using FrameworkFactory

Sets up the framework.

Parameters properties – The framework properties

add_property(name, value)
Adds a property to the framework if it is not yet set.

If the property already exists (same name), then nothing is done. Properties can’t be updated.

Parameters

• name – The property name

• value – The value to set

Returns True if the property was stored, else False

delete(force=False)
Deletes the current framework

Parameters force – If True, stops the framework before deleting it

Returns True if the framework has been delete, False if is couldn’t

3.1. API 121

iPOPO Documentation, Release 0.8.1

find_service_references(clazz=None, ldap_filter=None, only_one=False)
Finds all services references matching the given filter.

Parameters

• clazz – Class implemented by the service

• ldap_filter – Service filter

• only_one – Return the first matching service reference only

Returns A list of found reference, or None

Raises BundleException – An error occurred looking for service references

get_bundle_by_id(bundle_id)
Retrieves the bundle with the given ID

Parameters bundle_id – ID of an installed bundle

Returns The requested bundle

Raises BundleException – The ID is invalid

get_bundle_by_name(bundle_name)
Retrieves the bundle with the given name

Parameters bundle_name – Name of the bundle to look for

Returns The requested bundle, None if not found

get_bundles()
Returns the list of all installed bundles

Returns the list of all installed bundles

get_properties()
Retrieves a copy of the stored framework properties.

get_property(name)
Retrieves a framework or system property. As framework properties don’t change while it’s running, this
method don’t need to be protected.

Parameters name – The property name

get_property_keys()
Returns an array of the keys in the properties of the service

Returns An array of property keys.

get_service(bundle, reference)
Retrieves the service corresponding to the given reference

Parameters

• bundle – The bundle requiring the service

• reference – A service reference

Returns The requested service

Raises

• BundleException – The service could not be found

• TypeError – The argument is not a ServiceReference object

122 Chapter 3. API Reference

iPOPO Documentation, Release 0.8.1

get_symbolic_name()
Retrieves the framework symbolic name

Returns Always “pelix.framework”

install_bundle(name, path=None)
Installs the bundle with the given name

Note: Before Pelix 0.5.0, this method returned the ID of the installed bundle, instead of the Bundle object.

WARNING: The behavior of the loading process is subject to changes, as it does not allow to safely run
multiple frameworks in the same Python interpreter, as they might share global module values.

Parameters

• name – A bundle name

• path – Preferred path to load the module

Returns The installed Bundle object

Raises BundleException – Something happened

install_package(path, recursive=False, prefix=None)
Installs all the modules found in the given package

Parameters

• path – Path of the package (folder)

• recursive – If True, install the sub-packages too

• prefix – (internal) Prefix for all found modules

Returns A 2-tuple, with the list of installed bundles and the list of failed modules names

Raises ValueError – Invalid path

install_visiting(path, visitor, prefix=None)
Installs all the modules found in the given path if they are accepted by the visitor.

The visitor must be a callable accepting 3 parameters:

• fullname: The full name of the module

• is_package: If True, the module is a package

• module_path: The path to the module file

Parameters

• path – Root search path

• visitor – The visiting callable

• prefix – (internal) Prefix for all found modules

Returns A 2-tuple, with the list of installed bundles and the list of failed modules names

Raises ValueError – Invalid path or visitor

register_service(bundle, clazz, service, properties, send_event, factory=False, prototype=False)
Registers a service and calls the listeners

Parameters

• bundle – The bundle registering the service

3.1. API 123

iPOPO Documentation, Release 0.8.1

• clazz – Name(s) of the interface(s) implemented by service

• service – The service to register

• properties – Service properties

• send_event – If not, doesn’t trigger a service registered event

• factory – If True, the given service is a service factory

• prototype – If True, the given service is a prototype service factory (the factory argu-
ment is considered True)

Returns A ServiceRegistration object

Raises BundleException – An error occurred while registering the service

start()
Starts the framework

Returns True if the bundle has been started, False if it was already running

Raises BundleException – A bundle failed to start

stop()
Stops the framework

Returns True if the framework stopped, False it wasn’t running

uninstall()
A framework can’t be uninstalled

Raises BundleException – This method must not be called

uninstall_bundle(bundle)
Ends the uninstallation of the given bundle (must be called by Bundle)

Parameters bundle – The bundle to uninstall

Raises BundleException – Invalid bundle

unregister_service(registration)
Unregisters the given service

Parameters registration – A ServiceRegistration to the service to unregister

Raises BundleException – Invalid reference

update()
Stops and starts the framework, if the framework is active.

Raises BundleException – Something wrong occurred while stopping or starting the frame-
work.

wait_for_stop(timeout=None)
Waits for the framework to stop. Does nothing if the framework bundle is not in ACTIVE state.

Uses a threading.Condition object

Parameters timeout – The maximum time to wait (in seconds)

Returns True if the framework has stopped, False if the timeout raised

124 Chapter 3. API Reference

iPOPO Documentation, Release 0.8.1

3.1.3 Bundle Object

This object gives access to the description of an installed bundle. It is useful to check the path of the source module,
the version, etc.

class pelix.framework.Bundle(framework, bundle_id, name, module_)
Represents a “bundle” in Pelix

Sets up the bundle descriptor

Parameters

• framework – The host framework

• bundle_id – The ID of the bundle in the host framework

• name – The bundle symbolic name

• module – The bundle module

get_bundle_context()
Retrieves the bundle context

Returns The bundle context

get_bundle_id()
Retrieves the bundle ID

Returns The bundle ID

get_location()
Retrieves the location of this module

Returns The location of the Pelix module, or an empty string

get_module()
Retrieves the Python module corresponding to the bundle

Returns The Python module

get_registered_services()
Returns this bundle’s ServiceReference list for all services it has registered or an empty list

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at any time.

Returns An array of ServiceReference objects

Raises BundleException – If the bundle has been uninstalled

get_services_in_use()
Returns this bundle’s ServiceReference list for all services it is using or an empty list. A bundle is consid-
ered to be using a service if its use count for that service is greater than zero.

The list is valid at the time of the call to this method, however, as the Framework is a very dynamic
environment, services can be modified or unregistered at any time.

Returns An array of ServiceReference objects

Raises BundleException – If the bundle has been uninstalled

get_state()
Retrieves the bundle state

Returns The bundle state

3.1. API 125

iPOPO Documentation, Release 0.8.1

get_symbolic_name()
Retrieves the bundle symbolic name (its Python module name)

Returns The bundle symbolic name

get_version()
Retrieves the bundle version, using the __version__ or __version_info__ attributes of its mod-
ule.

Returns The bundle version, “0.0.0” by default

start()
Starts the bundle. Does nothing if the bundle is already starting or active.

Raises BundleException – The framework is not yet started or the bundle activator failed.

stop()
Stops the bundle. Does nothing if the bundle is already stopped.

