
INNUENDO Platform Documentation
Release 1

Bruno Ribeiro-Gonçalves

Feb 14, 2019

Dependencies

1 Contents 3

i

ii

INNUENDO Platform Documentation, Release 1

A novel cross-sectorial platform for the integration of genomics in surveillance of foodborne pathogens

Multinational outbreaks of foodborne pathogens cause considerable threats to European public health. Implementing
whole genome sequencing (WGS) in routine surveillance and outbreak investigations is becoming a strategic goal
for many public health authorities all over the world. With this in mind we developed the initiative INNUENDO,
which aims to deliver a cross-sectorial framework for the integration of bacterial WGS in routine surveillance and
epidemiologic investigations.

INNUENDO platform is divided into two distinct applications that communicate between each other. The first one,
the INNUENDO frontend server, comprises the user web interface and mechanisms to allow secure user authenti-
cation with LDAP and data storage into a dedicated database. It also communicates with the INNUENDO process
controller, which was developed with the aim of working as a bridge to allow running analytical procedures on a
laptop or in a High Performance Computer (HPC), with the help of SLURM process manager and Nextflow.

There is also a docker-compose version of the platform that can be easily installed with a few commands.

Dependencies 1

INNUENDO Platform Documentation, Release 1

2 Dependencies

CHAPTER 1

Contents

The documentation of the INNUENDO Platform follows the below structure:

• Dependencies

• Installation

• Docker-Compose

• Usage

• Admins: Troubleshooting and Backup

1.1 Dependencies List

The INNUENDO Platform is composed of a set of modules that communicate between each other by RESTful APIs.
However, there are also other dependencies that are required so that the servers can run as expected.

All those components described bellow are necessary for a multi-machine and individual component installation. You
can also install all the application using this approach or by using the Docker-Compose module developed for this
purpose.

1.1.1 Main modules and their dependencies

*Described on parent page

• Frontend Server

– Nginx

– NodeJS*

– Bower*

– Allegrograph client*

• Process Controller Server

3

../docker-compose/docker-compose.html
../installation/frontend.html
../installation/nginx.html
../installation/controller.html

INNUENDO Platform Documentation, Release 1

– Nginx

– Nextflow

– FlowCraft

– Allegrograph client

• Reports Application

– Nginx

– NodeJS*

– Bower*

• SLURM

– MariaDB*

– Munge*

• LDAP

– LDAP server*

– phpldapadmin*

– LDAP client (third party authentication)*

1.2 Nginx

Nginx is a web-server used to allow communication between different machines and expose the Frontend application
to the web if required.

Each Application has a RESTful API used for the communication. The route for each of these applications needs to
be mapped into the nginx configuration file for each independent machine.

1.2.1 Installation

Install the Nginx software from the package manager.

sudo apt-get install nginx

1.2.2 Create a new configuration file

Add a new configuration file named innuendo.com which will be used to allow Nginx to be set as a reverse proxy for
the AllegroGraph, INNUENDO_REST_API application and Reports application.

Fill with the following.

server {
listen 80 default_server;
listen [::]:80 default_server;

listen 443 ssl;
server_name _;

(continues on next page)

4 Chapter 1. Contents

../installation/nginx.html
../installation/nextflow.html
../installation/flowcraft.html
../installation/allegrograph.html
../installation/reports.html
../installation/nginx.html
../installation/slurm.html
../installation/ldap.html

INNUENDO Platform Documentation, Release 1

(continued from previous page)

ssl_certificate /etc/nginx/ssl/nginx.crt;
ssl_certificate_key /etc/nginx/ssl/nginx.key;

location /app {
proxy_pass http://localhost:5000;

}

location / {
proxy_pass http://localhost:10035;

}

Use this location if the INNUENDO_PROCESS_CONTROLLER is on the same
machine as the INNUENDO_REST_API. Otherwise, comment this route.

location /jobs {
proxy_pass http://localhost:5001;

}

location /ldap/ {
rewrite ^/ldap/(.*) /$1 break;
proxy_pass http://localhost:81;

}

location /reportsApp/ {
rewrite ^/reportsApp/(.*) /$1 break;
proxy_pass http://localhost:82;

}

}

For the INNUENDO Reports application, create a reports.com file and add the following.

server {
listen 82;
server_name localhost;

#charset koi8-r;

#access_log logs/host.access.log main;
root /usr/src/app;
index index.html index.htm;

location / {
try_files $uri /index.html;

}
}

If the INNUENDO_PROCESS_CONTROLLER is on a different machine, create also a innuendo.com file and add
the following.

server {
listen 80 default_server;
listen [::]:80 default_server;

listen 443 ssl;
server_name _;

(continues on next page)

1.2. Nginx 5

INNUENDO Platform Documentation, Release 1

(continued from previous page)

ssl_certificate /etc/nginx/ssl/nginx.crt;
ssl_certificate_key /etc/nginx/ssl/nginx.key;

location /jobs {
#rewrite ^/jobs/(.*) /$1 break;
proxy_pass http://localhost:5001;

}
}

1.2.3 Create a SSL certificate

If a encrypted connection is required, you will need to generate an SSL certificate. Do that in all the independent
machines that require an encrypted connection, such as the machine with the INNUENDO_REST_API. Do that with
the following commands.

sudo mkdir /etc/nginx/ssl
sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 -keyout /etc/nginx/ssl/nginx.
→˓key -out /etc/nginx/ssl/nginx.crt

1.2.4 Add to sites-available

For the configuration files be used by Nginx, they need to be located into the sites-available folder. You can do that
with the following commands.

Move the configuration file to the sites-available folder of Nginx
mv innuendo.com /etc/nginx/sites-available/

Move the reports configuration file to the sites-available folder of Nginx
mv reports.com /etc/nginx/sites-available/

Enter the sites-available folder
cd /etc/nginx/sites-available/

Link the innuendo.com file to one in the sites-enabled folder
ln -s /etc/nginx/sites-available/innuendo.com /etc/nginx/sites-enabled/

Link the reports.com file to one in the sites-enabled folder
ln -s /etc/nginx/sites-available/innuendo.com /etc/nginx/sites-enabled/

1.2.5 Restart Nginx

Restart Nginx so that the changes can take place.

sudo service restart nginx

1.3 Allegrograph

Allegrograph is a triplestore database used in the INNUENDO Platform to store relationships between everything,
from strains in projects to the processes that are run on those strains in a specific project.

6 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

Currently it uses an unpaid version with store to about 1 million triples. If required, a paid version can be obtained to
obtain more storage.

1.3.1 Installation

Install some general dependencies.

sudo apt-get update
sudo apt-get install -y git python-pip libpq-dev libcurl4-openssl-dev python-dev
→˓libsasl2-dev libldap2-dev libssl-dev wget

Get Allegrograph server installer from the INNUENDO releases.

Create a directory to store the files
mkdir allegrograph

Enter the directory
cd allegrograph

Download the server files
wget https://github.com/bfrgoncalves/INNUENDO_files/releases/download/1.0.0/agraph-6.
→˓0.2-linuxamd64.64.tar.gz

Uncompress the downloaded files.

tar zxf agraph-6.0.2-linuxamd64.64.tar.gz

Install the Allegrograph server in an non-interactive way. You can change the file locations and username by changing
the inputs in the directives.

agraph-6.0.2/install-agraph ./agraph --non-interactive \
--config-file "./agraph/lib/agraph.cfg" \
--data-dir "./agraph/data" \
--log-dir "./agraph/log" \
--pid-file "./agraph/data/agraph.pid" \
--runas-user "innuendo" \
--create-runas-user \
--port 10035 \
--super-user "innuendo" \
--super-password "innuendo_allegro"

Launch the allegrograph server. It needs to be running for the Frontend server and the Controller to work.

./agraph/bin/agraph-control --config /Allegrograph/agraph/lib/agraph.cfg start

1.4 PostgreSQL

PostgreSQL is the default database used in the INNUENDO Platform for data storage. It needs to be installed in the
same machine as the Frontend server or configured in such a way that the Frontend server can access to it.

1.4. PostgreSQL 7

INNUENDO Platform Documentation, Release 1

1.4.1 Installation

sudo apt-get update
sudo apt-get install postgresql postgresql-contrib

1.4.2 Create Postgres User

Enter with the default “postgres” user and create a new user to be used in the Platform. Change the version according
to the installed postgres version. Is recommended to use postgres version < 10.

sudo -u postgres /usr/lib/postgresql/9.X/bin/createuser innuendo

1.4.3 Create the Database

Launch psql with the default postgres user.

sudo -u postgres psql postgres

Inside psql, set a password for the default postgres user.

postgres=# \password postgres

Change the permissions of the previously created user to allow the creation of databases.

postgres=# ALTER USER innuendo CREATEDB;

Create the innuendo database.

postgres=# CREATE DATABASE innuendo OWNER innuendo;

Exit psql.

postgres=# \q

1.4.4 Change Configuration file

Locate the postgreSQL pg_hba.conf file. It has all the information regarding access security to the database. It is
required to change some of the parameters.

The file should be at /etc/postgresql/9.X/main/

Open it and replace all the METHOD column to trust

Restart postgreSQL.

sudo service postgresql restart

1.4.5 Set password for the INNUENDO user

Launch psql with the created user.

8 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

sudo -u innuendo psql innuendo

Inside psql, set a password for the innuendo user.

postgres=# \password innuendo

Exit psql.

postgres=# \q

1.4.6 Change Configuration file (AGAIN)

Open the pg_hba.conf file and replace all METHOD column to md5.

Restart postgreSQL.

sudo service postgresql restart

1.4.7 Create/Load the database structure

Now you can load the database structure using a set of commands defined by the Flask-Migrate package. It should be
available after installing the Frontend server and all its dependencies.

Inside de INNUENDO_REST_API folder run.

Initialize the database and build a migrations directory
./manage.py db init --multidb

Sets the new version of the database
./manage.py db migrate

Recreates the database with the newest version
./manage.py db upgrade

1.5 LDAP

LDAP is a centralized authentication system that allow users to authenticate in multiple applications only using a
single account. It requires the installation of a server application in the service provider machine and clients in all the
machines that want to authenticate.

Before installing LDAP, define an LDAP domain that will be used for the server creation and for client authentication.

