

Into The Salt Mine

	Preface
	Who Should Read This Book

	Why I Wrote This Book

	Navigating This Book

	Online Resources

	Conventions Used In This Book

	Using Code Examples

	How To Contact Me

	Acknowledgments

	Introduction

	Chapters
	Installation

	Command & Control

	Events & Reactions

	Job Management

	Web Interface & API

	Scheduling Tasks

	Provisioning

	Salt at Scale

	Secret Storage

	Development

	Configuration Options

	About The Author

	Copyright

Preface

	Who Should Read This Book

	Why I Wrote This Book

	Navigating This Book

	Online Resources

	Conventions Used In This Book

	Using Code Examples

	How To Contact Me

	Acknowledgments

	Introduction
	History

Who Should Read This Book

This book is for those people wanting to improve the way that they manage their
systems. From top to bottom this book will guide you through the necesarry
steps required to fundamentally change the way that you manage your entire
system lifecycle. Sound too good to be true? It’s really not. Every now and
then someone among us challenges the status quo and forges new ground in the
digital world. SaltStack is just that. A fundamental change in the way we will
manage our digital real estate.

If you’re already familiar with SaltStack and simply want to dive deeper Into
The Salt Mine, this is the place. My goal here is to describe SaltStack in a
modular, bottom-up approach, giving a better overall vision of what is
possible. I guarantee you’ll learn something new about SaltStack by reading
this book.

Why I Wrote This Book

I have been thinking about writing this book for quite a long time. Based on my
history with the Salt project, and my previous success as an author, I figured
there was a prime opportunity for me to publish something in this space. I had
kind of put the idea on the back burner until one day a co-worker asked me if
there were any good Salt books available. To my knowledge there were none, and
the idea resurfaced. I decided that day to try my hand at sharing the vision,
and this is the result of that work.

In my preparation for writing this book I looked at a lot of the online
documentation available for saltStack. The official docs and tutorials are
detailed and generally well written. There is also a growing number of blog
posts on the topic. The one thing that I found lacking though was the bottom-up
approach. Instead of taking the time to describe how all of the pieces fit
together, everyone seemed more interested in writing Quickstart guides.
Something that could be easily consumed, liked, shared or retweeted. What was
missing from all of these publications was the vision. The big picture. An
exploration of the Salt Stack, from the foundation up. I decided that this was
the way I wanted to address this book.

Lastly, I wrote this book because I’m very passionate about the topic. I
sincerely believe that SaltStack is the way of the future. A fundamental change
has occurred in the way we manage the Internet, and SaltStack is going to play
a huge role. From small deployments to public and private clouds, SaltStack has
the tools and the scaleability to allow us to manage a growing number of
systems with ease. I truly believe that, once you get a glimpse of the big
picture, you’ll change the way you look at your systems and regain an
excitement for the future of computing.

Navigating This Book

This book is designed to be read front to back. I specifically layout out the
sections in a logical manner where one chapter builds off the previous. There
are a few exceptions to this however.

The Command & Control section should be read in order. These sections
specifically build one atop the other, and make logical sense in this order. To
skip around within this section would likely cause some confusion.

The other sections could be used as reference sections, after the Command &
Control section has been read. Once the foundation is laid, the other sections
in this book will make more sense. Again, it is important that the Command &
Control section be read in its proper order, and then the rest of the book can
be taken as needed.

Online Resources

The official Salt documentation is a very good resource for detailed
information about modules, states, general configuration and tutorials. Much of
that information was used as a reference in writing this book. This
documentation can be found at:

docs.saltstack.com [https://docs.saltstack.com]

The official SaltStack blog can be a good resource for upcoming events,
including trainings, conferences and meetups. This can also be a good resource
for enterprise use cases and links to other related publications. This blog can
be found at:

Salt Ink - The SaltStack Blog [http://www.saltstack.com/blog/]

The official website for this book may also be useful. This includes additional
tutorials, release notes and errata for this book. The official site can be
found here:

Into The Salt Mine [http://intothesaltmine.org]

Conventions Used In This Book

The following typographical conventions are used throughout this book:

Italic

	Indicates new terms, URLs, email addresses, filenames, and file extensions.

Fixed-width

	Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types,
environment variables, statements, and keywords.

Code Snippets

#!/usr/bin/env python2

import salt.client

try:
 caller = salt.client.Caller()
 ret = caller.function('test.ping')

Note

Note

This signifies a tip, suggestion or general note.

Warning

Warning

This indicates a caution or warning.

See Also

See also

This suggests related topics to be referenced for more detailed
information.

Using Code Examples

How To Contact Me

Acknowledgments

As always, to my muse, Casandra.

Introduction

The digital world as we know it is constantly changing. New technologies, both
in hardware and software, are released daily. The number of connected systems
to manage grows exponentially day after day. The Internet itself is larger than
all of us–it’s the biggest thing mankind has ever built. If you think about the
scale at which the technologies we work with are expanding it can be daunting.
The unending amounts of data created, transferred, stored and analyzed is more
than any one of us can keep up with. It’s all pretty amazing if you really think
about it.

Imagine for a minute the vastness of it all. The entire Internet. All the
systems. Servers old and new. Clouds, public and private, constantly forming,
shifting and expanding. Billions of websites around the world. Overwhelming
really. At that scale there’s not one of us that could manage it. Not a hundred
of us or a thousand of us. The only reason it works is because of skilled
admins dutifully maintaining their little sections individually. That’s really the
only way it can be done.. or is it?

Every now and then something changes the game. Some brilliant visionary among us
comes up with an elegant solution to a problem. Something that, for those who
see it, changes everything. These solutions are sometimes software. Sometimes
they are hardware. Sometimes it’s just a new way to think about a problem. I’m
sure you can come up with a few examples. A piece of software you discovered
that makes your life so much easier you wonder how you ever got by without it.
Once something has improed your life that much, how could you ever go back?
Once you’ve seen the potential it’s really hard to not be excited.

This is the way I feel about SaltStack. I see a revolutionary tool unlike any
other currently available. I see the collective contributions of brilliant
developers around the world creating solutions to problems nearly as fast as
they arrive. I see a modular, flexible and lightweight alternative to the
legacy systems and methodologies that we’ve been using for years. What I see
with SaltStack is the future of computing.