Raises BundleException – The bundle activator failed.

uninstall()
Uninstalls the bundle

update()
Updates the bundle

ACTIVE = 32
The bundle is now running

INSTALLED = 2
The bundle is installed but not yet resolved

RESOLVED = 4
The bundle is resolved and is able to be started

STARTING = 8
The bundle is in the process of starting

STOPPING = 16
The bundle is in the process of stopping

UNINSTALLED = 1
The bundle is uninstalled and may not be used

3.1.4 Events Objects

Those objects are given to listeners when a bundle or a service event occurs.

class pelix.internals.events.BundleEvent(kind, bundle)
Represents a bundle event

Sets up the event

get_bundle()
Retrieves the modified bundle

get_kind()
Retrieves the kind of event

INSTALLED = 1
The bundle has been installed.

126 Chapter 3. API Reference

iPOPO Documentation, Release 0.8.1

STARTED = 2
The bundle has been started.

STARTING = 128
The bundle is about to be activated.

STOPPED = 4
The bundle has been stopped. All of its services have been unregistered.

STOPPING = 256
The bundle is about to deactivated.

STOPPING_PRECLEAN = 512
The bundle has been deactivated, but some of its services may still remain.

UNINSTALLED = 16
The bundle has been uninstalled.

UPDATED = 8
The bundle has been updated. (called after STARTED)

UPDATE_BEGIN = 32
The bundle will be updated (called before STOPPING)

UPDATE_FAILED = 64
The bundle update has failed. The bundle might be in RESOLVED state

class pelix.internals.events.ServiceEvent(kind, reference, previous_properties=None)
Represents a service event

Sets up the event

Parameters

• kind – Kind of event

• reference – Reference to the modified service

• previous_properties – Previous service properties (for MODIFIED and MODI-
FIED_ENDMATCH events)

get_kind()
Returns the kind of service event (see the constants)

Returns the kind of service event

get_previous_properties()
Returns the previous values of the service properties, meaningless if the the event is not MODIFIED nor
MODIFIED_ENDMATCH.

Returns The previous properties of the service

get_service_reference()
Returns the reference to the service associated to this event

Returns A ServiceReference object

MODIFIED = 2
The properties of a registered service have been modified

MODIFIED_ENDMATCH = 8
The properties of a registered service have been modified and the new properties no longer match the
listener’s filter

3.1. API 127

iPOPO Documentation, Release 0.8.1

REGISTERED = 1
This service has been registered

UNREGISTERING = 4
This service is in the process of being unregistered

128 Chapter 3. API Reference

CHAPTER 4

Additional Notes

Design notes, legal information and changelog are here for the interested.

4.1 Who uses iPOPO ?

If you want to add your name here, send a mail on the ipopo-users mailing list.

4.1.1 Cohorte Technologies (isandlaTech)

Cohorte Technologies is the main sponsor and user of iPOPO. It uses iPOPO as the basis of all its core developments,
like the Cohorte Framework.

4.1.2 G2ELab / G-Scop

129

http://groups.google.com/group/ipopo-users
http://cohorte-technologies.com/
http://cohorte-technologies.com/
http://cohorte.github.io/
http://www.g2elab.grenoble-inp.fr/
http://www.g-scop.grenoble-inp.fr/

iPOPO Documentation, Release 0.8.1

PREDIS is a complex of several platforms dedicated for research and education. These platforms gather many industri-
als and academic partners working around emerging axes of electrical engineering and energy management. PREDIS
platforms are part of the Ense3 school which trains high-level engineers and doctors able to take up the challenges
associated with the new energy order, with the increasing demand of water, both in quantity and quality, and with the
sustainable development and country planning.

The PREDIS Smart Building platform is mainly focused on energy management in buildings such as offices. Two
laboratories are developing their research activities in Predis, the Grenoble Electrical Engineering lab (G2Elab) and
the Design and Production Sciences laboratories (G-Scop).

The main topics studied in PREDIS SB are:

• Multi-sensor monitoring

• User activities and their energy impact analysis

• Multi-physical modelling, measurement handle and sensitivity analysing

• Optimal control strategies development.

4.1.3 Polytech Grenoble / AIR

AIR means Ambient Intelligence Room.

Ambient intelligence (AmI) is now part of the everyday world of users. It is found in all areas of activity: intelligent
building with energy control and maintenance, intelligent electrical grid (smart grid), health care with home care,
transportation and supply chain, public and private security, culture and entertainment (infotainment) with serious
games, . . .

The AmI applications development relies primarily pooling of expertise in many areas of computer science and elec-
tronics which are generally purchased separately in university curricula and engineering schools. AmI education
focuses on developing applications for a wide range of smart objects (the IT server 3G user terminal and the on-board
sensor Zigbee/6LoWPAN instrumenting the physical environment). This teaching can be done properly only in the
context of experimental practice through group projects and student assignments for various application areas. The
experiments can achieve scaled in specialized rooms.

The AIR platform is a fablab (Fabrication Laboratory) for engineering students and Grenoble students to invent,
create and implement projects and application objects ambient intelligence through their training. The platform of the
Grenoble Alps University is housed in the Polytech Grenoble building. AIR is an educational platform of the labex
Persyval.

130 Chapter 4. Additional Notes

http://www.g2elab.grenoble-inp.fr/plateformes/plateforme-predis-196107.kjsp
http://www.g2elab.grenoble-inp.fr/plateformes/plateforme-predis-196107.kjsp
http://www.g2elab.grenoble-inp.fr/
http://www.g-scop.grenoble-inp.fr/
http://www.polytech-grenoble.fr/
http://air.imag.fr/
http://air.imag.fr/
https://en.wikipedia.org/wiki/Fab_lab
http://www.univ-grenoble-alpes.fr/
http://www.polytech-grenoble.fr/
http://www.persyval-lab.org/
http://www.persyval-lab.org/

iPOPO Documentation, Release 0.8.1

4.2 Release Notes

4.2.1 iPOPO 0.8.1

Release Date 2018-??-??

Pelix

• Fixed a memory leak in the thread pool implementation. The patch comes from issue #35 of the jsonrpclib-pelix
project.

Remote Services

• Fixed a deadlock in the Py4J provider (issue #100), contributed by Scott Lewis (@scottslewis). See pull request
#101 for more details.

4.2.2 iPOPO 0.8.0

Release Date 2018-08-19

Project

• Version bump to 0.8 as the addition of Remote Service Admin is a big step forward.

• Fixed unit tests for pelix.threadpool

• Added a word about Python 3.7 dataclasses in the iPOPO reference card

• All the source code has been reformatted with black (black -l 80 pelix)

Remote Services

• Added the implementation of Remote Service Admin OSGi specification, contributed by Scott Lewis
(@scottslewis). This is a major feature which intends to be used instead of Pelix Remote Services. The lat-
ter will be kept for retro-compatibility reasons.

