
Inthing Documentation
Release 0.1.4

Will McGugan

May 02, 2016

Contents

1 Introduction 3
1.1 Getting Started . 3
1.2 Demo . 3

2 Streams 5
2.1 Creating Stream Objects . 5
2.2 Unclaimed Streams . 6
2.3 Stream Objects . 6
2.4 Rate Limiting . 6

3 Events 7
3.1 Priorities . 7
3.2 Markup . 7
3.3 Capturing Output . 8

4 Event Types 9
4.1 Text . 9
4.2 Code . 9
4.3 Image . 10
4.4 Screenshots . 10

5 Command Line App 11
5.1 Capturing Output . 11

6 Code 13
6.1 Inthing module . 13

7 Indices and tables 17

Python Module Index 19

i

ii

Inthing Documentation, Release 0.1.4

Inthing is a Python interface to https://www.inthing.io, a realtime events service.

Contents:

Contents 1

https://www.inthing.io

Inthing Documentation, Release 0.1.4

2 Contents

CHAPTER 1

Introduction

Inthing is a Python module for https://inthing.io.

Inthing users create streams of events, which are much like a social media timelines in that they can contain text,
rich-media, comments etc., but unlike tranditional social media, Inthing streams are intended primarily for machines
to post to via a easy to use API.

How a stream is used and what kind of events are posted to it is entirely up to the developer. It can be used for
something as sophisticated as a motion activated camera, or as simple as a one-liner to send a text notification.

1.1 Getting Started

Use PIP to install the Python module:

pip install inthing

You may need to prefix that with sudo on some systems.

This will install the inthing Python module, and also the inthing command line app. Run the following from
the command line to check instalation:

inthing -v

You will probably also want to create an inthing.io account, which you can do by visiting https://inthing.io. Creating
an account is not a requirement, but will give you more control over your streams.

1.2 Demo

Here’s a very simple example that generates an ascii mandlebrot set and posts it to a new Inthing stream:

demo.py
"""An example of posting a text event to a stream."""

from inthing import Stream

def mandel(xsize=80, ysize=20, max_iteration=50):
"""Render an ascii mandelbrot set!"""
chars = " .,~:;+*%@##"
rows = []
for pixy in xrange(ysize):

3

https://inthing.io
https://inthing.io

Inthing Documentation, Release 0.1.4

y0 = (float(pixy) / ysize) * 2 - 1
row = ""
for pixx in xrange(xsize):

x0 = (float(pixx) / xsize) * 3 - 2
x = 0
y = 0
iteration = 0
while (x * x + y * y < 4) and iteration < max_iteration:

xtemp = x * x - y * y + x0
y = 2 * x * y + y0
x = xtemp
iteration += 1

row += chars[iteration % 10]
rows.append(row)

return "```\n{}\n```\n#mandlebrot".format('\n'.join(rows))

stream = Stream.new()
result = stream.text(mandel(), title="Mandelbrot Set!")
result.browse()

4 Chapter 1. Introduction

CHAPTER 2

Streams

A stream is a URL on inthing.io with a list of events. You can post to a stream with an instance of a
inthing.stream.Stream class.

2.1 Creating Stream Objects

To create a stream object for an existing stream, pass in the URL of the stream as to the Stream constructor as follows:

>>> from inthing import Stream
>>> my_stream = Stream('https://www.inthing.io/will/test/')

Note: You can drop the https://www.inthing.io/ part and just use /will/test/ if you prefer.

Most streams will be protected with a password, which you can pass in with the password parameter:

>>> my_stream = Stream('https://www.inthing.io/will/test/', password="daffodil")

Streams also have a UUID (universally unique identifier), which you can use in place of a URL. Here’s an example:

>>> my_stream = Stream('4d9f242c-0805-11e6-8d28-fb90f1f704e0', password="daffodil")

Using a UUID has the advantage that it will never change, whereas the URL might, if you change the title.

If you store the stream ID and password in the environments variables INTHING_STREAM and
INTHING_STREAM_PASSWORD, you can omit the arguments from the Stream constructor entirely.

For example, in Linux and OSX, you can do the following from the terminal:

export INTHING_STREAM=4d9f242c-0805-11e6-8d28-fb90f1f704e0
export INTHING_STREAM_PASSWORD=daffodil

Then in Python, you can create a stream object as follows:

from inthing import Stream
my_stream = Stream()

Note: Environment variables also work with Windows, but the process differs from version to version. Ask Google
for instructions.

