

Welcome to intake_xarray’s documentation!

This package enables the set of data-loading methods from Xarray to be used within the Intake
data access and cataloging system.

Contents:

	Quickstart
	Installation

	Usage

	netcdf/grib/tif

	opendap

	zarr

	rasterio

	xarray_image

	API Reference
	NetCDFSource

	OpenDapSource

	ZarrSource

	RasterIOSource

	ImageSource

	Contributing to intake-xarray
	Feature requests and feedback

	Report bugs

	Fix bugs

	Write documentation

	Preparing Pull Requests

	Release a new version

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

intake-xarray provides quick and easy access to n dimensional data
suitable for reading by xarray [https://xarray.pydata.org].

Installation

To use this plugin for intake [https://github.com/ContinuumIO/intake], install with the following command:

conda install -c conda-forge intake-xarray

Usage

Inline use

After installation, the functions intake.open_netcdf,
intake.open_rasterio, intake.open_zarr,
intake.open_xarray_image, and intake.open_opendap will become available.
They can be used to open data files as xarray objects.

Creating Catalog Entries

Catalog entries must specify driver: netcdf, driver: rasterio,
driver: zarr, driver: xarray_image, or driver: opendap
as appropriate.

The zarr and image plugins allow access to remote data stores (s3 and gcs),
settings relevant to those should be passed in using the parameter
storage_options.

Choosing a Driver

While all the drivers in the intake-xarray plugin yield xarray
objects, they do not all accept the same file formats.

netcdf/grib/tif

Supports any local or downloadable file that can be passed to
xarray.open_mfdataset [https://xarray.pydata.org/en/stable/generated/xarray.open_mfdataset.html].
Works for:

	netcdf when installing netcdf4 [https://github.com/Unidata/netcdf4-python]

	tif when installing rioxarray [https://github.com/corteva/rioxarray)with`engine="rasterio"]

	grib when installing cfgrib [https://github.com/ecmwf/cfgrib/)with`engine="cfgrib"]

opendap

Supports OPeNDAP URLs, optionally with esgf, urs or generic_http authentication.

zarr

Supports .zarr directories. See https://zarr.readthedocs.io/ for more
information.

rasterio

Supports any file format supported by rasterio.open - most commonly
geotiffs.

Note: Consider installing rioxarray and using the netcdf driver with engine="rasterio".

xarray_image

Supports any file format that can be passed to scikit-image.io.imread
which includes all the common image formats (jpg, png, tif, …)

Caching

Remote files can be cached locally by `fsspec<https://filesystem-spec.readthedocs.io/en/latest/features.html#url-chaining>`_.
Note that opendap does not support caching as the URL does not back a downloadable file.

API Reference

	intake_xarray.netcdf.NetCDFSource(*args, ...)

	Open a xarray file.

	intake_xarray.opendap.OpenDapSource(*args, ...)

	Open a OPeNDAP source.

	intake_xarray.xzarr.ZarrSource(*args, **kwargs)

	Open a xarray dataset.

	intake_xarray.raster.RasterIOSource(*args, ...)

	Open a xarray dataset via RasterIO.

	intake_xarray.image.ImageSource(*args, **kwargs)

	Open a xarray dataset from image files.

	
class intake_xarray.netcdf.NetCDFSource(*args, **kwargs)

	Open a xarray file.

	Parameters

	
	urlpathstr, List[str]
	Path to source file. May include glob “*” characters, format
pattern strings, or list.
Some examples:

	{{ CATALOG_DIR }}/data/air.nc

	{{ CATALOG_DIR }}/data/*.nc

	{{ CATALOG_DIR }}/data/air_{year}.nc

	chunksint or dict, optional
	Chunks is used to load the new dataset into dask
arrays. chunks={} loads the dataset with dask using a single
chunk for all arrays.

	combine({‘by_coords’, ‘nested’}, optional)
	Which function is used to concatenate all the files when urlpath
has a wildcard. It is recommended to set this argument in all
your catalogs because the default has changed and is going to change.
It was “nested”, and is now the default of xarray.open_mfdataset
which is “auto_combine”, and is planed to change from “auto” to
“by_corrds” in a near future.

