
InfraSIM Documentation
Release 2.0

EMC

December 10, 2018

Contents

1 InfraSIM™ Overview and quick start video 3
1.1 Contents . 3

i

ii

InfraSIM Documentation, Release 2.0

InfraSIM allows you to deploy virtualized infrastructures consisting of simulated servers, storage devices, switches
and smart PDUs(Power Distribute Units). You can use it to create development environments that simulate the exact
physical environments where your product will eventually be deployed.

The project is a collection of libraries and applications housed at https://github.com/InfraSIM/ and available under the
Apache 2.0 license (or compatible sublicenses for library dependencies). The code for InfraSIM is a combination of
python, shell and C, etc.

Contents 1

https://github.com/InfraSIM/

InfraSIM Documentation, Release 2.0

2 Contents

CHAPTER 1

InfraSIM™ Overview and quick start video

VIDEO: InfraSIM On YouTube

Contents

Overview

InfraSIM provides the technology to simulate the interface and behavior of hardware devices including compute,
storage, networking, and smart PDU(Power Distribute Units). It leverages the technology of virtualization which
enables to simulate a big amount of hardware devices with limited physical resources. And these simulated hardware
devices can be configured to construct an @scale infrastructure.

Data Center element simulating

At single node level, InfraSIM provides:

• Precisely-simulating of bare-metal hardware node: Server, PDU hardware configuration, manufacture infor-
mation, vendor-specific interfaces and functionalities, etc

• Mechanism for customizing sub-component of node. i.e. Configuration and properties of Drive, NIC and
processors; enclosure management subsystem.

• Configuring and manipulating platform firmware - BIOS, POST and BMC - behavior

• Easy way to simulating hardware failure

Virtual infrastructure powered by InfraSIM

To simulate scale out infrastructure, InfraSIM allows setting up, configuring one heterogeneous hardware infrastruc-
ture, with below advantages, which provides a total solution for CI application development and test.

• Network topology simulation

• Automatic deployment on demand

• Optimized footprint - Large scale deployment on top of limited number of servers

The diagram below illustrates the development concept of the @Scale deployment.

3

https://www.youtube.com/channel/UC5WCTcRNSSnw9ahbIQzU2HA

InfraSIM Documentation, Release 2.0

Why InfraSIM?

InfraSIM provides effective, economic way to simulate a bare-metal infrastructure on which engineering team can
leverage to achieve purpose of:

• Cost saving by simulating a scaled infrastructure with limited hardware materials

• Less dependency on hardware material which is in short supply

• Increase automation level and eventually increase development and testing efficiency

• Increase test coverage by leveraging InfraSIM error injection functionality

There’re many existing virtualization technologies like VMWare product, KVM, XEN, etc. They are aiming at provi-
sioning generic virtual machines which contains computing power and storage capacities and networking functionali-
ties. However, they’re not sufficient in many engineering areas because of several missing pieces like:

• Vendor personality: e.g. vendor identification information, SKU information, MFG information. No way to
tell it is Cisco switch or brocade one; or tell it is dell server or IBM server;

• Vendor-specific functionality: e.g. Dell Remote Access Controller; Cisco UCS appliance – provided central
interface for management

• Rack/Chassis/PDU/PS/Cooling: fundamental building blocks of hardware. Particular software need to be
aware of these info and would need to do some analytic and decision-making by checking details and running
status of these components.

• Platform FW behavior: VM provided only limited number of adjustable parameters; Limited emulation to FW
behaviors.

Virtual machines directly spawn by virtualization technologies are designed in way to be working forever, which
might not be totally expected in some situations. There definitely are desires to simulate hardware failures to test

4 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

robustness/error recovery scheme of software.

So we can conclude easily that current popular virtualization technologies are not designed to precisely simulate
hardware and consequently it can’t be directly adopted in dev and validation activities, for software for purpose of
infrastructure and hardware management and orchestration, which really have dependencies on detailed hardware
properties.

While InfraSIM is really designed to precisely simulate hardware and bare-metal infrastructure in order to maximize
the productivity and flexibility of you and your team.

InfraSIM Use Cases

Currently, InfraSIM has successfully proved that it is capable of not only saving lots of cost of purchasing hardware
material for setting up a pure bare-metal environment, but also providing many flexibilities in software developing and
testing areas. Here’re 2 cases where InfraSIM is leveraged for software application - RackHD and VMWare software
- development and testing.

