
Into The Salt Mine Documentation
Release 2015.09.02

Christer Edwards

Sep 08, 2017

Contents

1 Preface 1
1.1 Who Should Read This Book . 1
1.2 Why I Wrote This Book . 1
1.3 Navigating This Book . 2
1.4 Online Resources . 2
1.5 Conventions Used In This Book . 2
1.6 Using Code Examples . 3
1.7 How To Contact Me . 3
1.8 Acknowledgments . 3
1.9 Introduction . 3

2 Chapters 7
2.1 Installation . 7
2.2 Command & Control . 9
2.3 Events & Reactions . 18
2.4 Job Management . 18
2.5 Web Interface & API . 18
2.6 Scheduling Tasks . 18
2.7 Provisioning . 18
2.8 Salt at Scale . 18
2.9 Secret Storage . 18
2.10 Development . 24
2.11 Configuration Options . 28

3 About The Author 29

4 Copyright 31

i

ii

CHAPTER 1

Preface

Who Should Read This Book

This book is for those people wanting to improve the way that they manage their systems. From top to bottom this
book will guide you through the necesarry steps required to fundamentally change the way that you manage your
entire system lifecycle. Sound too good to be true? It’s really not. Every now and then someone among us challenges
the status quo and forges new ground in the digital world. SaltStack is just that. A fundamental change in the way we
will manage our digital real estate.

If you’re already familiar with SaltStack and simply want to dive deeper Into The Salt Mine, this is the place. My goal
here is to describe SaltStack in a modular, bottom-up approach, giving a better overall vision of what is possible. I
guarantee you’ll learn something new about SaltStack by reading this book.

Why I Wrote This Book

I have been thinking about writing this book for quite a long time. Based on my history with the Salt project, and
my previous success as an author, I figured there was a prime opportunity for me to publish something in this space.
I had kind of put the idea on the back burner until one day a co-worker asked me if there were any good Salt books
available. To my knowledge there were none, and the idea resurfaced. I decided that day to try my hand at sharing the
vision, and this is the result of that work.

In my preparation for writing this book I looked at a lot of the online documentation available for saltStack. The
official docs and tutorials are detailed and generally well written. There is also a growing number of blog posts on the
topic. The one thing that I found lacking though was the bottom-up approach. Instead of taking the time to describe
how all of the pieces fit together, everyone seemed more interested in writing Quickstart guides. Something that could
be easily consumed, liked, shared or retweeted. What was missing from all of these publications was the vision. The
big picture. An exploration of the Salt Stack, from the foundation up. I decided that this was the way I wanted to
address this book.

Lastly, I wrote this book because I’m very passionate about the topic. I sincerely believe that SaltStack is the way of
the future. A fundamental change has occurred in the way we manage the Internet, and SaltStack is going to play a
huge role. From small deployments to public and private clouds, SaltStack has the tools and the scaleability to allow

1

Into The Salt Mine Documentation, Release 2015.09.02

us to manage a growing number of systems with ease. I truly believe that, once you get a glimpse of the big picture,
you’ll change the way you look at your systems and regain an excitement for the future of computing.

Navigating This Book

This book is designed to be read front to back. I specifically layout out the sections in a logical manner where one
chapter builds off the previous. There are a few exceptions to this however.

The Command & Control section should be read in order. These sections specifically build one atop the other, and
make logical sense in this order. To skip around within this section would likely cause some confusion.

The other sections could be used as reference sections, after the Command & Control section has been read. Once the
foundation is laid, the other sections in this book will make more sense. Again, it is important that the Command &
Control section be read in its proper order, and then the rest of the book can be taken as needed.

Online Resources

The official Salt documentation is a very good resource for detailed information about modules, states, general config-
uration and tutorials. Much of that information was used as a reference in writing this book. This documentation can
be found at:

docs.saltstack.com

The official SaltStack blog can be a good resource for upcoming events, including trainings, conferences and meetups.
This can also be a good resource for enterprise use cases and links to other related publications. This blog can be
found at:

Salt Ink - The SaltStack Blog

The official website for this book may also be useful. This includes additional tutorials, release notes and errata for
this book. The official site can be found here:

Into The Salt Mine

Conventions Used In This Book

The following typographical conventions are used throughout this book:

Italic

• Indicates new terms, URLs, email addresses, filenames, and file extensions.

Fixed-width

• Used for program listings, as well as within paragraphs to refer to program elements such as variable or function
names, databases, data types, environment variables, statements, and keywords.

Code Snippets

#!/usr/bin/env python2

import salt.client

try:
caller = salt.client.Caller()
ret = caller.function('test.ping')

2 Chapter 1. Preface

https://docs.saltstack.com
http://www.saltstack.com/blog/
http://intothesaltmine.org

Into The Salt Mine Documentation, Release 2015.09.02

Note

Note: This signifies a tip, suggestion or general note.

Warning

Warning: This indicates a caution or warning.

See Also

See also:

This suggests related topics to be referenced for more detailed information.

Using Code Examples

How To Contact Me

Acknowledgments

As always, to my muse, Casandra.

Introduction

The digital world as we know it is constantly changing. New technologies, both in hardware and software, are released
daily. The number of connected systems to manage grows exponentially day after day. The Internet itself is larger
than all of us–it’s the biggest thing mankind has ever built. If you think about the scale at which the technologies we
work with are expanding it can be daunting. The unending amounts of data created, transferred, stored and analyzed
is more than any one of us can keep up with. It’s all pretty amazing if you really think about it.

Imagine for a minute the vastness of it all. The entire Internet. All the systems. Servers old and new. Clouds, public
and private, constantly forming, shifting and expanding. Billions of websites around the world. Overwhelming really.
At that scale there’s not one of us that could manage it. Not a hundred of us or a thousand of us. The only reason it
works is because of skilled admins dutifully maintaining their little sections individually. That’s really the only way it
can be done.. or is it?

