

 Navigation

 	
 index

 	
 next |

 	Intro to Python; Summer 2016 0.1 documentation

Heroes Academy: Introduction to Python, Summer 2016

Course Description

Computing technology has integrated itself into every aspect of our lives. In this course, we will tour through one of the most popular programming languages: Python. Python is used at companies like Google, Microsoft, Facebook, Amazon, and Apple to accomplish a huge variety of tasks. Its versatility, similarity to the English language, and large community support make it one of the best programming languages for learning.

This course will cover the basics of problem solving with Python. We will cover standard data types, loops, conditional statements, functions, and classes. Students will not only learn the basics of syntax, but also how to solve problems with programming. The course will prepare students to move forward to more complex topics at Heroes Academy, or dive into self-taught studies at home.

How to Browse This Document

This document is intended to be a companion to the Introduction to Python course taught at Heroes Academy. For more information about Heroes Academy, please visit it here [http://www.njgifted.org/course-view?course=beginning-computer-programming-with-python].

Below and to the left you will find the sections of this document. Each week there will be exercises to complete at home, as well as supplementary materials for further understanding and learning. Python has a rich suite of tools for problem solving and carrying out computational tasks. We will cover the fundamentals without delving too deeply into the more sophisticated features that require extra study.

Getting Started

	Course Information
	What is HEROES Academy?

	When does this course meet?

	How do I register for this course?

	What are the expectations of this course?

	How do I contact you?

	Installing Python
	Python Distribution

	An Editor

	General Resources
	Online Books

	Debugging Help

	Interactive Coding Websites

	Online Code Environments

Course Contents

	Day 1: Hello World
	Summary

	Review

	Homework

	Lecture Slides

	Day 2: Strings and Input
	Summary

	In-Class and Homework Exercises

	Review

	Lecture Slides

	Trinkets

	Day 3: Booleans, If-Elif-Else, For
	Summary

	In-Class and Homework Exercises

	Review

	Lecture Slides

	Trinkets

	Extra Turtle Challenge: Specific Coordinates

	Day 4: Turtles and For Loops
	Review

	Lecture Slides

	Day 5: Collections and Loops
	Take home work

	Review

	Lecture Slides

	Day 6: Basic Functions
	Take Home Work

	Review

	Lecture Slides

	Day 7: More Functions and Intro to Minecraft
	Take Home Work

	Review

	Lecture Slides

	Day 8: Advanced Classes
	Take home work

	Specialized tutorials

	Review

	Lecture Slides

	Day 9: Working on Projects
	Tutorial Pages

	Review

	Slides

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Course Information

What is HEROES Academy?

HEROES Academy is an intellectually stimulating environment where students’ personal growth is maximized by accelerated learning and critical thinking. Our students enjoy the opportunity to study advanced topics in classrooms that move at an accelerated pace.

When does this course meet?

The Intro to Python course will meet from 2:00 pm to 4:00 pm on the following days:

	July 11 through July 15

	July 18 through July 22

How do I register for this course?

The list of courses are listed on the HEROES website [http://www.njgifted.org/course-list-view].
If you have any questions about the process, you
can check out the HEROES Frequently Asked Questions [http://www.njgifted.org/page?name=faqs].

What are the expectations of this course?

I expect that...

	You will ask questions when you do not get something.

	You will keep up with the work.

	You will fail fast:

	Failing is good

	We learn when we fail

	We only find bugs when code fails; we rarely hunt for bugs when code is working

	You will not copy and paste code from the internet

	You are only cheating yourself.

	It won’t bother me if you do it, but you will not learn the material.

	You will try the homework at least once and email me with solutions or questions by Wednesday

How do I contact you?

You can reach me anytime at bmcmahan@njgifted.org

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Installing Python

Python Distribution

There are several ways to get Python. My recommended way is the Anaconda [https://www.continuum.io/downloads] distribution. It includes both Python and a bunch of other things packaged with it that make it super useful.

Instructions for downloading Anaconda Python:

	Click the link above.

	If you use a Mac, look at the section titled “Anaconda for OS X,” and click on “MAC OS X 64-BIT GRAPHICAL INSTALLER” under the “Python 3.5” section.

	If you use a Windows computer, in the section titled “Anaconda for Windows,” click either “WINDOWS 64-BIT GRAPHICAL INSTALLER” or “WINDOWS 32-BIT GRAPHICAL INSTALLER” under the “Python 3.5” section.

	On most Windows machines, you can tell if it’s a 64-bit or 32-bit system by right-clicking on the Windows logo and selecting “System.” The line labeled “System Type” should say either 64-bit or 32-bit. If you’re having trouble with this, simply email me and I’ll help you out!

	Once you click the button, an installer file will be downloaded to your computer. When it finishes downloading, run the installer file.

	Follow along with the prompts, and select “Register Anaconda as my default Python 3.5” if you’re using the Windows installer.

	At the end of the installation wizard, you’re done! Anaconda, and Python, are installed.

An Editor

There are many good editors and IDEs (Integrated Development Environments). As you’re just beginning to learn how to use Python, it’s a good idea to use a simplistic, lightweight development environment. PyCharm [https://www.jetbrains.com/pycharm/download/] and Sublime Text [https://sublimetext.com/] are both good choices for starting out. They have nice, clean appearances, highlight your code to make it easier to read, and are easy to jump in and start coding right away.

Instructions for downloading PyCharm:

	Click the link above.

	Click “Download” under the “Community” section.

	An installer file will be downloaded to your computer. When it finishes downloading, run the installer file.

	Follow along with the installer, and select “add .py extension” if you see the option

	At the end of the installation wizard, you’re done! PyCharm is now installed.

Other than those two, GitHub has an editor that is very comparable to Sublime Text. It is called Atom [https://atom.io/].

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

General Resources

Online Books

	How to think like a Computer Scientist [http://www.openbookproject.net/thinkcs/python/english3e/index.html]

	How to think like a Computer Scientist: Interactive Edition [http://interactivepython.org/runestone/static/thinkcspy/toc.html]

	A collection of links to Python guides [https://wiki.python.org/moin/BeginnersGuide/Programmers]

Debugging Help

	16 common Python runtime errors for Beginners [http://inventwithpython.com/blog/2012/07/09/16-common-python-runtime-errors/]

Interactive Coding Websites

These are some excellent websites that let you code and compete online:

	Hackerrank [https://www.hackerrank.com/]

	Codewars [http://www.codewars.com/]

	CodinGame [https://www.codingame.com/start]

Online Code Environments

There are plenty of website out there that will let you test out Python code online. Trinkets [https://trinket.io/] is a great resource that we’ll use a lot during this course.

C9 is a more powerful environment which students can also use if they’re looking for a more advanced experience.

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 1: Hello World

Reminder: if you have any difficulty, email me at bmcmahan@njgifted.org with questions! Failing is good. Failing silently is bad.

Summary

Our first lesson!

We made excellent progress through all of the material.
In fact, we even got ahead of where I thought we’d be.
Not only did we cover the basics of Python’s variables, but we got started on strings!
The review for strings will be left on the day 2 page.

When you practice, you should be trying to identify how code can break!
Knowing how things break is the best way to make them not break.