5

Inthing Documentation, Release 0.1.4

2.2 Unclaimed Streams

An alternative to creating a stream object for an existing stream, is to call inthing.Stream.new(), which creates
a new stream on the server. Here’s an example:

>>> from inthing import Stream
>>> my_stream = Stream.new()
>>> print(my_stream.url)

Stream objects created in this way are unclaimed, in that they aren’t owned by anyone. You will not see the unclaimed
stream in your timeline – but you may still post events to it as normal. If you would like to claim the stream, you
should visit the stream’s page and click the Claim button. This will attach the stream to your account.

2.3 Stream Objects

Streams are relatively simple objects. For most applications you will only ever need a single Stream, which you may
use to post events.

Streams have the following public attributes:

• stream.generator A string the identifies the entitiy creating events. The default value for this is the
hostname of the computer it is running on. (read/write)

• stream.id The UUID of the stream. (read only)

• stream.url The full URL to the stream. (read only)

The inthing.Stream.browse() method will open a webbrowser the stream page. This does the equivelent of
opening a browser and navigating to the URL in stream.url.

The following public methods on stream objects are devoted to posting various kinds of events:

• inthing.Stream.code()

• inthing.Stream.text()

• inthing.Stream.image()

• inthing.Stream.screenshot()

See Events for details.

2.4 Rate Limiting

The inthing.io server imposes a rate limit on requests; if you add events too rapidly, the Stream object will throw a
inthing.errors.RateLimited exception for new events. If this happens, you can wait a while and try again.

This is just a precaution against errors in your code from overloading the server by posting too quickly. The rate limit
is high enough that you are unlikely to reach it with functioning code. The server allows for bursts of events as long
as the number of events averages out within a longer period.

The exact limits are subject to change, but as a general rule, if events are being posted too fast for an average human
to read, you may be rate limited.

6 Chapter 2. Streams

CHAPTER 3

Events

Inthing supports a variety of event types, which display different kinds of information (text, code, images etc) on your
stream.

When you successfully post an event with one of the methods in inthing.Stream, you will get back a
inthing.Result object, which contains a url attribute, and a inthing.Result.browse() method.

Here’s an example of using the Result object:

from inthing import Stream
stream = Stream.new()
result = stream.text('my first event!')
print("opening {}".format(result.url))
result.browse()

See Event Types for a description of the event types.

3.1 Priorities

Events have an associated priority value which is an integer between -2 and +2 (inclusive).

Table 3.1: Priority values

Value Meaning
+2 Urgent
+1 Important (of greater than normal signficance)
0 Normal priority (default)
-1 Informative
-2 Verbose

3.2 Markup

Most events will have a description field. You can set how the description should be displayed via the markup param-
eter.

7

Inthing Documentation, Release 0.1.4

Table 3.2: Supported markups

Markup Meaning
text Simple text
markdown Markdown.
html Simple HTML
bbcode BBCode.

Note: Inthing.io will strip descriptions of potentially dangerous markup, such as <script> tags.

3.3 Capturing Output

Inthing can automatically capture output from your Python script or application. It does this by hooking in to your
apps standard output and standard error, i.e. anything you print to the terminal.

Here’s an example:

from inthing import Stream
stream = Stream.new()
with stream.capture(title="Capture all the things!") as capture:

print('Anything you print will get captured...')
capture.browse()

In the above code, any print statement inside the with blog will be captured. The text will still appear in your terminal,
but when the with block exists, inthing will upload a new event.

8 Chapter 3. Events

http://commonmark.org/
https://en.wikipedia.org/wiki/BBCode

CHAPTER 4

Event Types

The following is a description of the event types you can post to a stream.

4.1 Text

A text event may contain text for pretty much any purpose.

The following is an example that posts text messages to a stream (Ctrl+C to exit):

from inthing import Stream
stream = Stream.new()
stream.browse()
while 1:

stream.text(raw_input('type something: '))

You could adapt this quite easily to create a realtime chat system on the web.

The text method also has a markup parameter which sets the markup for the text. By default it is markdown, which
means you can easily insert formatting. Here’s an example:

stream.text('**Bold** and *italic*')

You can also set the markup parameter to text, bbcode or html. But note that Inthing.io will strip out any
potentially dangerous HTML markup (so no script tags)!

See inthing.Stream.screenshot() for details.