	concat_dimstr, optional
	Name of dimension along which to concatenate the files. Can
be new or pre-existing if combine is “nested”. Must be None or new if
combine is “by_coords”.

	path_as_patternbool or str, optional
	Whether to treat the path as a pattern (ie. data_{field}.nc)
and create new coodinates in the output corresponding to pattern
fields. If str, is treated as pattern to match on. Default is True.

	xarray_kwargs: dict
	Additional xarray kwargs for xr.open_dataset() or xr.open_mfdataset().

	storage_options: dict
	If using a remote fs (whether caching locally or not), these are
the kwargs to pass to that FS.

	Attributes

	
	cache
	

	cache_dirs
	

	cat
	

	classname
	

	description
	

	dtype
	

	entry
	

	gui
	Source GUI, with parameter selection and plotting

	has_been_persisted
	

	hvplot
	Returns a hvPlot object to provide a high-level plotting API.

	is_persisted
	

	path_as_pattern
	

	pattern
	

	plot
	Returns a hvPlot object to provide a high-level plotting API.

	plots
	List custom associated quick-plots

	shape
	

	urlpath
	

Methods

	__call__(**kwargs)

	Create a new instance of this source with altered arguments

	close()

	Delete open file from memory

	configure_new(**kwargs)

	Create a new instance of this source with altered arguments

	describe()

	Description from the entry spec

	discover()

	Open resource and populate the source attributes.

	export(path, **kwargs)

	Save this data for sharing with other people

	get(**kwargs)

	Create a new instance of this source with altered arguments

	persist([ttl])

	Save data from this source to local persistent storage

	read()

	Return a version of the xarray with all the data in memory

	read_chunked()

	Return xarray object (which will have chunks)

	read_partition(i)

	Fetch one chunk of data at tuple index i

	to_dask()

	Return xarray object where variables are dask arrays

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml()

	Return YAML representation of this data-source

	get_persisted

	

	set_cache_dir

	

	
class intake_xarray.opendap.OpenDapSource(*args, **kwargs)

	Open a OPeNDAP source.

	Parameters

	
	urlpath: str
	Path to source file.

	chunks: None, int or dict
	Chunks is used to load the new dataset into dask
arrays. chunks={} loads the dataset with dask using a single
chunk for all arrays.

	auth: None, “esgf” or “urs”
	Method of authenticating to the OPeNDAP server.
Choose from one of the following:
None - [Default] Anonymous access.
‘esgf’ - Earth System Grid Federation.
‘urs’ - NASA Earthdata Login, also known as URS.
‘generic_http’ - OPeNDAP servers which support plain HTTP authentication
None - No authentication.
Note that you will need to set your username and password respectively using the
environment variables DAP_USER and DAP_PASSWORD.

	engine: str
	Engine used for reading OPeNDAP URL. Should be one of ‘pydap’ or ‘netcdf4’.

	Attributes

	
	cache
	

	cache_dirs
	

	cat
	

	classname
	

	description
	

	dtype
	

	entry
	

	gui
	Source GUI, with parameter selection and plotting

	has_been_persisted
	

	hvplot
	Returns a hvPlot object to provide a high-level plotting API.

	is_persisted
	

	plot
	Returns a hvPlot object to provide a high-level plotting API.

	plots
	List custom associated quick-plots

	shape
	

Methods

	__call__(**kwargs)

	Create a new instance of this source with altered arguments

	close()

	Delete open file from memory

	configure_new(**kwargs)

	Create a new instance of this source with altered arguments

	describe()

	Description from the entry spec

	discover()

	Open resource and populate the source attributes.

	export(path, **kwargs)

	Save this data for sharing with other people

	get(**kwargs)

	Create a new instance of this source with altered arguments

	persist([ttl])

	Save data from this source to local persistent storage

	read()

	Return a version of the xarray with all the data in memory

	read_chunked()

	Return xarray object (which will have chunks)

	read_partition(i)

	Fetch one chunk of data at tuple index i

	to_dask()

	Return xarray object where variables are dask arrays

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml()

	Return YAML representation of this data-source

	get_persisted

	

	set_cache_dir

	

	
class intake_xarray.xzarr.ZarrSource(*args, **kwargs)

	Open a xarray dataset.