Every now and then something changes the game. Some brilliant visionary among us comes up with an elegant
solution to a problem. Something that, for those who see it, changes everything. These solutions are sometimes
software. Sometimes they are hardware. Sometimes it’s just a new way to think about a problem. I’m sure you can
come up with a few examples. A piece of software you discovered that makes your life so much easier you wonder
how you ever got by without it. Once something has improed your life that much, how could you ever go back? Once
you’ve seen the potential it’s really hard to not be excited.

This is the way I feel about SaltStack. I see a revolutionary tool unlike any other currently available. I see the collective
contributions of brilliant developers around the world creating solutions to problems nearly as fast as they arrive. I
see a modular, flexible and lightweight alternative to the legacy systems and methodologies that we’ve been using for
years. What I see with SaltStack is the future of computing.

1.6. Using Code Examples 3

Into The Salt Mine Documentation, Release 2015.09.02

History

The history of SaltStack goes back for years. It is the constantly improving culmination of many attempts at solving a
common problem. The author and lead developer, Thomas S. Hatch, tried solving this problem many times for many
companies. Each time improving on the last, and each time gaining valuable insight into the most efficient ways to
manage systems. Let me take you back a few years to when my history with Salt began.

It was 2011 and I had just been hired by Thomas at an online music startup. He had recruited a few of us that had
worked together in the past in what I thought of as a dream team. If I could work with anyone again, it would be these
guys. We got along great. We worked hard. We solved complex problems that nobody had solved before. We were
breaking new ground and growing fast.

Thomas started working on a tool to manage our private cloud infrastructure. The idea was, using some home-grown
tools, we would be able to spin up machines on the fly, provision them and drop them into different environments.
When we had updates to systems we would simply spin up a new machine with the latest code on it and transition it
into place, recycling the old machine. The vision was there. It was, at the time, very exciting. The only problem was
that the tools weren’t there. The vision was there, but we didn’t yet have the tools to take us from point A to point B.

Remember, we were a fledgling startup with grand ideas but not a lot of money. We had to come up with our own
solutions and build our own tools. Everything from scratch, with a small team.

By the time I hired on work had begun on these tools. We had a tool called “Bacon”, another called “Butter” and a
third called “Salt”. These were in-house, python-based tools for provisioning and managing our private cloud. At the
time these three were very rudimentary, but for the most part they got the job done. They had little bugs here and there,
but we also had a very talented development team that squashed those about as quickly as they came up.

I fondly remember times working in what couldn’t even be called a conference room, shared with five other system
engineers. I’d run into an issue with one of our tools and called it out. I’d promptly hear Thomas call back “give me
one minute!”, and like clockwork the bug would be fixed. Time and time again, improvements implemented at the
speed only a startup can seem to manage. Day by day our tools become more mature, our infrastructure became larger,
and the company seemed to be doing great.

Somewhere along the line here Thomas had the foresight to get the company to allow him to open source these tools.
He had developed most of it on his own time at home in his basement (yes, the old cliche), and primarily fixed bugs
with our feedback while at the office. He placed the code on github and work continued.. but not for long.

Before we knew it months had passed and it was the Holidays. Like any startup we had minimal time off during the
season. There were constantly things to fix and systems to build. We were preparing for a big deal with a mobile
telecom company and hoping to expand. All of our hard work was finally paying off! We were all very excited. We
were supposed to be getting a dedicated NOC team, new hires, data center expansion–all the things we needed to
support this upcoming deal. Unfortunately I don’t think any of us really saw what was really coming.

I remember it clearly to this day. One of the perks of working at this startup was flexible working and office hours.
We spent most of our time working from home and only met as a team in the office once or twice a week. This was a
Wednesday, the week between Christmas and New Years, and I was working from home in an old beatup chair in my
living room. Our lead network engineer and my roommate at the time was upstairs with the flu, taking the day off.

Then an email arrived. “Staff meeting conference call @5:00pm”. I didn’t think much of it, and dialed in at the
suggested time. This, depending on how you look at it, is either where it all ended or where it all began.

Layoffs. Everyone. The investors had pulled out. There would be no severance. There would be no more work.
Report to the office tomorrow to turn in any equipment you have and good luck to you. I was floored! I remember
being so shocked and sitting up so abruptly in surprise that my laptop tumbled to the floor. My company laptop that I
was expected to return in the morning. What had just happened? Was he for real? I–we–were all shocked. What were
we going to do? I’d never been laid off before. The rest of that afternoon is a bit of a blur, but I’ll always remember
that moment as a crossroads for a lot of us.

As the days and the weeks went on some of us found jobs right away. Others took a bit longer. For some people it was
a great move. They landed even better jobs with better companies. Some people found temporary consulting work. If

4 Chapter 1. Preface

Into The Salt Mine Documentation, Release 2015.09.02

you’ve ever been part of a massive layoff you know how it goes. It’s difficult, but people usually make it. During this
time we all kept in touch pretty well. We’d share job leads and keep tabs on who was ending up where, and did that
company need anyone else. During all of this there was one person that didn’t seem worried, and didn’t seem to be as
concerned about finding a new job. Thomas.

Thomas had a plan. Something bigger than where we came from or where a lot of us ended up. He was going to strike
out on his own with a new tool that had been slowly picking up popularity in the open source community. He had
decided he was going to form SaltStack, the company behind the Salt tool we had begun with at the startup.

If you’re reading this I think you have some idea how that turned out. SaltStack is now a growing, successful company
filled with talented people. Some of the people from our original dream team now work for Thomas again, this time
at a much more successful company.