Review

Values are data - things like 25, “Hello”, and 3.14159. Variables are just containers that hold that data. Each variable you use in code gets its own name - it’s like an envelope that you label so you remember what’s inside of it. You make variables in Python using the “assignment” operator, which is the equals sign (=). Here are some examples:

x = 5
my_text = "Hello, World!"
num3 = 3333.333
text_number = "500"

(Remember - you can tell if a variable is a String if it’s surrounded by ‘’ or “”)

There are 4 main types of data in Python:

	Integers (numbers with no decimal place)

	Floats (numbers with a decimal place)

	Strings (text, surrounded by quotes)

	Booleans (True or False)

We learned three commands:

	print(), which prints out whatever you put in the parentheses

	type(), which evaluates the type (integer, float, string, boolean) of whatever is in the parentheses

	len(), which evaluates the length of whatever is in the parentheses. For example, len(“Hello!”) = 6

We also previewed some of Week 2’s material, mostly just the following simple mathematical operators:

“+” addition, 3 + 5 = 8

“-” subtraction, 10.1 - 6 = 4.1

“*” multiplication, 2 * 2 = 4

“/” division, 11 / 2 = 5.5

There are also two special math operators. The first is “//”, or floor division. This acts like remainder division, but leaves off the remainder. So, 13 // 5 = 2, and 4 // 100 = 0. And “%” is modulo, which acts like remainder division but only says the remainder. So, 5 % 3 = 2, 100 % 50 = 0, 7 % 10 = 7, etc.

We went over these toward the end of class, so we’ll review them at the beginning of Week 2.

Homework

Main Homework Item

Get Python installed and working on your home computer. Instructions on how to do so are located in the “Installing Python” section on the left.

Open up the interactive shell (iPython console or iPython QT console), play around like we did in class!

Recommended Homework Item

Use a math equation from your school work, or any math equation you can find on the internet, and turn it into python code.

Make at least one mistake that creates an error. Write it down how you created it. Bring it to class tomorrow.

Lecture Slides

 Day 2: Strings and Input

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 2: Strings and Input

Summary

We made it through a lot of material today. We started with a refresher on string operations
by doing the pig latin exercise. However, this exercise turned into a bunch of extra steps because you all were doing so awesome!

The extra steps were:
1. use input to get a word from the console
2. use a for loop and words.split(" ") to loop over words in a sentence and do pig latin to each.

word = input("give me a word for piglatin: ")
do your pig latin stuff here
sentence = input("give me a sentence for piglatin: ")
print("Split sentence: {}".format(sentence.split(" ")))
for word in sentence.split(" "):
 ## do your pig latin stuff here
 print(word)

After we finished up that exercise, we worked through the shortcut math operations.
Then, we talked about formatting strings. You saw the curly bracket ({}) easy way.
You should check the review out below.

We rushed through some of the input and type conversion stuff. So, you should definitely try inputting numbers and then converting them for a math equation.

In-Class and Homework Exercises

I have updated the homeworks below to include some of our discussion at the end of class.

All of the code is on the Github Repository [https://github.com/Heroes-Academy/Intro-to-Python-Summer-2016].

	Go through formulas.py and do those problems.

	
	Read through harder_formulas.py, string_practice.py, and build_in_practice.py

	
	try to do these problems. If you can’t, let me know and I’ll go over them

	
	Break the code in some way.

	
	You should be writing down the error, what it says, and why it happened.

	You should also send me code by tomorrow with how you made the error

	
	Do something fun with turtles.

	
	The one I created in class is here [https://trinket.io/python/c9c47d373c].

	Or if you scroll to the Trinkets section at bottom of the page, I’ve embedded it there.

See below for more details.

Also, here are some extra resources for the turtles (their commands and such):

	Notes on using turtle [http://www.eg.bucknell.edu/~hyde/Python3/TurtleDirections.html]

	Turtle Examples [https://michael0x2a.com/blog/turtle-examples]

	Week 3 of our Data Structures Course [http://ds.cs.njgifted.org/en/latest/week3.html]

Review

After this class, you should know or practice all of these topics:

	Inserting a new line in a String

	Concatenating (combining) Strings

	Repeating a String

	Indexing Strings

	Slicing Strings

	Formatting Strings

	Math Shortcuts

	Converting between types

	User Input

Inserting a new line in a String

You can use \n in the middle of a String to make a new line. For example, the String “Hello, \n World!” will print like this:

Hello,
World!

You can also use \t in the middle of a String to make an indent. “Hello, \t World!” will print like this:

Hello, World!

Concatenating Strings

You can combine Strings using the + sign.

Example:

str1 = “Hello”
str2 = “World!”
str3 = str1 + str2
print(str3)

This will print out “HelloWorld!”

Repeating a String

You can repeat Strings using the * sign

Example:

str1 = “bogdan”
str2 = str1 * 3
print(str2)

This will print out “bogdanbogdanbogan”

Indexing Strings

You can get one character from a String using square brackets, []. Inside the square brackets, put the index of the character you want to get. In a String, the first character starts at index 0, and goes up from there.

For example: If str = “computer”, then:

	str[0] is “c”

	str[1] is “o”

	str[2] is “m”

...and so on.

You can put -1 in the brackets to get the last letter of a String too.

	str[-1] is “r”

	str[-2] is “e”

etc.

Remember, every character gets its own index – even numbers, symbols, and spaces!

Slicing Strings

By getting a slice of a String, you can get multiple characters all at once. Use square brackets for this too. Inside the brackets, you first put the starting index, then a colon, and then the ending index.

For example:

str = “fantastic!”
print(str[0:3])

This will give you “fan”. It starts at 0, and stops just before the character at position 3. So, you get the letters at positions 0, 1, and 2.

Some more examples:

	str[1:4] is “ant”

	str[0:2] is “fa”

	str[3:7] is “tast”

...and so on. If you leave out the first number, the slice will start at the beginning of the String.

	For example: str[:5] is “fanta”

If you leave out the second number, the slice will go until the end of the String.

	For example: str[2:] is “ntastic!”

Formatting Strings

Formatting strings is necessary if you want to be able to print variables to the shell.

There are a couple different ways of formatting strings. I will cover all three here.

1. With string concatenation

animal = "bunny"
adjective = "evil"
noun = "the ruler of the world"

our_sentence = "The "+adjective+" "+animal+" wants to be "+noun"."

print(our_sentence)

2. With string formatting

animal = "bunny"
adjective = "evil"
noun = "the ruler of the world"

our_sentence = "The {} {} wants to be {}.".format(adjective, animal, noun)

print(our_sentence)

The second way is much preferred because you can have fine grained control over formatting options:

a_number = 3432.34234324233462
print("Not formatted well: {}".format(a_number))
print("Formatted: {:0.3f}".format(a_nubmer))

a_string = "euclid the bunny"
print("without formatting options: {}".format(a_string))
print("with formatting options to right align: {:>50} [end]".format(a_string))
print("with formatting options to center align: {:^50} [end]".format(a_string))

The stuff inside the curly brackets specifies the options. The options start with a colon.
Then, if it’s a number, you can specify the number of decimal points to have. You need the ‘f’ for the float.

For strings, ‘>’ aligns to the right, ‘<’ aligns to the left, and ‘^’ aligns to the center.
The number directly after that is how wide it should be. It will add spaces to adjust.

Math shortcuts

Let’s say you’re writing code and have a variable x = 5. What if you want to increase x by 10?
You could do this:

x = x + 10

Python gives you a shortcut way to write this:

x += 10

x += 10 is a way of telling Python, “just increase x by 10.” You can also do x -= 10 to decrease x by 10.

