

Welcome to intake_solr’s documentation!

Contents:

	Quickstart
	Installation

	Usage

	API Reference

Indices and tables

	Index

	Module Index

	Search Page

Quickstart

intake-solr provides quick and easy access to tabular data stored in
Apache SOLR [http://lucene.apache.org/solr/]

This plugin reads SOLR query results without random access: there is only ever
a single partition.

Installation

To use this plugin for intake [https://github.com/ContinuumIO/intake], install with the following command:

conda install -c intake intake-solr

Usage

Ad-hoc

After installation, the functions intake.open_solr_table and
intake.open_solr_sequence will become available. The former method can be
used to return the results of a SOLR query into a dataframe, but the latter will
produce a generic sequence of dictionaries.

Given the query text:test, the following would load into a dataframe:

import intake
source = intake.open_solr_dataframe("text:test")
dataframe = source.read()

Three parameters are of interest when defining a data source:

	query: the query to execute, which can be defined either using Lucene [https://www.elastic.co/guide/en/kibana/current/lucene-query.html] or
`JSON`_ syntax, both of which are to be provided as a string.

Creating Catalog Entries

To include in a catalog, the plugin must be listed in the plugins of the catalog:

plugins:
 source:
 - module: intake_solr

and entries must specify driver: solr_table or driver: solr_sequence.
The further arguments are exactly the same as for the open_solr_* functions.

Using a Catalog

Assuming a catalog file called cat.yaml, containing a SOLR source data,
one could load it into a dataframe as follows:

import intake
cat = intake.Catalog('cat.yaml')
df = cat.data.read()

The type of the output will depend on the plugin that was defined in the
catalog. You can inspect this before loading by looking at the .container
attribute, which will be either "dataframe" or "python".

API Reference

	intake_solr.source.SOLRTableSource(query, …)

	Execute a query on SOLR, return as dataframe

	intake_solr.source.SOLRSequenceSource(query, …)

	Execute a query on SOLR

	
class intake_solr.source.SOLRTableSource(query, base_url, core, qargs=None, metadata=None, auth=None, cert=None, zoocollection=False)

	Execute a query on SOLR, return as dataframe

	Parameters

	
	query: str

	Query to execute, in Lucene syntax, e.g., "*:*"

	base_url: str

	Connection on which to reach SOLR, including protocol (http), server,
port and base path. If using Zookeeper, this should be the full
comma-separated list of service:port/path elements.

	core: str

	Named segment of the SOLR storage to query

	qargs: dict

	Further parameters to pass with the query (e.g., highlighting)

	metadata: dict

	Additional information to associate with this source

	auth: None, “kerberos” or (username, password)

	Authentication to attach to requests

	cert: str or None

	Path to SSL certificate, if required

	zoocollection: bool or str

	If using Zookeeper to orchestrate SOLR, this is the name of the
collection to connect to.

	Attributes

	
	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Load entire dataset into a container and return it

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a (offset_tuple, container) corresponding to i-th partition.

	to_dask()

	Return a dask container for this data source

	yaml()

	Return YAML representation of this data-source

	
class intake_solr.source.SOLRSequenceSource(query, base_url, core, qargs=None, metadata=None, auth=None, cert=None, zoocollection=False)

	Execute a query on SOLR

	Parameters

	
	query: str

	Query to execute, in Lucene syntax, e.g., "*:*"

	base_url: str

	Connection on which to reach SOLR, including protocol (http), server,
port and base path. If using Zookeeper, this should be the full
comma-separated list of service:port/path elements.

	core: str

	Named segment of the SOLR storage to query

	qargs: dict

	Further parameters to pass with the query (e.g., highlighting)

	metadata: dict

	Additional information to associate with this source

	auth: None, “kerberos” or (username, password)

	Authentication to attach to requests

	cert: str or None

	Path to SSL certificate, if required

	zoocollection: bool or str

	If using Zookeeper to orchestrate SOLR, this is the name of the
collection to connect to.

	Attributes

	
	datashape

	

	description

	

	hvplot

	Returns a hvPlot object to provide a high-level plotting API.

	plot

	Returns a hvPlot object to provide a high-level plotting API.

Methods

	close()

	Close open resources corresponding to this data source.

	discover()

	Open resource and populate the source attributes.

	read()

	Load entire dataset into a container and return it

	read_chunked()

	Return iterator over container fragments of data source

	read_partition(i)

	Return a (offset_tuple, container) corresponding to i-th partition.

	to_dask()

	Return a dask container for this data source

	yaml()

	Return YAML representation of this data-source

Index

 S

S

 	
 	SOLRSequenceSource (class in intake_solr.source)

 	
 	SOLRTableSource (class in intake_solr.source)

 nav.xhtml

 Table of Contents

 		
 Welcome to intake_solr’s documentation!

 		
 Quickstart

 		
 Installation

 		
 Usage

 		
 Ad-hoc

 		
 Creating Catalog Entries

 		
 Using a Catalog

 		
 API Reference

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