1.5.1 Install LDAP Server

To install the LDAP server, run the following command.

sudo apt-get install slapd ldap-utils

Choose these options on the installer
Omit openLDAP config: No
base DN of the LDAP directory: innuendo.com

(continues on next page)

1.5. LDAP 9

INNUENDO Platform Documentation, Release 1

(continued from previous page)

organization name: innuendo
Database backend to use: HDB
Database removed when slapd is purged: No
MOve old database: Yes
Allow LDAPv2 protocol: No

For an easier integration with LDAP and monitoring, it is advised to install phpldapadmin, an application that provides
a web-interface to deal with LDAP without using the command line. To install, run the following.

sudo apt-get install phpldapadmin

You can follow the instructions on this tutorial for an easier configuration. https://www.digitalocean.com/community/
tutorials/how-to-install-and-configure-openldap-and-phpldapadmin-on-an-ubuntu-14-04-server

In phpldapadmin, do the following steps:

• Create two Organizational Units.

– groups

– users

• Add two Posix Groups to the groups entry created.

– admin

– innuendo_users

• Add Generic User Accounts.

– Add email to the account

– Add it to the admin or innuendo_users

1.5.2 Install LDAP Client

To install the LDAP client needed to authenticate to the server, follow the tutorial in the link bellow.

https://www.digitalocean.com/community/tutorials/how-to-authenticate-client-computers-using-ldap-on-an-ubuntu-12-04-vps

1.5.3 Change new User Skel structure

Is necessary to change the skel of user creation so that some folders are created upon user definition. They are required
to store the fastq files and files belonging to job submission.

Go to the skel folder and do the following.

Enter skel folder
cd /etc/skel
Create ftp and jobs folder
sudo mkdir ftp jobs
Add files folder
sudo mkdir ftp/files

After completing these steps, two files are required to change the permissions when creating the folders for the users.

Create a file named change_ldap_user_permissions_innuendo.sh and add the following.

10 Chapter 1. Contents

https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-openldap-and-phpldapadmin-on-an-ubuntu-14-04-server
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-openldap-and-phpldapadmin-on-an-ubuntu-14-04-server
https://www.digitalocean.com/community/tutorials/how-to-authenticate-client-computers-using-ldap-on-an-ubuntu-12-04-vps

INNUENDO Platform Documentation, Release 1

#!/bin/sh
chown root:root /mnt/innuendo_storage/users/$PAM_USER
chown root:root /mnt/innuendo_storage/users/$PAM_USER/ftp

chown ubuntu:ubuntu /mnt/innuendo_storage/users/$PAM_USER/jobs

This supposes an innuendo_storage folder inside the /mnt folder and a user running the application called ubuntu. To
know more about how to mount folders between machines check the Configure NFS section.

After creating the permissions file, add it to the pam common-session file at /etc/pam.d/common-session to trigger the
file permissions substitution.

/etc/pam.d/common-session - session-related modules common to all services
#
This file is included from other service-specific PAM config files,
and should contain a list of modules that define tasks to be performed
at the start and end of sessions of *any* kind (both interactive and
non-interactive).
#
As of pam 1.0.1-6, this file is managed by pam-auth-update by default.
To take advantage of this, it is recommended that you configure any
local modules either before or after the default block, and use
pam-auth-update to manage selection of other modules. See
pam-auth-update(8) for details.

here are the per-package modules (the "Primary" block)
session [default=1] pam_permit.so
here's the fallback if no module succeeds
session requisite pam_deny.so
prime the stack with a positive return value if there isn't one already;
this avoids us returning an error just because nothing sets a success code
since the modules above will each just jump around
session required pam_permit.so
The pam_umask module will set the umask according to the system default in
/etc/login.defs and user settings, solving the problem of different
umask settings with different shells, display managers, remote sessions etc.
See "man pam_umask".
session optional pam_umask.so
and here are more per-package modules (the "Additional" block)
session required pam_unix.so
session optional pam_ldap.so
session optional pam_systemd.so
end of pam-auth-update config

session required pam_mkhomedir.so skel=/etc/skel umask=0022
session optional pam_exec.so /usr/local/bin/change_ldap_user_permissions_
→˓innuendo.sh

After replacing the required lines in the files, run the following command to restart the ldap client service.

sudo /etc/init.d/nscd restart

1.5.4 Setup SFTP (SSH) with LDAP

For Secure File Transfer, we will use the properties of SSH to allow the file tranfer. For that, we need to change the
properties of the SSH configuration file.

1.5. LDAP 11

INNUENDO Platform Documentation, Release 1

Open the file with the following.

sudo nano /etc/ssh/sshd_config

At the end of the file, replace the Subsystem line and add the two Match Group entries described bellow. This will
only allow SFTP connection of the innuendo users and will only allow to access to their home directory.

#Subsystem sftp /usr/lib/openssh/sftp-server
Subsystem sftp internal-sftp

Set this to 'yes' to enable PAM authentication, account processing,
and session processing. If this is enabled, PAM authentication will
be allowed through the ChallengeResponseAuthentication and
PasswordAuthentication. Depending on your PAM configuration,
PAM authentication via ChallengeResponseAuthentication may bypass
the setting of "PermitRootLogin without-password".
If you just want the PAM account and session checks to run without
PAM authentication, then enable this but set PasswordAuthentication
and ChallengeResponseAuthentication to 'no'.
UsePAM yes

Match Group innuendo-users
ChrootDirectory %h/ftp
AllowTCPForwarding no
X11Forwarding no
ForceCommand internal-sftp

Match Group admin
ChrootDirectory %h/ftp
AllowTCPForwarding no
X11Forwarding no
ForceCommand internal-sftp

After replacing the required lines in the file, restart SSH.

sudo /etc/init.d/ssh restart

1.6 SLURM

SLURM is a cluster management and job scheduling system that is used in the INNUENDO Platform to control job
submission and resources between machines or in individual machines.

It requires a Master node, which will control all other nodes, and Slaves, which will run the jobs controlled by the
master.

1.6.1 Installation

SLURM requires a set of software dependencies to work. We will need to install MariaDB (Only on the Master) for
the SLURM Accounting module and also Munge for the communication between each machine (On each machine).

sudo apt-get install mariadb-server mariadb-devel
sudo apt-get install munge munge-libs munge-devel

Starting with Munge, first need to create a secret key on the Server for the communication between machines. First,
we install rng-tools to properly create the key.

12 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

sudo apt-get install rng-tools
rngd -r /dev/urandom

Now, we create the secret key. You only have to do the creation of the secret key on the server.

/usr/sbin/create-munge-key -r

Create key and change permissions and ownership
dd if=/dev/urandom bs=1 count=1024 > /etc/munge/munge.key
chown munge: /etc/munge/munge.key
chmod 400 /etc/munge/munge.key

After the secret key is created, you will need to send this key to all of the compute nodes.

Example sending the key to a slave node called compute-1. You might
need to change the name with the machine domain
scp /etc/munge/munge.key root@compute-1:/etc/munge

Now, we SSH into every node and correct the permissions as well as start the Munge service.

Change key permissions
chown -R munge: /etc/munge/ /var/log/munge/
chmod 0700 /etc/munge/ /var/log/munge/

Start Munge service on the computing nodes
systemctl enable munge
systemctl start munge

To test Munge, you can try to access another node with Munge from your master node.

Example access to node compute-1
munge -n
munge -n | unmunge
munge -n | ssh compute-1 unmunge
remunge

After all other dependencies are installed, you can now install SLURM with the following command.

sudo apt-get install slurm-llnl

1.6.2 SLURM Configuration

For SLURM configuration, we need to create a slurm.conf file and distribute it between all machines. We also need
to define the slurmdbd.conf for the SLURM accouting.

Example slurm.conf

slurm.conf
#
See the slurm.conf man page for more information.
#
ClusterName=linux
ControlMachine=slurmctld
ControlAddr=slurmctld
#BackupController=
#BackupAddr=

(continues on next page)

1.6. SLURM 13

INNUENDO Platform Documentation, Release 1

(continued from previous page)

#
SlurmUser=slurm
#SlurmdUser=root
SlurmctldPort=6817
SlurmdPort=6818
AuthType=auth/munge
#JobCredentialPrivateKey=
#JobCredentialPublicCertificate=
StateSaveLocation=/var/lib/slurmd
SlurmdSpoolDir=/var/spool/slurmd
SwitchType=switch/none
MpiDefault=none
SlurmctldPidFile=/var/run/slurmd/slurmctld.pid
SlurmdPidFile=/var/run/slurmd/slurmd.pid
ProctrackType=proctrack/linuxproc
#PluginDir=
CacheGroups=0
#FirstJobId=
ReturnToService=0
#MaxJobCount=
#PlugStackConfig=
#PropagatePrioProcess=
#PropagateResourceLimits=
#PropagateResourceLimitsExcept=
#Prolog=
#Epilog=
#SrunProlog=
#SrunEpilog=
#TaskProlog=
#TaskEpilog=
#TaskPlugin=
#TrackWCKey=no
#TreeWidth=50
#TmpFS=
#UsePAM=
#
TIMERS
SlurmctldTimeout=300
SlurmdTimeout=300
InactiveLimit=0
MinJobAge=300
KillWait=30
Waittime=0
#
SCHEDULING
SchedulerType=sched/backfill
#SchedulerAuth=
#SchedulerPort=
#SchedulerRootFilter=
SelectType=select/cons_res
SelectTypeParameters=CR_CPU_Memory
FastSchedule=1
#PriorityType=priority/multifactor
#PriorityDecayHalfLife=14-0
#PriorityUsageResetPeriod=14-0
#PriorityWeightFairshare=100000
#PriorityWeightAge=1000

(continues on next page)

14 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

(continued from previous page)

#PriorityWeightPartition=10000
#PriorityWeightJobSize=1000
#PriorityMaxAge=1-0
#
LOGGING
SlurmctldDebug=3
SlurmctldLogFile=/var/log/slurm/slurmctld.log
SlurmdDebug=3
SlurmdLogFile=/var/log/slurm/slurmd.log
JobCompType=jobcomp/filetxt
JobCompLoc=/var/log/slurm/jobcomp.log
#
ACCOUNTING
JobAcctGatherType=jobacct_gather/linux
JobAcctGatherFrequency=30
#
AccountingStorageType=accounting_storage/slurmdbd
AccountingStorageHost=slurmdbd
AccountingStoragePort=6819
AccountingStorageLoc=slurm_acct_db
#AccountingStoragePass=
#AccountingStorageUser=
#
COMPUTE NODES
NodeName=c1 Procs=2 Sockets=2 CoresPerSocket=1 RealMemory=6800 State=UNKNOWN
NodeName=c2 Procs=2 Sockets=2 CoresPerSocket=1 RealMemory=6800 State=UNKNOWN
#
PARTITIONS
PartitionName=normal Default=yes Nodes=c1 Shared=YES State=UP
PartitionName=nextflow Nodes=c2 Shared=YES State=UP
PartitionName=chewBBACA Nodes=c1 Shared=YES State=UP QOS=chewbbaca

Once the server node has the slurm.conf correctly, we need to send this file to the other compute nodes.