You can use this shortcut with the following math signs:

	+=

	-=

	*=

	**=

	/=

	%=

Converting between types

In Python, variables all have a type. If you do my_number = 5.1234, then the variable my_number has type Float (because it’s a number with a decimal point).

In Python, sometimes you can convert variables to be a different type. For example, remember that there are two kinds of numbers in Python: int (no decimal) and float (with a decimal). You can convert from one to the other:

my_float = 5.1234
other_number = int(my_float)
print(other_number)

This will print out 5. When you convert a float to an int, Python simply chops off the decimal part.

Or:

my_int = 10
some_float = float(my_int)
print(my_int)

This will print out 10.0 (Python just adds a decimal point when you convert an int to a float).

If you have a String that is just a number, for example, var1 = “100”, you can convert that to an int or float!

var2 = int(var1)
var3 = float(var1)

One note of caution: if you have a String variable like my_string_variable = “50.3”, you can’t directly convert it to an Int (because it has a decimal point). If you want it to be an Int, you’d have to first convert it to a Float, and then to an Int.

Finally, you can convert just about anything to a String.

my_num = 505.606
some_text = str(my_num)
print(some_text)

This will print out “505.606” – a String!

User Input

The last thing we learned in Week 2 was how to get user input. This is where you ask the user to type in a value, and can use that value in your code! You do it with the input() function. Inside the parentheses, you put a String, which is the message that the user will see.

Here’s a quick example. Type the following code into the Python shell:

user_name = input(“Please type in your name: ”)

If you type that code in and press enter, it will display the message, “Please type in your name: ” and wait for a response. Type something in (any name will do) and press enter. Then type the following code:

print(user_name)

It should print back out whatever you typed in! The name you typed is saved in the variable user_name, so you can treat it like any normal String.

Maybe you want to print out how many letters are in your name:

name_length = len(user_name)
print(name_length)

…and so on.

Quick note: whenever you get user input, the computer assumes it’s a String. So in the example above, user_name is a String. Even if the user types in a number, you get it as a String first. You can convert it to a number using the int() or float() functions we learned.

Lecture Slides

 Day 3: Booleans, If-Elif-Else, For

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 3: Booleans, If-Elif-Else, For

Summary

To come after class.

In-Class and Homework Exercises

	
	Turtle Designs

	
	Draw a face

	Draw your initials

	
	Draw something creative

	
	The class will vote tomorrow on who’s is the best!

	
	Inputs and Menus!

	
	Make a userid

	a basic menu with a joke

	a two-level menu with two jokes!

	Make your own menu

	
	Break things!

	
	Make reproducible code!

	This means making the python file and creates the error

Review

Booleans

Booleans are variables that can have a value of True or False.
You can set Boolean variables in code with something like x = True, or you can use comparison operators.

These are the comparison operators we discussed:

	< less than

	> greater than

	<= less than or equal to

	>= greater than or equal to

	== equal to (remember, in Python, “equal to” uses two equals signs, because one equals sign is just used for making a variable)

	!= not equal to

Comparison operators compare the values of two different variables, and will evaluate to either True or False.
For example, 5 > 3 will evaluate to True, but 10 == 9 will evaluate to False.
You can use these to make Boolean variables as well.

Booleans can also be combined using the and and or keywords.
If x and y are Booleans, the expression x and y will only be True if both x and y are True.
x or y will only be True if at least one of them is True.
And of course, not x will just be the opposite of x.

We practiced evaluating Booleans using cards and complex conditions (suite == hearts and not number <= 5).

If Statements

if statements are comprised of two ingredients: a condition (which must evaluate or be a boolean), and some code.
Python checks if the condition is True; if it is, the code will be executed.
But if the condition is False, Python will just ignore the code and move on.

If statements kind of resemble a paragraph - the condition goes at the top, and the accompanying code is all indented by 4 spaces.

if <condition>:
 do some code
 do some more code
back to normal code

The computer knows when the if statement paragraph ends because the indentation stops.
That’s the only way it will know!

If-Elif-Else

More complex types of if Statements: if-else, and if-elif-else structures.

It helps to think of the three of them like this:

	An if statement gives the computer one option: if <condition> is True, then do something. That’s all.

	An if-else statement gives the computer two options: if <condition> is True, then do something. If <condition> is False, do some other thing!

	An if-elif-else statement gives the computer several options, where you can say “Check all of these conditions until you find one that’s True.”

Each kind of statement is indented in the same way - with 4 spaces. Here’s an example of each:

If Statement:

if x == 5:
 print("x is 5!")

If-Else Statement:

if x == "Penny":
 print("Your name is Penny!")
else:
 print("Looks like your name isn't Penny!")

If-Elif-Else Statement:

if age == 50:
 print("You're really old!")
elif age == 20:
 print("You're kind of young!")
elif age == 10:
 print("You're a kid!")
else:
 print("I wonder how old you are?")

You can put in however many “elif” portions you want. The computer will just go through each of the conditions, one after another, until it finds one that’s True.
Then, it will skip the rest of the paragraph. And if none of the conditions are True, it will do whatever is written under the “else” section.

For Loops

The last thing we learned about is the for loop. for loops are great - they use indented lines to form a ‘paragraph’ (kind of like If statements!) and let you run the code in that paragraph over and over again, as many times as you want!

Say you wanted to print someone’s name 10 times (kind of a ridiculous example). The loop would look like this:

for i in range(10):
 print("Cinder")

That’s it! If you execute this code in Python (easier to type it into PyCharm than the shell), it will print out “Cinder” ten times in a row.

Breaking it down:

	for is a special keyword - when Python sees it, it knows we’ll be repeating some code

	i is just a variable, just like x or username

	range(10) is the list of all numbers from 0 to 9

In the above For loop, Python will repeated the indented code 10 times, and each time, i will take a new value.

	First time through: i is 0

	Second time through: i is 1

	Third time through: i is 2

etc.

So you can also do something like this:

for i in range(5):
 print(i)

This will print 0, 1, 2, 3, and 4, because the code will execute 5 times, and each time, i has a different value!

For loops can be tricky to wrap your head around. The best thing to do is to use the above two examples, copy them into PyCharm, and verify that they work.
Then try changing the number in range(), and also change around what happens in the indented text.
The best way to practice new coding techniques is to try it yourself

Lecture Slides

 Day 4: Turtles and For Loops

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 4: Turtles and For Loops

Review

From Simple to Complex variables

There are two ideas you should combine in your head. The first is about simple variables.
Simple variables have a single type. For example, a simple variable can be an integer or a string.

The other idea you should combine is code robots.
We talked about code robots in class.
Code robots have a very simple design: take an input, give an output.

Combining these ideas, we can talk about complex variables.
Complex variables can have multiple simple variables inside them.
They can also be several code robots in one.

Turtles are just this! Turtles can have multiple variables, like color and shape.
They can also do multiple things. You can have it go forward or have it turn!

Summary of Turtles

Turtles are created from their factory.

import turtle
bob = turtle.Turtle()

Then, you can make it move and turn:

bob.forward(100)
bob.left(90)

There are many things you can do:

bob.shape('turtle') # change the shape
bob.stamp() # stamp the shape onto the board
x=100
y=100
bob.goto(x,y) # go to this position
bob.penup() # stop drawing when the turtle moves
bob.pendown() # start drawing again

You can see a full list at the python website. There is a link in day 3, but as a challenge, see if you can google and find it!