History

The history of SaltStack goes back for years. It is the constantly improving
culmination of many attempts at solving a common problem. The author and lead
developer, Thomas S. Hatch, tried solving this problem many times for many
companies. Each time improving on the last, and each time gaining valuable
insight into the most efficient ways to manage systems. Let me take you back a
few years to when my history with Salt began.

It was 2011 and I had just been hired by Thomas at an online music startup. He
had recruited a few of us that had worked together in the past in what I
thought of as a dream team. If I could work with anyone again, it would be
these guys. We got along great. We worked hard. We solved complex problems that
nobody had solved before. We were breaking new ground and growing fast.

Thomas started working on a tool to manage our private cloud infrastructure.
The idea was, using some home-grown tools, we would be able to spin up machines
on the fly, provision them and drop them into different environments. When we
had updates to systems we would simply spin up a new machine with the latest
code on it and transition it into place, recycling the old machine. The vision
was there. It was, at the time, very exciting. The only problem was that the
tools weren’t there. The vision was there, but we didn’t yet have the tools to
take us from point A to point B.

Remember, we were a fledgling startup with grand ideas but not a lot of money.
We had to come up with our own solutions and build our own tools. Everything
from scratch, with a small team.

By the time I hired on work had begun on these tools. We had a tool called
“Bacon”, another called “Butter” and a third called “Salt”. These were
in-house, python-based tools for provisioning and managing our private cloud.
At the time these three were very rudimentary, but for the most part they got
the job done. They had little bugs here and there, but we also had a very
talented development team that squashed those about as quickly as they came up.

I fondly remember times working in what couldn’t even be called a conference
room, shared with five other system engineers. I’d run into an issue with one
of our tools and called it out. I’d promptly hear Thomas call back “give me one
minute!”, and like clockwork the bug would be fixed. Time and time again,
improvements implemented at the speed only a startup can seem to manage. Day by
day our tools become more mature, our infrastructure became larger, and the
company seemed to be doing great.

Somewhere along the line here Thomas had the foresight to get the company to
allow him to open source these tools. He had developed most of it on his own
time at home in his basement (yes, the old cliche), and primarily fixed bugs
with our feedback while at the office. He placed the code on github and work
continued.. but not for long.

Before we knew it months had passed and it was the Holidays. Like any startup
we had minimal time off during the season. There were constantly things to fix
and systems to build. We were preparing for a big deal with a mobile telecom
company and hoping to expand. All of our hard work was finally paying off! We
were all very excited. We were supposed to be getting a dedicated NOC team, new
hires, data center expansion–all the things we needed to support this upcoming
deal. Unfortunately I don’t think any of us really saw what was really coming.

I remember it clearly to this day. One of the perks of working at this startup
was flexible working and office hours. We spent most of our time working from
home and only met as a team in the office once or twice a week. This was a
Wednesday, the week between Christmas and New Years, and I was working from
home in an old beatup chair in my living room. Our lead network engineer and
my roommate at the time was upstairs with the flu, taking the day off.

Then an email arrived. “Staff meeting conference call @5:00pm”. I didn’t think
much of it, and dialed in at the suggested time. This, depending on how you
look at it, is either where it all ended or where it all began.

Layoffs. Everyone. The investors had pulled out. There would be no severance.
There would be no more work. Report to the office tomorrow to turn in any
equipment you have and good luck to you. I was floored! I remember being so
shocked and sitting up so abruptly in surprise that my laptop tumbled to the
floor. My company laptop that I was expected to return in the morning. What had
just happened? Was he for real? I–we–were all shocked. What were we going to
do? I’d never been laid off before. The rest of that afternoon is a bit of a
blur, but I’ll always remember that moment as a crossroads for a lot of us.

As the days and the weeks went on some of us found jobs right away. Others took
a bit longer. For some people it was a great move. They landed even better jobs
with better companies. Some people found temporary consulting work. If you’ve
ever been part of a massive layoff you know how it goes. It’s difficult, but
people usually make it. During this time we all kept in touch pretty well. We’d
share job leads and keep tabs on who was ending up where, and did that company
need anyone else. During all of this there was one person that didn’t seem
worried, and didn’t seem to be as concerned about finding a new job. Thomas.

Thomas had a plan. Something bigger than where we came from or where a lot of
us ended up. He was going to strike out on his own with a new tool that had
been slowly picking up popularity in the open source community. He had decided
he was going to form SaltStack, the company behind the Salt tool we had begun
with at the startup.

If you’re reading this I think you have some idea how that turned out.
SaltStack is now a growing, successful company filled with talented people.
Some of the people from our original dream team now work for Thomas again, this
time at a much more successful company.

To give you an idea of the usefulness of the Salt tool, every one of the
systems engineers from that original startup have deployed Salt for our new
employers. I’m currently architecting a Salt based solution across multiple
products and nearly fourty-thousand servers. Salt is a game changer and I hope
to be able to work with it long into the future.

Chapters

	Installation
	Arch Linux

	Debian

	Fedora

	FreeBSD
	Installation

	Post-Installation

	Gentoo

	OS X

	Red Hat Enterprise
	Enable EPEL

	Installation

	Post Installation

	Solaris

	SuSE

	Ubuntu

	Windows

	Command & Control
	ZeroMQ
	What is ZeroMQ?

	ZeroMQ and Salt

	Key Management
	Listing keys

	Accepting keys

	Rejecting keys

	Printing keys

	Deleting keys

	Key fingerprints

	Key Generation

	Grains
	Introduction

	Goals

	Standard Grains

	Listing Grains

	Defining Grains

	Precedence

	Examples

	Syncing & Updating

	Pillar

	Targeting

	Remote Execution

	Modules

	Returners

	Configuration Management

	Renderers

	States

	Events & Reactions
	Event Bus

	Reactor

	Job Management
	JID

	Job Management

	Web Interface & API
	Halite

	salt-api

	Scheduling Tasks
	Scheduler

	Provisioning
	Salt Bootstrap

	Salt Cloud

	Salt Virt

	Salt at Scale
	Performance Tuning

	High Availability

	Syndication Masters

	Secret Storage
	Introduction

	Requirements
	Encryption

	Reliability

	Scalability

	Secret types

	Administration

	Access Control

	Required Packages

	Required Configuration

	Architecture
	Overview

	Salt Master

	Pillar Data

	Salt Minion

	Key Generation

	GPG Agent Requirements

	The GPG Agent
	gpg.conf

	gpg-agent.conf

	gpg-agent

	unlock the key

	Conclusion

	Development
	Writing Modules
	Anatomy of a Salt module

	header

	imports

	GLOBALS

	__virtualname__

	__virtual__()

	Functions
	“private”

	“public”

	Full Example

	Running Commands & Executing Modules

	Writing States

	Writing Returners

	Writing Renderers

	Writing Grains

	Configuration Options
	Master Config

	Minion Config

	Syndic Config

Installation

	Arch Linux

	Debian

	Fedora

	FreeBSD
	Installation

	Post-Installation

	Gentoo

	OS X

	Red Hat Enterprise
	Enable EPEL

	Installation

	Post Installation

	Solaris

	SuSE

	Ubuntu

	Windows

Arch Linux

Debian

Fedora

FreeBSD

SaltStack is available for FreeBSD in both package and port form. Outlined
below are instructions on installing and starting the Salt service(s) on
FreeBSD.