To give you an idea of the usefulness of the Salt tool, every one of the systems engineers from that original startup
have deployed Salt for our new employers. I’m currently architecting a Salt based solution across multiple products
and nearly fourty-thousand servers. Salt is a game changer and I hope to be able to work with it long into the future.

1.9. Introduction 5

Into The Salt Mine Documentation, Release 2015.09.02

6 Chapter 1. Preface

CHAPTER 2

Chapters

Installation

Arch Linux

Debian

Fedora

FreeBSD

SaltStack is available for FreeBSD in both package and port form. Outlined below are instructions on installing and
starting the Salt service(s) on FreeBSD.

Installation

On FreeBSD 10 and later Salt can be installed using the pkgng utility:

pkg install py27-salt

On older systems, or systems not using pre-compiled packages, compilation from ports is also available:

make -C /usr/ports/sysutils/py-salt install clean

Either of these methods will install the full set of Salt utilities including the Salt master, minion, syndic. Repeat the
above instructions for any FreeBSD system you’d like to be part of your Salt infrastructure.

Post-Installation

The FreeBSD port for Salt lays down a sample config for both master and minion. While the service will technically
run using only default values without a config file in place, you’ll likely want to copy the sample config into use.

7

Into The Salt Mine Documentation, Release 2015.09.02

Master

Copy the sample config file:

cp /usr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt master in /etc/rc.conf:

sysrc salt_master_enable="YES"

Start the Master

Start the Salt master:

service salt_master start

Minion

Copy the sample config file:

cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt minion in /etc/rc.conf:

sysrc salt_minion_enable="YES"

Start the Minion

Start the Salt minion:

service salt_minion start

Gentoo

OS X

Red Hat Enterprise

Salt can be installed on Red Hat Enterprise (and variants) using the EPEL repository. This additional repository is
maintained primarily by Red Hat employees and Fedora contributors. It contains additional enterprise packages for
use with Red Hat and its variants.

Enable EPEL

To enable the EPEL repository install the appropriate package listed below based on your version of Red Hat.

RHEL 5

rpm -Uvh http://mirror.pnl.gov/epel/5/i386/epel-release-5-4.noarch.rpm

RHEL 6

8 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

rpm -Uvh http://ftp.linux.ncsu.edu/pub/epel/6/i386/epel-release-6-8.noarch.rpm

Installation

On Red Hat based systems the Salt master, minion and syndic packages are built seperately. It is necessary to install
the appropriate package for the system role. Typically this means you’ll have one Salt master and many Salt minions.

salt-master

yum install salt-master

salt-minion

yum install salt-minion

Post Installation

Master

Configure the service to start at boot:

chkconfig salt-master on

Start the service:

service salt-master start

Minion

Configure the service to start at boot:

chkconfig salt-minion on

Start the service:

service salt-minion start

Solaris

SuSE

Ubuntu

Windows

Command & Control

ZeroMQ

I’d be remiss in my duties as an author if I did not start a book about SaltStack by discussing ZeroMQ. This, I think, is
the fundamental cornerstone of what makes SaltStack so powerful. Without ZeroMQ SaltStack would not be capable

2.2. Command & Control 9

Into The Salt Mine Documentation, Release 2015.09.02

of what it does, and many of the performance-specific benefits would be gone. In order to share with you the big
picture vision of what SaltStack is capable of, we’ll first need to talk a little bit about ZeroMQ.

What is ZeroMQ?

What is ZeroMQ and why should I care? Let’s just dive right in. First, ZeroMQ is a socket-based high speed network-
ing library that is leveraged by SaltStack to allow for real-time communication between systems. SaltStack leverages
ZeroMQ to perform the high-speed communication between systems, while not requiring a managed service to be
running.

Technically ZeroMQ is a message queue, similar to those that you might be familiar with. AMQP, rabbitmq, kafka,
etc. These are all popular message queue services that you can set up in your infrastructure. The primary difference
here is that ZeroMQ is not another service to setup and maintain. It is simply a programming library that application
developers can leverage in order to achieve high speed network communication within their application. SaltStack’s
requirement on ZeroMQ requires no effort or configuration on your behalf, but provides all the benefits of a full-fledged
messaging service.

So why ZeroMQ? ZeroMQ was developed initially for high-speed banking transactions. A large banking institution
determined that the network transactions themselves were too expensive, costing the company millions of dollars.
They specifically set out to design a message queue interface that would allow for high speed, low cost transactions
on the network, saving them money.

We’re all familiar with the word ‘latency’. We generally understand that the lower the latency the better. This was
essentially the goal here. Achieve the lowest latency possible, in the simplest manner possible. The people behind
ZeroMQ initially created the AMQP system. This was designed for JP Morgan Chase, specific to their network latency
needs. AMQP has since been abandoned by the initial developers (although still maintained by adopters), in preference
of what they suggest is an improved system with ZeroMQ.

ZeroMQ and Salt

How does Salt leverage ZeroMQ? To be honest it’s all pretty transparent to the end user. You could never learn
anything more about ZeroMQ than what is included here and still use SaltStack in an enterprise setting. While it is a
very critical and important piece, the way that it has been implemented is very transparent to the user. All you have to
worry about is starting the salt-master and salt-minion services (which we’ll cover later), and the ZeroMQ
based network layer is automatically maintained. I think this fact is both a credit to the ZeroMQ developers as well as
the SaltStack developers. Such an integral component is as transparent and maintenance-free as it is.

The reason that I wanted to cover ZeroMQ first is because it is a key reason why SaltStack is different than any of its
competitors. It is what sets it apart from other remote execution and configuration management tools. Many of these
other tools leverage existing communication protocols, such as ssh or a traditional serial TCP socket connection.
While these solutions excel in some areas, they simply weren’t designed for the scale at which SaltStack operates.