Lecture Slides

 Day 5: Collections and Loops

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 5: Collections and Loops

Take home work

	
	Play with the turtles more. On Monday, we will have a vote on who has the best design or coolest turtle.

	
	you should also be practicing your for loops!

	take the numbers out of the loops by replacing them with variables

	having is so that the variables are set at the top of the file

	then you can change the variables in one place and change the behavior!

	Put multiple turtles into a list and use a for loop over that list to do the same thing to multiple turtles at once!

	
	Play the guessing game using a while loop.

	
	The computer guesses a number

	The user has to guess until they are right

	The computer tells the user higher or lower

	The computer counts how many guesses it took

4. Play with the following code, using your own options. You could even add more lists!

import random
adjectives = ["super", "silly", "evil", "furry"]
nouns = ["rabbit", "tortiose", "gorilla"]
keep_going = True
while keep_going:
 pick1 = random.choice(adjectives)
 pick2 = random.choice(nouns)
 print("you are a {} {}".format(pick1, pick2))
 answer = input("Keep going? (yes/no) ")
 keep_going = answer == "yes"
 # alternate version:
 # keep_going = (input("Keep going? (yes/no) ") == "yes")
print("goodbye!")

Review

Collections

Collections are variable types that can hold more than one value - not just an int or a String, but a sequence of values. We learned about three types: Lists, Tuples, and Dictionaries.

Lists in Python are simply that - a linear, ordered bunch of values. Lists can have ints, Strings, booleans, etc., for their members. You can make an empty list like this:

grocery_list = list()

Or, you can make one like this:

grocery_list = []

Finally, you can make a list that already has items in it:

grocery_list = ["bread", "milk", "beans"]

You can get items from a list using the same syntax as indexing and slicing strings (see Week 02 for a refresher). For example, grocery_list[0] will return the String “bread”, and grocery_list[1:] will return [“milk”, “beans”]. Notice how when you return just one item, the type is whatever the item was - a String, int, etc. But if you get multiple elements, it’s just a shorter List.

	Reassign List items: grocery_list[1] = "bacon"

	Add an item to the end of a List: grocery_list.append("butter")

	Delete a particular item: del grocery_list[1]

	Get the length of a list: len(grocery_list)

Dictionaries in Python work like real-world dictionaries; instead of organizing items by number, each item gets a “key”, and you can look up items by their “key.” Dictionaries are great for when you want to store information and don’t care about how it’s ordered - you just want to be able to look up specific entries by name.

To make a blank dictionary and add items to it:

my_dict = {}
my_dict["first entry"] = "This is the first entry!"
my_dict["second entry"] = "This is the second entry!"

Then, print(my_dict["first entry"]) will print “This is the first entry!”

The values in a Dictionary can be Strings, Ints, Booleans, anything! The keys can be Strings, Ints, or Tuples.

Tuples in Python are very much like Lists. The main difference is that the items in a tuple can’t be changed once they’ve been set. Tuples are useful for when you have a set of values that you know won’t change, and don’t want to allow the program to change.

To make a Tuple:

num_tuple = (0, 1, 2)

If you try num_tuple[1] = 5, Python will complain.

While Loops

A while loop is another kind of loop - it works differently than a for loop. while loops have two parts: a <condition>, and a body of code. When Python reaches a while loop, it checks to see if <condition> is True. If it is, the code in the code body will be executed.

Once that’s finished, Python will again check <condition>. If it’s True, the code will execute again, and again, and again...This continues until <condition> is False. So be careful - a while loop can continue forever if <condition> never becomes False!

Syntax of a while loop:

x = 5
while x < 10:
 print("The loop is still going!")
print("Looks like the loop finished!")

The above is an example of an infinite loop. x never gets changed, so it’ll always be less than 10. The final line will never be reached!

Bonus

Finally, we learned a cool trick with for loops and Collections (list, dictionary, etc.) All of these are examples of iterables - objects in Python that you can loop over by taking the first item, and then the next, and the next, etc.

And you can use any iterable in a for loop - it doesn’t just have to be range(x)! Check out the following example:

grocery_list = ["olive oil", "eggs", "ham", "celery"]
for item in grocery_list:
 print("Remember to buy: ")
print("That's it!")

The above code will output:

Remember to buy: olive oil
Remember to buy: eggs
Remember to buy: ham
Remember to buy: celery
That's it!

Random

The random library lets you do randomized events. You must always start with importing it.

For example:

import random
num is short for number
num = random.random()

You can do random integers and random choices too:

import random
num = random.randint(0,10)

pet_names = ["euclid", "fido", "bob"]
selected_name = random.choice(pet_names)

With the random.randint(start,stop), the integer sampled is just like range: it will only go UP to the stop number. It will never include it.

Lecture Slides

 Day 6: Basic Functions

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 6: Basic Functions

Take Home Work

You should practice while loops, for loops, and writing your own functions.

	
	Write a while loop menu.

	
	At the start of the while loop, show the user the menu

	then, after they select an option, do whatever that option does

	Finally, ask them if they want to do another thing

	The goal is to have a loop we will combine with Problem 2.

	So, just for testing, make a joke menu like in previous assignments.

	
	Write turtle functions for the menu

	
	Write the following functions.

	In the while loop menu, have them be options

	If you want, you could have sub options.

	For example, if one of the menu options was to have the turtle draw a square, then the submenu option could be having the user input the size of the square.

The function definition headers:

def spiral(someturtle, loop_count, angle):
 ''' the loop count is for the range and the angle is for the spiral turning '''

def polygon(someturtle, number_of_sides, side_length):
 ''' remember that the turning angle for any polygon is 360 / number_of_sides '''

def turtle_profile1(someturtle):
 ''' come up with some settings for a turtle. this can include speed, shape, and color
 assign those settings to the turtle here
 '''

def turtle_profile2(someturtle):
 ''' come up with some more settings for a turtle. this can include speed, shape, and color
 assign those settings to the turtle here
 '''

	Finish drawing the face with turtles

Review

This week we talked about functions - what they are, what’re used for, and how to write our own.

Function Basics

So what is a function? The short answer is, it’s a bunch of lines of code that you set aside - kind of like a special paragraph - and give a name to. Then, anywhere else in your code, you can use that same name to execute the function’s code, without having to type it all out again. Just by using the name, the computer will know what code you’re talking about.

Here’s an example: Say you wrote some code that prints a bunch of sentences in a particular order, like this:

print("First sentence\n")
print("Second sentence\n")
print("Final sentence!\n")

If you wanted to write this code as a function, it would look like this:

def three_sentences():
 print("First sentence\n")
 print("Second sentence\n")
 print("Final sentence!\n")

Things to note:
- def (define) is a keyword that tells Python you’re about to write a function
- The next word is the name of the function (you choose this - it can be whatever you like), followed by parentheses (these also indicate to Python that it’s a function)
- The line ends with a colon, just like loops and if statements. As always, the contents of the function - its “paragraph” - are indented by 4 spaces

Defining Functions and Calling Functions

The code above just defines the function called three_sentences. None of the code will actually be executed; we;re just letting the computer know that in the future, if we say three_sentences(), we’re talking about this paragraph.