Example transfer to the slurm compute-1
scp slurm.conf root@compute-1:/etc/slurm/slurm.conf

Example slurmdbd.conf

#
Example slurmdbd.conf file.
#
See the slurmdbd.conf man page for more information.
#
Archive info
#ArchiveJobs=yes
#ArchiveDir="/tmp"
#ArchiveSteps=yes
#ArchiveScript=
#JobPurge=12
#StepPurge=1
#
Authentication info
AuthType=auth/munge
#AuthInfo=/var/run/munge/munge.socket.2
#
slurmDBD info

(continues on next page)

1.6. SLURM 15

INNUENDO Platform Documentation, Release 1

(continued from previous page)

DbdAddr=slurmdbd
DbdHost=slurmdbd
#DbdPort=6819
SlurmUser=slurm
#MessageTimeout=300
DebugLevel=4
#DefaultQOS=normal,standby
LogFile=/var/log/slurm/slurmdbd.log
PidFile=/var/run/slurmdbd/slurmdbd.pid
#PluginDir=/usr/lib/slurm
#PrivateData=accounts,users,usage,jobs
#TrackWCKey=yes
#
Database info
StorageType=accounting_storage/mysql
StorageHost=mysql
StorageUser=slurm
StoragePass=password
StorageLoc=slurm_acct_db

Now, we will configure the server Master node. We need to make sure that the server has all the right configurations
and files.

Check for log files existence and permissions
mkdir /var/spool/slurmctld
chown slurm: /var/spool/slurmctld
chmod 755 /var/spool/slurmctld
touch /var/log/slurmctld.log
chown slurm: /var/log/slurmctld.log
touch /var/log/slurm_jobacct.log /var/log/slurm_jobcomp.log
chown slurm: /var/log/slurm_jobacct.log /var/log/slurm_jobcomp.log

We also need to configure all the compute nodes. We need to make sure that all the compute nodes have the right
configurations and files.

Check for log files existence and permissions
mkdir /var/spool/slurmd
chown slurm: /var/spool/slurmd
chmod 755 /var/spool/slurmd
touch /var/log/slurmd.log
chown slurm: /var/log/slurmd.log

Use the following command to make sure that slurmd is configured properly on the compute machines.

sudo /etc/init.d/slurmd

Use the following command to launch the slurmdbd on the server.

sudo /etc/init.d/slurmdbd

Use the following command to launch the slurm controller on the master server.

sudo /etc/init.d/slurmcltd

16 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

1.6.3 Testing SLURM

To display the compute nodes use the following.

scontrol show nodes

1.7 Frontend Server

The Frontend server of the INNUENDO Platform is the application responsable for serving the static files to the user,
interact with the potsgreSQL database, and send requests to the Controller server to submit jobs.

1.7.1 Installation

Good practice to install application specific dependencies is to first create a virtual environment, which will aggregate
all the required dependencies for a specific application.

Because of that, the first thing to do is to install python virtualenv.

sudo apt-get install python-virtualenv

The code for the Frontend server is located at github and can be obtained using git.

git clone https://github.com/bfrgoncalves/INNUENDO_REST_API.git

To create the virtual environment, run the application inside the INNUENDO_REST_API folder.

cd INNUENDO_REST_API

Create virtual environment
virtualenv flask

1.7.2 requirements.txt

The requirements.txt file is the file with all the required python dependencies for the application. To install them, run
the following command inside the INNUENDO_REST_API folder.

flask/bin/pip install -r requirements.txt

Due to some lack of some dependencies, you might also need to install the following python packages described into
the following links:

https://stackoverflow.com/questions/11618898/pg-config-executable-not-found
https://stackoverflow.com/questions/28253681/you-need-to-install-postgresql-server-
→˓dev-x-y-for-building-a-server-side-extensi
https://stackoverflow.com/questions/23937933/could-not-run-curl-config-errno-2-no-
→˓such-file-or-directory-when-installing
https://stackoverflow.com/questions/21530577/fatal-error-python-h-no-such-file-or-
→˓directory
http://thefourtheye.in/2013/04/20/installing-python-ldap-in-ubuntu/

1.7. Frontend Server 17

INNUENDO Platform Documentation, Release 1

1.7.3 Bower Components

Bower is a package manager used to fetch all the client-side components required to create the user interface. It requires
nodeJS for the installation so we need to install nodeJS before installing Bower and the client-side dependencies.

Get nodeJS and install
curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install -y nodejs

Install Bower
npm install -g bower

Install Bower components by running bower install inside the INNUENDO_REST_API/app folder.

1.7.4 Running the APP

To run the application, we first need to add the allegrograph client location to the path. To do it, install the Allegrograph
client and run the following command.

export PYTHONPATH=/full/path/for/agraph-6.2.1-client-python/src/

Then, we need to run the worker.py‘ to allow classification and to send requests to PHYLOViZ Online and we need to
run the run.py to launch the INNUENDO_REST_API application.

cd /path/to/INNUENDO_REST_API
./worker.py &
./run.py

1.8 Controller

Good practice to install application specific dependencies is to first create a virtual environment, which will aggregate
all the required dependencies for a specific application.

Because of that, the first thing to do is to install python virtualenv.

sudo apt-get install python-virtualenv

The code for the Frontend server is located at github and can be obtained using git.

git clone https://github.com/bfrgoncalves/INNUENDO_PROCESS_CONTROLLER.git

To create the virtual environment, run the application inside the INNUENDO_PROCESS_CONTROLLER folder.

cd INNUENDO_PROCESS_CONTROLLER

Create virtual environment
virtualenv flask

1.8.1 requirements.txt

The requirements.txt file is the file with all the required python dependencies for the application. To install them, run
the following command inside the INNUENDO_PROCESS_CONTROLLER folder.

18 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

flask/bin/pip install -r requirements.txt

Due to some lack of some dependencies, you might also need to install the following python packages described into
the following links:

https://stackoverflow.com/questions/12982486/glib-compile-error-ffi-h-but-libffi-is-
→˓installed
https://stackoverflow.com/questions/22414109/g-error-trying-to-exec-cc1plus-execvp-no-
→˓such-file-or-directory

1.8.2 Running the APP

To run the application, we first need to add the allegrograph client location to the path. To do it, install the Allegrograph
client and run the following command.

export PYTHONPATH=/full/path/for/agraph-6.2.1-client-python/src/

Then, we need to run the run.py to launch the INNUENDO_PROCESS_CONTROLLER application.

./run.py

1.9 Nextflow

Nextflow is a workflow manager that enables scalable and reproducible scientific workflows using software containers.
An overview of how to install and its requirements can be found on they documentation.

https://www.nextflow.io/docs/latest/index.html

However, for a simple installation, you can simply run the following commands.

wget -qO- https://get.nextflow.io | bash

This will install nextflow on the current directory and now you will need to add it to the path. Can simply move the
nextflow executable to the /usr/local/bin

mv nextflow /usr/local/bin

You can now execute nextflow pipelines.

1.10 FlowCraft

Flowcraft is used in the INNUENDO Platform as the pipeline builder, which generates the pipelines according to
the available protocols. Besides that, the flowcraft web-application is also used for pipeline process inspection and
visualization of reports.

1.10.1 Installation

For the pipeline builder installation, check the Flowcraft [documentation](https://flowcraft.readthedocs.io/en/latest/
?badge=latest)

For the install the Flowcraft webapp installation for pipleine inspection report visualization, follow the bellow steps:

1.9. Nextflow 19

https://www.nextflow.io/docs/latest/index.html
https://flowcraft.readthedocs.io/en/latest/?badge=latest
https://flowcraft.readthedocs.io/en/latest/?badge=latest

INNUENDO Platform Documentation, Release 1

Clone Flowcraft webapp repository
git clone https://github.com/assemblerflow/flowcraft-webapp.git && cd flowcraft-webapp

Install requirements (pipenv and >=python3.6 is required)
cd flowcraft-webapp
pipenv install --system --deploy --ignore-pipfile

Install frontend dependencies
cd flowcraft-webapp && yarn install --network-timeout 1000000 && exit

Construct required databases databases (postgreSQL is required)
python3 manage.py makemigrations
python3 manage.py migrate

Build frontend required file
yarn run build

Lauch the application
python3 manage.py runserver 0.0.0.0:6000

To configure the service, checkout how to do it by going here.

1.11 Docker-Compose

Docker-compose and the use of Docker allows running all the required INNUENDO Platform components in a con-
troller environment (containers) in a very simple way.

Since it uses the docker-images as built using the developed Dockerfiles that act as a recipe for the installation of all
components, it releases that burden from the user.

1.11.1 Installation

For the docker-compose version of the INNUENDO Platform you will need to install the following software.

• Docker

• Docker-Compose

On Ubuntu

First, add the GPG key for the official Docker repository to the system.

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo apt-key add -

Add the Docker repository to APT sources.

sudo add-apt-repository "deb [arch=amd64] https://download.docker.com/linux/ubuntu
→˓$(lsb_release -cs) stable"

Next, update the package database with the Docker packages from the newly added repo.

sudo apt-get update

Install Docker.