Let me see if I can describe this in a simple way.

SaltStack excels at high-speed, asynchronous communication between connected systems. This communication–this
underlying message bus–can be leveraged for many different uses, only one of which is parallel remote execution.
Let’s imagine for a moment how this all fits together.

Imagine your infrastructure the way it stands today. Dozens, hundreds or thousands of servers tucked away nicely in
data centers around the world. These systems are connected to power and networked via switches and routers. it isn’t
terribly complicated if you think about it. You can currently connect to any of your systems from your management
network and do any amount of administration needed. That administration is generally done over ssh, which is
usually a one-to-one connection. You connect securely to one system, do your maintenance, and move on to the next.
That’s the way it’s been done for years. That’s the way it’s been done for as long as I can remember anyway.

Granted there are some tools that expand this functionality a bit. Tools like clusterssh allow you to mirror
commands to multiple systems at once over multiple ssh connections. This works well to an extent, but there is a

10 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

point at which this method doesn’t scale. Unfortunately there are simply not a lot of tools that allow you to control
large pieces of your infrastructure in a timely manner.

Now imagine that all of your systems were connected over a high speed, asynchronous messaging system. Imagine
being able to send commands to one system or a thousand systems using the same method. Imagine being able to
leverage this high speed message bus to query real-time information about all of your systems, all at once. This is
what ZeroMQ provides for us in the SaltStack world. A high-speed way to connect to not one-at-a-time, not two-at-a-
time but all-at-a-time with little overhead.

Just imagine for a second a high-speed network connecting all of your systems. A network that is fully encrypted
and sits on top of your existing physical network infrastructure. This network can easily connect hundreds, thousands
and even tens of thousands of systems without issue. This network can provide you with a low latency method by
which you can query for or send information to your entire network of servers. I really hope you’re paying attention
here, because this is the foundational piece of the entire Salt stack. This is the piece that allows the rest of the magic
to happen. This is the piece that facilitates the high speed communication between systems, and not just minion and
master. This high speed network can be leveraged for one minion to query or communicate with another minion.
While it is traditionally a pub-sub communication pattern it can be thought of more broadly in the sense that it allows
near instant communication between your entire infrastructure.

I want to again reiterate that this high speed network requires no additional services to install and maintain, and little
to know knowledge of the underlying connectivity to use. It is truly high speed, low latency connectivity at low cost.
Low cost to the network and low cost to the maintainers of the infrastructure. It is all behind the scenes. The magic
behind the curtain.

As you get deeper into this book I want you to keep in mind that everything rides on top of this high speed encrypted
network. Every command you post to the message queue is instantly available to all of your systems. Every time you
want to update configuration on your servers the instructions are instantly available everywhere. No more iterating
through lists and sending commands over ssh. No more sitting and waiting for networking protocols that weren’t
designed for the scale of todays internet try and keep up. You will be leveraging a modern, encrypted, asynchronous
communication network actually designed just for this. The Internet is growing. Your company is growing. Grow
with it.

Key Management

Before we can begin any communication on top of our ZeroMQ network we need to accept encryption keys. The
underlying ZeroMQ network is not encrypted, but SaltStack adds a layer of AES public key encryption to all commu-
nications. This adds very little overhead while ensuring that all communications are securely encrypted between all
hosts. Before these encryption keys are accepted on the master, no communication will take place.

The Salt Master provides a utility called salt-key to allow you to manage these encryption keys. Each minion will
automatically generate their respective keys and submit them to the master for acceptance. There are a number of
ways to manage keys at scale, but here we’ll just look at the basic options of the salt-key utility.

salt-key executes simple management of Salt public keys used for authentication and encryption.

Listing keys

-l ARG, --list=ARG

The args pre, un, and unaccepted will list unaccepted/unsigned keys. The args acc or accepted will list
accepted/signed keys. The args rej or rejected will list rejected keys. Finally, all will list all keys.

-L, --list-all

List all public keys. (DEPRECATED: use --list-all)

2.2. Command & Control 11

Into The Salt Mine Documentation, Release 2015.09.02

Accepting keys

-a key_name, --accept=key_name

Accept the specified public key(s). Globs are supported.

-A, --accept-all

Accept all pending keys.

--include-all

Include non-pending keys when accepting or rejecting keys.

Rejecting keys

-r key_name, --reject=key_name

Reject the specified public key. Globs are supported.

-R, --reject-all

Reject all pending keys.

--include-all

Include non-pending keys when accepting or rejecting keys.

Printing keys

-p key_name, --print=key_name

Print the specified public key.

-P, --print-all

Print all public keys.

Deleting keys

-d key_name, --delete=key_name

Delete the specified key(s). Globs are supported.

-D, --delete-all

Delete ALL keys.

Key fingerprints

12 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

-f key_name, --finger=key_name

Print the specified key fingerprint.

-F, --finger-all

Print all keys fingerprints.

Key Generation

--gen-keys=key_name

Generate a keypair for use with Salt.

--gen-keys-dir=/path/

Define the path to save the generated keypair. Only works with the --gen-keys option; default is the current
directory.

--keysize=key_size

Set the keysize for the generated key. Only works with the --gen-keys option. Keysize must be 2048 or higher;
the default is 2048.

Grains

Introduction

Salt includes a built-in mechanism for determining static information about a system. These bits of information are
referred to as grains within the Salt vocabulary. You might think of it as “little grains of information” about a machine.
These grains of information include hardware and networking information, operating system details, and much more.
These grains are also expandable to include other bits of static information that you’d like to have assigned to a
machine. In this chapter we’ll explore the grains subsystem and learn how to leverage this data within our Salt
infrastructure.