After you’ve defined the function like we did above, you can call it anywhere in your code. Calling a function is the same as executing a function. You can call a function simply by writing the function name, followed by parentheses. For example, look at this code block:

def three_sentences():
 print("First sentence\n")
 print("Second sentence\n")
 print("Final sentence!\n")

print("OK, let's call the function!\n")

three_sentences()

The final line of code actually calls the function. Once a function has been defined, you can call it as many times as you want! You can also define as many functions as you want in a single program.

Function Arguments

The function above is really simple - you just call it, and it does something. Some functions, like print(), are different - you need to put something in the parentheses, because it’s expecting something to be in the parentheses.

The thing you put in the parentheses is called an argument. That’s just another word for the input of a function.

We can write functions that take arguments too. For example, let’s say you wanted to write a function where, when somebody calls it, they need to put a name (probably a String) in the parentheses, and the function will print out a greeting for that particular person. It would probably look something like this:

def greeting(name):
 print("Hello there, " + name + "!\n")

To write a function that takes an argument in its parentheses, you simply write a variable name inside the parentheses like I did with the name variable above. Then you can use that variable in the function!

Now, when you call the greeting() function, you need to put something in the parentheses, like this:

greeting("Penny")
greeting("Emerald")
greeting("Cortana")

If you try to just call greeting(), Python will complain, because when you defined the function, you told it to expect something in the parentheses.

Python doesn’t check which type of variable an argument is, so even if you’re expecting a String, someone could still type greeting(5.127849) without crashing the program.

You can even have more than one argument in a function! Check out the example below:

def add_two_numbers(num1, num2):
 sum = num1 + num2
 print(sum)
 print("\n")

If you put that at the top of your program, now you can call it to get the sum of any two numbers! For example, try add_two_numbers(0, 5), add_two_numbers(100, -56), and add_two_numbers(.0456, .55903). s you can see, multiple arguments are just separated by commas, both when defining a function, and also calling a function.

Scope

We briefly discussed this in class - just a little warning to keep in mind when working with functions. In our add_two_numbers(num1, num2) function above, num1 and num2 are the arguments that the functions expects. They’re both variables that we can use within that function’s paragraph.

However, outside the paragraph, if you try to reference num1 and num2, Python will complain that it doesn’t know what variables you’re talking about. This is because num1 and num2 only exist within the function’s paragraph.

So, for example:

def add_two_numbers(num1, num2):
 sum = num1 + num2
 print(sum)
 print("\n")

print("Let's sum two numbers!")
add_two_numbers(1, 2)
print(num1)

...will crash, because of the last line. We’ll talk more about scope later on.

We finished up by experimenting with turtles and writing functions. Check the Extra Resources section after tomorrow to see some examples!

Lecture Slides

 Day 7: More Functions and Intro to Minecraft

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 7: More Functions and Intro to Minecraft

Take Home Work

Today, we covered functions that return arguments and classes. We briefly looked at vectors in Minecraft as well.

So, your take home work is the following:

	
	Think about your project. Come to class with the following:

	
	Your goal

	A brief initial plan

	Any difficulties you think will happen

	Your predictions for how far you think you will get

	
	Continue to work on the class you started

	
	Get at least 5 functions working for your class

	At least one should take an argument

	At least one should return a value

	REMEMBER: while inside a class function, it can only see self and the arguments passed to it!

	
	Rewrite one of your previous designs with functions.

	
	This could mean putting the ENTIRE thing into a function

	It could mean taking a part of your design and turning it into a function then using that functin

4. Optional: Incorporate more random choice into your turtle designs

import random
anumber = random.randint(0,10)
somechoice = random.choice(['red', 'white', 'blue'])

Review

Below is review information for Minecraft, Functions that return results, and classes.

If you are looking to install the minecraft libraries, check here: Installing Minecraft

Minecraft Overview

Primarily, you can do the following things with the library

	Move the player

	Get the player’s location

	Set blocks

	Get block information

There are many things you can do with this.

Resources and Links

	A list of the commands you can do with mcpi [http://www.stuffaboutcode.com/p/minecraft-api-reference.html]

	The Learn to program with Minecraft book [https://www.nostarch.com/programwithminecraft]

Functions with Return Statements

Last week, we only talked about functions that take input arguments and print things. But what if we wanted to write a function that returns a value you can put in a variable?

The answer is a return statement. At the end of a function, use a return statement to have the function spit out a particular value. Then, when you call that function, you can put the returned value in some variable.

Here’s an example:

def addition_func(x, y):
 result = x + y
 return result

Then, if you want to call this function, you can do this:

the_sum = addition_func(10, 15)

We call the function, and put the return value into the the_sum variable.

Python Classes

Finally, we learned the basics of defining and using our own custom-made object classes. The basic idea behind defining a class is that you’re writing a recipe for a particular type of object. you can think of it like this: if you have a room full of chairs, each of those chairs is a chair object, but “chair” would be the name of the class.

After you’ve defined a class (written your recipe), you can use it to make copies of your custom-made object in code. The Lecture Slides have example code in case you forget!

See the “Extra Resources” section for examples. In short, the proper syntax is this:

class <Class_Name>:
 property_a = value_a
 property_b = value_b
 property_c = value_c

 def some_class_function(self)
 <code>
 <code>
 <code>

Remember, classes have two very important features in Python: properties, which are details about the object that describe it, and functions, which are things that the object can do.

For example, a Dog object in Python might have the properties name, age, height, etc., and functions like run(self), bark(self), and fetch(self). Remember that when you’re defining functions inside an object, you need to make the first argument (the first thing in the parentheses) the keyword self, which tells Python, “this function belongs to this object type.”

Similarly, inside of a class’s function, if you want to reference one of that class’s properties, you also need to use the self keyword. So, in the bark(self) function for a dog, if you wanted to print its name, it would look like this:

def bark(self)
 print("Hello! My name is " + self.name)

Don’t forget the self keyword!

Lecture Slides

 Day 8: Advanced Classes

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 8: Advanced Classes

Take home work

You should work on your project.

Specialized tutorials

	Turtle Artist

	Chatbot Tutorial

	Minecraft Architect Tutorial

	Data Analysis Tutorial

Review

Topics:
- The __init__ function in classes
- Default (keyword) arguments in functions
- Unpacking collections
- Iterating over dictionary items
- Zipping two lists

def __init__(self)

The __init__ function is one of Python’s special functions - this is indicated by the double underscore (__) on either side of the function name. init is a keyword (like print or if) and Python already knows what it’s used for.

When you write your own class, sometimes it’s helpful to have a kind of setup function that runs whenever you make a new copy of the class. For example, if you write the Door class we’ve been using as an example, you might want the Door to print out “Hello!” the first time someone makes it. And, every new Door that gets made will also say “Hello!”

This is what the __init__ function is for: it’s a special function that runs once every time an object of that type (in our example, Door) is made.

So, for example:

class Door:
 def __init__(self):
 print("Hello!")

first_door = Door()
second_door = Door()

The code above will print out “Hello!” twice - once for first_door, and again for second_door.

That’s an example of an __init__ function that doesn’t take any arguments. Usually, this isn’t the case - because __init__ is a setup function, you want the user to provide certain information about the object when they make it.