InfraSIM as test infrastructure of RackHD™

Notes: RackHD™ is an open source project that provides hardware orchestration and management through RESTful
APIs. For more information about RackHD, go to http://rackhd.readthedocs.io.

1. At scale test

We can validate RackHD functionalities by having it manage and orchestrate a virtual infrastructure with adjustable or big scalability. Then we can evaluate RackHD performance benchmark and ensure its functionalities in an environment with:

• Big number of nodes

• Diversity of node type - different type, model, vendors, etc

• Increased complexity of network topology

2. Telemetry data testing InfraSIM allows generating and modifying server sensor readings that we can better
test feature of telemetry data of RackHD.

3. Node provision InfraSIM allows customizing node device tree and manipulating FE behavior, we can better test
node provision feature, for example, bootstrapping servers and deploying operating systems, hypervisors
and applications.

4. Error injection Because InfraSIM is adopting software approach to simulate hardware, both elements and
entire infrastructure, it provided more feasibility and easiness to simulate hardware failures to test our
software error handing logic.

1.1. Contents 5

http://rackhd.readthedocs.io

InfraSIM Documentation, Release 2.0

Running VMWare Virtualization Software inside InfraSIM Virtual server

Installation

For virtual node simulating server or PDU, either bare-metal machine (server, laptop, desktop) or virtual machine can
host one. It requires configuring network (either corresponding physical one or virtual one, even mixing physical and
virtual network together for hybrid configuration) in order to compose one infrastructure containing virtual servers,
PDUs and specified network topology.

Here’s requirement on hardware environment and virtualization environment running InfraSIM:

Requirement

Pre-requisite

Several mandatory configuration has to be made as below which is required to accommodate InfraSIM virtualization-
nesting design. How to install VMWare ESXi describes a example of how to achieve them when installing and
configuring VMWare ESXi.

1. Virtual InfraSIM servers runs in the best performance if hardware-assisting technology has been enabled on
underlying physical machines. These technology includes VT-d feature and AMD-V for processors from Intel
and AMD.

Note: Physical machine - enable VT-d in BIOS

2. When virtual server is running inside VM, it also requires underlying hypervisor passing down the hardware-
virtualization-assisting to virtual machine it spawn.

Note: VMWare ESXi hypervisor - Set “vhv.enable = “TRUE”

Caution: InfraSIM running on VirtualBox will have performance penalty when running spe-
cific work load (deploying operating system, running compute-intensive application inside virtual
server). This is because VirtualBox doesn’t support simulating a platform which is capable of
supporting hardware-virtualization-assisting feature.

3. Ensure Promiscuous Mode of virtual switch, virtual network controller has been enabled for underlying hyper-
visors hosting virtual machines running InfraSIM inside. Here’s example on how to achieve it on top VMWare
ESXi

6 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

Note: Promiscuous Mode - How to install VMWare ESXi

Resource Requirement

• 1 physical CPU or 1 virtual CPU

• 4GB memory

• 16GB disk space

• 1 virtual or physical NIC

Software environment

Ubuntu Linux 64-bit - 16.04 is recommended

Virtual Server

As Python Application

1. Ensure sources.list integrity then install dependency:

sudo apt-get update
sudo apt-get install python-pip libpython-dev libssl-dev libaio-dev bridge-utils git

2. Install setuptools:

sudo pip install setuptools

3. Select either one of below ways to install infrasim:

• install infrasim from source code:

git clone https://github.com/InfraSIM/infrasim-compute.git
cd infrasim-compute
sudo pip install -r requirements.txt

sudo python setup.py install

• install infrasim from python library:

sudo pip install infrasim-compute

As Docker Image

We also provide docker support in ‘InfraSIM tools<https://github.com/InfraSIM/tools/tree/master/docker>‘_.

You can get:

• Dockerfile to build your InfraSIM docker image

• docker.py to setup a self-defined InfraSIM cluster in your environment, it has several docker runtimes hosting

InfraSIM virtual node respectively, with openvswitch connection powered by pipework

1.1. Contents 7

InfraSIM Documentation, Release 2.0

Getting started

This chapter describes how to access virtual server, virtual PDU and virtual infrastructure provided by InfraSIM.