20 Chapter 1. Contents

nginx.html
https://docs.docker.com/compose/
https://docs.docker.com/

INNUENDO Platform Documentation, Release 1

sudo apt-get install -y docker-ce

Docker should now be installed, the daemon started, and the process enabled to start on boot. Check that it’s running.

sudo systemctl status docker

Next we will install docker-compose. We will check the current release and if necessary, update it in the command
below.

sudo curl -L https://github.com/docker/compose/releases/download/1.18.0/docker-
→˓compose-`uname -s`-`uname -m` -o /usr/local/bin/docker-compose

Next we will set the permissions.

sudo chmod +x /usr/local/bin/docker-compose

Then we can verify that the installation was successful by checking the version.

docker-compose --version

On Windows and Mac

Install the executables from the docker-compose page.

https://docs.docker.com/compose/install/

1.11.2 Configuration

Each component of the INNUENDO Platform can be configured by modifying its configuration file. Configuration
files are located at configs/ and are files required for the Platform to work.

NOTE: Modifying these files might lead to corruption of the application. Proceed with care.

Each file belonging to each component is described bellow.

Frontend Server

The Frontend server has one configuration file located at configs/app/config_frontend.py that has a set of
variables required for this module to work in cooperation with the process controller.

Below defaults are for the docker-compose version.

FRONTEND_IP IP address of the machine, default: web

phyloviz_root Root address of PHYLOViZ Online. default: http://web:82

AGRAPH_IP AllegroGraph server IP adress. default: web

CURRENT_ROOT Current address of the frontend application. default: http://’+FRONTEND_IP+’/app

JOBS_IP INNUENDO Process Controller IP address. default: web

JOBS_ROOT Job submission route. default: http://’+JOBS_IP+’/jobs/’

FILES_ROOT Route to get information about fastq files. default:http://’+JOBS_IP+’/jobs/fastqs/’

REPORTS_URL Reports application route. default: “http://localhost/reports”

1.11. Docker-Compose 21

https://docs.docker.com/compose/install/

INNUENDO Platform Documentation, Release 1

SECRET_KEY Secret key for flask-security hash.

SECURITY_PASSWORD_HASH Flask-security type of hash used.

SECURITY_PASSWORD_SALT Flaks-security salt used.

ADMIN_EMAIL Email of the platform administrator. default: innuendo@admin.com

ADMIN_NAME Administrator name. default: Admin

ADMIN_USERNAME ADministrator username. default: innuendo_admin

ADMIN_PASS Administrator password.

ADMIN_GID Group identifier for admins. default: 501

REDIS_URL Redis queue URL. default: redis://redis:6379

SECURITY_REGISTERABLE Allow Flask-security view to register. default: False

SECURITY_RECOVERABLE Allow Flask-security view to recover password. default: True

SECURITY_CHANGEABLE Allow Flask-security view to change password. default: True

SECURITY_FLASH_MESSAGES SHow Flask-security messages. default: True

FAST_MLST_PATH Path for fast-mlst application used for profile classification and search. default: /Frontend/fast-
mlst

NEXTFLOW_TAGS Currently available FlowCraft tags. More information on FlowCraft documentation.

DATABASE_USER User owner of the postgreSQL database. default: innuendo

DATABASE_PASS Password of the postgreSQL user. default: innuendo_database

database_uri URI for the wgMLST profile database. default: ‘post-
gresql://’+DATABASE_USER+’:’+DATABASE_PASS + ‘@db_mlst/mlst_database’

innuendo_database_uri URI for the innuendo database. default: ‘post-
gresql://’+DATABASE_USER+’:’+DATABASE_PASS+’@db_innuendo/innuendo’

SQLALCHEMY_BINDS Databases that bind to SQLAlchemy.

SQLALCHEMY_MIGRATE_REPO Location to store and update database files. default: os.path.join(basedir,
‘db_repository’)

SQLALCHEMY_TRACK_MODIFICATIONS Track database modification. default: True

WTF_CSRF_ENABLED Enable CSRF. default: False

app_route Application entry route. default: ‘/app’

LDAP_PROVIDER_URL LDAP client IP definition. default: LDAP_IP

LDAP_PROTOCOL_VERSION LDAP protocol version. default: 3

baseDN Base repository reference. default: dc=innuendo,dc=com

LOGIN_METHOD Platform login method. Used to distinguish between LDAP authentication and single user authen-
tication used in the docker version. default: None

LOGIN_GID Login group identifier. Used in case of docker version. default: 501

LOGIN_HOMEDIR Single user home directory. Used in case of docker version. default: /INNUENDO/

LOGIN_USERNAME Single user username. Used in case of docker version. default: innuendo_user

LOGIN_PASSWORD Single user password. Used in case of docker version. default: innuendo_user

LOGIN_EMAIL Single user email. Used in case of docker version. default: innuendo@innuendo.com

22 Chapter 1. Contents

mailto:innuendo@admin.com
mailto:innuendo@innuendo.com

INNUENDO Platform Documentation, Release 1

ALL_SPECIES All supported species. default: [“E.coli”,”Yersinia”,”Campylobacter”,”Salmonella”]

allele_classes_to_ignore chewBBACA report on profile to replace with 0.

wg_index_correspondece Path to the wg index file used by fast-mlst for profile search up to x differences.
Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg”}

core_index_correspondece Path to the core index file used by fast-mlst for profile search up to x differences.
Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_core”}

wg_headers_correspondece Path to the list of the wg loci for each species. Example: {“E.coli”: “/INNU-
ENDO/inputs/core_lists/ecoli_headers_wg.txt”}

core_headers_correspondece Path to the list of the core loci for each species. Example: {“E.coli”: “/IN-
NUENDO/inputs/core_lists/ecoli_headers_core.txt”}

core_increment_profile_file_correspondece Location of the file with the core pro-
files for each species. Used to contruct the search index. Example: {“E.coli”: “/INNU-
ENDO/inputs/indexes/ecoli_core_profiles.tab”}

wg_increment_profile_file_correspondece Location of the file with wg profiles for each species.
Used to contruct the search index. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg_profiles.tab”}

classification_levels Classification levels for each specie. Number of profile differences. Example:
{“E.coli”: [8, 112, 793]}

AG_REPOSITORY Name of the AllegroGraph repository. default: innuendo

AG_USER AllegroGraph user. default: innuendo

AG_PASSWORD AllegroGraph password. default: innuendo_allegro

Controller Server

The Controller server has one configuration file located at configs/app/config_process.py that has a set of
variables required for this module to work in cooperation with the frontend and the workflow managers.

Below defaults are for the docker-compose version.

REDIS_URL Redis queue URL. default: redis://redis:6379

ASPERAKEY Aspera key location. default: ~/.aspera/connect/etc/asperaweb_id_dsa.openssh

FTP_FILES_FOLDER Location of the files folder in relation to the user home directory. default: ftp/files

NEXTFLOW_RESOURCES Specifications of each nextflow process. Can be used to specify each parameter of any
given process. Example: { “integrity_coverage”:{“memory”: r“‘2GB’”,”cpus”: “1”}

SERVER_IP IP address of the machine. default: web

FRONTEND_SERVER_IP IP address of the frontend server. default: web

DEFAULT_SLURM_CPUS Default SLURM CPUs used when a process is not specified. default: 8

NEXTFLOW_PROFILE Nextflow profile to use. Those are specified in the FlowCraft software. default: desktop

NEXTFLOW_GENERATOR_PATH Location of the FlowCraft software executable. default: /Con-
troller/flowcraft/flowcraft/flowcraft.py

NEXTFLOW_GENERATOR_RECIPE FlowCraft recipe to use. It defines the set of processes that can be used and
their relationships. default: innuendo

FASTQPATH Location of the fastq files in the user directory structure. Used by FlowCraft to search for paired end
reads. default: “data/_{1,2}.”

1.11. Docker-Compose 23

INNUENDO Platform Documentation, Release 1

JOBS_ROOT_SET_OUTPUT Route used to set the output status of processes. Example:
http://+SERVER_IP+/jobs/setoutput/

JOBS_ROOT_SET_REPORT Route used to set the reports and store them on the database. Example:
http://+FRONTEND_SERVER_IP+/app/api/v1.0/jobs/report/

CHEWBBACA_PARTITION Partition name used by SLURM to launch chewBBACA processes. Can only run one
chewBBACA at a time. default: chewBBACA

CHEWBBACA_SCHEMAS_PATH Location of the chewBBACA schemas. default: /INNUENDO/inputs/schemas

CHEWBBACA_TRAINING_FILE Location of prodigal training files for each specie. Example: { “E.coli”: “/INNU-
ENDO/inputs/prodigal_training_files/prodigal_training_files/Escherichia_coli.trn”, }

SEQ_FILE_O SeqTyping FILE_O location. default: {“E.coli”: “/INNU-
ENDO/inputs/serotyping_files/escherichia_coli/1_O_type.fasta”}

SEQ_FILE_H Seqtyping FILE_H location. default: {“E.coli”: “/INNU-
ENDO/inputs/serotyping_files/escherichia_coli/2_H_type.fasta”}

wg_index_correspondece Path to the wg index file used by fast-mlst for profile search up to x differences.
Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg”}

core_index_correspondece Path to the core index file used by fast-mlst for profile search up to x differences.
Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_core”}

wg_headers_correspondece Path to the list of the wg loci for each species. Example: {“E.coli”: “/INNU-
ENDO/inputs/core_lists/ecoli_headers_wg.txt”}

core_headers_correspondece Path to the list of the core loci for each species. Example: {“E.coli”: “/IN-
NUENDO/inputs/core_lists/ecoli_headers_core.txt”}

core_increment_profile_file_correspondece Location of the file with the core pro-
files for each species. Used to contruct the search index. Example: {“E.coli”: “/INNU-
ENDO/inputs/indexes/ecoli_core_profiles.tab”}

wg_increment_profile_file_correspondece Location of the file with wg profiles for each species.
Used to contruct the search index. Example: {“E.coli”: “/INNUENDO/inputs/indexes/ecoli_wg_profiles.tab”}

AG_REPOSITORY AllegroGraph repository name. default: innuendo

AG_USER AllegroGraph username. default: innuendo

AG_PASSWORD AllegroGraph user password. default: innuendo_allegro

Flowcraft Configuration

The Flowcraft webapp application has two configuration files located at configs/flowcraft that has a set of
variables required for this module to work in cooperation with the frontend.

Below are the defaults for the docker-compose version.

reportsRoute Route location to fetch for reports. default: http://localhost/reports

1.11.3 Running the INNUENDO Platform

Retrieving the docker-compose version

To launch the docker-compose version of the INNUENDO Platform, first need to get the INNUENDO_docker
repository from github that has all the

24 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

required Dockerfiles and structures for communication between the containers and the user file system.

git clone https://github.com/bfrgoncalves/INNUENDO_docker.git

Launching the application

Running the INNUENDO Platform is very simple. You can lauch it with a single command.