Here’s an example:

class Door:
 def __init__(self, in_name, in_height):
 self.name = in_name
 self.height = in_height
 print("Hello! My name is " + self.name)

first_door = Door("Gerald", 10)
second_door = Door("Geraldina", 12)

In this code, when a Door object is created, it takes two arguments: the name, and the height. These arguments are then used for setting up the Door object (i.e., they set up the properties self.name and self.height)

Lecture Slides

 Day 9: Working on Projects

 Navigation

 	
 index

 	
 previous |

 	Intro to Python; Summer 2016 0.1 documentation

Day 9: Working on Projects

Tutorial Pages

(same as before, just reposted on this page too)

	Turtle Artist

	Chatbot Tutorial

	Minecraft Architect Tutorial

	Data Analysis Tutorial

Example Slides

 Index

 Navigation

 	
 index

 	Intro to Python; Summer 2016 0.1 documentation

Index

 Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_static/down.png

challenges/turtle_coordinate_challenge.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

Turtle Challenge: Specific Coordinates

Turtles are awesome because we can make them do many things.
Let’s create the turtle first:

		1
2
3

		 import turtle
 bob = turtle.Turtle()
 bob.speed('fastest')

Now, in the following, we can make the turtle go to very specific coordinates:

		1

		 bob.setpos(100,0)

Bob is now at x=100 and y=0.
In general, the syntax is setpos(x_coord,y_coord).

We can use this to make interesting things.
For example, if I want to make bob do a triangle without a for loop:

		1
2
3
4

		 bob.setpos(-100, 0)
 bob.setpos(0,100)
 bob.setpos(100,0)
 bob.setpos(-100, 0)

What’s even cooler is that we can use variables to make this scalable:

		1
2
3
4
5

		 tri_size = 30
 bob.setpos(-1*tri_size, 0)
 bob.setpos(0, 1*tri_size)
 bob.setpos(1*tri_size, 0)
 bob.setpos(-1*tri_size, 0)

But this is a lot of code for something simple.
What if we could store all of the coordinates ahead of time and then
use a for loop to loop over the coordinates?

		1
2
3
4
5
6

		 tri_size = 130
 coords = [[-1, 0], [0, 1], [1, 0], [-1, 0]]
 for coord in coords:
 x = coord[0]
 y = coord[1]
 bob.setpos(x*tri_size, y*tri_size)

This triangle looks a little funny.
What if we wanted to have each side be the same length AND use the coords list?
What numbers would we have to change?

The Challenge

Use a coordinate list like the one above to make your initials (first and last).

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

installminecraft.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

Installing Minecraft

README

The software used for this course is provided as companion to the book
Learn to Program with Minecraft [http://nostarchpress.com/pythonwithminecraft].
It is recommended that the students purchase the book.

To get things running, you will need:

		Minecraft

		Python 3

		Java

		Minecraft Python API

		The Minecraft server

Minecraft

Visit the Minecraft homepage [http://www.minecraft.net] to download. If you do not
have an account, please email me and I will make sure you are provided with one.

Python 3 Distribution

Python 3 is the distribution we will be using.
If you have Python 2, it is recommended that you uninstall Python 2 and install Python 3.
If you don’t, there will be some inconsitencies that could be devestatingly confusing.
Also, Python 3 has a lot of really cool, new features that aren’t in Python 2.

There are several ways to get Python. I personally recommend the
Anaconda [https://www.continuum.io/downloads] distribution.
It has a bunch of things packaged with it above and beyond Python that make it useful.
Anaconda comes with the Spyder editor. It is a decent editor, but I would recommend:

		PyCharm [https://www.jetbrains.com/pycharm/download/].
		If you download PyCharm, make sure you download the Community Edition.

		Sublime Text [https://sublimetext.com/]
		This is my personal favorite. It is lightweight and has many extensions.

		However, it does not run or debug Python files as easily as PyCharm.

		Atom [https://atom.io/]
		Very similar to Sublime

Java

You should have both Minecraft and Python installed at this point.
You need to set Java up in order to run the server.

If you are on Windows:

		Click the Start Menu (or press the Windows key)

		Type “cmd” to find the program called cmd. Open this.

		This is the command prompt. It is also called a terminal or console.

		Type java -version at the prompt

		If you see an output describing the version of Java, you already have it and can continue to the next section.

		If you don’t, or it can’t find java, then go to here: http://www.java.com/en/download/

		Click Free Java Download. Then click Agree and Start

		When it is finished downloading, install this.

		IMPORTANT: If it asks you to install extra things or set Yahoo! as your homepage, click no.

		This is the annoying feature about installed Java.

		Retry steps 1-3. If they succeed, move on. If they don’t, email me.

Minecraft Python API and Minecraft Spigot server

An API is an interface. We will use it as a library that lets us communicate
with the Minecraft server. We will not be able to edit the server in any way, but
instead, just tell it instructions.

We will be using the Spigot server because it allows for the API to talk to it.
Standard Minecraft does not.

To install both of these:

		Go to https://www.nostarch.com/pythonwithminecraft/

		Download the MinecraftTools.zip for your operating system.

		When it has finished downloading, you can open it.

		a zip file is known as a compressed file

		it allows you to compress a set of files to make them smaller for downloading

		all operating systems let you open these files

		Important Although it looks like you have a folder, the contents of the Zip file are not a folder

		Create a folder somewhere convenient and name it MinecraftTools.

		Inside the Zip file, you can click “Extract all” or similar button.

		Extract it to your MinecraftTools folder.

		Go to the folder and double click the Install_API file.

		Now, you can run the server.

		There is a file called Start_Server. Running this will start the server.

		If you have any trouble, email me.

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

tutorials/chatbot.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

Chatbot Tutorial

The goal of this tutorial is to introduce the idea of reflex-response agents and finite state automata.

Reflex-Response Agents

Agent is a word used in Artificial Intelligence to refer to programs that are meant to act on their own.

There are several types of agents. The one we will cover here is a reflex-response agent.
Our reflex-response agent will look at the world in turns. Each turn, there is an input, and each turn, it has to choose an output.
This is what is meant by reflex-response. It responds as a reflex to the input.

There are some famous reflex-response agents. The most famous is Eliza [https://en.wikipedia.org/wiki/ELIZA].
When you plan your chatbot, you should think about how it compares to Eliza. In fact, it wouldn’t be bad to try to recreate her.

So, what does it take for a Reflex-Response Agent?
There needs to a separation of the two major components: the agent’s brain and the agent’s interface.
The brain handles the thinking, the interface handles the communication through the terminal.

Our reflex-response agent is going to be slightly more advanced than usual, however.
I will cover that in the brain section.

Interace

So, begin by designing the interface. How should it act?
It should be a while loop that acts in the following steps:
1. Present information to the user about the task
2. Ask the agent what it wants to say
3. Show that to the user
4. Wait for the human to say something
5. Send the human’s response to agent
6. Go back to Step 2.

For a pure turn based reflex-response agent, that is all that it takes to interface with the human.
Of course, it would be better if it were more like a chat room or text messaging interface where the agent didn’t have to wait for the human to respond and vice versa.
However, that’s more of a second stage project.

Brain

The brain needs to be able to take the input from the human and respond to it.
You should do this so the agent’s brain has an internal state. This means that
it can keep track of different properties, such as the user’s name or what it has previously said.

For this, you need to design the agent’s class.
- What functions should it have?
- What should it pay attention to?
- What properties are important in the conversation?
- What do you want the agent to do?

I have implemented an agent before that kept track of todo lists and reminded me of things.
I have also had it so that it could check on things like the time.