Goals

Once you’ve completed this chapter you should have an improved understanding of what grains are, how grains are
queried, defined and synced. You should also understand the order of grain definition precedence.

Note: If you’re not yet familiar with the grains system it is important to study this entire chapter. Upcoming chapters
will make extensive use of the information outlined here.

Standard Grains

Salt includes a set of “core grains” that should be available on any system. These grains should be detected properly
on every supported operating system and distribution. In this section I’ll outline many of these core grains.

The list below defines the full set of core grains found on a CentOS Linux system. As you can see, these are just the
keys without values, but it gives you an idea of what type of information is stored in grains.

2.2. Command & Control 13

Into The Salt Mine Documentation, Release 2015.09.02

• SSDs

• biosreleasedate

• biosversion

• cpu_flags

• cpu_model

• cpuarch

• domain

• fqdn

• fqdn_ip4

• fqdn_ip6

• gpus

• host

• hwaddr_interfaces

• id

• ip4_interfaces

• ip6_interfaces

• ip_interfaces

• ipv4

• ipv6

• kernel

• kernelrelease

• locale_info

• localhost

• lsb_distrib_codename

• lsb_distrib_id

• lsb_distrib_release

• machine_id

• manufacturer

• master

• mem_total

• nodename

• num_cpus

• num_gpus

• os

• os_family

• osarch

14 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

• oscodename

• osfinger

• osfullname

• osmajorrelease

• osrelease

• osrelease_info

• path

• productname

• ps

• pythonexecutable

• pythonpath

• pythonversion

• saltpath

• saltversion

• saltversioninfo

• selinux

• serialnumber

• server_id

• shell

• virtual

• zmqversion

As you can see, there are over fifty items defined for each system within your Salt infrastructure. These items will be
used in upcoming chapters to demonstrate the flexibility of making your minion management more dynamic.

Let’s look at what some of these values store.

Listing Grains

As you saw in the previous examples, there are a few different ways to query for grains. Primarily you’ll use the
grains module and query for one, all or specific grain values. If you know the name of the grain you’re looking for
you can query for that directly:

[root@minion ~]# salt '*' grains.item fqdn
alpha:

fqdn:

alpha.domain.tld

[root@minion ~]# salt '*' grains.item kernelrelease
alpha:

kernelrelease:

2.6.32-431.29.2.el6.x86_64

2.2. Command & Control 15

Into The Salt Mine Documentation, Release 2015.09.02

[root@minion ~]# salt '*' grains.item mem_total
alpha:

mem_total:

7872

[root@minion ~]# salt '*' grains.item cpuarch
alpha:

cpuarch:

x86_64

Defining Grains

Beyond the “core grains” that are defined on every system, it is possible to define custom grains. These custom grains
can be used to define additional attributes about your systems. Examples of this might be datacenter, rack, cabinet, or
other internal or deployment-specific information. Grains are defined on a per-minion basis and append to the existing
grains.

See also:

For more information about custom grains replacing existing grains, see the next section Precedence.

Custom grains can be defined in a couple of places. Again, because grains are unique per minion, custom grains are
defined on a per-minion basis in one of two places:

• /etc/salt/minion

• /etc/salt/grains

There is a slight difference in the way custom grains are imported depending on the location. First we’ll outline the
/etc/salt/minion method, followed by /etc/salt/grains.

/etc/salt/minion

Custom grains can be added directly to the minion config file, or included as a new file in the /etc/salt/minion.
d/ directory. If custom grains are added to either of these locations the whole structure needs to be prefixed with the
grains configuration option. See the example below:

grains:
datacenter: va5
rack: 17
cabinet: 3
role: webserver

As you can see, custom grains are the same simple key-value pairs that the core grains are. These can be any arbitrary
key-value pair that you want to define for your systems. In addition to the key-value pairs, you can define other more
complex data structures such as lists or dictionaries. See the example below for more complex custom grains.

grains:
role:
- webserver
- memcache

owners:
- tuttle
- ewoolley

/etc/salt/grains

16 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

role:
- webserver
- memcache

Precedence

Examples

2.2. Command & Control 17

Into The Salt Mine Documentation, Release 2015.09.02

Syncing & Updating

Pillar

Targeting

Remote Execution

Modules

Returners

Configuration Management

Renderers

States

Events & Reactions

Event Bus

Reactor

Job Management

JID

Job Management

Web Interface & API

Halite

salt-api

Scheduling Tasks

Scheduler

Provisioning

Salt Bootstrap

Salt Cloud

Salt Virt

Salt at Scale

Performance Tuning

High Availability

Syndication Masters

Secret Storage

Introduction

In this chapter you’ll learn how to configure and run a Salt-based secret storage solution. This will give you the ability
to store different type of data in a GPG encrypted key-value storage, and query this data from minion systems. You

18 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

will have the ability to limit which systems have access to data, as well as limit access on a per-user basis.

The components outlined in this chapter require Salt version 2014.7.0 or later.

Requirements

The set of requirements defined for this project are outlined below.

Encryption

• Secrets not stored in plain text on disk (client or server)

• Secrets always encrypted in transit across network

Reliability

• Fault tolerant enough to have the server go down and the application keeps functioning

• Server uptime equivalent to the most critical server or component in the data center

Scalability

• Can support thousands of concurrent servers

• Can support storage of thousands of secrets

Secret types

• Support standard secret types (PKI key pairs, hashes, etc)

• Custom secrets with custom key/value meta data

• Support for automated changing of passwords on schedules and on demand

Administration

• Searching across all fields

• APIs for administration of secrets from the command line

• Bulk edit of secrets

• SDKs for integrating with code and cli

• CLI utility

Access Control

• Secrets can be permissioned to individual servers

• Read, write, and delete as separate permissions

• Group permissioning for both secrets and applications/clients

2.9. Secret Storage 19

Into The Salt Mine Documentation, Release 2015.09.02

Required Packages

In order to build this secret storage solution you’ll need:

• Salt Master

• Salt Minion(s)

• Public and private GPG keys

• GPG Agent (optional)

Required Configuration

In order for Salt master to parse the GPG cipher data it needs the GPG renderer enabled. This is done by updating the
/etc/salt/master config file and applying the below change.