Quick start of infrasim-compute application

Command interfaces

Initialize infrasim (you need to do it once)

sudo infrasim init

Start infrasim services

1. Start infrasim:

sudo infrasim node start

Verify your service by VNC and IPMI

2. Start IPMI Console:

sudo ipmi-console start

Status and version number check

sudo infrasim node status

sudo infrasim version

Stop infrasim services

1. Stop Infrasim Service:

sudo infrasim node stop

2. Stop IPMI Console:

sudo ipmi-console stop

Interface to access virtual server

1. Server graphic UI VNC service is available through port 5901. You can see the virtual monitor is already
running and listing boot devices of virtual node. Through this booting devices, you can deploy hypervisor
or operating system into virtual compute node just like operating on one physical server

8 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

2. Virtual BMC

• Install ipmitool on host machine.:

sudo apt-get install ipmitool

IPMI over LAN:

ipmitool -I lanplus -U admin -P admin -H <IP address> sdr list

Note: <IP address> is address of NIC assigned to BMC access in YAML configuration file

IPMI over internal path (vKCS) which requires OS and ipmitool application deployed inside virtual
server:

ipmitool sdr list

You can get the command result like the following

Pwr Unit Status | Not Readable | ns
IPMI Watchdog | Not Readable | ns
FP NMI Diag Int | Not Readable | ns
SMI TimeOut | Not Readable | ns
System Event Log | Not Readable | ns
System Event | Not Readable | ns

...

1. Serial over LAN

It requires activate SoL through IPMI command and console running IPMI console will be-
comes serial console of virtual server. After InfraSIM services started, this command is to
activate SoL:

sudo ipmitool -I lanplus -U admin -P admin -H localhost sol activate
[SOL Session operational. Use ~? for help]

1.1. Contents 9

InfraSIM Documentation, Release 2.0

Setup an InfraSIM Virtual Server on ESXi

To setup an InfraSIM Server on ESXi, you should have an OVA with necessary environment prepared. You can consult
the InfraSIM team to get the image or build one with the packer build image. Below are the steps to deploy and run
InfraSIM on ESXi:

1. Get ESXi environment prepared by following instruction

2. Spin up a virtual machine by choosing “Deploy OVF Template”. Specify the URL of the OVA image.

3. Map the networks used in the OVA. The networking configured inside OVA is multi-bridge mode:

•

4. Modify YAML configuration file as you need. The default configuration for OVA is infrasim.yml. The path is:

~/.infrasim/.node_map/.default.yml

5. Kick off all InfraSIM services.

6. Done, enjoy this virtual server!

Note: No need to run infrasim-init because it’s already done during image build.

Configuration for OVA can be refered on Packer OVA Configuration. Below are the major parameters:

Disk Size: 40G
Memory: 8G
Number of CPUs: 2
Number of NICs: 4
Type of NICs: VMXNET 3
NIC0:

Name: ens160
networkName: ADMIN

NIC1:
Name: ens192
networkName: BMC

NIC2:
Name: ens224
networkName: CONTROL
Promiscuous Mode: on

NIC3:
Name: ens256
networkName: DATA
Promiscuous Mode: on

10 Chapter 1. InfraSIM™ Overview and quick start video

https://github.com/InfraSIM/tools/blob/master/packer/README.md
https://github.com/InfraSIM/tools/blob/master/packer/scripts/infrasim.yml
https://github.com/InfraSIM/tools/blob/master/packer/infrasim-vmware.json

InfraSIM Documentation, Release 2.0

Setup an InfraSIM Virtual Server in VirtualBox

Virtualbox is available on multiple platforms. To get an InfraSIM BOX image, refer to packer build image

1. Install virtualbox on the host.

2. Create a directory for the VM and move the BOX image along with Vagrantfile under the directory.

3. CD to the directory and run commands:

vagrant box add --name infrasim-compute <YOUR_BOX_IMAGE>
vagrant up
vagrant ssh

4. Modify YML configuration if you need.

5. Start InfraSIM services. No “infrasim-init” needed.

BOX configuration can be refered on Packer BOX Configuration and Vagrantfile. The major parameters are:

Disk Size: 40G
Memory: 5G
Number of CPUs: 2
Number of NICs: 4
NIC0:

Name: enp0s3
Network Adapter: NAT

NIC1:
Name: enp0s8
Network Adapter: Internal Network

NIC2:
Name: enp0s9
Network Adapter: Internal Network
Promiscuous Mode: on

NIC3:
Name: enp0s10
Network Adapter: Bridged Adapter
Promiscuous Mode: on

Methodology for booting virtual nodes

There are generally three types of device for booting virtual nodes, which are network (pxe), disk and cdrom. We
can modify the boot_order in YAML configuration file (The default configuration for OVA is default.yml, and the
default path is ~/.infrasim/.node_map/default.yml) or send ipmitool command to choose the device for
booting.

Booting from network

You can set the boot_order as n then start the node:

set the boot_order: n in the YAML configuration file
sudo infrasim node start

or send the ipmitool command after the node start like the following:

sudo infrasim node start
ipmitool -H 127.0.0.1 -U admin -P admin chassis bootdev pxe
ipmitool -H 127.0.0.1 -U admin -P admin chassis power off
ipmitool -H 127.0.0.1 -U admin -P admin chassis power on

1.1. Contents 11

https://github.com/InfraSIM/tools/blob/master/packer/README.md
https://github.com/InfraSIM/tools/blob/master/packer/Vagrantfile
https://github.com/InfraSIM/tools/blob/master/packer/infrasim-box.json
https://github.com/InfraSIM/tools/blob/master/packer/Vagrantfile
https://github.com/InfraSIM/tools/blob/master/packer/scripts/infrasim.yml

InfraSIM Documentation, Release 2.0

Booting from disk

Here you need a disk image file for booting first. Then add this disk image file path as a parameter file in YAML
configuration file like the following:

48 storage_backend:
49 #Set drive list and define drive attributes
50 -
51 controller:
52 type: ahci
53 max_drive_per_controller: 8
54 drives:
55
56 -
57 #Set node disk size, the unit is GB.
58 #The default value is 8GB
59 #
60 size: 8
61 # Add the disk image file path here
62 file: [disk image file path]

Then set the boot_order as c then start the node:

set the boot_order: c in the YAML configuration file
sudo infrasim node start

or send the ipmitool command after the node start like the following:

sudo infrasim node start
ipmitool -H 127.0.0.1 -U admin -P admin chassis bootdev disk
ipmitool -H 127.0.0.1 -U admin -P admin chassis power off
ipmitool -H 127.0.0.1 -U admin -P admin chassis power on

Booting from cdrom

There are two ways to boot from cdrom. Both need to add the iso file path in the YAML configuration
file to give the iso file to qemu. The default configuration for OVA is default.yml and the default path is
~/.infrasim/.node_map/default.yml. The first one is giving the iso file to qemu directly, that is, an
iso file is needed. The second one is directly bind cdrom device file, which requires you to provide a bootable media
on the platform hosting infrasim.

1. Steps for the first way

Here you need an iso file for booting first and add this iso file path in YAML configuration file. You
can add the parameter cdrom in the YAML configuration file like the following:

73 network_mode: bridge
74 network_name: br1
75 device: e1000
76 # Add the iso file path here
77 cdrom: [iso file path]
78 bmc:
79 interface: ens192

2. Steps for the second way

You need to insert a bootable cdrom. Do it on a physical machine, or if you host infrasim on a virtual
machine, edit VM setting.

12 Chapter 1. InfraSIM™ Overview and quick start video

https://github.com/InfraSIM/tools/blob/master/packer/scripts/infrasim.yml

InfraSIM Documentation, Release 2.0

• Give VM setting on vSphere for example:

a. Choose “edit settings” to enter the “Virtual Machine Properties” page;
b. Click on “CD/DVD drive1”;
c. Browse and choose an ISO file in “Datastore ISO File”;
d. As for the “Device Status”, check “Connected” and “Connect at power on”;
e. Click on “OK” to save the change.