4.2.3 iPOPO 0.7.1

Release Date 2018-06-16

Project

• Added a CONTRIBUTING description file to describe the code style

• The zeroconf dependency is now forced to version 0.19, to stay compatible with Python 2.7

• Changed them in the documentation (back to standard ReadTheDocs theme)

• Added some reference cards in the documentation: initial configuration file, shell, shell report

4.2. Release Notes 131

https://github.com/tcalmant/jsonrpclib/
https://github.com/tcalmant/ipopo/pull/101
https://github.com/tcalmant/ipopo/pull/101
https://github.com/ambv/black

iPOPO Documentation, Release 0.8.1

Pelix

• Aded support for Event Listeners Hooks. See pull request #88 for more details.

• Fixed Framework.delete() when framework was already stopped.

iPOPO

• Added @ValidateComponent and @InvalidateComponent decorators. They allow to define call-
back methods for component in/validation with access to component context and properties (read-only).
@Validate and @Invalidate decorators are now simple aliases to those decorators.

• Checked behaviour with data classes, introduced in Python 3.7: all seems to work perfectly. See issue 89 for
more details.

Shell

• New shell completion system: completion is now extensible and can work with both commands and arguments.
This system relies on readline.

• Added a TLS version of the shell. Its usage and the generation of certificates are described in the Pelix Shell
reference card in the documentation.

• ShellSession.write_line() can now be called without argument (prints an empty line)

Misc

• Fixed the access bug to the Python LogRecord message in the Log Service

4.2.4 iPOPO 0.7.0

Release Date 2017-12-30

Project

• Removed Python 2.6 compatibility code

• New version of the logo, with SVG sources in the repository

• Added some tests for install_package()

Pelix

• When a bundle is stopped, the framework now automatically releases the services it consumed. This was re-
quired to avoid stale references when using (prototype) service factories. WARNING: this can lead to issues if
you were using stale references to pass information from one bundle version to another (which is bad).

• Added support for Prototype Service Factories, which were missing from issue Service Factories (#75).

• Handle deprecation of the imp module (see #85)

• Added a delete() method to the Framework class. The FrameworkFactory class can now be fully
avoided by developers.

132 Chapter 4. Additional Notes

https://github.com/tcalmant/ipopo/pull/88
https://github.com/tcalmant/ipopo/issues/89
https://github.com/tcalmant/ipopo/issues/75

iPOPO Documentation, Release 0.8.1

4.2.5 iPOPO 0.6.5

Release Date 2017-09-17

Project

• Project documentation migrated to Read The Docs as the previous documentation server crashed. All references
to the previous server (coderxpress.net) have been removed.

• The documentation is being completely rewritten while it is converted from Dokuwiki to Sphinx.

• Removed Pypy 3 from Travis-CI/Tox tests, as it is not compatible with pip.

Pelix

• The import path normalization now ensures that the full path of the initial working directory is stored in the
path, and that the current working directory marker (empty string) is kept as the first entry of the Python path.

• Merged pull request #65, to ignore import errors when normalizing the Python path.

• Merged pull request #68, correcting the behaviour of the thread pool.

iPOPO

• The @Validate method of components is now always called after the bundle activator has returned. (#66)

• Added a get_instance(name) method to access to the component instance object by its name. (#74)

HTTP

• Added some utility methods to HttpServletRequest:

– get_command(): get the HTTP command of the request

– get_prefix_path(): get the servlet prefix path

– get_sub_path(): get the part of the path corresponding to the servlet (i.e. without the prefix path)

• get_servlet() now returns the servlet prefix along with the servlet and the server parameters.

• Added a pelix.https service property and an is_https() service method to indicate that the server uses
HTTPS.

• Added a utility module, pelix.http.routing, which eases the routing of HTTP requests with decorators
like @Http, @HttpGet. . .

• Merged pull request #70, avoiding remote HTTP servlets to be used by the local HTTP server.

Remote Services

• JSON-RPC and XML-RPC transports providers now support HTTPS.

• Added a Redis-based discovery provider, working with all HTTP-based transport providers.

4.2. Release Notes 133

https://ipopo.readthedocs.io/
https://github.com/tcalmant/ipopo/pull/65
https://github.com/tcalmant/ipopo/pull/68
https://github.com/tcalmant/ipopo/issues/66
https://github.com/tcalmant/ipopo/issues/74
https://github.com/tcalmant/ipopo/pull/70
https://redis.io/

iPOPO Documentation, Release 0.8.1

Shell

• Added the Configuration Handler, which allows to give a JSON file to set the initial configuration of a frame-
work: properties, bundles, instances, . . .

4.2.6 iPOPO 0.6.4

Release Date 2016-06-12

iPOPO

• Added @RequiresVariableFilter, which works like @Requires but also supports the use of compo-
nent properties as variables in LDAP filter.

• Added @HiddenProperty, which extends @Property, but ensures that the property key and value won’t
be seen in the description API nor in the shell. (it will stay visible using the standard reflection API of Python)

HTTP Service

• The HTTP basic component now support HTTPS. It is activated when given two files (a certificate and a key) in
its component properties. A password can also be given if the key file is encrypted. This is a prototype feature
and should be used carefully. Also, it should not be used with remote services.

Services

• A new log service has been added to this version, though the pelix.misc.log bundle. It provides the OSGi
API to log traces, but also keeps track of the traces written with the logging module. The log entries can be
accessed locally (but not through remote services). They can be printed in the shell using commands provided
by pelix.shell.log.

4.2.7 iPOPO 0.6.3

Release Date 2015-10-23

Project

• iPOPO now has a logo ! (thanks to @debbabi)

• README file has been rewritten

• Better PEP-8 compliance

• Updated jsonrpclib-pelix requirement version to 0.2.6

Framework

• Optimization of the service registry (less dictionaries, use of sets, . . .)

• Added the hide_bundle_services() to the service registry. It is by the framework to hide the services of
a stopping bundle from get_service_reference methods, and before those services will be unregistered.

• Removed the deprecated ServiceEvent.get_type() method

134 Chapter 4. Additional Notes

iPOPO Documentation, Release 0.8.1

iPOPO

• Optimization of StoredInstance (handlers, use of sets, . . .)

HTTP Service

• Added a is_header_set() method to the HTTPServletResponse bean.

• Response headers are now sent on end_headers(), not on set_header(), to avoid duplicate headers.

• The request queue size of the basic HTTP server can now be set as a component property (pelix.http.
request_queue_size)

Remote Services

• Added support for keyword arguments in most of remote services transports (all except XML-RPC)

• Added support for pelix.remote.export.only and pelix.remote.export.none service prop-
erties. pelix.remote.export.only tells the exporter to export the given specifications only, while
pelix.remote.export.none forbids the export of the service.