- #renderer: yaml_jinja
+ renderer: jinja | yaml | gpg

Architecture

This secret storage solution fits natively into any Salt infrastructure. This means SaltStack provides the functionality
for this service out of the box. It simply requires some configuration and initial setup. The following sections will
outline each stop in the process.

Overview

For a really high level overview here’s how each of these components fit together:

The Salt Master will be the central storage server. All secrets will be stored within the pillar data on the master (usually
/srv/pillar/). Each secret is stored on the master in a GPG encrypted cipher. The public and private GPG keys
are only ever stored on the master. GPG keys never need to be shared to minions. The python-gnupg library needs
to be installed on any minion wanting to request secure keys. Lastly, assuming you’ll want to secure your encrypted
secrets with a GPG key passphrase, you’ll need a configured GPG agent to unlock these secrets upon request, without
the requirement of entering a passphrase each time.

Salt Master

The secret store is housed on the SaltStack master within the Pillar system. This allows for the secrets to be available
to any connected system, with access limitations defined by the Pillar top file. In some of my early discussions about
this architecture there was some concern about the privacy and general access to the secret store server. It should
be noted that the SaltStack master should restrict general access just as any “vault” would. If you can’t trust your
administrators that have root access to your systems with the secrets stored on your server, well, I’d say you have
bigger problems. This configuration assumes access to the SaltStack master is restricted to those with root access to
the general infrastructure.

Note: Anyone with root access on the SaltStack master will be able to retrieve any encrypted secret.

20 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

Pillar Data

The pillar system sits at the heart of this secret storage solution. This is where the data is stored and where limitations
on access to the data is configured. In this example I assume the default path for pillar data, /srv/pillar.

First, if it doesn’t yet exist, create the pillar path:

mkdir -p /srv/pillar

Second, populate a default top.sls file. This file is where you map data to minions.

base:
'*':
- cache

'alpha':
- vault1

'bravo':
- vault2

In the example above I’ve made accessible anything in the cache.sls file to all machines. The vault1.sls is
accessible only to the host alpha, and vault2.sls only available to bravo. You’ll of course want to update these
values to represent your own system names.

Salt Minion

The SaltStack minions will generally be the source for queries against the secret store. By defining restrictions within
the Pillar configuration you can limit which machines have access to specific secrets or groups of secrets. Secrets are
queried from the minions using the pillar module. I’ve included a few examples below:

The command below will query for the value of the secret1 key. This key represents a key-value store within one
of the “vaults” available to this system.

salt-call pillar.item secret1

If you would like to request all secrets available to a specific system you can use a similiar command:

salt-call pillar.items

Note: Different outputters can be used when retrieving these secrets. Outputters include --json, --raw, --txt,
yaml_out, and more.

Key Generation

This section outlines the steps required to generate the required public and private keys.

mkdir /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys

gpg --homedir /etc/salt/gpgkeys --gen-key

At this point you’ll be prompted with key generation options.

• Select (1) RSA and RSA (default).

• Select 2048 for the keysize (default).

2.9. Secret Storage 21

Into The Salt Mine Documentation, Release 2015.09.02

• Select 0 for the key expiration (key does not expire).

• Enter your project name for Real Name.

• Enter an email address for Email address.

• Enter a blank line for Comment.

You’ll be given one last chance to overview what you’ve entered and make any changes. When you’re ready to generate
your keys, select (O)kay.

At this point you’ll be prompted for a passphrase. It should be noted that the inclusion of a passphrase makes the
overall configuration a bit more complicated, but retains the highest amount of security. It will require a step of
manually unlocking the key with a passphrase anytime the server is rebooted.

Once the key is generated (it may take some time depending on your hardware) you’ll need to export the public key
and import it into the systems keyring. To export the public key you’ll need to specify which key (as systems can
have many keys). This can be done using any unique information about the key, including Real Name, Email
address or Comment as defined during the key generation. The example below exports the key using the email
address.

gpg --homedir /etc/salt/gpgkeys --armor --export email@address.org > pubkey.gpg

gpg --import pubkey.gpg

You are now ready to encrypt data using this GPG key-pair. This can be done using a simple shell one-liner:

echo -n "top secret data" | gpg --homedir /etc/salt/gpgkeys --armor --encrypt -r
→˓email@address.org

The resulting output of this can then be used within the SaltStack pillar system in the following format:

secret: |
-----BEGIN PGP MESSAGE-----
Version: GnuPG v1

hQEMAweRHKaPCfNeAQf9GLTN16hCfXAbPwU6BbBK0unOc7i9/etGuVc5CyU9Q6um
QuetdvQVLFO/HkrC4lgeNQdM6D9E8PKonMlgJPyUvC8ggxhj0/IPFEKmrsnv2k6+
cnEfmVexS7o/U1VOVjoyUeliMCJlAz/30RXaME49Cpi6No2+vKD8a4q4nZN1UZcG
RhkhC0S22zNxOXQ38TBkmtJcqxnqT6YWKTUsjVubW3bVC+u2HGqJHu79wmwuN8tz
m4wBkfCAd8Eyo2jEnWQcM4TcXiF01XPL4z4g1/9AAxh+Q4d8RIRP4fbw7ct4nCJv
Gr9v2DTF7HNigIMl4ivMIn9fp+EZurJNiQskLgNbktJGAeEKYkqX5iCuB1b693hJ
FKlwHiJt5yA8X2dDtfk8/Ph1Jx2TwGS+lGjlZaNqp3R1xuAZzXzZMLyZDe5+i3RJ
skqmFTbOiA==
=Eqsm
-----END PGP MESSAGE-----

Note: Please note the pipe character (“|”) after the key name as well as the yaml-style indentation for the entire GPG
cipher value.