Installation

On FreeBSD 10 and later Salt can be installed using the pkgng utility:

pkg install py27-salt

On older systems, or systems not using pre-compiled packages, compilation from
ports is also available:

make -C /usr/ports/sysutils/py-salt install clean

Either of these methods will install the full set of Salt utilities including
the Salt master, minion, syndic. Repeat the above instructions for any FreeBSD
system you’d like to be part of your Salt infrastructure.

Post-Installation

The FreeBSD port for Salt lays down a sample config for both master and minion.
While the service will technically run using only default values without a
config file in place, you’ll likely want to copy the sample config into use.

Master

Copy the sample config file:

cp /usr/local/etc/salt/master.sample /usr/local/etc/salt/master

rc.conf

Activate the Salt master in /etc/rc.conf:

sysrc salt_master_enable="YES"

Start the Master

Start the Salt master:

service salt_master start

Minion

Copy the sample config file:

cp /usr/local/etc/salt/minion.sample /usr/local/etc/salt/minion

rc.conf

Activate the Salt minion in /etc/rc.conf:

sysrc salt_minion_enable="YES"

Start the Minion

Start the Salt minion:

service salt_minion start

Gentoo

OS X

Red Hat Enterprise

Salt can be installed on Red Hat Enterprise (and variants) using the EPEL
repository. This additional repository is maintained primarily by Red Hat
employees and Fedora contributors. It contains additional enterprise packages
for use with Red Hat and its variants.

Enable EPEL

To enable the EPEL repository install the appropriate package listed below
based on your version of Red Hat.

RHEL 5

rpm -Uvh http://mirror.pnl.gov/epel/5/i386/epel-release-5-4.noarch.rpm

RHEL 6

rpm -Uvh http://ftp.linux.ncsu.edu/pub/epel/6/i386/epel-release-6-8.noarch.rpm

Installation

On Red Hat based systems the Salt master, minion and syndic packages are built
seperately. It is necessary to install the appropriate package for the system
role. Typically this means you’ll have one Salt master and many Salt minions.

salt-master

yum install salt-master

salt-minion

yum install salt-minion

Post Installation

Master

Configure the service to start at boot:

chkconfig salt-master on

Start the service:

service salt-master start

Minion

Configure the service to start at boot:

chkconfig salt-minion on

Start the service:

service salt-minion start

Solaris

SuSE

Ubuntu

Windows

Command & Control

	ZeroMQ
	What is ZeroMQ?

	ZeroMQ and Salt

	Key Management
	Listing keys

	Accepting keys

	Rejecting keys

	Printing keys

	Deleting keys

	Key fingerprints

	Key Generation

	Grains
	Introduction

	Goals

	Standard Grains

	Listing Grains

	Defining Grains

	Precedence

	Examples

	Syncing & Updating

	Pillar

	Targeting

	Remote Execution

	Modules

	Returners

	Configuration Management

	Renderers

	States

ZeroMQ

I’d be remiss in my duties as an author if I did not start a book about
SaltStack by discussing ZeroMQ. This, I think, is the fundamental cornerstone
of what makes SaltStack so powerful. Without ZeroMQ SaltStack would not be
capable of what it does, and many of the performance-specific benefits would be
gone. In order to share with you the big picture vision of what SaltStack is
capable of, we’ll first need to talk a little bit about ZeroMQ.

What is ZeroMQ?

What is ZeroMQ and why should I care? Let’s just dive right in. First, ZeroMQ
is a socket-based high speed networking library that is leveraged by SaltStack
to allow for real-time communication between systems. SaltStack leverages
ZeroMQ to perform the high-speed communication between systems, while not
requiring a managed service to be running.

Technically ZeroMQ is a message queue, similar to those that you might be
familiar with. AMQP, rabbitmq, kafka, etc. These are all popular message queue
services that you can set up in your infrastructure. The primary difference
here is that ZeroMQ is not another service to setup and maintain. It is simply
a programming library that application developers can leverage in order to
achieve high speed network communication within their application. SaltStack’s
requirement on ZeroMQ requires no effort or configuration on your behalf, but
provides all the benefits of a full-fledged messaging service.

So why ZeroMQ? ZeroMQ was developed initially for high-speed banking
transactions. A large banking institution determined that the network
transactions themselves were too expensive, costing the company millions of
dollars. They specifically set out to design a message queue interface that
would allow for high speed, low cost transactions on the network, saving them
money.

We’re all familiar with the word ‘latency’. We generally understand that the
lower the latency the better. This was essentially the goal here. Achieve the
lowest latency possible, in the simplest manner possible. The people behind
ZeroMQ initially created the AMQP system. This was designed for JP Morgan
Chase, specific to their network latency needs. AMQP has since been abandoned
by the initial developers (although still maintained by adopters), in
preference of what they suggest is an improved system with ZeroMQ.

ZeroMQ and Salt

How does Salt leverage ZeroMQ? To be honest it’s all pretty transparent to the
end user. You could never learn anything more about ZeroMQ than what is
included here and still use SaltStack in an enterprise setting. While it is a
very critical and important piece, the way that it has been implemented is very
transparent to the user. All you have to worry about is starting the
salt-master and salt-minion services (which we’ll cover later), and the
ZeroMQ based network layer is automatically maintained. I think this fact is
both a credit to the ZeroMQ developers as well as the SaltStack developers.
Such an integral component is as transparent and maintenance-free as it is.