Shell

• The pelix.shell.console module can now be run as a main script

• Added the report shell command

• Added the name of varargs in the signature of commands

• Corrected the signature shown in the help description for static methods

• Corrected the thread and threads shell commands for Pypy

Utilities

• Updated the MQTT client to follow the new API of Eclipse Paho MQTT Client

Tests

• Travis-CI: Added Python 3.5 and Pypy3 targets

• Better configuration of coverage

• Added tests for the remote shell

• Added tests for the MQTT client and for MQTT-RPC

4.2.8 iPOPO 0.6.2

Release Date 2015-06-17

4.2. Release Notes 135

iPOPO Documentation, Release 0.8.1

iPOPO

• The properties of a component can be updated when calling the retry_erroneous() method. This allows
to modify the configuration of a component before trying to validate it again (HTTP port, . . .).

• The get_instance_details() dictionary now always contains a filter entry for each of the component
requirement description, even if not filter has been set.

HTTP Service

• Protection of the ServletRequest.read_data() method against empty or invalid Content-Length
headers

Shell

• The ipopo.retry shell command accepts properties to be reconfigure the instance before trying to validate
it again.

• The bundle commands (start, stop, update, uninstall) now print the name of the bundle along with its ID.

• The threads and threads shell commands now accept a stack depth limit argument.

4.2.9 iPOPO 0.6.1

Release Date 2015-04-20

iPOPO

• The stack trace of the exception that caused a component to be in the ERRONEOUS state is now kept, as a string.
It can be seen through the instance shell command.

Shell

• The command parser has been separated from the shell core service. This allows to create custom shells without
giving access to Pelix administration commands.

• Added cd and pwd shell commands, which allow changing the working directory of the framework and printing
the current one.

• Corrected the encoding of the shell output string, to avoid exceptions when printing special characters.

Remote Services

• Corrected a bug where an imported service with the same endpoint name as an exported service could be
exported after the unregistration of the latter.

4.2.10 iPOPO 0.6.0

Release Date 2015-03-12

136 Chapter 4. Additional Notes

iPOPO Documentation, Release 0.8.1

Project

• The support of Python 2.6 has been removed

Utilities

• The XMPP bot class now supports anonymous connections using SSL or StartTLS. This is a workaround for
issue 351 of SleekXMPP.

4.2.11 iPOPO 0.5.9

Release Date 2015-02-18

Project

• iPOPO now works with IronPython (tested inside Unity 3D)

iPOPO

• Components raising an error during validation goes in the ERRONEOUS state, instead of going back to
INVALID. This avoids trying to validate them automatically.

• The retry_erroneous() method of the iPOPO service and the retry shell command allows to retry the
validation of an ERRONEOUS component.

• The @SingletonFactory decorator can replace the @ComponentFactory one. It ensures that only one
component of this factory can be instantiated at a time.

• The @Temporal requirement decorator allows to require a service and to wait a given amount of time for its
replacement before invalidating the component or while using the requirement.

• @RequiresBest ensures that it is always the service with the best ranking that is injected in the component.

• The @PostRegistration and @PreUnregistration callbacks allows the component to be notified
right after one of its services has been registered or will be unregistered.

HTTP Service

• The generated 404 page shows the list of registered servlets paths.

• The 404 and 500 error pages can be customized by a hook service.

• The default binding address is back to “0.0.0.0” instead of “localhost” (for those who used the development
version).

Utilities

• The ThreadPool class is now a cached thread pool. It now has a minimum and maximum number of threads:
only the required threads are alive. A thread waits for a task during 60 seconds (by default) before stopping.

4.2. Release Notes 137

https://github.com/fritzy/SleekXMPP/issues/351
http://sleekxmpp.com/

iPOPO Documentation, Release 0.8.1

4.2.12 iPOPO 0.5.8

Release Date 2014-10-13

Framework

• FrameworkFactory.delete_framework() can be called with None or without argument. This sim-
plifies the clean up afters tests, etc.

• The list returned by Framework.get_bundles() is always sorted by bundle ID.

iPOPO

• Added the immediate_rebind option to the @Requires decorator. This indicates iPOPO to not invalidate
then re-validate a component if a service can replace an unbound required one. This option only applies to
non-optional, non-aggregate requirements.

Shell

• The I/O handler is now part of a ShellSession bean. The latter has the same API as the I/O handler so there
is no need to update existing commands. I/O Handler write methods are now synchronized.

• The shell supports variables as arguments, e.g. echo $var. See string.Template for more information. The
Template used in Pelix Shell allows . (dot) in names.

• A special variable $? stores the result of the last command which returned a result, i.e. anything but None or
False.

• Added set and unset commands to work with variables

• Added the run command to execute a script file.

• Added protection against AttributeError in threads and thread

4.2.13 iPOPO 0.5.7

Release Date 2014-09-18

Project

• Code review to be more PEP-8 compliant

• jsonrpclib-pelix is now an install requirement (instead of an optional one)

Framework

• Forget about previous global members when calling Bundle.update(). This ensures to have a fresh dictio-
nary of members after a bundle update

• Removed from pelix.constants import * in pelix.framework: only use pelix.
constants to access constants

138 Chapter 4. Additional Notes

https://docs.python.org/3/library/string.html#template-strings
https://pypi.python.org/pypi/jsonrpclib-pelix

iPOPO Documentation, Release 0.8.1

Remote Services

• Added support for endpoint name reuse

• Added support for synonyms: specifications that can be used on the remote side, or which describe a specifica-
tion of another language (e.g. a Java interface)

• Added support for a pelix.remote.export.reject service property: the specifications it contains won’t
be exported, event if indicated in service.exported.interfaces.

• JABSORB-RPC:

– Use the common dispatch() method, like JSON-RPC

• MQTT(-RPC):

– Explicitly stop the reading loop when the MQTT client is disconnecting

– Handle unknown correlation ID

Shell

• Added a loglevel shell command, to update the log level of any logger

• Added a --verbose argument to the shell console script

• Remote shell module can be ran as a script

HTTP Service

• Remove double-slashes when looking for a servlet

XMPP

• Added base classes to write a XMPP client based on SleekXMPP

• Added a XMPP shell interface, to control Pelix/iPOPO from XMPP

Miscellaneous

• Added an IPv6 utility module, to setup double-stack and to avoids missing constants bugs in Windows versions
of Python

• Added a EventData class: it acts like Event, but it allows to store a data when setting the event, or to raise
an exception in all callers of wait()

• Added a CountdownEvent class, an Event which is set until a given number of calls to step() is reached

• threading.Future class now supports a callback methods, to avoid to actively wait for a result.

4.2.14 iPOPO 0.5.6

Release Date 2014-04-28

4.2. Release Notes 139

http://sleekxmpp.com/

iPOPO Documentation, Release 0.8.1

Project

• Added samples to the project repository

• Removed the static website from the repository

• Added the project to Coveralls

• Increased code coverage

Framework

• Added a @BundleActivator decorator, to define the bundle activator class. The activator module
variable should be replaced by this decorator.