4.2 Code

A code event contains source code which you can share and comment on. If you have a piece of code you are
particularily proud of, you can post it to Inthing.io. It will be nicely syntax highlighted. A variety of languages are
supported.

Here’s how you might post source code to a stream:

my_stream.code('cool.py', language="python", title="I wrote cool.py")

See inthing.Stream.code() for details.

9

http://commonmark.org/help/

Inthing Documentation, Release 0.1.4

4.3 Image

An image event contains an image, typically a photo.

Here’s how you would post the file alien1.jpg:

my_stream.image('./alien1.jpg', description="Alien Autopsy!")

See inthing.Stream.image() for details.

4.4 Screenshots

A screenshot event is a special kind of image event that contains a screenshot. Calling
inthing.Stream.screenshot() will capture a screenshot of your desktop and add the event to your
Stream.

Here’s how you would upload a screenshot after 5 seconds:

my_stream.screenshot(title=”My Desktop!”, delay=5)

Warning: Be careful with this event, you wouldn’t want to screenshot any passwords or nuclear launch codes!

See inthing.Stream.screenshot() for details.

10 Chapter 4. Event Types

CHAPTER 5

Command Line App

The inthing app is installed with the Python module and can be used to post events directly to a stream via the command
line. To check if it is available, run the following:

inthing -v

You can specify the stream credentials via the environement variables INTHING_STREAM and
INTHING_STREAM_PASSWORD. These can be the same values as used by the the Python inthing.Stream
object. Here’s an example (Linux or OSX):

export INTHING_STREAM=https://www.inthing.io/will/test/
export INTHING_STREAM_PASSWORD=daffodil

You can then one of the available subcommands supported by inthing. The following example posts a simple text
event:

inthing text "Hello, World!" --title "Test Event"

An alternative to using environment variables is to specify the stream and password on the command line as well.
Here’s an example:

inthing text "Hello, World!" --title "Test Event" --id https://www.inthing.io/will/test/ --password daffodil

To see the full range of subcommands available, run the following:

inthing -h

5.1 Capturing Output

The capture subcommand can be used to capture output from a command and post an event to your stream. Simply
pipe a command in to inthing captue. Here’s an example:

uptime | inthing capture

This will add a text event containing the output of the uptime command.

If you add the --browse switch it will open your browser at the new event, or added the --url to just display the
URL.

11

Inthing Documentation, Release 0.1.4

12 Chapter 5. Command Line App

CHAPTER 6

Code

6.1 Inthing module

class inthing.Result(url)
Represents a successfully posted event.

The url attribute contains the URL to the the event’s page.

browse()
Open a webbrowser at this event.

class inthing.Stream(id=None, password=None, generator=None, silence_errors=False)
Inthing Stream class interface.

This class is the main interface for posting to an Inthing Stream. It represents a single Stream, and has methods
to post the various event types.

Construct a new Stream object.

Parameters

• id (str) – The ID of your stream. This may be either a UUID (mixture of letters an
numbers), or the URL of the stream.

• password (str) – The stream’s password, if required. It’s possible for a stream to have
no password, which allows for anyone to post to it.

• generator (str) – A short string to identify what is creating events.

• silence_errors (bool) – If True, ignore errors when posting events.

Return type Stream

add_event(event)
Add an event.

Parameters event (Event) – Event you want to add.

browse()
Open this stream in your browser.

capture(title=u’Captured output’, description=None, browse=False, stdout=True, stderr=False)
Capture stdout and stderr.

Parameters

• title (str) – Title of the captured event

13

Inthing Documentation, Release 0.1.4

• description (str) – Optional description

• browse (bool) – Open a webbrowse to new event?

• stdout (bool) – Capture stdout?

• stderr (bool) – Capture stderr?

This method returns a context manager, which will capture print output, and post it to a stream. Here is
an example:

from inthing import Stream
stream = Stream.new()
with stream.capture(title="Capture Example") as capture:

print('This output will go to a stream!')
capture.browse()

code(code, language=None, description=None, title=u’Code’, markup=u’markdown’, priority=0)
Add a (source) code event.

with open('example.py') as code_file:
stream.code(code_file, language="Python")

Parameters

• code (str or open object) – Path to a file containing code, or an open file object

• language (str) – Programming language.

• description (str) – A description of the source dode.

• title (str) – Title of the Event.

• markup (str) – Markup type for the description.