A basic agent class could look like

class Agent:
 def __init__(self, important, properties):
 self.important = self.important
 self.properties = self.properties
 self.startup_stuff()

 def startup_stuff(self):
 ''' any complex startup logic should go here '''

 def observe(self, observation):
 ''' this is the incoming sentence. you could call it something else if you'd like.
 I call it observation just because I also deal with agents that see properties of the world
 '''

 def speak(self):
 ''' this should have the agent say something. this is the sentence shown to the user
 '''

And that’s about it. You have to figure out how you want the agent to respond to sentences, now.
For this, you have to see if the incoming string matches something you know about.
One possible way of doing this is think about it in the following sense:

		
		Get the input string and process it by checking it for words or phrases

		
		for example, maybe the user said “Hi! How are you” and you want to find the phrase “How are you”

		Have your checking be a process which returns a number, perhaps 1-5, depending on what it found.

		Have a set of responses set up that respond to the numbers 1-5.

The reason this method could be good is that you’re funneling the wide range of the ways people could say things
into a smaller number. Then, you write responses to that smaller number.
The process of reducing the wide range of ways people could say things is called classification.
By writing code that classifies, you are doing rule-based classification.

You could even have a function which checks for things like: “My name is”, “I am”, “You are”, “we will”.
Then, you can take whatever is the in the rest of that sentence and use it in some way.

Finite State Automata

I will briefly cover finite state automata. Today you should concentrate on the agent.

In a conversation, we go through a series of states. A state means a certain settings of the current situation.
For example, when we first see someone, we are the “greeting” state. This means that the appropriate things to say are about greetings.
Then, we move to another state. In class, we move to a “checkpoint” state where I ask the students how their homework went.

An agent that has states and has transitions between states is called a finite state automata. For example:

[image: http://oldblogimages.metawrap.com/2008/WindowsLiveWriter/PracticalApplicationsOfFiniteStateMachin_C2DB/244px-Finite_state_machine_example_with_comments.svg_2.png]
It is useful to represent the states explicitly.
The reason is that you might have different responses to the same exact string given different states.
If you wanted into class and said “goodbye”, I would be confused. If the class is ending and you say “goodbye”, that makes sense.

The way you can represent states in an agent is to a separate class for states.
Then, you would have a new copy for each new type of state.
Each state copy would be setup with different variables so it could manage the things you want to do.

Then, inside the agent, whenever it gets an input, it would use the current state to get its response.
It would then decide whether or not it should stay in the same state or move to a new state.
A good way of managing this is to have each state have a set of conditions. As soon as those conditions are met,
it tells the agent that it should move on.

These are all very complex ideas.
One nice blog post on these types of ideas are from the gamasutra blog [http://www.gamasutra.com/blogs/ChrisSimpson/20140717/221339/Behavior_trees_for_AI_How_they_work.php].

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

tutorials/data_analysis.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

Data Analysis Tutorial

More datasets

		Simpler Datasets [https://vincentarelbundock.github.io/Rdatasets/datasets.html]

		A huge list of datasets [https://github.com/caesar0301/awesome-public-datasets]

		538’s datasets [https://github.com/fivethirtyeight/data]

Overview

The goal of this tutorial is to talk about the important parts of beginning data analysis.

The typical analysis pipeline goes through the following stages:

		Think about the data you would like

		
		Either find a way to collect that data, or find data that already exists

		
		sometimes you might have to compromise on data because it’s easier to just use stuff that exists already

		I have provided links to datasets above.

		For this tutorial, there is a titanic dataset

		
		Write code that takes the data from a file or database and loads it into a data structure

		
		We will be using Pandas, a data management library

		Pandas makes manipulating data really easy

		
		Write code that puts the data into different forms that match the task you want to do.

		
		For instance, if you want to view interesting properties of your data as a scatter plot, you need to get two lists: one for the x positions and 1 for the y positions

		You should be thinking about what kinds of things the data can tell you

I will be writing this tutorial while looking at the titanic dataset.
The titanic dataset is a list of passengers, information about them, and whether they survived or not.

Getting the Data

I have made the data easy to get:

from urllib import request
import pandas as pd
filepath = 'https://gist.githubusercontent.com/braingineer/5d15057ac482ee0130b6d0e6f9cc9311/raw/d4eefaecc98b342ec578cf3512184556e8856750/titanic.csv'
response = request.urlopen(filepath)
df = pd.read_csv(response)
df = df.fillna(0)

Using Pandas and Matplotlib

Some example tutorials

		Simple Graphics [http://pbpython.com/simple-graphing-pandas.html]

		Beautiful Plots [https://datasciencelab.wordpress.com/2013/12/21/beautiful-plots-with-pandas-and-matplotlib/]

Some simple operations

Selecting a column

age_column = df['Age']

Selecting a subset

df2 = df[age_column > 0]

View the columns

print(df2.columns)

Visualize a scatter plot

plt.scatter(df2['Survived'], df2['Age']);
or with columns out
surv_col = df2['Survived']
age_col = df2['Age']

Seaborn

If you don’t already have it, to install seaborn, type in a single cell in your Jupyter Notebook:

!pip install seaborn

Then, you can do the following:

import seaborn as sns
sns.barplot(data=df, x='Pclass', y='Survived')

You can see more examples of seaborn plots at the seaborn website [https://stanford.edu/~mwaskom/software/seaborn/examples/index.html]

Some examples to get you started:

sns.countplot(data=df, x='Sex', hue='Survived')

do these in different cells otherwise they will try to plot on top of each other
sns.factorplot(data=df, x='Pclass', y='Age', col='Sex', kind='swarm', hue='Survived', x_order=[1, 2, 3])

Science

To use data for science, you want to get summarize what happened.
In other words, you want to tell a story with the data.
To do this, you have to look at the different properties: counts, means, proportions, etc.

A good way to formulate a scientific question is to think about different groups.
If the rate at which something happens is different between the two groups, then there is an effect of group.

Some terminology

		Proportion: A proportion is a number between 0 and 1 that signifies the part to whole relationship.
- If you eat half of a cake, the proportion you ate is 0.5

		Percentage: A percentage is a number between 0 and 100 that signifies the part to whole relationship
- If you eat half of a cake, the percentage is 50%

Questions you can ask

		How many people were on the Titanic?

		What percentage of the passengers did not survive?

		How many of the passengers were male? How many were female?

		How many male passengers survived? How many female? Is there an interesting relationship?

		What is the proportion of 3rd class passengers who survived?

		Is there an effect of class on the survivability of the gender?

		What is the mean age per class?

Additional setup

A version I was working that renames and cleans a version of the dataset:

from urllib import request
import pandas as pd
import seaborn as sns
%matplotlib inline
filepath = 'https://gist.githubusercontent.com/braingineer/5d15057ac482ee0130b6d0e6f9cc9311/raw/d4eefaecc98b342ec578cf3512184556e8856750/titanic.csv'
response = request.urlopen(filepath)
df = pd.read_csv(response)
df = df.fillna(0)
cols = df.columns.values
idx = list(cols).index('Pclass')
cols[idx] = "Class"
df.columns = cols
df_clean = df[df['Age']>0]

And a couple extra plots I was looking at:

super fancy
sns.factorplot(data=df_clean, kind='violin', split=True, inner='stick', scale='count', x='Class', y='Age', hue='Survived', col='Sex')

really sad
sns.factorplot(data=df_clean, kind='bar', col='Class', x='SibSp', y='Age', hue='Survived', row='Sex')

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

tutorials/turtle_artist.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

Turtle Artist

The basics of a turtle artist are being able to make creations that are more complicated than a single function.