The reason that I wanted to cover ZeroMQ first is because it is a key reason
why SaltStack is different than any of its competitors. It is what sets it
apart from other remote execution and configuration management tools. Many of
these other tools leverage existing communication protocols, such as ssh or
a traditional serial TCP socket connection. While these solutions excel in
some areas, they simply weren’t designed for the scale at which SaltStack
operates.

Let me see if I can describe this in a simple way.

SaltStack excels at high-speed, asynchronous communication between connected
systems. This communication–this underlying message bus–can be leveraged for
many different uses, only one of which is parallel remote execution. Let’s
imagine for a moment how this all fits together.

Imagine your infrastructure the way it stands today. Dozens, hundreds or
thousands of servers tucked away nicely in data centers around the world. These
systems are connected to power and networked via switches and routers. it isn’t
terribly complicated if you think about it. You can currently connect to any of
your systems from your management network and do any amount of administration
needed. That administration is generally done over ssh, which is usually a
one-to-one connection. You connect securely to one system, do your maintenance,
and move on to the next. That’s the way it’s been done for years. That’s the
way it’s been done for as long as I can remember anyway.

Granted there are some tools that expand this functionality a bit. Tools like
clusterssh allow you to mirror commands to multiple systems at once over
multiple ssh connections. This works well to an extent, but there is a
point at which this method doesn’t scale. Unfortunately there are simply not a
lot of tools that allow you to control large pieces of your infrastructure in a
timely manner.

Now imagine that all of your systems were connected over a high speed,
asynchronous messaging system. Imagine being able to send commands to one
system or a thousand systems using the same method. Imagine being able to
leverage this high speed message bus to query real-time information about all
of your systems, all at once. This is what ZeroMQ provides for us in the
SaltStack world. A high-speed way to connect to not one-at-a-time, not
two-at-a-time but all-at-a-time with little overhead.

Just imagine for a second a high-speed network connecting all of your systems.
A network that is fully encrypted and sits on top of your existing physical
network infrastructure. This network can easily connect hundreds, thousands and
even tens of thousands of systems without issue. This network can provide you
with a low latency method by which you can query for or send information to
your entire network of servers. I really hope you’re paying attention here,
because this is the foundational piece of the entire Salt stack. This is the
piece that allows the rest of the magic to happen. This is the piece that
facilitates the high speed communication between systems, and not just minion
and master. This high speed network can be leveraged for one minion to query or
communicate with another minion. While it is traditionally a pub-sub
communication pattern it can be thought of more broadly in the sense that it
allows near instant communication between your entire infrastructure.

I want to again reiterate that this high speed network requires no additional
services to install and maintain, and little to know knowledge of the
underlying connectivity to use. It is truly high speed, low latency
connectivity at low cost. Low cost to the network and low cost to the
maintainers of the infrastructure. It is all behind the scenes. The magic
behind the curtain.

As you get deeper into this book I want you to keep in mind that everything
rides on top of this high speed encrypted network. Every command you post to
the message queue is instantly available to all of your systems. Every time you
want to update configuration on your servers the instructions are instantly
available everywhere. No more iterating through lists and sending commands over
ssh. No more sitting and waiting for networking protocols that weren’t designed
for the scale of todays internet try and keep up. You will be leveraging a
modern, encrypted, asynchronous communication network actually designed just
for this. The Internet is growing. Your company is growing. Grow with it.

Key Management

Before we can begin any communication on top of our ZeroMQ network we need to
accept encryption keys. The underlying ZeroMQ network is not encrypted, but
SaltStack adds a layer of AES public key encryption to all communications. This
adds very little overhead while ensuring that all communications are securely
encrypted between all hosts. Before these encryption keys are accepted on the
master, no communication will take place.

The Salt Master provides a utility called salt-key to allow you to manage
these encryption keys. Each minion will automatically generate their respective
keys and submit them to the master for acceptance. There are a number of ways
to manage keys at scale, but here we’ll just look at the basic options of the
salt-key utility.

salt-key executes simple management of Salt public keys used for
authentication and encryption.

Listing keys

-l ARG, --list=ARG

The args pre, un, and unaccepted will list unaccepted/unsigned
keys. The args acc or accepted will list accepted/signed keys. The
args rej or rejected will list rejected keys. Finally, all will
list all keys.

-L, --list-all

List all public keys. (DEPRECATED: use --list-all)

Accepting keys

-a key_name, --accept=key_name

Accept the specified public key(s). Globs are supported.

-A, --accept-all

Accept all pending keys.

--include-all

Include non-pending keys when accepting or rejecting keys.

Rejecting keys

-r key_name, --reject=key_name

Reject the specified public key. Globs are supported.

-R, --reject-all

Reject all pending keys.

--include-all

Include non-pending keys when accepting or rejecting keys.

Printing keys

-p key_name, --print=key_name

Print the specified public key.

-P, --print-all

Print all public keys.

Deleting keys

-d key_name, --delete=key_name

Delete the specified key(s). Globs are supported.

-D, --delete-all

Delete ALL keys.

Key fingerprints

-f key_name, --finger=key_name

Print the specified key fingerprint.

-F, --finger-all

Print all keys fingerprints.

Key Generation

--gen-keys=key_name

Generate a keypair for use with Salt.

--gen-keys-dir=/path/

Define the path to save the generated keypair. Only works with the
--gen-keys option; default is the current directory.

--keysize=key_size

Set the keysize for the generated key. Only works with the --gen-keys
option. Keysize must be 2048 or higher; the default is 2048.

Grains

Introduction

Salt includes a built-in mechanism for determining static information about a
system. These bits of information are referred to as grains within the Salt
vocabulary. You might think of it as “little grains of information” about a
machine. These grains of information include hardware and networking
information, operating system details, and much more. These grains are also
expandable to include other bits of static information that you’d like to have
assigned to a machine. In this chapter we’ll explore the grains subsystem and
learn how to leverage this data within our Salt infrastructure.

Goals

Once you’ve completed this chapter you should have an improved understanding of
what grains are, how grains are queried, defined and synced. You should also understand the
order of grain definition precedence.

Note

If you’re not yet familiar with the grains system it is important to
study this entire chapter. Upcoming chapters will make extensive use of
the information outlined here.

Standard Grains

Salt includes a set of “core grains” that should be available on any system.
These grains should be detected properly on every supported operating system
and distribution. In this section I’ll outline many of these core grains.

The list below defines the full set of core grains found on a CentOS Linux
system. As you can see, these are just the keys without values, but it gives
you an idea of what type of information is stored in grains.