GPG Agent Requirements

This section outlines the requirements for the gpg.conf and gpg-agent.conf.

• gpg.conf updated to use-agent

• gpg-agent.conf updated to specify pinentry-program

22 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

• gpg-agent.conf updated to specify extended cache-ttl

The GPG Agent

In order to publish GPG encrypted secrets using a passphrase-enabled key you’ll need to run a GPG agent. This
agent will allow you to authenticate once to the encryption key and not require a passphrase be entered anytime
someone requests a key. This provides the added security of a passphrase on the encryption key, but the usability of
not requesting a passphrase on every request.

This step of the process requires an update to a configuration file as well as manually unlocking the GPG key. I will
again mention that this process is currently manual and will need to be repeated anytime the system is restarted and
the GPG agent restarted.

There are a few settings that need to be defined in order for this to work properly. The next two sections tell the system
that you want to use an agent, and how that agent should be used to prompt you for a passphrase.

It is important to note that the gpg-agent has a default cache ttl value. If the key is not unlocked or requested within
that cache time the passphrase will be forgotten and you’ll need to request it again.

I have solved this by increasing the default max-cache-ttl value to one day as well as configured a salt scheduler to
request a “cache” token from the secret store on a regular interval. On each successful request the max-cache-ttl is
reset and the countdown starts over. The combination of a one-time unlocking and regular queries for an encrypted
value will allow the cache to remain effective until the system or the services is restarted.

gpg.conf

You need to tell the gpg utility that it should use the agent. This is done by updating the gpg.conf file, which you’ll
likely need to create inside the /etc/salt/gpgkeys directory. This will tell any instance of gpg specifying this
path as a --homedir that it should use a gpg-agent.

+ use-agent

gpg-agent.conf

In order for Salt to prompt you for the passphrase it needs to know how to do so. This can be defined within the
gpg-agent.conf file, which you’ll likely need to create inside the /etc/salt/gpgkeys directory. This file
simply holds configuration on how the agent should run. In our basic setup you’ll only need to add a single line to this
new file. The example below shows a unified diff of the file. Add the line(s) as defined by the + character, but do not
add the + character itself.

+ pinentry-program /usr/bin/pinentry-curses
+ default-cache-ttl 86400 # one day
+ max-cache-ttl 31536000 # one year

gpg-agent

You’ll need to manually launch the gpg-agent and then tell SaltStack where it can find the running agent. This

unlock the key

Once you’ve started the gpg-agent and provided SaltStack with the information required to access this agent you’re
ready to unlock the keyring. All you should need to do for this to happen is request a key from the Salt master. Make

2.9. Secret Storage 23

Into The Salt Mine Documentation, Release 2015.09.02

sure that your pillar top file has been configured to allow the Salt master access to a key (any key will do). Request
this key using the command below:

salt-call pillar.item secret

When you run this command Salt will try to decipher the encrypted value stored within your pillar data. Now that it
knows about your gpg agent information it’ll request access through that socket. The first time it runs it’ll determine
that no access has been granted and prompt you for a passphrase. You should see a curses-based prompt appear in
your terminal asking you for the encryption password. Enter this password once and your key will be unlocked. This
should last for the duration of your session or your GPG max-cache-ttl.

Conclusion

Development

Writing Modules

While not always required, sometimes it is necessary to write and distribute custom Salt modules for added function-
ality or integration with other products. This chapter will outline the basic structure and best practices for creating
custom execution modules.

Anatomy of a Salt module

When developing custom Salt execution modules there are a few basic rules that need to be followed. This chapter
aims to outline the basic structure of a module, its key components and general best practices. Let’s dive right in.

header

-*- coding: utf-8 -*-
'''
:maintainer: Christer Edwards (christer.edwards@gmail.com)
:maturity: 20150910
:requires: none
:platform: all
'''

If you’ve written Python scripts in the past you might wonder where the “shebang” is; the #!/usr/bin/env python
declaration. In the case of a Salt module (or technically a Python module) this is not required as it is not called directly
from the shell. Because this file will be imported by the Salt loader, as long as it parses properly, it will become
available without a “shebang”.

In this case we simply define the character encoding used within this module. Unless you need to or have a good
reason to use an alternate encoding, utf-8 is probably preferred.

For more information on this tag see PEP-0263.

Next we document the module. Due to the way that the Salt documentation is automatically generated, whatever
documentation you define within this top-level docstring will be used in the documentation page. While this is not
required it is preferred, especially if you ever hope to have your module merged in upstream Salt.

I have written some custom modules that include more content within the top-level docstring than actual code in the
module. This amount of documentation never hurts, and you’ll never be accused of not properly documenting your
code!

24 Chapter 2. Chapters

https://www.python.org/dev/peps/pep-0263/

Into The Salt Mine Documentation, Release 2015.09.02

imports

from __future__ import absolute_import

import logging

At this point you can begin importing the Python modules you require. At minimum you should use the lines in the
example above. You’ll likely need more, but this should always be your baseline.

The absolute_import function from the __future__ provides compatibility between Python2 and Python3. At the time
of this writing Salt is still not fully Python3 compatible, but using the “future” import standard ensures that custom
modules are at least up to par in that regard.