The goals you should have are:

		
		Create a class which wraps around a turtle

		
		This means that it has an internal variable that is a turtle (or multiple turtles)

		All of the class functions will then use that single turtle to do things

		
		Make it either interactive or periodic.

		
		
		Periodic means the Turtle Artist goes through phases and those phases repeat forever.

		
		This does not mean a single looping turtle that draws the same thing forever.

		You could think of a clock, for example, which constantly updates the time.

		Interactive means that you can use the keyboard to influence how the turtle does things.

		It should be a purposeful design. Randomly doing things is not an acceptable solution.

I recommend the interactive route. There are a lot of cool things you can do!

For instance:

import turtle
class SuperTurtle:
 def __init__(self):
 self.grow_bigger = True

 def run(self):
 self.screen = turtle.Screen()
 self.inner_turtle = turtle.Turtle()
 self.screen.onkey(self.square, "s")
 self.screen.onkey(self.speed_up, "f")
 self.screen.onclick(self.hop)
 self.screen.ontimer(self.size_cycle, 50)
 self.screen.listen()

 def square(self):
 for i in range(4):
 self.inner_turtle.forward(100)
 self.inner_turtle.left(90)
 def speed_up(self):
 current_speed = self.inner_turtle.speed()
 if current_speed < 10:
 self.inner_turtle.speed(current_speed+1)
 def hop(self, x, y):
 self.inner_turtle.penup()
 self.inner_turtle.goto(x,y)
 self.inner_turtle.pendown()

 def size_cycle(self):
 s1, s2, s3 = self.inner_turtle.shapesize()
 if self.grow_bigger:
 self.inner_turtle.shapesize(s1+1, s2+1, s3)
 else:
 self.inner_turtle.shapesize(s1-1, s2-1, s3)
 if s1+1 > 20:
 self.grow_bigger = False
 elif s1-1 < 5:
 self.grow_bigger = True
 self.screen.ontimer(self.size_cycle, 50)

bob = SuperTurtle()
bob.run()
turtle.done()

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

tutorials/minecraft_architect.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

Minecraft Architect Tutorial

The goal of this tutorial is walk you through how to be a minecraft architect.

The first steps are going to be:

		Get the correct setup going (see Installing Minecraft)

		Start interacting with the world

This tutorial will cover a few of the basic information and then some techniques for building things in minecraft.

To start:

		Start the minecraft server

		Log into the minecraft client (make sure you set the version under the profile settings to 1.9.2!)

		connect to a world at the address localhost or 127.0.0.1

4. Open up an iPython terminal to test the connection and type in

from mcpi.minecraft import Minecraft
mc = Minecraft.create()
mc.postToChat("hello world!")

5. From now on, you should use a file and do the first following lines so that you have access to the mc object and the Vec3 class.

from mcpi.minecraft import Minecraft
from mcpi.vec3 import Vec3
mc = Minecraft.create()

Information: User-Centric Positioning

The first thing you should think about is that everything you do is based around the user.
The user is located at a specific place in the world, which are the set of (x,y,z) coordinates.
So, when you construct anything, you are constructing relative to them.

You get the positions by:

pos = mc.player.getPos()
to see what this looks like, you can do
print(pos, type(pos))
you can also get the x,y,z individually:
print(pos.x, type(pos.x))
print(pos.y, type(pos.y))
print(pos.z, type(pos.z))

It is best to draw things out on paper and plan them.
For instance, if you want to make a wall next to the user, you should figure out what the adjustments to the x and z would be.
One spot away from the user would be pos.x-1 or pos.z-1

Information: Placing Blocks

You can place either a single block or multiple blocks of the same type.

Single Blocks

For a single block, you either specify a Vec3 object, or the 3 coordinates.
You also specify the block number. You will have a book looking these up.

pos = mc.player.getPos()
set by the Vec3
mc.setBlock(pos, 42)
set by each spot individually
mc.setBlock(pos.x, pos.y, pos.z, 42)

but probably set in front of user, not where they are
mc.setBlock(pos.x+1, pos.y, pos.z+1, 42)

Vectors can add, so instead of typing out the 1 away with each spot individually, you can do

pos = mc.player.getPos()
offset = Vec3(1,0,1)
new_pos = pos + offset
mc.setBlock(new_pos, 42)
you could have also done:
mc.setBlock(pos + offset, 42)
or even
mc.setBlock(pos + Vec3(1,0,1), 42)

Multiple Blocks

For multiple blocks, you are specifying a cube. For this, you have to give the two corners of the cube.
For example, you could do:

mc.setBlocks(0,0,0, 3, 3, 3, 42)

This would create a 3 by 3 by 3 cube. Note, because I didn’t use relative coordinates, you won’t be able to find this cube.
To make it relative to the player:

pos = mc.player.getPos()
mc.setBlocks(pos.x, pos.y, pos.z, pos.x+3, pos.y+3, pos.z+3, 42)
or more easily:
mc.setBlocks(pos, pos+Vec3(3,3,3), 42)

Let’s make a giant box around the player. You will probably have to break your way out.

pos = mc.player.getPos()
mc.setBlocks(pos-Vec3(5,5,5), pos+Vec3(5,5,5), 42)

Technique: Layers

When you’re placing blocks, if you want to have a unique shape, you can play the blocks in layers.
Imagine building a pirate ship, for example. Each layer starting from the bottom would get longer and longer and slightly wider.
This would create a oval-type shape that ships have on their bottom.

You could do the layer technique for faces, buildings, triangles, etc.

Technique: Negative Space

One thing you can do is think about building things with negative space.

For example, let’s say I wanted to build a box around the player, but I didn’t want them to suffocate.
Well, you could create the cube first, and then replace the inner part of the cube with a smaller cube of air.

pos = mc.player.getPos()
cube_size = Vec(5,5,5)
air_size = Vec(4,4,4)
mc.setBlocks(pos-cube_size, pos+cube_size, 42)
mc.setBlcoks(pos-air_size, pos+air_size, 0)

Technique: Block Collections

Another thing you can do is create collections of blocks using lists and then
have a function which can iterate over them and place them one at a time.

def set_points(points, mc, block_type):
 for point in points:
 mc.setBlock(point, block_type)

example usage
pos = mc.player.getPos()
points = list()
for i in range(10):
 points.append(pos+Vec3(-1*(i%5), i%5, i%5))
set_points(points, mc, 42)

You could also do a block collection that uses sin or cos to create a circle. I will explicitly give this one to you.
Here I am using a set because it enforces uniqueness. No point can exist twice.

def taxicab_circle_x(r):
 point_set = set()
 x = 0
 for angle in range(360):
 theta = math.radians(angle)
 y = math.floor(r*math.sin(theta))
 z = math.floor(r*math.cos(theta))
 point_set.add(Vec3(x, y, z))
 return point_set

 © Copyright 2016, Brian McMahan.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_static/up.png

week10.html

 Navigation

 		
 index

 		Intro to Python; Summer 2016 0.1 documentation »

Week 10: Goodbye World

Summary

To come after the lesson!

Preview: Final class!

Extra Reso