Access the INNUENDO docker repository
cd </path/to/INNUENDO_docker>

Launch the application
docker-compose up

The last command will pull all the required images first then it will launch all the Docker containers. They will will
communicate between each other by a docker network that is built by default with docker-compose.

Downloading legacy data and building profile databases

The application provides a script to download all the required files to perform comparisons with some already publicly
available strains. This is made through the download of the following data available here:

• chewBBACA schemas

• Legacy strain metadata (for each species)

• Legacy strain profiles (for each species)

• Serotyping files

• Prodigal training files

These data will be available under ./inputs and will be mapped to the docker containers running the application.

The script also build the required files for a rapid comparison between profiles using fast-mlst and populates the
mlst_database.

To run the script, type the following command:

Enter repository directory
cd <innuendo_docker_directory>/build_files

Run script to get legacy input files
./get_inputs.sh

These steps might take up to 1h depending on the available internet connection and the host machine.

Loading data from a pre-defined backup

We offer an option to load a predefined set of protocols and workflows, together with test projects and strains. Cur-
rently, this option is only available for machines with above 8 cpus and 8gb of RAM. This is due to the backup
expecting at least those resources for at least one of the predefined protocols.

To load the predefined data, do the following:

1.11. Docker-Compose 25

https://zenodo.org/communities/innuendo
https://github.com/B-UMMI/fast-mlst

INNUENDO Platform Documentation, Release 1

Enter the build_files directory
cd <innuendo_docker_directory>/build_files

Run the script to load the data
./init_8cpu_components.sh

NOTE: The above script will delete ALL data available in the AllegroGraph database and INNUENDO general
database. It will then replaced by the predefined data.

1.11.4 Mapping data into the Docker containers

To map data between the user filesystem and the containers, docker-compose already has a directive to deal with that
action.

Inside the docker-compose.yml you got all the required attributes to launch the container and the interaction between
other containers.

Below is described the directives used to launch a service in docker-compose.

Service for the INNUENDO frontend. Requires the config files for the
application and mapping of the fastq files
frontend:

this service uses the dockerfile inside the Frontend directory
build: ./components/Frontend/
Allow run services inside as root
privileged: true
Allow restart on failure
restart: on-failure
Directive to map files and folders to the container. In this case,
all files before : are files in the user file system. The files after
: are the location of those files in the container.

volumes:
- ./configs/app/config_frontend.py:/Frontend/INNUENDO_REST_API/config.py
- user_data:/INNUENDO
- ./inputs/fastq:/INNUENDO/ftp/files
- ./inputs/v1/classifications:/INNUENDO/inputs/v1/classifications
- ./inputs/v1/core_lists:/INNUENDO/inputs/v1/core_lists
- ./inputs/v1/indexes:/INNUENDO/inputs/v1/indexes
- ./inputs/v1/legacy_metadata:/INNUENDO/inputs/v1/legacy_metadata
- ./inputs/v1/legacy_profiles:/INNUENDO/inputs/v1/legacy_profiles
- singularity_cache:/mnt/singularity_cache

Ports mapping between container and host
ports:

- "5000:5000"
Depends on other docker-compose services to work
depends_on:

- "allegro"
- "db_innuendo"
- "db_mlst"
- "web"

Arguments to give to the docker-entrypoint.sh
command: ["init_allegro", "build_db", "init_app"]

As seen above, the files can be mapped with the volumes directive.

Fastq files from the user must be placed into the inputs/fastq folder to be linked with the INNUENDO
Platform docker version.

26 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

1.11.5 Backing up/ Build data

We provide a series of scripts to backup/build all the required databases used in the docker-compose version of the
INNUENDO Platform. These files are located at inside the images and need to be triggered after the application is
running. This is made using the docker exec command on an already running container.

Backing up/ Build postgreSQL databases

There are four postgreSQL databases used in the INNUENDO Platform that can be backed up: innuendo,
mlst_database, assemblerflow, and phyloviz.

All databases backups can be made using a single command for each database.

Execute script on frontend container to backup database
Information on database, username and pass are located in the
docker-compose.yml file
docker exec innuendo_docker_frontend_1 backup_dbs.sh backup <database> <username>
→˓<pass> <backup_file_name>

The build command to restore a database to a given backup state is very similar to the above.

Execute script on frontend container to build database
docker exec innuendo_docker_frontend_1 backup_dbs.sh build <database> <username>
→˓<pass> <backup_file_name>

Backing up/ Build AllegroGraph databases

Other database type used in the INNUENDO Platform is a triplestore and it is also required for the application to
retrive to a given state if required.

To backup AllegroGraph, it is only required to run a single command

Execute script on frontend container to backup allegrograph
Information on database, username and pass are located in the
docker-compose.yml file
docker exec innuendo_docker_frontend_1 build_allegro.py backup <backup_file_name>

The build command is similar to the above and is required to move the application to a given state.

Execute script on frontend container to backup allegrograph
docker exec innuendo_docker_frontend_1 build_allegro.py build <backup_file_name>

1.11.6 Customizing Entrypoints

Entrypoints are the files run on container creation with a series of predefined commands.

On each component/ folder of the application you have an entrypoint.sh file and a Dockerfile.

By modifying the commands inside the entrypoint.sh you can change the default behaviour when the container
for that component launches.

1.11. Docker-Compose 27

INNUENDO Platform Documentation, Release 1

1.11.7 Useful docker commands

Bellow are some docker commands that might be useful to interact with the containers.

Show active containers.

docker-compose ps

Enter container.

docker exec -it container_name bash

List virtual volumes.

docker volume ls

List images.

docker images

Remove images

docker rmi image_name

1.12 Set a new Species

The INNUENDO Platform is species dependent. Which means that any project, protocol or workflow needs to be as-
sociated with a species. The scope of the INNUENDO Project was to develop analysis strategies from 4 target species:
Escherichia coli, Yersinia enterocolitica, Salmonella enterica and Campylobacter jejuni. However, the platform is
scalable to add any other species upon some configuration. In this example we are going to exemplify on how to add
speciesA.

NOTE: Most of the modifications required are in the INNUENDO_REST_API application.

1.12.1 1 - Add a new database model

Each species in the INNUENDO Platform has a dedicated wgMLST profile database. As so, a new model for it needs
to be added inside the app/models/models.py file of the INNUENDO_REST_API app.

Example of adding species A. Inside models.py file near the other mlst
database classes

class SpeciesA(db.Model):
"""
Defines the species specific storage of profiles and its classification.
Salmonella specification.
"""

Name of the database table
__tablename__ = "speciesA"

The name of the mlst_database
__bind_key__ = 'mlst_database'

(continues on next page)

28 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

(continued from previous page)

Required fields on each wgMLST species database
id = db.Column(db.Integer(), primary_key=True)
name = db.Column(db.String(255), unique=True)
version = db.Column(db.String(255))
Platform classifiers
classifier_l1 = db.Column(db.String(255))
classifier_l2 = db.Column(db.String(255))
classifier_l3 = db.Column(db.String(255))
allelic_profile = db.Column(JSON)
strain_metadata = db.Column(JSON)
Tell if it is legacy or from the platform
platform_tag = db.Column(db.String(255))
timestamp = db.Column(db.DateTime)

This new model needs to be loaded with manage.py in case of installation from source. In case of the docker-compose
verison, it will be loaded automatically on start.

1.12.2 2 - Import model on app_configuration.py

The model needs then to be imported to be used by the application. This can be made by importing it at
app/app_configuration.py of the INNUENDO_REST_API app. The species_correspondece dictionary needs also to
be updated to allow association of the models with a key.

Example of adding speciesA to the model imports at app/app_configuration.py
from app.models.models import Ecoli, Yersinia, Salmonella, Campylobacter, SpeciesA

Change the species_correspondece object to associate model with a key
database_correspondece = {

"E.coli": Ecoli,
"Yersinia": Yersinia,
"Salmonella": Salmonella,
"SpeciesA": SpeciesA

}

1.12.3 3 - Update the config.py files

The config.py files need also to be updated in order for the application to know which species should use, the
classification levels, and which files use for wgMLST database. These modifications are required on both INNU-
ENDO_REST_API and INNUENDO_PROCESS_CONTROLLER.

Updating config.py on INNUENDO_REST_API application

Example of config.py updates for speciesA

Add speciesA to the list with all the available species
NOTE: the name needs to be the same as the key used in the
database_correspondece on step 2
ALL_SPECIES = [

"E.coli",
"Yersinia",
"Campylobacter",
"Salmonella",
"SpeciesA"

(continues on next page)

1.12. Set a new Species 29

INNUENDO Platform Documentation, Release 1

(continued from previous page)

]

Add the Association between species ID in the platform with the species name
SPECIES_CORRESPONDENCE = {

"E.coli": "Escherichia coli",
"Yersinia": "Yersinia enterocolitica",
"Salmonella": "Salmonella enterica",
"Campylobacter": "Campylobacter jejuni"
"SpeciesA": "Species A real name"

};

Add the wgMLST fast-mlst index file correspondence
wg_index_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg",
"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg",
"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg",
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg"

}
}

Add Path to the core index file used by fast-mlst for profile search up to x
differences
core_index_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core",
"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core",
"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core",
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core"

}
}

Add Path to the list of the wg loci for each species
wg_headers_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_wg.txt",
"Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_wg.txt",
"Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_wg.txt",
"SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_wg.txt"

}
}

Add Path to the list of the core loci for each species
core_headers_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_core.txt",
"Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_core.txt",
"Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_core.txt",
"SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_core.txt"

}
}

Add Location of the file with the core profiles for each species. Used to
contruct the search index
core_increment_profile_file_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core_profiles.tab",

(continues on next page)

30 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

(continued from previous page)

"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core_profiles.tab",
"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core_profiles.tab",
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core_profiles.tab"

}
}

Add Location of the file with wg profiles for each species. Used to contruct the
search index
wg_increment_profile_file_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg_profiles.tab",
"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg_profiles.tab",
"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg_profiles.tab",
"Campylobacter": "/INNUENDO/inputs/v1/indexes/campy_wg_profiles.tab"
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg_profiles.tab"