• Renamed specifications constants: from XXX_SPEC to SERVICE_XXX

iPOPO

• Added a waiting list service: instantiates components as soon as the iPOPO service and the component factory
are registered

• Added @RequiresMap handler

• Added an if_valid parameter to binding callbacks decorators: @Bind, @Update, @Unbind,
@BindField, @UpdateField, @UnbindField. The decorated method will be called if and only if the
component valid.

• The get_factory_context() from decorators becomes public to ease the implementation of new
decorators

Remote Services

• Large rewriting of Remote Service core modules

– Now using OSGi Remote Services properties

– Added support for the OSGi EDEF file format (XML)

• Added an abstract class to easily write RPC implementations

• Added mDNS service discovery

• Added an MQTT discovery protocol

• Added an MQTT-RPC protocol, based on Node.js MQTT-RPC module

• Added a Jabsorb-RPC transport. Pelix can now use Java services and vice-versa, using:

– Cohorte Remote Services

– Eclipse ECF and the Jabsorb-RPC provider

Shell

• Enhanced completion with readline

• Enhanced commands help generation

• Added arguments to filter the output of bl, sl, factories and instances

140 Chapter 4. Additional Notes

https://coveralls.io/
https://github.com/wolfeidau/mqtt-rpc
https://github.com/isandlaTech/cohorte-remote-services
http://wiki.eclipse.org/ECF
https://github.com/isandlaTech/cohorte-remote-services/tree/master/org.cohorte.ecf.provider.jabsorb

iPOPO Documentation, Release 0.8.1

• Corrected prompt when using readline

• Corrected write_lines() when not giving format arguments

• Added an echo command, to test string parsing

Services

• Added support for managed service factories in ConfigurationAdmin

• Added an EventAdmin-MQTT bridge: events from EventAdmin with an event.propagate property are
published over MQTT

• Added an early version of an MQTT Client Factory service

Miscellaneous

• Added a misc package, with utility modules and bundles:

– eventadmin_printer: an EventAdmin handler that prints or logs the events it receives

– jabsorb: converts dictionary from and to the Jabsorb-RPC format

– mqtt_client: a wrapper for the Paho MQTT client, used in MQTT discovery and MQTT-RPC.

4.2.15 iPOPO 0.5.5

Release Date 2013-11-15

Project

The license of the iPOPO project is now the Apache Software License 2.0.

Framework

• get_*_service_reference*() methods have a default LDAP filter set to None. Only the service spec-
ification is required, event if set to None.

• Added a context use_service(context, svc_ref), that allows to consume a service in a with block.

iPOPO

• Added the Handler Factory pattern: all instance handlers are created by their factory, called by iPOPO according
to the handler IDs found in the factory context. This will simplify the creation of new handlers.

Services

• Added the ConfigurationAdmin service

• Added the FileInstall service

4.2. Release Notes 141

http://www.eclipse.org/paho/
http://www.apache.org/licenses/LICENSE-2.0.html

iPOPO Documentation, Release 0.8.1

4.2.16 iPOPO 0.5.4

Release Date 2013-10-01

Project

• Global speedup replacing list.append() by bisect.insort().

• Optimizations in handling services, components and LDAP filters.

• Some classes of Pelix framework and iPOPO core modules extracted to new modules.

• Fixed support of Python 2.6.

• Replaced Python 3 imports conditions by try-except blocks.

iPOPO

• @Requires accepts only one specification

• Added a context use_ipopo(bundle_context), to simplify the usage of the iPOPO service, using the
keyword with.

• get_factory_details(name) method now also returns the ID of the bundle provided the component
factory, and the component instance properties.

• Protection of the unregistration of factories, as a component can kill another one of the factory during its invali-
dation.

Remote Services

• Protection of the unregistration loop during the invalidation of JSON-RPC and XML-RPC exporters.

• The Dispatcher Servlet now handles the discovered part of the discovery process. This simplifies the Multicast
Discovery component and suppresses a socket bug/feature on BSD (including Mac OS).

Shell

• The help command now uses the inspect module to list the required and optional parameters.

• IOHandler now has a prompt() method to ask the user to enter a line. It replaces the read() method,
which was to buggy.

• The make_table() method now accepts generators as parameters.

• Remote commands handling removed: get_methods_names() is not used anymore.

4.2.17 iPOPO 0.5.3

Release Date 2013-08-01

142 Chapter 4. Additional Notes

iPOPO Documentation, Release 0.8.1

iPOPO

• New get_factory_details(name) method in the iPOPO service, acting like
get_instance_details(name) but for factories. It returns a dictionary describing the given fac-
tory.

• New factory shell command, which describes a component factory: properties, requirements, provided ser-
vices, . . .

HTTP Service

• Servlet exceptions are now both sent to the client and logged locally

Remote Services

• Data read from the servlets or sockets are now properly converted from bytes to string before being parsed
(Python 3 compatibility).

Shell

• Exceptions are now printed using str(ex) instead of ex.message (Python 3 compatibility).

• The shell output is now flushed, both by the shell I/O handler and the text console. The remote console was
already flushing its output. This allows to run the Pelix shell correctly inside Eclipse.

4.2.18 iPOPO 0.5.2

Release Date 2013-07-19

iPOPO

• An error is now logged if a class is manipulated twice. Decorators executed after the first manipulation, i.e.
upon @ComponentFactory(), are ignored.

• Better handling of inherited and overridden methods: a decorated method can now be overridden in a child class,
with the name, without warnings.

• Better error logs, with indication of the error source file and line

HTTP Service

• New servlet binding parameters:

– http.name: Name of HTTP service. The name of component instance in the case of the basic
implementation.

– http.extra: Extra properties of the HTTP service. In the basic implementation, this the content
of the http.extra property of the HTTP server component

• New method accept_binding(path, params) in servlets. This allows to refuse the binding with a
server before to test the availability of the registration path, thus to avoid raising a meaningless exception.

4.2. Release Notes 143

iPOPO Documentation, Release 0.8.1

Remote Services

• End points are stored according to their framework

• Added a method lost_framework(uid) in the registry of imported services, which unregisters all the
services provided by the given framework.

Shell

• Shell help command now accepts a command name to print a specific documentation

4.2.19 iPOPO 0.5.1

Release Date 2013-07-05

Framework

• Bundle.update() now logs the SyntaxError exception that be raised in Python 3.

HTTP Service

• The HTTP service now supports the update of servlet services properties. A servlet service can now update its
registration path property after having been bound to a HTTP service.

• A 500 server error page containing an exception trace is now generated when a servlet fails.

• The bound_to() method of a servlet is called only after the HTTP service is ready to accept clients.

Shell

• The remote shell now provides a service, pelix.shell.remote, with a get_access() method that
returns the (host, port) tuple where the remote shell is waiting for clients.

• Fixed the threads command that wasn’t working on Python 3.