	SSDs

	biosreleasedate

	biosversion

	cpu_flags

	cpu_model

	cpuarch

	domain

	fqdn

	fqdn_ip4

	fqdn_ip6

	gpus

	host

	hwaddr_interfaces

	id

	ip4_interfaces

	ip6_interfaces

	ip_interfaces

	ipv4

	ipv6

	kernel

	kernelrelease

	locale_info

	localhost

	lsb_distrib_codename

	lsb_distrib_id

	lsb_distrib_release

	machine_id

	manufacturer

	master

	mem_total

	nodename

	num_cpus

	num_gpus

	os

	os_family

	osarch

	oscodename

	osfinger

	osfullname

	osmajorrelease

	osrelease

	osrelease_info

	path

	productname

	ps

	pythonexecutable

	pythonpath

	pythonversion

	saltpath

	saltversion

	saltversioninfo

	selinux

	serialnumber

	server_id

	shell

	virtual

	zmqversion

As you can see, there are over fifty items defined for each system within your
Salt infrastructure. These items will be used in upcoming chapters to
demonstrate the flexibility of making your minion management more dynamic.

Let’s look at what some of these values store.

Listing Grains

As you saw in the previous examples, there are a few different ways to query
for grains. Primarily you’ll use the grains module and query for one, all
or specific grain values. If you know the name of the grain you’re looking for
you can query for that directly:

[root@minion ~]# salt '*' grains.item fqdn
alpha:

fqdn:
 alpha.domain.tld

[root@minion ~]# salt '*' grains.item kernelrelease
alpha:

kernelrelease:
 2.6.32-431.29.2.el6.x86_64

[root@minion ~]# salt '*' grains.item mem_total
alpha:

mem_total:
 7872

[root@minion ~]# salt '*' grains.item cpuarch
alpha:

cpuarch:
 x86_64

Defining Grains

Beyond the “core grains” that are defined on every system, it is possible to
define custom grains. These custom grains can be used to define additional
attributes about your systems. Examples of this might be datacenter, rack,
cabinet, or other internal or deployment-specific information. Grains are
defined on a per-minion basis and append to the existing grains.

See also

For more information about custom grains replacing existing grains, see the
next section Precedence.

Custom grains can be defined in a couple of places. Again, because grains are
unique per minion, custom grains are defined on a per-minion basis in one of
two places:

	/etc/salt/minion

	/etc/salt/grains

There is a slight difference in the way custom grains are imported depending on
the location. First we’ll outline the /etc/salt/minion method, followed by
/etc/salt/grains.

/etc/salt/minion

Custom grains can be added directly to the minion config file, or included as a
new file in the /etc/salt/minion.d/ directory. If custom grains are added
to either of these locations the whole structure needs to be prefixed with the
grains configuration option. See the example below:

grains:
 datacenter: va5
 rack: 17
 cabinet: 3
 role: webserver

As you can see, custom grains are the same simple key-value pairs that the core
grains are. These can be any arbitrary key-value pair that you want to define
for your systems. In addition to the key-value pairs, you can define other more
complex data structures such as lists or dictionaries. See the example below
for more complex custom grains.

grains:
 role:
 - webserver
 - memcache
 owners:
 - tuttle
 - ewoolley

/etc/salt/grains

role:
 - webserver
 - memcache

Precedence

Examples

Syncing & Updating

Pillar

Targeting

Remote Execution

Modules

Returners

Configuration Management

Renderers

States

Events & Reactions

	Event Bus

	Reactor

Event Bus

Reactor

Job Management

	JID

	Job Management

JID

Job Management

Web Interface & API

	Halite

	salt-api

Halite

salt-api

Scheduling Tasks

	Scheduler

Scheduler

Provisioning

	Salt Bootstrap

	Salt Cloud

	Salt Virt

Salt Bootstrap

Salt Cloud

Salt Virt

Salt at Scale

	Performance Tuning

	High Availability

	Syndication Masters

Performance Tuning

High Availability

Syndication Masters

Secret Storage

	Introduction

	Requirements
	Encryption

	Reliability

	Scalability

	Secret types

	Administration

	Access Control

	Required Packages

	Required Configuration

	Architecture
	Overview

	Salt Master

	Pillar Data

	Salt Minion

	Key Generation

	GPG Agent Requirements

	The GPG Agent
	gpg.conf

	gpg-agent.conf

	gpg-agent

	unlock the key

	Conclusion

Introduction

In this chapter you’ll learn how to configure and run a Salt-based secret
storage solution. This will give you the ability to store different type of
data in a GPG encrypted key-value storage, and query this data from minion
systems. You will have the ability to limit which systems have access to data,
as well as limit access on a per-user basis.

The components outlined in this chapter require Salt version 2014.7.0 or later.

Requirements

The set of requirements defined for this project are outlined below.

Encryption

	Secrets not stored in plain text on disk (client or server)

	Secrets always encrypted in transit across network

Reliability

	Fault tolerant enough to have the server go down and the application keeps functioning

	Server uptime equivalent to the most critical server or component in the data center

Scalability

	Can support thousands of concurrent servers

	Can support storage of thousands of secrets

Secret types

	Support standard secret types (PKI key pairs, hashes, etc)

	Custom secrets with custom key/value meta data

	Support for automated changing of passwords on schedules and on demand

Administration

	Searching across all fields

	APIs for administration of secrets from the command line

	Bulk edit of secrets

	SDKs for integrating with code and cli

	CLI utility

Access Control

	Secrets can be permissioned to individual servers

	Read, write, and delete as separate permissions

	Group permissioning for both secrets and applications/clients

Required Packages

In order to build this secret storage solution you’ll need:

	Salt Master

	Salt Minion(s)

	Public and private GPG keys

	GPG Agent (optional)

Required Configuration

In order for Salt master to parse the GPG cipher data it needs the GPG
renderer enabled. This is done by updating the /etc/salt/master config file
and applying the below change.

- #renderer: yaml_jinja
+ renderer: jinja | yaml | gpg

Architecture

This secret storage solution fits natively into any Salt infrastructure. This
means SaltStack provides the functionality for this service out of the box. It
simply requires some configuration and initial setup. The following sections
will outline each stop in the process.