• Modify the YAML configuration file:

73 network_mode: bridge
74 network_name: br1
75 device: e1000
76 # Add the iso file path here
77 cdrom: /dev/sr0
78 bmc:
79 interface: ens192

After either way, set the boot_order as d then start the node:

set the boot_order: d in the YAML configuration file
sudo infrasim node start

or send the ipmitool command after the node start like the following:

sudo infrasim node start
ipmitool -H 127.0.0.1 -U admin -P admin chassis bootdev cdrom
ipmitool -H 127.0.0.1 -U admin -P admin chassis power off
ipmitool -H 127.0.0.1 -U admin -P admin chassis power on

Relationship table of Infrasim command and standard server command

Here we list a table to reflect the operations on physical server and the corresponding InfraSIM command. Note that
the InfraSIM command with (*) here is not the CLI command. Use “infrasim -h” can get the help message.

1.1. Contents 13

InfraSIM Documentation, Release 2.0

standard server command InfraSIM command
AC power on a-node infrasim node start a-node
AC power off a-node infrasim node stop a-node
dismiss server node a-node infrasim node destroy a-node
reset a-node infrasim node restart a-node
Check server a-node specification infrasim node info a-node
Check server a-node running status infrasim node status a-node (If you see “a-node-

bmc is running”, it indicates AC is on, bmc is
alive. If you see “a-node-node is running”, it indi-
cates the compute node is powered on)

KVM - virtual keyboard, visual monitor Connecting to InfraSIM with VNC client(*)
configuration update for a-node (node type, nic,
processor, drive, memory) 1. update a-node yaml file(*)

2. infrasim config update a-node [a-node yaml
file path]

3. infrasim node stop a-node
4. infrasim node destroy a-node
5. infrasim node start a-node

add new server node b-node
1. compose b-node yaml file(*)
2. infrasim config add b-node [b-node yaml file

path]
3. infrasim node start b-node
4. infrasim config list

Configuration

Virtual Server Configuration file

There’s one central virtual server configuration file which is ~/.infrasim/.node_map/default.yml (source code). All
adjustable parameters are defined in this file. This is the only file to modify if you want to customize or make
adjustment on the virtual server node. While not all supported options are explicitly listed in this file for purpose
of simplicity. However there’s one example configuration file - /etc/infrasim.full.yml.example (source code) - listed
all supported parameters and definitions. By referring content in example file, you can update node configuration and
then restart infrasim node service and then new properties will take effect.

Here’s steps for this example:

Operating against node with configuration update
sudo infrasim node destroy <node>

Edit node configuration
sudo infrasim config edit <node>
or update a yaml file to the node
sudo infrasim config update <node> <updated_yml>

Start with new configuration
sudo infrasim node start <node>

Caution: To load the newly updated configuration, you must destroy runtime instance, then start this node again.

If you want to manage your own configuration and start infrasim instance accordingly, refer to this article: Manage
Node Config

14 Chapter 1. InfraSIM™ Overview and quick start video

https://github.com/InfraSIM/infrasim-compute/blob/master/template/infrasim.yml
https://github.com/InfraSIM/infrasim-compute/blob/master/etc/infrasim.full.yml.example
https://github.com/InfraSIM/infrasim-compute/wiki/Manage-node-config
https://github.com/InfraSIM/infrasim-compute/wiki/Manage-node-config
https://github.com/InfraSIM/infrasim-compute/wiki/Manage-node-config

InfraSIM Documentation, Release 2.0

Here’s full list of the example configuration file; every single key-value pair is supported to be add/modify in your
real-in-use infrasim.yml:

This example virtual server configuration file intends to throughout
list parameters and properties that infrasim-compute virtual server
supports to adjust. In most cases it is fine to use default value
for particuar configuration by skipping putting it into infrasim.yml
configuration file. For anything item you're interested, it is recommended
to look up infomation here first. For example, if you'd like to customize
properties of your drive - either serial number or vender - in below there're
corresponding item to show how to achieve that.