}
}

Updating config.py on INNUENDO_PROCESS_CONTROLLER application

Add chewBBACA prodigal training file if not assigned in the protocol
CHEWBBACA_TRAINING_FILE = {

"E.coli": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/
→˓Escherichia_coli.trn",

"Yersinia": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/
→˓Yersinia_enterocolitica.trn",

"Campylobacter": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_
→˓files/Campylobacter_jejuni.trn",

"Salmonella": "/INNUENDO/inputs/prodigal_training_files/prodigal_training_files/
→˓Salmonella_enterica.trn"

"SpeciesA": "/prodigal/training/file/location"
}

Add name user for chewBBACA in case not assigned in the protocol
CHEWBBACA_CORRESPONDENCE = {

"E.coli": "Escherichia coli",
"Yersinia": "Yersinia enterocolitica",
"Campylobacter": "Campylobacter jejuni",
"Salmonella": "Salmonella enterica",
"SpeciesA": "Species a"

}

Add Torsten's mlst correspondence
MLST_CORRESPONDENCE = {

"E.coli": "ecoli",
"Yersinia": "yersinia",
"Campylobacter": "campylobacter",
"Salmonella": "senterica",
"SpeciesA": "speciesa"

}

Add the wgMLST fast-mlst index file correspondence
wg_index_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg",
"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg",

(continues on next page)

1.12. Set a new Species 31

INNUENDO Platform Documentation, Release 1

(continued from previous page)

"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg",
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg"

}
}

Add Path to the core index file used by fast-mlst for profile search up to x
differences
core_index_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core",
"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core",
"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core",
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core"

}
}

Add Path to the list of the wg loci for each species
wg_headers_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_wg.txt",
"Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_wg.txt",
"Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_wg.txt",
"SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_wg.txt"

}
}

Add Path to the list of the core loci for each species
core_headers_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/core_lists/ecoli_headers_core.txt",
"Yersinia": "/INNUENDO/inputs/v1/core_lists/yersinia_headers_core.txt",
"Salmonella": "/INNUENDO/inputs/v1/core_lists/salmonella_headers_core.txt",
"SpeciesA": "/INNUENDO/inputs/v1/core_lists/speciesA_headers_core.txt"

}
}

Add Location of the file with the core profiles for each species. Used to
contruct the search index
core_increment_profile_file_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_core_profiles.tab",
"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_core_profiles.tab",
"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_core_profiles.tab",
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_core_profiles.tab"

}
}

Add Location of the file with wg profiles for each species. Used to contruct the
search index
wg_increment_profile_file_correspondece = {

"v1": {
"E.coli": "/INNUENDO/inputs/v1/indexes/ecoli_wg_profiles.tab",
"Yersinia": "/INNUENDO/inputs/v1/indexes/yersinia_wg_profiles.tab",
"Salmonella": "/INNUENDO/inputs/v1/indexes/salmonella_wg_profiles.tab",
"Campylobacter": "/INNUENDO/inputs/v1/indexes/campy_wg_profiles.tab"
"SpeciesA": "/INNUENDO/inputs/v1/indexes/speciesA_wg_profiles.tab"

}
(continues on next page)

32 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

(continued from previous page)

}

Update the expected genome size of SpeciesA
species_expected_genome_size = {

"E.coli": "5",
"Yersinia": "4.7",
"Salmonella": "4.6",
"Campylobacter": "1.6",
"SpeciesA": "GenomeSize"

}

To know on how to create the required legacy database files, check the Set legacy database section.

1.13 Set a legacy profiles database

The INNUENDO Platform allows adding profiles already analysed to the wgMLST database for comparison. These
profiles must have an associated metadata and the three level profile classification.

This can be made by updating the following files of the INNUENDO_REST_API application, at the INNU-
ENDO_REST_API/build_files folder. The files are:

• build_indexes.sh - Gets profiles, metadata, and classification. It also adds the information to the new wgMLST
database.

• get_profiles_and_training.sh - Gets the used wgMLST schema.

The above files should be changed to add according to the modifications required to insert the data inside the database.
Check the documentation inside the above files for more information regarding each step.

An example of each of the input files can be found:

• Allelic profiles .tab file (Yersinia enterocolitica)

• Metadata file (Yersinia enterocolitica)

• List of schema core genes (Yersinia enterocolitica)

• Three level classification (Yersinia enterocolitica)

1.14 Set Protocols

In the INNUENDO Platform, protocols are the basic unit for running processes. They are the building blocks to
construct Workflows, which can then be applied to strains in our projects.

Protocol creation is responsibility of the INNUENDO platform administrators.

Protocols are composed of a Type, the name of the used Software, a Nextflow Tag, Parameters, and a Name. Each
protocol name MUST be unique.

1.14.1 Protocol Types

Protocol types are defined by NGSOnto and are a way of classifying the available protocols. Each type can have
different attributes.

• de-novo assembly protocol

1.13. Set a legacy profiles database 33

https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yenterocolitica_wgMLST_alleleProfiles.tsv/
https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yenterocolitica_metadata.txt/
https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yenterocolitica_cgMLST_2406_listGenes.txt/
https://github.com/bfrgoncalves/INNUENDO_schemas/releases/download/1.1/Yentero_correct_classification.txt/

INNUENDO Platform Documentation, Release 1

• Sequencing quality control protocol

• Allele Call Protocol

• sequencing Protocol

• DNA Extraction protocol

• Pathotyping Protocol

• Sequence cutting protocol

• mapping assembly protocol

• Filtering protocol

• Library Preparation Protocol

1.14.2 used Software

When creating a protocol, other field that needs to exist is the used Software. It is required for the Platform to know
which software you are going to use on that protocol in case some extra steps are required after or before running it.
The available tags are:

• reads_download

• seq_typing

• patho_typing

• integrity_coverage

• fastqc (fastqc_trimmomatic)

• true_coverage

• fastqc_2 (fastqc)

• integrity_coverage_2 (check_coverage)

• spades

• process_mapping

• pilon

• mlst

• sistr

• chewBBACA

• abricate

Each of these tags are closely related to the Nextflow Tags chosen. So, to have a good agreement between Software
and Nextflow Tags, pair them together.

1.14.3 Nextflow Tags

Nextflow Tags are the specific names that FlowCraft requires to build Nextflow pipelines based on the available
software at the INNUENDO Platform.

Below you have all the available Nextflow Tags retrieved from FLowCraft that can be used in the INNUENDO Plat-
form:

34 Chapter 1. Contents

https://github.com/assemblerflow/flowcraft

INNUENDO Platform Documentation, Release 1

=> reads_download
input_type: accessions
output_type: fastq
dependencies: None

=> seq_typing
input_type: fastq
output_type: None
dependencies: None

=> patho_typing
input_type: fastq
output_type: None
dependencies: None

=> integrity_coverage
input_type: fastq
output_type: fastq
dependencies: None

=> fastqc_trimmomatic
input_type: fastq
output_type: fastq
dependencies: integrity_coverage

=> true_coverage
input_type: fastq
output_type: fastq
dependencies: None

=> fastqc
input_type: fastq
output_type: fastq
dependencies: None

=> check_coverage
input_type: fastq
output_type: fastq
dependencies: None

=> spades
input_type: fastq
output_type: fasta
dependencies: integrity_coverage

=> process_spades
input_type: fasta
output_type: fasta
dependencies: None

=> assembly_mapping
input_type: fasta
output_type: fasta
dependencies: None

=> pilon
input_type: fasta
output_type: fasta
dependencies: assembly_mapping

=> mlst
input_type: fasta
output_type: fasta
dependencies: None

=> abricate
input_type: fasta
output_type: None
dependencies: None

=> chewbbaca

(continues on next page)

1.14. Set Protocols 35

INNUENDO Platform Documentation, Release 1

(continued from previous page)

input_type: fasta
output_type: None
dependencies: None

=> sistr
input_type: fasta
output_type: None
dependencies: None

1.14.4 Protocol Name

The protocol name is the identifier that will appear when choosing protocols to apply to a Workflow. Each protocol
name MUST be unique. Also, try to make a reference for the nextflow tag used in the protocol name in order to
establish a better organization regarding available protocols.

For more information regarding FlowCraft, checkout this link: https://assemblerflow.readthedocs.io/en/dev/index.
html

1.15 Set Workflows

In the INNUENDO Platform, Workflows are the merge of one or more protocols to build a cascade of events to be
applied to you strains. Their goal is to organize a group of software to be applied and you can then apply multiple
workflows to a strain and build a pipeline according to their specific Workflow dependencies.

As for Protocols, Workflows also have a predefined set of attributes that need to be filled in order to be successfully
applied to a strain. A workflow must have a Name, a Dependency, a Type, and the Species where that workflow will
be available.

Workflows are Species dependent so you need to define the workflows that you want to make available for each
species.

Workflow creation is responsibility of the INNUENDO platform administrators.

1.15.1 Workflow Name

Each workflow MUST have a name and it cannot be the same even across Species. The use of special characters are
discouraged.

1.15.2 Workflow Dependency

Workflows can have input dependencies that are required to run them. Dependencies can be Fastq files, Accession
numbers or any one of the already available workflows. These dependencies will them be used to guide the user when
applying workflows to their strains.

1.15.3 Type

Workflows in the INNUENDO Platform are separated into two types: Classifier and Procedure.

• Classifier - Procedure to classify non-computing required processes. Used for classification of processes prior
to data analysis. Not currently implemented in the INNUENDO Platform.

36 Chapter 1. Contents

https://assemblerflow.readthedocs.io/en/dev/index.html
https://assemblerflow.readthedocs.io/en/dev/index.html

INNUENDO Platform Documentation, Release 1

• Procedure - A procedure is a workflow that can be applied to a strain and run on the data associated to that
strain.

Currently, only Procedures can be applied to strains.

1.15.4 Workflow Recipes

For the INNUENDO Platform, there are a set of Workflow recipes that can be constructed to run software on the strain
data in the correct order. They depend on the created protocols which in the examples below they have the same name
as their Nextflow Tags.