Return type Result

image(path, description=None, title=u’New Photo’, markup=u’markdown’, priority=0)
Add an image event.

Parameters

• path (str) – A path to a JPG or PNG.

• description (str) – Description of the image.

• title (str) – Title of the image event.

• markup (str) – Markup used to render description.

Return type Result

classmethod new()
Create a new unclaimed stream.

An unclaimed stream functions like any other stream, but is not owned by any user, and has no password
set. Anyone may post events to an unclaimed stream, but in practice they are private as long as you don’t
give away the ID or URL.

Rtype Stream

>>> my_stream = Stream.new()
>>> my_stream.text('I just create a new stream!')
>>> print(my_stream.url)

14 Chapter 6. Code

Inthing Documentation, Release 0.1.4

screenshot(delay=0, description=None, title=u’New Screenshot’, markup=u’markdown’, prior-
ity=0)

Take a screenshot and post an event.

Parameters

• delay (int) – Number of seconds to wait before taking the screenshot.

• description (str) – Description of the screenshot.

• title (str) – Title of the event.

• markup (str) – Markup of the description.

Return type Result

text(text, title=u’Text’, markup=u’markdown’, priority=0)
Add a text event to this stream.

>>> my_stream = Stream.new()
>>> result = my_stream.text('Hello, World!')
>>> result.browse()

Parameters

• text (str) – The text you want to associate with this event.

• title (str) – The title of the event

Return type Result

class inthing.Event(title=u’New Event’, type=u’text’, priority=0, markup=u’markdown’, descrip-
tion=None, text=None, generator=None, code_language=None)

Contains the details of a new event.

This class provides a more finely grained way of creating events. To use, construct an Event instance and
add it to a stream with inthing.Stream.add_event().

Store details for a single event.

This class is used in the low level interface for creating events. You probably want to used the methods on
inthing.Stream for a simpler interface.

Here’s an example of using this class:

event = Event(title="Example text event", text="Hello, World!")
stream.add_event(event)

Parameters

• title (str) – The title of the event, shown as a header.

• type (str) – The type of the event.

• markup (str) – The markup used to render the descriptions, may be ‘text’, ‘html’, ‘mark-
down’

• text (str) – Text associated with the event.

• generator (str) – Text regarding what generated the event.

• code_language (str) – The language used to syntax highlight code events.

add_image(path)
Add an image to the event.

6.1. Inthing module 15

Inthing Documentation, Release 0.1.4

Parameters path (str) – Path to an image file

exception inthing.errors.BadResponse
The server returned an unexpected response.

exception inthing.errors.ConnectivityError
There was an issue reaching the server.

exception inthing.errors.EventError
An error relating to an attempt to post an event.

exception inthing.errors.EventFail(result)
The event contained invalid information.

print_error()
Print error details to stderr.

exception inthing.errors.RateLimited
Events are being posted to fast.

exception inthing.errors.StreamError
Base class for inthing Stream related errors.

16 Chapter 6. Code

CHAPTER 7

Indices and tables

• genindex

• modindex

• search

17

Inthing Documentation, Release 0.1.4

18 Chapter 7. Indices and tables

Python Module Index

i
inthing, 13
inthing.errors, 16

19

Inthing Documentation, Release 0.1.4

20 Python Module Index

Index

A
add_event() (inthing.Stream method), 13
add_image() (inthing.Event method), 15

B
BadResponse, 16
browse() (inthing.Result method), 13
browse() (inthing.Stream method), 13

C
capture() (inthing.Stream method), 13
code() (inthing.Stream method), 14
ConnectivityError, 16

E
Event (class in inthing), 15
EventError, 16
EventFail, 16

I
image() (inthing.Stream method), 14
inthing (module), 13
inthing.errors (module), 16

N
new() (inthing.Stream class method), 14

P
print_error() (inthing.errors.EventFail method), 16

R
RateLimited, 16
Result (class in inthing), 13

S
screenshot() (inthing.Stream method), 14
Stream (class in inthing), 13
StreamError, 16

T
text() (inthing.Stream method), 15

21

	Introduction
	Getting Started
	Demo

	Streams
	Creating Stream Objects
	Unclaimed Streams
	Stream Objects
	Rate Limiting

	Events
	Priorities
	Markup
	Capturing Output

	Event Types
	Text
	Code
	Image
	Screenshots

	Command Line App
	Capturing Output

	Code
	Inthing module

	Indices and tables
	Python Module Index