Overview

For a really high level overview here’s how each of these components fit
together:

The Salt Master will be the central storage server. All secrets will be stored
within the pillar data on the master (usually /srv/pillar/). Each secret is
stored on the master in a GPG encrypted cipher. The public and private GPG keys
are only ever stored on the master. GPG keys never need to be shared to
minions. The python-gnupg library needs to be installed on any minion
wanting to request secure keys. Lastly, assuming you’ll want to secure your
encrypted secrets with a GPG key passphrase, you’ll need a configured GPG agent
to unlock these secrets upon request, without the requirement of entering a
passphrase each time.

Salt Master

The secret store is housed on the SaltStack master within the Pillar system.
This allows for the secrets to be available to any connected system, with
access limitations defined by the Pillar top file. In some of my early
discussions about this architecture there was some concern about the privacy
and general access to the secret store server. It should be noted that the
SaltStack master should restrict general access just as any “vault” would. If
you can’t trust your administrators that have root access to your systems with
the secrets stored on your server, well, I’d say you have bigger problems. This
configuration assumes access to the SaltStack master is restricted to those
with root access to the general infrastructure.

Note

Anyone with root access on the SaltStack master will be able to retrieve any
encrypted secret.

Pillar Data

The pillar system sits at the heart of this secret storage solution. This is
where the data is stored and where limitations on access to the data is
configured. In this example I assume the default path for pillar data,
/srv/pillar.

First, if it doesn’t yet exist, create the pillar path:

mkdir -p /srv/pillar

Second, populate a default top.sls file. This file is where you map data to
minions.

base:
 '*':
 - cache
 'alpha':
 - vault1
 'bravo':
 - vault2

In the example above I’ve made accessible anything in the cache.sls file to
all machines. The vault1.sls is accessible only to the host alpha, and
vault2.sls only available to bravo. You’ll of course want to update these
values to represent your own system names.

Salt Minion

The SaltStack minions will generally be the source for queries against the
secret store. By defining restrictions within the Pillar configuration you can
limit which machines have access to specific secrets or groups of secrets.
Secrets are queried from the minions using the pillar module. I’ve included
a few examples below:

The command below will query for the value of the secret1 key. This key
represents a key-value store within one of the “vaults” available to this
system.

salt-call pillar.item secret1

If you would like to request all secrets available to a specific system you can
use a similiar command:

salt-call pillar.items

Note

Different outputters can be used when retrieving these secrets.
Outputters include --json, --raw, --txt, yaml_out, and more.

Key Generation

This section outlines the steps required to generate the required public and
private keys.

mkdir /etc/salt/gpgkeys
chmod 0700 /etc/salt/gpgkeys

gpg --homedir /etc/salt/gpgkeys --gen-key

At this point you’ll be prompted with key generation options.

	Select (1) RSA and RSA (default).

	Select 2048 for the keysize (default).

	Select 0 for the key expiration (key does not expire).

	Enter your project name for Real Name.

	Enter an email address for Email address.

	Enter a blank line for Comment.

You’ll be given one last chance to overview what you’ve entered and make any
changes. When you’re ready to generate your keys, select (O)kay.

At this point you’ll be prompted for a passphrase. It should be noted that the
inclusion of a passphrase makes the overall configuration a bit more
complicated, but retains the highest amount of security. It will require a step
of manually unlocking the key with a passphrase anytime the server is rebooted.

Once the key is generated (it may take some time depending on your hardware)
you’ll need to export the public key and import it into the systems keyring. To
export the public key you’ll need to specify which key (as systems can have
many keys). This can be done using any unique information about the key,
including Real Name, Email address or Comment as defined during the
key generation. The example below exports the key using the email address.

gpg --homedir /etc/salt/gpgkeys --armor --export email@address.org > pubkey.gpg

gpg --import pubkey.gpg

You are now ready to encrypt data using this GPG key-pair. This can be done
using a simple shell one-liner:

echo -n "top secret data" | gpg --homedir /etc/salt/gpgkeys --armor --encrypt -r email@address.org

The resulting output of this can then be used within the SaltStack pillar
system in the following format:

secret: |
 -----BEGIN PGP MESSAGE-----
 Version: GnuPG v1

 hQEMAweRHKaPCfNeAQf9GLTN16hCfXAbPwU6BbBK0unOc7i9/etGuVc5CyU9Q6um
 QuetdvQVLFO/HkrC4lgeNQdM6D9E8PKonMlgJPyUvC8ggxhj0/IPFEKmrsnv2k6+
 cnEfmVexS7o/U1VOVjoyUeliMCJlAz/30RXaME49Cpi6No2+vKD8a4q4nZN1UZcG
 RhkhC0S22zNxOXQ38TBkmtJcqxnqT6YWKTUsjVubW3bVC+u2HGqJHu79wmwuN8tz
 m4wBkfCAd8Eyo2jEnWQcM4TcXiF01XPL4z4g1/9AAxh+Q4d8RIRP4fbw7ct4nCJv
 Gr9v2DTF7HNigIMl4ivMIn9fp+EZurJNiQskLgNbktJGAeEKYkqX5iCuB1b693hJ
 FKlwHiJt5yA8X2dDtfk8/Ph1Jx2TwGS+lGjlZaNqp3R1xuAZzXzZMLyZDe5+i3RJ
 skqmFTbOiA==
 =Eqsm
 -----END PGP MESSAGE-----

Note

Please note the pipe character (“|”) after the key name as well as the
yaml-style indentation for the entire GPG cipher value.

GPG Agent Requirements

This section outlines the requirements for the gpg.conf and
gpg-agent.conf.

	gpg.conf updated to use-agent

	gpg-agent.conf updated to specify pinentry-program

	gpg-agent.conf updated to specify extended cache-ttl

The GPG Agent

In order to publish GPG encrypted secrets using a passphrase-enabled key you’ll
need to run a GPG agent. This agent will allow you to authenticate once to the
encryption key and not require a passphrase be entered anytime someone requests
a key. This provides the added security of a passphrase on the encryption key,
but the usability of not requesting a passphrase on every request.

This step of the process requires an update to a configuration file as well as
manually unlocking the GPG key. I will again mention that this process is
currently manual and will need to be repeated anytime the system is restarted
and the GPG agent restarted.

There are a few settings that need to be defined in order for this to work
properly. The next two sections tell the system that you want to use an agent,
and how that agent should be used to prompt you for a passphrase.

It is important to note that the gpg-agent has a default cache ttl value. If
the key is not unlocked or requested within that cache time the passphrase will
be forgotten and you’ll need to request it again.