	Parameters

	
	urlpath: str
	Path to source. This can be a local directory or a remote data
service (i.e., with a protocol specifier like 's3://).

	storage_options: dict
	Parameters passed to the backend file-system

	kwargs:
	Further parameters are passed to xr.open_zarr

	Attributes

	
	cache
	

	cache_dirs
	

	cat
	

	classname
	

	description
	

	dtype
	

	entry
	

	gui
	Source GUI, with parameter selection and plotting

	has_been_persisted
	

	hvplot
	Returns a hvPlot object to provide a high-level plotting API.

	is_persisted
	

	plot
	Returns a hvPlot object to provide a high-level plotting API.

	plots
	List custom associated quick-plots

	shape
	

Methods

	__call__(**kwargs)

	Create a new instance of this source with altered arguments

	close()

	Delete open file from memory

	configure_new(**kwargs)

	Create a new instance of this source with altered arguments

	describe()

	Description from the entry spec

	discover()

	Open resource and populate the source attributes.

	export(path, **kwargs)

	Save this data for sharing with other people

	get(**kwargs)

	Create a new instance of this source with altered arguments

	persist([ttl])

	Save data from this source to local persistent storage

	read()

	Return a version of the xarray with all the data in memory

	read_chunked()

	Return xarray object (which will have chunks)

	read_partition(i)

	Fetch one chunk of data at tuple index i

	to_dask()

	Return xarray object where variables are dask arrays

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml()

	Return YAML representation of this data-source

	get_persisted

	

	set_cache_dir

	

	
close()

	Delete open file from memory

	
class intake_xarray.raster.RasterIOSource(*args, **kwargs)

	Open a xarray dataset via RasterIO.

This creates an xarray.array, not a dataset (i.e., there is exactly one
variable).

See https://rasterio.readthedocs.io/en/latest/ for the file formats
supported, particularly GeoTIFF, and
http://xarray.pydata.org/en/stable/generated/xarray.open_rasterio.html#xarray.open_rasterio
for possible extra arguments

	Parameters

	
	urlpath: str or iterable, location of data
	May be a local path, or remote path if including a protocol specifier
such as 's3://'. May include glob wildcards or format pattern strings.
Must be a format supported by rasterIO (normally GeoTiff).
Some examples:

	{{ CATALOG_DIR }}data/RGB.tif

	s3://data/*.tif

	s3://data/landsat8_band{band}.tif

	s3://data/{location}/landsat8_band{band}.tif

	{{ CATALOG_DIR }}data/landsat8_{start_date:%Y%m%d}_band{band}.tif

	chunks: None or int or dict, optional
	Chunks is used to load the new dataset into dask
arrays. chunks={} loads the dataset with dask using a single
chunk for all arrays. default None loads numpy arrays.

	path_as_pattern: bool or str, optional
	Whether to treat the path as a pattern (ie. data_{field}.tif)
and create new coodinates in the output corresponding to pattern
fields. If str, is treated as pattern to match on. Default is True.

	Attributes

	
	cache
	

	cache_dirs
	

	cat
	

	classname
	

	description
	

	dtype
	

	entry
	

	gui
	Source GUI, with parameter selection and plotting

	has_been_persisted
	

	hvplot
	Returns a hvPlot object to provide a high-level plotting API.

	is_persisted
	

	path_as_pattern
	

	pattern
	

	plot
	Returns a hvPlot object to provide a high-level plotting API.

	plots
	List custom associated quick-plots

	shape
	

	urlpath
	

Methods

	__call__(**kwargs)

	Create a new instance of this source with altered arguments

	close()

	Delete open file from memory

	configure_new(**kwargs)

	Create a new instance of this source with altered arguments

	describe()

	Description from the entry spec

	discover()

	Open resource and populate the source attributes.