4.2.20 iPOPO 0.5

Release Date 2013-05-21

Framework

• BundleContext.install_bundle() now returns the Bundle object instead of the bundle ID.
BundleContext.get_bundle() has been updated to accept both IDs and Bundle objects in order to
keep a bit of compatibility

• Framework.get_symbolic_name() now returns pelix.framework instead of org.psem2m.
pelix

• ServiceEvent.get_type() is renamed get_kind(). The other name is still available but is declared
deprecated (a warning is logged on its first use).

144 Chapter 4. Additional Notes

iPOPO Documentation, Release 0.8.1

• BundleContext.install_visiting(path, visitor): visits the given path and installs the found
modules if the visitor accepts them

• BundleContext.install_package(path) (experimental):

– Installs all the modules found in the package at the given path

– Based on install_visiting()

iPOPO

• Components with a pelix.ipopo.auto_restart property set to True are automatically re-instantiated
after their bundle has been updated.

Services

• Remote Services: use services of a distant Pelix instance

– Multicast discovery

– XML-RPC transport (not fully usable)

– JSON-RPC transport (based on a patched version of jsonrpclib)

• EventAdmin: send events (a)synchronously

Shell

• Shell command methods now take an IOHandler object in parameter instead of input and output file-like
streams. This hides the compatibility tricks between Python 2 and 3 and simplifies the output formatting.

4.2.21 iPOPO 0.4

Release Date 2012-11-21

Framework

• New create_framework() utility method

• The framework has been refactored, allowing more efficient services and events handling

iPOPO

• A component can provide multiple services

• A service controller can be injected for each provided service, to activate or deactivate its registration

• Dependency injection and service providing mechanisms have been refactored, using a basic handler concept.

Services

• Added a HTTP service component, using the concept of servlet

• Added an extensible shell, interactive and remote, simplifying the usage of a framework instance

4.2. Release Notes 145

iPOPO Documentation, Release 0.8.1

4.2.22 iPOPO 0.3

Release Date 2012-04-13

Packages have been renamed. As the project goes public, it may not have relations to isandlaTech projects anymore.

Previous name New name
psem2m pelix
psem2m.service.pelix pelix.framework
psem2m.component pelix.ipopo
psem2m.component.ipopo pelix.ipopo.core

4.2.23 iPOPO 0.2

Release Date 2012-02-07

Version 0.2 is the first public release of the project, under the terms of the GPLv3 license.

4.2.24 iPOPO 0.1

Release Date 2012-01-20

The first version of the Pelix framework, with packages still named after the python.injection and PSEM2M
(now named Cohorte) projects by isandlaTech (now named Cohorte Technologies).

Back then, Pelix (bundles and services) was the most advanced part of the project, iPOPO was only an extension of it
to handle basic components.

4.2.25 python.injections

Release Date 2011-12-20

The proof-of-concept package trying to mimic the iPOJO framework in Python 2.6. It only supported basic injections
described by decorators.

4.3 License

iPOPO is licensed under the terms of the Apache Software License 2.0. All contributions must comply with this
license.

4.3.1 File Header

This snippet is added to the module-level documentation:

Copyright 2018 Thomas Calmant

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

(continues on next page)

146 Chapter 4. Additional Notes

https://www.gnu.org/licenses/gpl-3.0.txt
http://www.apache.org/licenses/LICENSE-2.0

iPOPO Documentation, Release 0.8.1

(continued from previous page)

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

4.3.2 License Full Text

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,

(continues on next page)

4.3. License 147

iPOPO Documentation, Release 0.8.1

(continued from previous page)

the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.

3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,

(continues on next page)

148 Chapter 4. Additional Notes

iPOPO Documentation, Release 0.8.1

(continued from previous page)

excluding those notices that do not pertain to any part of
the Derivative Works; and

(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the

(continues on next page)

4.3. License 149

iPOPO Documentation, Release 0.8.1

(continued from previous page)

Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

END OF TERMS AND CONDITIONS

APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.

Copyright [yyyy] [name of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

150 Chapter 4. Additional Notes

Python Module Index

p
pelix.framework, 42
pelix.http.basic, 73
pelix.http.routing, 80
pelix.ipopo.decorators, 52
pelix.misc.init_handler, 65
pelix.misc.log, 70
pelix.remote, 82
pelix.shell.console, 69

151

iPOPO Documentation, Release 0.8.1

152 Python Module Index

Index

Symbols
_IPopoService (class in pelix.ipopo.core), 50
_ShellUtils (class in pelix.shell.core), 102

A
AbstractHTTPServletRequest (class in

pelix.http), 77
AbstractHTTPServletResponse (class in

pelix.http), 78
accept_binding() (HttpServlet method), 76
ACTIVE (pelix.framework.Bundle attribute), 126
add() (pelix.remote.registry.ImportsRegistry method),

92
add_bundle_listener()

(pelix.framework.BundleContext method),
117

add_framework_stop_listener()
(pelix.framework.BundleContext method),
117

add_listener() (pelix.ipopo.core._IPopoService
method), 50

add_log_listener()
(pelix.misc.log.LogReaderService method),
71

add_property() (pelix.framework.Framework
method), 121

add_service_listener()
(pelix.framework.BundleContext method),
118

B
Bind() (in module pelix.ipopo.decorators), 62
BindField (class in pelix.ipopo.decorators), 62
bound_to() (HttpServlet method), 76
Bundle (class in pelix.framework), 125
bundle (pelix.misc.log.LogEntry attribute), 71
BundleContext (class in pelix.framework), 117
BundleEvent (class in pelix.internals.events), 126
bundles (pelix.misc.init_handler.InitFileHandler at-

tribute), 69

bundlestate_to_str()
(pelix.shell.core._ShellUtils static method),
102

C
clear() (pelix.misc.init_handler.InitFileHandler

method), 68
ComponentFactory (class in pelix.ipopo.decorators),

53
configurations (pelix.remote.beans.ExportEndpoint

attribute), 91
configurations (pelix.remote.beans.ImportEndpoint

attribute), 92
contains() (pelix.remote.registry.ImportsRegistry

method), 92

D
decorated_method(), 81
delete() (pelix.framework.Framework method), 121
Dispatcher (class in pelix.remote.dispatcher), 92
do_GET() (HttpServlet method), 76

E
end_headers() (pelix.http.AbstractHTTPServletResponse

method), 78
EventAdmin (class in pelix.services.eventadmin), 111
exception (pelix.misc.log.LogEntry attribute), 71
ExportEndpoint (class in pelix.remote.beans), 90

F
find_service_references()