• Reads Download:

– Protocols (1):

* reads_download

• Serotyping:

– Protocols (1):

* seq_typing

• Pathotyping:

– Protocols (1):

* patho_typing

• INNUca:

– Protocols (10):

* integrity_coverage

* fastqc_trimmomatic

* true_coverage

* fastqc

* check_coverage

* spades

* process_spades

* assembly_mapping

* pilon

* mlst

• chewBBACA:

– Protocols (1):

* chewbbaca

* Protocol Parameters:

· schema: chewbbaca_schema_folder_name

• Abricate:

– Protocols (1):

* abricate

1.15. Set Workflows 37

INNUENDO Platform Documentation, Release 1

• SISTR:

– Protocols (1):

* sistr

1.16 Backing up Data

Backing up data is an essential feature on every system and in the INNUENDO Platform that is no exception. As so,
bellow we provide the required commands to backup all data on the system.

The INNUENDO Platform is composed of 3 databases: The frontend database, the wgMLST database and the
allegrograph database. The first two are postgreSQL relational databases and the third a triplestore (graph based
database).

1.16.1 Backing up postgreSQL databases

postgreSQL provides a built in tool for backing up its databases. It builds a file with all the instructions required to
rebuild the database in other instance if required.

To backup the frontend database, run the following command on the machine running the service:

This command will produce a new file called output_file.db that will
have all the instructions to build the database. Replace
<database_user> and <database_name> by the database owner and the wgMLST
database name.
pg_dump -U <database_user> <database_name> > output_file_frontend.db

To backup the wgMLST database, run the following command on the machine running the service:

This command will produce a new file called output_file.db that will
have all the instructions to build the database. Replace
<database_user> and <database_name> by the database owner and the wgMLST
database name.
pg_dump -U <database_user> <database_name> > output_file_wgmlst.db

To restore the database, run the following command on the machine running the postgreSQL service.

The text files created by pg_dump are intended to be read in by the psql program.
Replace <database_user> and <database_name> by the database owner and database name.
psql -U <database_user> <database_name> < output_file.db

The INNUENDO Platform also provides a script for automatic backup of postgreSQL databases located inside the
build_files directory inside INNUENDO_REST_API.

Parameters
mode: [backup, build]
database: database_name
postgresUser: Postgres username and owner of database
postgresPass: Postgres password
fileLocation: Location of output or input file (depening on the mode
backup_dbs.sh <mode> <database> <postgresUser> <postgresPass> <fileLocation>

38 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

1.16.2 Backing up AllegroGraph database

The AllegroGraph database is a different type of database. Is not a relational database. Instead, it stores relationships
between objects in the form of a graph. It is used on the INNUENDO Platform as the backbone to get track of
relationships between, projects, strains, workflows, processes and their outputs.

To backup the AllegroGraph database, we can use their web application. To do that, go to the defined configuration url
for the AllegroGraph web application. There you will need to login as seen bellow with your AllegroGraph username
and password.

After logging in, you will enter in a new page with information regarding the available repositories. You should see
the already created repository for the INNUENDO Platform. In this case, it has the name innuendo.

After clicking on the desired repository, you can export the database by going to Export store as and select
RDF/XML. This will create a file with the structure of the database that you can then load into AllegroGraph also
using the web application.

1.16. Backing up Data 39

INNUENDO Platform Documentation, Release 1

To do that, on the same page as the Export, there is an option to Import RDF. Choose the option from an uploaded
file and add one file obtained from the Export option. At the end you should get the repository restored.

In addition to the previous steps, the INNUENDO Platform provides a programmatic way to backup and restore
the AllegroGraph database using the script build_allegro.py located at the build_files directory inside INNU-
ENDO_REST_API.

Parameters
mode: [backup, build]
fileLocation: Location of the output or input file
#
Steps
Copy build_allegro.py to INNUENDO_REST_API since it requires to be run
on that location.
cp <INNUENDO_REST_API_location>/build_files/build_allegro.py <INNUENDO_REST_API_
→˓location>/
Add AllegroGraph client to the PYTHONPATH

(continues on next page)

40 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

(continued from previous page)

export PYTHONPATH="<INNUENDO_REST_API_LOCATION>/agraph-6.2.1-client-python/src"
Run the script
flask/bin/python build_allegro.py <mode> <fileLocation>

1.16.3 Backing up Nextflow runs Data

All processes submitted to the INNUENDO Platform are managed by Nextflow and SLURM managers. Software
runs that they manage are stored in the file system in directories structures and not in databases. As so, results derived
directly from the software being run stay in those directory structures eg, raw reads, fasta files and other software
outputs. Only post-processed selected data is sent to the INNUENDO Reports to be visualized.

Data from runs is stored by default in the /<usersStorage>/<user>/<jobs>.

Inside each job folder you will have results and recipes to run the processes for each strain. Since each pipeline is as-
sociated with a strain in a given project, inside the jobs directory you will find folders with the structure <project_id>-
<pipeline_id>. Inside those folder you can find other folder called results where all the relevant information regarding
that pipeline is stored.

Runs directory structure

- <usersStorage>
- <user>

- <jobs>
- <project_id>-<pipeline_id>

- <results>
- <work>

- processes generated files
- executor_command.sh -> To rerun pipeline

1.17 Inspecting Platform Logs

Admins of the INNUENDO Platform have some extra features to visualize logs for each process on every Project.
When an admin enters a project he can visualize the logs by clicking on the Information button available for each
strain on a project, in the Analysis column.

By clicking on that button the admin gets access to the information described bellow.

1.17.1 FlowCraft Build Log

The INNUENDO Platform builds the pipelines based on the FlowCraft software. It builds the nextflow files required
by using the Nextflow Tags defined when creating the protocols as inputs.

Information regarding cpu usage, memory, and other directives can also be passed to FlowCraft when building the
pipelines.

1.17. Inspecting Platform Logs 41

INNUENDO Platform Documentation, Release 1

python3 /home/ubuntu/innuendo/flowcraft/flowcraft/flowcraft.py build -t reads_
→˓download={'pid':1,'cpus':'2','memory':'\'4GB\''} integrity_coverage={'pid':2,'cpus':
→˓'1','memory':'\'4GB\''} fastqc_trimmomatic={'pid':3,'cpus':'2','memory':'\'4GB\''}
→˓true_coverage={'pid':4,'cpus':'2','memory':'\'4GB\''} fastqc={'pid':5,'cpus':'2',
→˓'memory':'\'4GB\''} check_coverage={'pid':6,'cpus':'1','memory':'\'4GB\''} spades={
→˓'pid':7,'scratch':'true','cpus':'4','memory':'\'4GB\''} process_spades={'pid':8,
→˓'cpus':'1','memory':'\'4GB\''} assembly_mapping={'pid':9,'cpus':'2','memory':'\'4GB\
→˓''} pilon={'pid':10,'cpus':'2','memory':'\'4GB\''} mlst={'pid':11,'version':
→˓'tuberfree','cpus':'1','memory':'\'4GB\''} abricate={'pid':12,'cpus':'2','memory':'\
→˓'4GB\''} chewbbaca={'pid':13,'queue':'\'chewBBACA\'','cpus':'8','memory':'\'4GB\''}
→˓-o /mnt/innuendo_storage/users/bgoncalves/jobs/8-9/8_9.nf -r innuendo
[1;32m========= F L O W C R A F T =========
Build mode
version: 1.1.0
build: 20042018
=====================================[0m
[1;38mResulting pipeline string:
[0m
[1;38m reads_download={'pid':1,'cpus':'2','memory':'\'4GB\''} integrity_coverage={'pid
→˓':2,'cpus':'1','memory':'\'4GB\''} fastqc_trimmomatic={'pid':3,'cpus':'2','memory':
→˓'\'4GB\''} true_coverage={'pid':4,'cpus':'2','memory':'\'4GB\''} fastqc={'pid':5,
→˓'cpus':'2','memory':'\'4GB\''} check_coverage={'pid':6,'cpus':'1','memory':'\'4GB\'
→˓'} spades={'pid':7,'scratch':'true','cpus':'4','memory':'\'4GB\''} process_spades={
→˓'pid':8,'cpus':'1','memory':'\'4GB\''} assembly_mapping={'pid':9,'cpus':'2','memory
→˓':'\'4GB\''} pilon={'pid':10,'cpus':'2','memory':'\'4GB\''} mlst={'pid':11,'version
→˓':'tuberfree','cpus':'1','memory':'\'4GB\''} (abricate={'pid':12,'cpus':'2','memory
→˓':'\'4GB\''} | chewbbaca={'pid':13,'queue':'\'chewBBACA\'','cpus':'8','memory':'\
→˓'4GB\''})
[0m
[1;38mChecking pipeline for errors...[0m
[1;38mBuilding your awesome pipeline...[0m
[1;38m Successfully connected 13 process(es) with 1 fork(s) across 3 lane(s) X[0m
[1;38m Channels set for init X[0m
[1;38m Channels set for reads_download X[0m
[1;38m Channels set for integrity_coverage X[0m
[1;38m Channels set for fastqc_trimmomatic X[0m
[1;38m Channels set for true_coverage X[0m
[1;38m Channels set for fastqc X[0m
[1;38m Channels set for check_coverage X[0m
[1;38m Channels set for spades X[0m
[1;38m Channels set for process_spades X[0m
[1;38m Channels set for assembly_mapping X[0m
[1;38m Channels set for pilon X[0m
[1;38m Channels set for mlst X[0m
[1;38m Channels set for abricate X[0m
[1;38m Channels set for chewbbaca X[0m
[1;38m Successfully set 10 secondary input(s) X[0m
[1;38m Successfully set 3 secondary channel(s) X[0m
[1;38m Finished configurations X[0m
[1;38m Pipeline written into /mnt/innuendo_storage/users/bgoncalves/jobs/8-9/8_9.
→˓nf X[0m
[1;32mDONE![0m

42 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

1.17.2 Platform Config

When running a pipeline using FlowCraft, there are some input variables required depending on the software used.
Below is described the inputs required to run the pipeline built above.

params {
accessions="/mnt/innuendo_storage/users/bgoncalves/jobs/8-9/accessions.txt"
platformSpecies="Campylobacter"
referenceFileO=""
currentUserName="bgoncalves"
schemaSelectedLoci="/home/ubuntu/innuendo/schemas/ccoli_cjejuni_Py3/listGenes.txt"
currentUserId="4"
projectId="8"
asperaKey="/mnt/singularity_cache/shared_files/asperaweb_id_dsa.openssh"
pipelineId="9"
reportHTTP="http://192.168.1.10/app/api/v1.0/jobs/report/"
chewbbacaTraining="/home/ubuntu/innuendo/prodigal_training_files/prodigal_

→˓training_files/Campylobacter_jejuni.trn"
schemaPath="/home/ubuntu/innuendo/schemas/ccoli_cjejuni_Py3"
referenceFileH=""
genomeSize="1.6"
platformHTTP="http://192.168.1.11/jobs/setoutput/"
sampleName="ERR2601756"
species="Campylobacter jejuni"
mlstSpecies="campylobacter"
schemaCore="/home/ubuntu/innuendo/core_lists/core_lists/campy_headers_core.txt"
chewbbacaJson=true

}

1.17.3 Nextflow Run Logs

After starting a run with Nextflow, it starting given the log above what processes are being submitted. Below is
described the nextflow log that is provided by nextflow on every pipeline run.