	export(path, **kwargs)

	Save this data for sharing with other people

	get(**kwargs)

	Create a new instance of this source with altered arguments

	persist([ttl])

	Save data from this source to local persistent storage

	read()

	Return a version of the xarray with all the data in memory

	read_chunked()

	Return xarray object (which will have chunks)

	read_partition(i)

	Fetch one chunk of data at tuple index i

	to_dask()

	Return xarray object where variables are dask arrays

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml()

	Return YAML representation of this data-source

	get_persisted

	

	set_cache_dir

	

	
class intake_xarray.image.ImageSource(*args, **kwargs)

	Open a xarray dataset from image files.

This creates an xarray.DataArray or an xarray.Dataset.
See http://scikit-image.org/docs/dev/api/skimage.io.html#skimage.io.imread
for the file formats supported.

NOTE: Although skimage.io.imread is used by default, any reader
function which accepts a file object and outputs a numpy array can be
used instead.

	Parameters

	
	urlpathstr or iterable, location of data
	May be a local path, or remote path if including a protocol specifier
such as 's3://'. May include glob wildcards or format pattern
strings. Must be a format supported by skimage.io.imread or
user-supplied imread. Some examples:

	{{ CATALOG_DIR }}/data/RGB.tif

	s3://data/*.jpeg

	https://example.com/image.png

	s3://data/Images/{{ landuse }}/{{ '%02d' % id }}.tif

	chunksint or dict
	Chunks is used to load the new dataset into dask
arrays. chunks={} loads the dataset with dask using a single
chunk for all arrays.

	path_as_patternbool or str, optional
	Whether to treat the path as a pattern (ie. data_{field}.tif)
and create new coodinates in the output corresponding to pattern
fields. If str, is treated as pattern to match on. Default is True.

	concat_dimstr or iterable
	Dimension over which to concatenate. If iterable, all fields must be
part of the the pattern.

	imreadfunction (optional)
	Optionally provide custom imread function.
Function should expect a file object and produce a numpy array.
Defaults to skimage.io.imread.

	preprocessfunction (optional)
	Optionally provide custom function to preprocess the image.
Function should expect a numpy array for a single image and return
a numpy array.

	coerce_shapeiterable of len 2 (optional)
	Optionally coerce the shape of the height and width of the image
by setting coerce_shape to desired shape.

	Attributes

	
	cache
	

	cache_dirs
	

	cat
	

	classname
	

	description
	

	dtype
	

	entry
	

	gui
	Source GUI, with parameter selection and plotting

	has_been_persisted
	

	hvplot
	Returns a hvPlot object to provide a high-level plotting API.

	is_persisted
	

	path_as_pattern
	

	pattern
	

	plot
	Returns a hvPlot object to provide a high-level plotting API.

	plots
	List custom associated quick-plots

	shape
	

	urlpath
	

Methods

	__call__(**kwargs)

	Create a new instance of this source with altered arguments

	close()

	Delete open file from memory

	configure_new(**kwargs)

	Create a new instance of this source with altered arguments

	describe()

	Description from the entry spec

	discover()

	Open resource and populate the source attributes.

	export(path, **kwargs)

	Save this data for sharing with other people

	get(**kwargs)

	Create a new instance of this source with altered arguments

	persist([ttl])

	Save data from this source to local persistent storage

	read()

	Return a version of the xarray with all the data in memory

	read_chunked()

	Return xarray object (which will have chunks)

	read_partition(i)

	Fetch one chunk of data at tuple index i

	to_dask()

	Return xarray object where variables are dask arrays

	to_spark()

	Provide an equivalent data object in Apache Spark

	yaml()

	Return YAML representation of this data-source

	get_persisted

	

	set_cache_dir

	

Contributing to intake-xarray

Contributions are highly welcomed and appreciated. Every little help counts,
so do not hesitate!

Contribution links

	Contributing to intake-xarray

	Feature requests and feedback

	Report bugs

	Fix bugs

	Write documentation

	Preparing Pull Requests

	Release a new version

Feature requests and feedback

Do you like intake-xarray? Share some love on Twitter or in your blog posts!