(pelix.framework.Framework method), 121
Framework (class in pelix.framework), 121
framework (pelix.remote.beans.ExportEndpoint

attribute), 91
framework (pelix.remote.beans.ImportEndpoint

attribute), 92

G
get() (pelix.shell.beans.ShellSession method), 101

153

iPOPO Documentation, Release 0.8.1

get_access() (pelix.http.basic.HttpService method),
74

get_all_service_references()
(pelix.framework.BundleContext method),
118

get_bundle() (pelix.framework.BundleContext
method), 118

get_bundle() (pelix.framework.ServiceReference
method), 46

get_bundle() (pelix.internals.events.BundleEvent
method), 126

get_bundle_by_id() (pelix.framework.Framework
method), 122

get_bundle_by_name()
(pelix.framework.Framework method), 122

get_bundle_context() (pelix.framework.Bundle
method), 125

get_bundle_id() (pelix.framework.Bundle method),
125

get_bundles() (pelix.framework.BundleContext
method), 119

get_bundles() (pelix.framework.Framework
method), 122

get_client_address()
(pelix.http.AbstractHTTPServletRequest
method), 77

get_command() (pelix.http.AbstractHTTPServletRequest
method), 77

get_endpoint() (pelix.remote.dispatcher.Dispatcher
method), 92

get_endpoints() (pelix.remote.dispatcher.Dispatcher
method), 92

get_factories() (pelix.ipopo.core._IPopoService
method), 50

get_factory_details()
(pelix.ipopo.core._IPopoService method),
50

get_framework() (pelix.framework.BundleContext
method), 119

get_header() (pelix.http.AbstractHTTPServletRequest
method), 77

get_headers() (pelix.http.AbstractHTTPServletRequest
method), 77

get_hostname() (pelix.http.basic.HttpService static
method), 74

get_instance_details()
(pelix.ipopo.core._IPopoService method),
51

get_instances() (pelix.ipopo.core._IPopoService
method), 51

get_kind() (pelix.internals.events.BundleEvent
method), 126

get_kind() (pelix.internals.events.ServiceEvent
method), 127

get_location() (pelix.framework.Bundle method),
125

get_log() (pelix.misc.log.LogReaderService method),
71

get_module() (pelix.framework.Bundle method), 125
get_path() (pelix.http.AbstractHTTPServletRequest

method), 77
get_prefix_path()

(pelix.http.AbstractHTTPServletRequest
method), 77

get_previous_properties()
(pelix.internals.events.ServiceEvent method),
127

get_properties() (pelix.framework.Framework
method), 122

get_properties() (pelix.framework.ServiceReference
method), 46

get_properties() (pelix.remote.beans.ExportEndpoint
method), 91

get_property() (pelix.framework.BundleContext
method), 119

get_property() (pelix.framework.Framework
method), 122

get_property() (pelix.framework.ServiceReference
method), 46

get_property_keys()
(pelix.framework.Framework method), 122

get_property_keys()
(pelix.framework.ServiceReference method),
46

get_reference() (pelix.framework.ServiceRegistration
method), 45

get_registered_paths()
(pelix.http.basic.HttpService method), 74

get_registered_services()
(pelix.framework.Bundle method), 125

get_rfile() (pelix.http.AbstractHTTPServletRequest
method), 77

get_service() (pelix.framework.BundleContext
method), 119

get_service() (pelix.framework.Framework
method), 122

get_service_objects()
(pelix.framework.BundleContext method),
119

get_service_reference()
(pelix.framework.BundleContext method),
119

get_service_reference()
(pelix.internals.events.ServiceEvent method),
127

get_service_references()
(pelix.framework.BundleContext method),
119

154 Index

iPOPO Documentation, Release 0.8.1

get_services_in_use() (pelix.framework.Bundle
method), 125

get_servlet() (pelix.http.basic.HttpService
method), 75

get_state() (pelix.framework.Bundle method), 125
get_sub_path() (pelix.http.AbstractHTTPServletRequest

method), 77
get_symbolic_name() (pelix.framework.Bundle

method), 125
get_symbolic_name()

(pelix.framework.Framework method), 122
get_using_bundles()

(pelix.framework.ServiceReference method),
46

get_version() (pelix.framework.Bundle method),
126

get_wfile() (pelix.http.AbstractHTTPServletResponse
method), 78

H
handle_common_arguments() (in module

pelix.shell.console), 69
handle_event(), 112
HiddenProperty (class in pelix.ipopo.decorators), 54
Http (class in pelix.http.routing), 80
HttpDelete (class in pelix.http.routing), 81
HttpGet (class in pelix.http.routing), 80
HttpHead (class in pelix.http.routing), 80
HttpPost (class in pelix.http.routing), 80
HttpPut (class in pelix.http.routing), 80
HttpService (class in pelix.http.basic), 74, 75
HttpServlet (built-in class), 76

I
ImportEndpoint (class in pelix.remote.beans), 91
ImportsRegistry (class in pelix.remote.registry), 92
InitFileHandler (class in pelix.misc.init_handler),

68
install_bundle() (pelix.framework.BundleContext

method), 119
install_bundle() (pelix.framework.Framework

method), 123
install_package()

(pelix.framework.BundleContext method),
120

install_package() (pelix.framework.Framework
method), 123

install_visiting()
(pelix.framework.BundleContext method),
120

install_visiting() (pelix.framework.Framework
method), 123

INSTALLED (pelix.framework.Bundle attribute), 126

INSTALLED (pelix.internals.events.BundleEvent at-
tribute), 126

instance (pelix.remote.beans.ExportEndpoint at-
tribute), 91

Instantiate (class in pelix.ipopo.decorators), 60
instantiate() (pelix.ipopo.core._IPopoService

method), 51
instantiate_components()

(pelix.misc.init_handler.InitFileHandler
method), 68

Invalidate() (in module pelix.ipopo.decorators), 62
InvalidateComponent() (in module

pelix.ipopo.decorators), 62
is_factory() (pelix.framework.ServiceReference

method), 46
is_header_set() (pelix.http.AbstractHTTPServletResponse

method), 78
is_https() (pelix.http.basic.HttpService method), 75
is_prototype() (pelix.framework.ServiceReference

method), 46

K
kill() (pelix.ipopo.core._IPopoService method), 51

L
last_result (pelix.shell.beans.ShellSession at-

tribute), 102
level (pelix.misc.log.LogEntry attribute), 71
load() (pelix.misc.init_handler.InitFileHandler

method), 68
log() (pelix.misc.log.LogServiceInstance method), 70
LogEntry (class in pelix.misc.log), 71
LogReaderService (class in pelix.misc.log), 71
LogServiceInstance (class in pelix.misc.log), 70
lost_framework() (pelix.remote.registry.ImportsRegistry

method), 93

M
make_exception_page()

(pelix.http.basic.HttpService method), 75
make_import_properties()