N E X T F L O W ~ version 0.30.1
Launching `/mnt/innuendo_storage/users/bgoncalves/jobs/8-9/8_9.nf` [agitated_lamarr] -
→˓ revision: d8c53f4c58
WARN: It seems you never run this project before -- Option `-resume` is ignored
WARN: The config file defines settings for an unknown process: chewbbaca -- Did you
→˓mean: chewbbaca_13?

==
F L O W C R A F T

==
Built using flowcraft v1.1.0

Input accessions : 1
Reports are found in : ./reports
Results are found in : ./results
Profile : incd

Starting pipeline at Thu Jun 14 09:56:45 UTC 2018

[warm up] executor > slurm
[5b/597bde] Submitted process > reads_download_1 (ERR2601756)
[64/4ace33] Submitted process > report (null)

(continues on next page)

1.17. Inspecting Platform Logs 43

INNUENDO Platform Documentation, Release 1

(continued from previous page)

[13/550a1e] Submitted process > status (ERR2601756)
[1e/0cba15] Submitted process > integrity_coverage_2 (ERR2601756)
[70/e7768f] Submitted process > status (ERR2601756)
[ee/6719aa] Submitted process > report_coverage_2
[c1/689d2d] Submitted process > report (null)
[7f/34afa4] Submitted process > fastqc_3 (ERR2601756)
[e3/af508e] Submitted process > status (ERR2601756)
[eb/5e1ca3] Submitted process > report (null)
[bf/979467] Submitted process > fastqc_report_3 (ERR2601756)
[35/b57a70] Submitted process > report (null)
[de/2443d8] Submitted process > status (ERR2601756)
[11/80a9bc] Submitted process > trim_report_3
[b5/e9c230] Submitted process > compile_fastqc_status_3
[65/4b8bfe] Submitted process > trimmomatic_3 (ERR2601756)
[2e/9f4768] Submitted process > status (ERR2601756)
[cf/bae302] Submitted process > report (null)
[64/d1163d] Submitted process > true_coverage_4 (ERR2601756)
[73/7b60a2] Submitted process > status (ERR2601756)
[8c/572e1a] Submitted process > report (null)
[5a/b3b8d7] Submitted process > fastqc2_5 (ERR2601756)
[d6/1e6203] Submitted process > status (ERR2601756)
[1c/a1e215] Submitted process > report (null)
[44/9376fe] Submitted process > fastqc2_report_5 (ERR2601756)
[ea/a88007] Submitted process > report (null)
[48/26e31a] Submitted process > status (ERR2601756)
[78/747a8e] Submitted process > compile_fastqc_status2_5
[fd/e66412] Submitted process > integrity_coverage2_6 (ERR2601756)
[cf/110b82] Submitted process > report (null)
[90/2cbe38] Submitted process > report_coverage_2_6
[07/1ec1ad] Submitted process > status (ERR2601756)
[4f/35ef82] Submitted process > spades_7 (ERR2601756)
[7e/b41ef9] Submitted process > status (ERR2601756)
[dc/3e9b1c] Submitted process > report (null)
[ec/0b1648] Submitted process > process_spades_8 (ERR2601756)
[9a/474fed] Submitted process > status (ERR2601756)
[20/de7925] Submitted process > report (null)
[b4/797d97] Submitted process > assembly_mapping_9 (ERR2601756)
[e9/076467] Submitted process > status (ERR2601756)
[f7/b2a31c] Submitted process > report (null)
[41/0c0c46] Submitted process > process_assembly_mapping_9 (ERR2601756)
[35/79afe6] Submitted process > report (null)
[ef/d7dc5e] Submitted process > status (ERR2601756)
[98/d4720a] Submitted process > pilon_10 (ERR2601756)
[fb/c97d88] Submitted process > report (null)
[ff/ae8145] Submitted process > status (ERR2601756)
[e8/b64b34] Submitted process > mlst_11 (ERR2601756)
[f6/e6cc66] Submitted process > pilon_report_10 (ERR2601756)
[d0/2a9846] Submitted process > compile_mlst_11
[69/2c6096] Submitted process > report (null)
[c9/e8a0ed] Submitted process > status (ERR2601756)
[85/0f52a0] Submitted process > abricate_12 (ERR2601756 vfdb)
[d3/daa42d] Submitted process > abricate_12 (ERR2601756 virulencefinder)
[12/87469f] Submitted process > abricate_12 (ERR2601756 plasmidfinder)
[e5/86de26] Submitted process > abricate_12 (ERR2601756 card)
[83/083261] Submitted process > abricate_12 (ERR2601756 resfinder)
[5f/0d7e95] Submitted process > chewbbaca_13 (ERR2601756)
[84/0c1512] Submitted process > report (null)

(continues on next page)

44 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

(continued from previous page)

[26/eefb06] Submitted process > compile_pilon_report_10
[d6/488e5f] Submitted process > status (ERR2601756)
[a5/0b88b0] Submitted process > status (ERR2601756)
[ff/3ce639] Submitted process > report (null)
[3a/653f1d] Submitted process > status (ERR2601756)
[67/969e84] Submitted process > report (null)
[24/431fa8] Submitted process > report (null)
[76/4b245f] Submitted process > status (ERR2601756)
[7d/498efd] Submitted process > status (ERR2601756)
[22/351c99] Submitted process > report (null)
[59/b86166] Submitted process > report (null)
[1c/727625] Submitted process > status (ERR2601756)
[8d/6cc53d] Submitted process > process_abricate_12
[4f/e8a62d] Submitted process > report (null)
[72/9709c5] Submitted process > status (ERR2601756)
[fd/395422] Submitted process > compile_reports
[a0/cd14c7] Submitted process > compile_status_buffer (1)
[4f/3abd7f] Submitted process > compile_status
Completed at: Thu Jun 14 10:32:18 UTC 2018
Duration : 35m 32s
Success : true
Exit status : 0

Between [] is described on which folder inside the user jobs directory structure the data is be-
ing stored for that particular process. As so, the results from reads_download_1 are being stored at
/<usersStorage>/<user>/<jobs>/<project_id>-<pipeline_id>/work/5b/597bde.

To visualize the specific log for that process we should go to the folder described above and check for the files
.command.log and .command.err, which are the nextflow files generated with the outputs of a process.

1.18 Troubleshooting

In this section we are going to add some of the possible scenarios that can cause the admins to interact with the
INNUENDO Platform to solve possible problems.

1.18.1 1 - Web application not showing in the web browser

In case the web application does not show in the web browser, do the following steps.

1. Check the internet connection: Verify if the user has internet connection since it is required to interact with
the INNUENDO Platform.

2. Verify if the frontend service is up: Check if the frontend server is up by entering the machine with the fron-
tend application. If the service is not running, start it.

3. Check if Nginx service is up: Check if the Nginx service is running by typing service nginx status. If is not
running, start it by typing service nginx start.

4. Check the Nginx configuration file: If the above step does not work, check the Nginx configuration file for
possible errors.

In case the above steps don’t solve the problem, please contact the developer.

1.18. Troubleshooting 45

INNUENDO Platform Documentation, Release 1

1.18.2 2 - Job submission stuck on waiting animation

In case the loading screen does not disappear after submitting jobs to the server, do the following steps:

1. Verify if all services are up: Normally this event can be caused by miss-communication between the frontend
application and the process controller. Enter the machine running the process controller and check if the
service is running. If not, start it.

2. Check if jobs were submitted: Enter the user project and go to the Information section. Check for the
Nextflow Logs and Flowcraft Build Logs. You can also check the submitted jobs by entering the ma-
chine running the process controller and type squeue to check the jobs running.

3. Re-run if no jobs were submitted: Remove all the workflows applied to the strains with problems, apply again
and re-run the jobs.

In case the above steps don’t solve the problem, please contact the developer.

1.18.3 3- Nextflow aborts a pipeline

Enter the project with with the problematic strains and check the Nextflow Logs. In case the pipeline being aborted,
resubmit it by clicking on the Retry button which appears below the log. After the submission, refresh the log tab to
verify if it is running.

In case the above steps don’t solve the problem, contact the developer.

1.18.4 4- Profile classification not showing after chewBBACA run

This can happen because the worker service used for classification and PHYLOViZ Online submission not being
running. Enter the machine with the frontend server installed and check if the worker.py process is running. If not,
start the process.

1.18.5 5- PHYLOViZ Online submission not working

This can happen because the worker service used for classification and PHYLOViZ Online submission not being
running. Enter the machine with the frontend server installed and check if the worker.py process is running. If not,
start the process.

1.18.6 6- PHYLOViZ Online application not showing

Check if the PHYLOViZ Online services are running. To do that, go to the machine were PHYLOViZ Online is
installed, go to its source code folder and type pm2 list. If all services (app.js and queue_worker.js) are not running,
launch them by typing:

For the app.js
pm2 start app.js

For the queue_worker.js
pm2 start queue_worker.js

You can always change the memory and cpus allocated to the processes by running:

46 Chapter 1. Contents

INNUENDO Platform Documentation, Release 1

Restart app.js with 2 cpu allocated and 8GB of memory
pm2 restart app.js -i 2 --node-args="--max-old-space-size=8192"

Restart queue_worker.js with 2 cpu allocated and 8GB of memory
pm2 restart queue_worker.js -i 2 --node-args="--max-old-space-size=8192"

1.19 REST API

Information on the documented REST API of the INNUENDO REST API and INNUENDO PROCESS CON-
TROLLER can be found at INNUENDO API wiki.

1.19. REST API 47

https://github.com/bfrgoncalves/INNUENDO_docker/wiki

	Contents