The second component that you want to import is the logging system. This allows you to easily add debugging output
to your module. This can be extremely helpful during development and testing, and allows end-users to configure log
levels during runtime.

We’ll explore examples of implementing logging later, but for now you should make sure you import the logging
module.

GLOBALS

LOG = logging.getLogger(__name__)

The above GLOBAL activates the logger and makes it available throughout your module. In order to leverage the
logging GLOBAL use the following syntax:

LOG Example:

LOG.info('info output')
LOG.debug('debug output')
LOG.error('error output')
LOG.warning('warning output')
LOG.critical('critical output')

__virtualname__

__virtualname__ = 'custom_module'

The __virtualname__ variable definition defines a custom name for your module. If this definition is missing it will
default to the name of the module file itself (minus the .py). While not required, this variable definition is common to
most modules, and often simply matches the Python module name itself.

This definition also allows the module layer to be abstracted, and is what allows a standard command across multiple
platforms. For example, the pkg module supports a wide range of binary package providers. From yum to apt-get and
everywhere in-between. Each of these defines __virtualname__ as pkg, meaning based on the conditional statements
within the __virtual__ function only the appropriate pkg provider is loaded.

__virtual__()

def __virtual__():
'''
Determine whether or not to load this module
'''

2.10. Development 25

Into The Salt Mine Documentation, Release 2015.09.02

if __salt__['grains.get']('kernel:Linux'):
return __virtualname__

The __virtual__() function is a critical component of any Salt execution module. This function allows you to enter
logic to determine whether or not your module should load on the given platform. You have full access to Salt
components, including grains, pillar, testing on the availability of other Salt execution modules, and more.

Functions

A Salt execution module generally consists of “private” and “public” functions. These functions are either callable
from within the module itself (private), or callable directly through Salt (public). The way Salt treats functions within
these custom modules very much follows the Pythonic way of handling modules and methods.

In this section I provide examples of both types of functions:

“private”

def _private():
'''
"Private" function; only callable within this module
'''
LOG.debug('Executing the _private function')

ret = {}
return ret

A “private” function works the same way that any other function does. The only difference here is that the function
name is preceded with an underscore (_). Any function prefixed with an underscore character will only be available
within the module, and will not be directly callable through Salt.

“public”

def public(*args, **kwargs):
'''
"Public" function; available to Salt, ie; module.public

CLI Example:

salt '*' module.public
'''
LOG.debug('Executing the public function')

ret = _private()
return ret

“public” functions within an execution module are mapped and made available to the Salt administrators. Any “public”
function becomes available to be called from Salt, prefixed by the module name. For example, if our custom module
was called “module”, and our function name was “public”, we’d call this through Salt by targeting module.public.

26 Chapter 2. Chapters

Into The Salt Mine Documentation, Release 2015.09.02

Full Example

-*- coding: utf-8 -*-
'''
:maintainer: Christer Edwards (christer.edwards@gmail.com)
:maturity: 20150910
:requires: none
:platform: all
'''
from __future__ import absolute_import

import logging

LOG = logging.getLogger(__name__)

__virtualname__ = 'module_name'

def __virtual__():
'''
Determine whether or not to load this module
'''
if __salt__['grains.get']('kernel:Linux'):

return __virtualname__

def _private():
'''
"Private" function; only callable within this module
'''
LOG.debug('Executing the _private function')

ret = {}
return ret

def public(*args, **kwargs):
'''
"Public" function; available to Salt, ie; module.public

CLI Example:

salt '*' module.public
'''
LOG.debug('Executing the public function')

ret = _private()
return ret

Running Commands & Executing Modules

Often times a custom execution module is simply a wrapper around a command line utility. This means that “under
the hood” Salt is simply executing an existing command with certain options. When you realize how this works your
first thought in regards to development might be “Perfect. So I’ll use subprocess and call the binary...” While that may
be the right approach in other cases, Salt makes this simpler. Salt makes all other loaded modules available to your
custom module. This means you can call any other available Salt module through your Salt module, including cmd to

2.10. Development 27

Into The Salt Mine Documentation, Release 2015.09.02

run arbitrary commands. Please do not use subprocess in your custom module unless you have a very good reason to
do so. Use the existing cmd module to execute arbitrary commands. An example might be as follows:

cmd = '{0} {1} {2}'.format('egrep', string, filename)
ret = salt['cmd.run'](cmd)

This function does not process commands through a shell unless the python_shell flag is set to True. This means that
any shell-specific functionality such as ‘echo’ or the use of pipes, redirection or &&, should either be migrated to
cmd.shell or have the python_shell=True flag set here.

Note: The use of python_shell=True means that the shell will accept _any_ input including potentially malicious
commands such as ‘good_command; rm -rf /’. Be absolutely certain that you have sanitized your input prior to using
python_shell=True

Writing States

Writing Returners

Writing Renderers

Writing Grains

Configuration Options

Master Config

Minion Config

Syndic Config

28 Chapter 2. Chapters

CHAPTER 3

About The Author

29

Into The Salt Mine Documentation, Release 2015.09.02

30 Chapter 3. About The Author

CHAPTER 4

Copyright

This content is copyright Christer Edwards. All rights reserved.

Duplication of this content without the express written permission of the author is not permitted.

31

	Preface
	Who Should Read This Book
	Why I Wrote This Book
	Navigating This Book
	Online Resources
	Conventions Used In This Book
	Using Code Examples
	How To Contact Me
	Acknowledgments
	Introduction

	Chapters
	Installation
	Command & Control
	Events & Reactions
	Job Management
	Web Interface & API
	Scheduling Tasks
	Provisioning
	Salt at Scale
	Secret Storage
	Development
	Configuration Options

	About The Author
	Copyright