We’d also like to hear about your propositions and suggestions. Feel free to
submit them as issues [https://github.com/intake/intake-xarray] and:

	Explain in detail how they should work.

	Keep the scope as narrow as possible. This will make it easier to implement.

Report bugs

Report bugs for intake-stac in the issue tracker [https://github.com/intake/intake-xarray].

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting,
specifically the Python interpreter version, installed libraries, and intake-stac
version.

	Detailed steps to reproduce the bug.

If you can write a demonstration test that currently fails but should pass
(xfail), that is a very useful commit to make as well, even if you cannot
fix the bug itself.

Fix bugs

Look through the GitHub issues for bugs [https://github.com/intake/intake-xarray/labels/type:%20bug].

Talk to developers to find out how you can fix specific bugs.

Write documentation

intake-xarray could always use more documentation. What exactly is needed?

	More complementary documentation. Have you perhaps found something unclear?

	Docstrings. There can never be too many of them.

	Blog posts, articles and such – they’re all very appreciated.

You can also edit documentation files directly in the GitHub web interface,
without using a local copy. This can be convenient for small fixes.

Note

Build the documentation locally with the following command:

$ conda env create -f docs/environment.yml
$ cd docs
$ make html

The built documentation should be available in the docs/_build/.

Preparing Pull Requests

	Fork the
intake-xarray GitHub repository [https://github.com/intake/intake-xarray]. It’s
fine to use intake-xarray as your fork repository name because it will live
under your user.

	Clone your fork locally using git [https://git-scm.com/] and create a branch:

$ git clone git@github.com:YOUR_GITHUB_USERNAME/intake-xarray.git
$ cd intake-xarray

now, to fix a bug or add feature create your own branch off "master":

$ git checkout -b your-bugfix-feature-branch-name master

	Install development version in a conda environment:

$ conda env create -f ci/environment-py39.yml
$ conda activate test_env
$ pip install . -e

	Run all the tests

Now running tests is as simple as issuing this command:

$ pytest --verbose

This command will run tests via the “pytest” tool

	Commit and push once your tests pass and you are happy with your change(s):

$ git commit -a -m "<commit message>"
$ git push -u

	Finally, submit a pull request through the GitHub website using this data:

head-fork: YOUR_GITHUB_USERNAME/intake-xarray
compare: your-branch-name

base-fork: intake/intake-xarray
base: master

Release a new version

intake-xarray uses the pypipublish GitHub action to publish new versions on PYPI. Just create a new tag git tag 0.4.1, git push upstream –tags, then create a release by visiting https://github.com/intake/intake-xarray/releases/new. When the release is created the version will automatically be uploaded to https://pypi.org/project/intake-xarray/.

Index

 C
 | I
 | N
 | O
 | R
 | Z

C

 	
 	close() (intake_xarray.xzarr.ZarrSource method)

I

 	
 	ImageSource (class in intake_xarray.image)

N

 	
 	NetCDFSource (class in intake_xarray.netcdf)

O

 	
 	OpenDapSource (class in intake_xarray.opendap)

R

 	
 	RasterIOSource (class in intake_xarray.raster)

Z

 	
 	ZarrSource (class in intake_xarray.xzarr)

 nav.xhtml

 Table of Contents

 		
 Welcome to intake_xarray’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Usage

 		
 Inline use

 		
 Creating Catalog Entries

 		
 Choosing a Driver

 		
 netcdf/grib/tif

 		
 opendap

 		
 zarr

 		
 rasterio

 		
 xarray_image

 		
 Caching

 		
 API Reference

 		
 NetCDFSource

 		
 OpenDapSource

 		
 ZarrSource

 		
 ZarrSource.close()

 		
 RasterIOSource

 		
 ImageSource

 		
 Contributing to intake-xarray

 		
 Feature requests and feedback

 		
 Report bugs

 		
 Fix bugs

 		
 Write documentation

 		
 Preparing Pull Requests

 		
 Release a new version

_static/file.png

_static/minus.png

_static/plus.png