(pelix.remote.beans.ExportEndpoint method),
91

make_not_found_page()
(pelix.http.basic.HttpService method), 75

make_table() (pelix.shell.core._ShellUtils static
method), 102

message (pelix.misc.log.LogEntry attribute), 71
MODIFIED (pelix.internals.events.ServiceEvent at-

tribute), 127
MODIFIED_ENDMATCH

(pelix.internals.events.ServiceEvent attribute),
127

Index 155

iPOPO Documentation, Release 0.8.1

N
name (pelix.remote.beans.ExportEndpoint attribute), 91
name (pelix.remote.beans.ImportEndpoint attribute), 92
normalize() (pelix.misc.init_handler.InitFileHandler

method), 68

O
osgi_level (pelix.misc.log.LogEntry attribute), 72

P
pelix.constants.BundleActivator (built-in

class), 40
pelix.framework (module), 42, 48
pelix.http.basic (module), 73
pelix.http.routing (module), 80
pelix.ipopo.decorators (module), 52
pelix.misc.init_handler (module), 65
pelix.misc.log (module), 70
pelix.remote (module), 82
pelix.shell.console (module), 69
post() (pelix.services.eventadmin.EventAdmin

method), 111
PostRegistration() (in module

pelix.ipopo.decorators), 65
PostUnregistration() (in module

pelix.ipopo.decorators), 65
prompt() (pelix.shell.beans.ShellSession method), 101
properties (pelix.misc.init_handler.InitFileHandler

attribute), 69
properties (pelix.remote.beans.ImportEndpoint at-

tribute), 92
Property (class in pelix.ipopo.decorators), 54
Provides (class in pelix.ipopo.decorators), 55

R
read_data() (pelix.http.AbstractHTTPServletRequest

method), 77
reference (pelix.misc.log.LogEntry attribute), 72
reference (pelix.remote.beans.ExportEndpoint

attribute), 91
register_service()

(pelix.framework.BundleContext method),
120

register_service() (pelix.framework.Framework
method), 123

register_servlet() (pelix.http.basic.HttpService
method), 75

REGISTERED (pelix.internals.events.ServiceEvent at-
tribute), 127

remove() (pelix.remote.registry.ImportsRegistry
method), 93

remove_bundle_listener()
(pelix.framework.BundleContext method),
121

remove_framework_stop_listener()
(pelix.framework.BundleContext method),
121

remove_listener()
(pelix.ipopo.core._IPopoService method),
52

remove_log_listener()
(pelix.misc.log.LogReaderService method),
71

remove_service_listener()
(pelix.framework.BundleContext method),
121

rename() (pelix.remote.beans.ExportEndpoint
method), 91

Requires (class in pelix.ipopo.decorators), 56
RequiresBest (class in pelix.ipopo.decorators), 58
RequiresMap (class in pelix.ipopo.decorators), 58
RequiresVarFilter (class in

pelix.ipopo.decorators), 59
RESOLVED (pelix.framework.Bundle attribute), 126
retry_erroneous()

(pelix.ipopo.core._IPopoService method),
52

S
send() (pelix.services.eventadmin.EventAdmin

method), 111
send_content() (pelix.http.AbstractHTTPServletResponse

method), 78
ServiceEvent (class in pelix.internals.events), 127
ServiceReference (class in pelix.framework), 46
ServiceRegistration (class in pelix.framework),

45
set() (pelix.shell.beans.ShellSession method), 101
set_header() (pelix.http.AbstractHTTPServletResponse

method), 78
set_properties() (pelix.framework.ServiceRegistration

method), 46
set_response() (pelix.http.AbstractHTTPServletResponse

method), 78
ShellSession (class in pelix.shell.beans), 101
SingletonFactory (class in pelix.ipopo.decorators),

53
specifications (pelix.remote.beans.ExportEndpoint

attribute), 91
specifications (pelix.remote.beans.ImportEndpoint

attribute), 92
start() (pelix.constants.BundleActivator method), 40
start() (pelix.framework.Bundle method), 126
start() (pelix.framework.Framework method), 124
STARTED (pelix.internals.events.BundleEvent attribute),

126
STARTING (pelix.framework.Bundle attribute), 126

156 Index

iPOPO Documentation, Release 0.8.1

STARTING (pelix.internals.events.BundleEvent at-
tribute), 127

stop() (pelix.constants.BundleActivator method), 40
stop() (pelix.framework.Bundle method), 126
stop() (pelix.framework.Framework method), 124
STOPPED (pelix.internals.events.BundleEvent attribute),

127
STOPPING (pelix.framework.Bundle attribute), 126
STOPPING (pelix.internals.events.BundleEvent at-

tribute), 127
STOPPING_PRECLEAN

(pelix.internals.events.BundleEvent attribute),
127

T
Temporal (class in pelix.ipopo.decorators), 57
time (pelix.misc.log.LogEntry attribute), 72

U
uid (pelix.remote.beans.ExportEndpoint attribute), 91
uid (pelix.remote.beans.ImportEndpoint attribute), 92
Unbind() (in module pelix.ipopo.decorators), 64
UnbindField (class in pelix.ipopo.decorators), 64
unbound_from() (HttpServlet method), 76
unget_service() (pelix.framework.BundleContext

method), 121
uninstall() (pelix.framework.Bundle method), 126
uninstall() (pelix.framework.Framework method),

124
uninstall_bundle() (pelix.framework.Framework

method), 124
UNINSTALLED (pelix.framework.Bundle attribute), 126
UNINSTALLED (pelix.internals.events.BundleEvent at-

tribute), 127
unregister() (pelix.framework.ServiceRegistration

method), 46
unregister() (pelix.http.basic.HttpService method),

75
unregister_service()

(pelix.framework.Framework method), 124
UNREGISTERING (pelix.internals.events.ServiceEvent

attribute), 128
unset() (pelix.shell.beans.ShellSession method), 102
Update() (in module pelix.ipopo.decorators), 63
update() (pelix.framework.Bundle method), 126
update() (pelix.framework.Framework method), 124
update() (pelix.remote.registry.ImportsRegistry

method), 93
UPDATE_BEGIN (pelix.internals.events.BundleEvent at-

tribute), 127
UPDATE_FAILED (pelix.internals.events.BundleEvent

attribute), 127
UPDATED (pelix.internals.events.BundleEvent attribute),

127

UpdateField (class in pelix.ipopo.decorators), 63
use_ipopo() (in module pelix.ipopo.constants), 49

V
Validate() (in module pelix.ipopo.decorators), 61
ValidateComponent (class in

pelix.ipopo.decorators), 60
variables (pelix.shell.beans.ShellSession attribute),

102

W
wait_for_stop() (pelix.framework.Framework

method), 124
write() (pelix.http.AbstractHTTPServletResponse

method), 78
write_line() (pelix.shell.beans.ShellSession

method), 101
write_line_no_feed()

(pelix.shell.beans.ShellSession method),
101

Index 157

	About this documentation
	User’s Guide
	Foreword
	Installation
	Quick-start
	Tutorials
	Reference Cards

	API Reference
	API

	Additional Notes
	Who uses iPOPO ?
	Release Notes
	License

	Python Module Index
	Index