I have solved this by increasing the default max-cache-ttl value to one day as
well as configured a salt scheduler to request a “cache” token from the secret
store on a regular interval. On each successful request the max-cache-ttl is
reset and the countdown starts over. The combination of a one-time unlocking
and regular queries for an encrypted value will allow the cache to remain
effective until the system or the services is restarted.

gpg.conf

You need to tell the gpg utility that it should use the agent. This is done by
updating the gpg.conf file, which you’ll likely need to create inside the
/etc/salt/gpgkeys directory. This will tell any instance of gpg
specifying this path as a --homedir that it should use a gpg-agent.

+ use-agent

gpg-agent.conf

In order for Salt to prompt you for the passphrase it needs to know how to do
so. This can be defined within the gpg-agent.conf file, which you’ll likely
need to create inside the /etc/salt/gpgkeys directory. This file simply
holds configuration on how the agent should run. In our basic setup you’ll only
need to add a single line to this new file. The example below shows a unified
diff of the file. Add the line(s) as defined by the + character, but do not add
the + character itself.

+ pinentry-program /usr/bin/pinentry-curses
+ default-cache-ttl 86400 # one day
+ max-cache-ttl 31536000 # one year

gpg-agent

You’ll need to manually launch the gpg-agent and then tell SaltStack where it
can find the running agent. This

unlock the key

Once you’ve started the gpg-agent and provided SaltStack with the information
required to access this agent you’re ready to unlock the keyring. All you
should need to do for this to happen is request a key from the Salt master.
Make sure that your pillar top file has been configured to allow the Salt
master access to a key (any key will do). Request this key using the command
below:

salt-call pillar.item secret

When you run this command Salt will try to decipher the encrypted value stored
within your pillar data. Now that it knows about your gpg agent information
it’ll request access through that socket. The first time it runs it’ll
determine that no access has been granted and prompt you for a passphrase. You
should see a curses-based prompt appear in your terminal asking you for the
encryption password. Enter this password once and your key will be unlocked.
This should last for the duration of your session or your GPG max-cache-ttl.

Conclusion

Development

	Writing Modules
	Anatomy of a Salt module

	header

	imports

	GLOBALS

	__virtualname__

	__virtual__()

	Functions
	“private”

	“public”

	Full Example

	Running Commands & Executing Modules

	Writing States

	Writing Returners

	Writing Renderers

	Writing Grains

Writing Modules

While not always required, sometimes it is necessary to write and distribute
custom Salt modules for added functionality or integration with other
products. This chapter will outline the basic structure and best practices for
creating custom execution modules.

Anatomy of a Salt module

When developing custom Salt execution modules there are a few basic rules that
need to be followed. This chapter aims to outline the basic structure of a
module, its key components and general best practices. Let’s dive right in.

header

-*- coding: utf-8 -*-
'''
:maintainer: Christer Edwards (christer.edwards@gmail.com)
:maturity: 20150910
:requires: none
:platform: all
'''

If you’ve written Python scripts in the past you might wonder where the
“shebang” is; the #!/usr/bin/env python declaration. In the case of a Salt
module (or technically a Python module) this is not required as it is not
called directly from the shell. Because this file will be imported by the Salt
loader, as long as it parses properly, it will become available without a
“shebang”.

In this case we simply define the character encoding used within this module.
Unless you need to or have a good reason to use an alternate encoding, utf-8
is probably preferred.

For more information on this tag see PEP-0263 [https://www.python.org/dev/peps/pep-0263/].

Next we document the module. Due to the way that the Salt documentation is
automatically generated, whatever documentation you define within this
top-level docstring will be used in the documentation page. While this is not
required it is preferred, especially if you ever hope to have your module
merged in upstream Salt.

I have written some custom modules that include more content within the
top-level docstring than actual code in the module. This amount of
documentation never hurts, and you’ll never be accused of not properly
documenting your code!

imports

from __future__ import absolute_import

import logging

At this point you can begin importing the Python modules you require. At
minimum you should use the lines in the example above. You’ll likely need more,
but this should always be your baseline.

The absolute_import function from the __future__ provides compatibility
between Python2 and Python3. At the time of this writing Salt is still not
fully Python3 compatible, but using the “future” import standard ensures that
custom modules are at least up to par in that regard.

The second component that you want to import is the logging system. This allows
you to easily add debugging output to your module. This can be extremely
helpful during development and testing, and allows end-users to configure log
levels during runtime.

We’ll explore examples of implementing logging later, but for now you should
make sure you import the logging module.

GLOBALS

LOG = logging.getLogger(__name__)

The above GLOBAL activates the logger and makes it available
throughout your module. In order to leverage the logging GLOBAL
use the following syntax:

LOG Example:

LOG.info('info output')
LOG.debug('debug output')
LOG.error('error output')
LOG.warning('warning output')
LOG.critical('critical output')

__virtualname__

__virtualname__ = 'custom_module'

The __virtualname__ variable definition defines a custom name for your module.
If this definition is missing it will default to the name of the module file
itself (minus the .py). While not required, this variable definition is
common to most modules, and often simply matches the Python module name itself.

This definition also allows the module layer to be abstracted, and is what allows
a standard command across multiple platforms. For example, the pkg module supports
a wide range of binary package providers. From yum to apt-get and everywhere
in-between. Each of these defines __virtualname__ as pkg, meaning based on the
conditional statements within the __virtual__ function only the appropriate pkg
provider is loaded.

__virtual__()

def __virtual__():
 '''
 Determine whether or not to load this module
 '''
 if __salt__['grains.get']('kernel:Linux'):
 return __virtualname__

The __virtual__() function is a critical component of any Salt execution
module. This function allows you to enter logic to determine whether or not
your module should load on the given platform. You have full access to Salt
components, including grains, pillar, testing on the availability of
other Salt execution modules, and more.

Functions

A Salt execution module generally consists of “private” and “public” functions.
These functions are either callable from within the module itself (private), or
callable directly through Salt (public). The way Salt treats functions within
these custom modules very much follows the Pythonic way of handling modules
and methods.

In this section I provide examples of both types of functions:

“private”

def _private():
 '''
 "Private" function; only callable within this module
 '''
 LOG.debug('Executing the _private function')

 ret = {}
 return ret

A “private” function works the same way that any other function does. The only
difference here is that the function name is preceded with an underscore (_).
Any function prefixed with an underscore character will only be
available within the module, and will not be directly callable through Salt.

“public”

def public(*args, **kwargs):
 '''
 "Public" function; available to Salt, ie; module.public

 CLI Example:

 salt '*' module.public
 '''
 LOG.debug('Executing the public function')

 ret = _private()
 return ret

“public” functions within an execution module are mapped and made available to
the Salt administrators. Any “public” function becomes available to be called
from Salt, prefixed by the module name. For example, if our custom module was
called “module”, and our function name was “public”, we’d call this through Salt
by targeting module.public.

Full Example

-*- coding: utf-8 -*-
'''
:maintainer: Christer Edwards (christer.edwards@gmail.com)
:maturity: 20150910
:requires: none
:platform: all
'''
from __future__ import absolute_import

import logging

LOG = logging.getLogger(__name__)

__virtualname__ = 'module_name'

def __virtual__():
 '''
 Determine whether or not to load this module
 '''
 if __salt__['grains.get']('kernel:Linux'):
 return __virtualname__

def _private():
 '''
 "Private" function; only callable within this module
 '''
 LOG.debug('Executing the _private function')

 ret = {}
 return ret

def public(*args, **kwargs):
 '''
 "Public" function; available to Salt, ie; module.public

 CLI Example:

 salt '*' module.public
 '''
 LOG.debug('Executing the public function')

 ret = _private()
 return ret

Running Commands & Executing Modules

Often times a custom execution module is simply a wrapper around a command line
utility. This means that “under the hood” Salt is simply executing an existing
command with certain options. When you realize how this works your first
thought in regards to development might be “Perfect. So I’ll use subprocess
and call the binary...” While that may be the right approach in other cases,
Salt makes this simpler. Salt makes all other loaded modules available to your
custom module. This means you can call any other available Salt module through
your Salt module, including cmd to run arbitrary commands. Please do not
use subprocess in your custom module unless you have a very good reason to do
so. Use the existing cmd module to execute arbitrary commands. An example
might be as follows:

cmd = '{0} {1} {2}'.format('egrep', string, filename)
ret = salt['cmd.run'](cmd)

This function does not process commands through a shell unless the python_shell
flag is set to True. This means that any shell-specific functionality such as
‘echo’ or the use of pipes, redirection or &&, should either be migrated to
cmd.shell or have the python_shell=True flag set here.

Note

The use of python_shell=True means that the shell will accept _any_ input
including potentially malicious commands such as ‘good_command; rm -rf /’. Be
absolutely certain that you have sanitized your input prior to using
python_shell=True

Writing States

Writing Returners

Writing Renderers

Writing Grains

Configuration Options

	Master Config

	Minion Config

	Syndic Config

Master Config

Minion Config

Syndic Config

About The Author

Copyright

This content is copyright Christer Edwards. All rights reserved.

Duplication of this content without the express written permission of the
author is not permitted.

Index

Outline

I imagine there are going to be topics included in this book that are new to
you. Even if you’ve used Salt before there are likely components that you
haven’t used or heard of. I have tried to include everything in this book, but
the difficulty there as with many actively developed software tools, is that
there are additions and fixes being committed even as I write this paragraph.
To that end I have designed this book around the 2014.7.x release. I will
include links and resources that you can follow to see what new features have
been added since publication. Even so, there are a lot of Salt components that
are not commonly published. It’s not that they aren’t useful, it’s that most
blog posts on the Internet stick to the skin-deep, easy to replicate topics.
Basic remote execution and simple examples of configuration management.

In this book I want to cover more than that. I want to cover Salt from the
bottom up. I want to show you the real power of Salt by breaking it up into its
logical components and show how one builds on top of another. I want to
demonstrate how modular Salt really is and how it can be easily extended to
meet even the most complex use cases. I hope by describing Salt in this way
that you’ll be able to catch the big picture vision.

I plan to outline Salt in the following sections:

Command & Control

	ZeroMQ

	Key Management

	targeting
	grains

	pillar

	remote execution
	modules

	returners

	configuration management
	renderers

	states

Events & Reactions

	Event Bus

	Reactor

Job Management

	jid

	job management

Web Interface & API

	Halite

	salt-api

Scheduling Tasks

	scheduler

Provisioning

	salt-bootstrap

	salt-cloud

	salt-virt

Salt at Scale

	performance tuning

	high availability (multi-master)

	syndication masters

Configuration Management for Networking

	proxy minions

Development

	writing modules

	writing states

	writing returners

	writing renderers

	writing grains

Configuration

	master config

	minion config

 _static/comment-close.png

_static/comment-bright.png

_static/minus.png

_static/comment.png

nav.xhtml

 Table of Contents

 		Into The Salt Mine

 		Preface

 		Who Should Read This Book

 		Why I Wrote This Book

 		Navigating This Book

 		Online Resources

 		Conventions Used In This Book

 		Using Code Examples

 		How To Contact Me

 		Acknowledgments

 		Introduction

 		History

 		Chapters

 		Installation

 		Arch Linux

 		Debian

 		Fedora

 		FreeBSD

 		Gentoo

 		OS X

 		Red Hat Enterprise

 		Solaris

 		SuSE

 		Ubuntu

 		Windows

 		Command & Control

 		ZeroMQ

 		Key Management

 		Grains

 		Pillar

 		Targeting

 		Remote Execution

 		Modules

 		Returners

 		Configuration Management

 		Renderers

 		States

 		Events & Reactions

 		Event Bus

 		Reactor

 		Job Management

 		JID

 		Job Management

 		Web Interface & API

 		Halite

 		salt-api

 		Scheduling Tasks

 		Scheduler

 		Provisioning

 		Salt Bootstrap

 		Salt Cloud

 		Salt Virt

 		Salt at Scale

 		Performance Tuning

 		High Availability

 		Syndication Masters

 		Secret Storage

 		Introduction

 		Requirements

 		Architecture

 		Key Generation

 		GPG Agent Requirements

 		The GPG Agent

 		Conclusion

 		Development

 		Writing Modules

 		Functions

 		Running Commands & Executing Modules

 		Writing States

 		Writing Returners

 		Writing Renderers

 		Writing Grains

 		Configuration Options

 		Master Config

 		Minion Config

 		Syndic Config

 		About The Author

 		Copyright

_static/plus.png

_static/ajax-loader.gif

_static/file.png

_static/up.png

_static/up-pressed.png

_static/down-pressed.png

_static/down.png