Unique identifier
name: node-0

Node type is mandatory
Node type of your infrasim compute, this will determine the
bmc emulation data and bios binary to use.
Supported compute node names:
quanta_d51
quanta_t41
dell_c6320
dell_r630
dell_r730
dell_r730xd
s2600kp - Rinjin KP
s2600tp - Rinjin TP
s2600wtt - Node of Hydra, Python
type: quanta_d51
namsespace: spans

compute:
boot:

n - Network (PXE);
c - hard disk;
d - cdrom;
boot_order: ncd
menu: on
splash: <path/to/your splash picture>
splash-time: 30000

cdrom:
file: /home/ubuntu/seed.iso

kvm_enabled: true
numa_control: true
extra_option can be used to extend qemu command which infrasim did not support yet.
an example: -msg timestamp[=on|off]

change the format of messages
on|off controls leading timestamps (default:on)

extra_option: -msg timestamp=on
kernel: /home/infrasim/vmlinuz-3.16.0-25-generic
initrd: /home/infrasim/initrd.img-3.16.0-25-generic
cmdline: API_CB=192.168.1.1:8000 BASEFS=base.trusty.3.16.0-25-generic.squashfs.img OVERLAYFS=discovery.overlay.cpio.gz BOOTIF=52-54-BF-11-22-33
cpu:

type: host
features: +vmx
quantities: 8

memory:
size: 4096

Currently the PCI bridge is only designed for megasas storage controller

1.1. Contents 15

InfraSIM Documentation, Release 2.0

When you create multiple megasas controller, the controllers will be assigned
a different pci bus number
pci_bridge_topology:

-
device: i82801b11-bridge
addr: 0x1e.0x0
multifunction: on

-
device: pci-bridge
chassis_nr: 0x1
msi: false
addr: 0x1

storage_backend:
-

type: ahci
max_drive_per_controller: 6
drives:

-
model: SATADOM
serial: HUSMM142
bootindex: 1
To boot esxi, please set ignore_msrs to Y
sudo -i
echo 1 > /sys/module/kvm/parameters/ignore_msrs
cat /sys/module/kvm/parameters/ignore_msrs
file: chassis/node1/esxi6u2-1.qcow2

-
vendor: Hitachi
model: HUSMM0SSD
serial: 0SV3XMUA
To set rotation to 1 (SSD), need some customization
on qemu
rotation: 1
Use RAM-disk to accelerate IO
file: /dev/ram0

-
vendor: Samsung
model: SM162521
serial: S0351X2B
Create your disk image first
e.g. qemu-img create -f qcow2 sda.img 2G
file: chassis/node1/sda.img
page_file: chassis/node1/samsung1.bin

-
vendor: Samsung
model: SM162521
serial: S0351X3B
file: chassis/node1/sdb.img
page_file: chassis/node1/samsung2.bin

-
vendor: Samsung
model: SM162521
serial: S0451X2B
file: chassis/node1/sdc.img
page_file: chassis/node1/samsung3.bin

-
type: megasas-gen2
use_jbod: true

16 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

use_msi: true
max_cmds: 1024
max_sge: 128
max_drive_per_controller: 1
drives:

-
vendor: Hitachi
product: HUSMM168XXXXX
serial: SN0500010351XXX
rotation: 1
slot_number: 0
wwn: 0x50000ccaxxxxxxxx
file: <path/to/your disk file>
page_file: <path/to/your page bin file>

networks:
-

network_mode: bridge
Bridge need to be prepared beforehand with brctl
network_name: br0
device: vmxnet3
mac: 00:60:16:9e:a8:e9

-
network_mode: nat
network_name: ens160
device: e1000

ipmi:
interface: bt
chardev:

backend: socket
host: 127.0.0.1
reconnect: 10

ioport: 0xca8
irq: 10

smbios: chassis/node1/quanta_d51_smbios.bin
monitor:

mode: readline
chardev:

backend: socket
server: true
wait: false
host: 127.0.0.1
port: 2345

set vnc display <X>
vnc_display: 1

bmc:
interface: br0
username: admin
password: admin
address: <ip address>
channel: 1
lancontrol: <path/to/lan control script>
chassiscontrol: <path/to/chassis control script>
startcmd: <cmd to be excuted>
startnow: true
poweroff_wait: 5
kill_wait: 5
historyfru: 20

1.1. Contents 17

InfraSIM Documentation, Release 2.0

config_file: <path/to/your config file>
emu_file: chassis/node1/quanta_d51.emu
ipmi_over_lan_port: 623

racadm is a segment of attributes defined only for dell server
racadm:

Network to start racadm service
interface: br0
port: 10022
Credential to access
username: admin
password: admin
Temporary data provider
data: /home/infrasim/racadm_data

SSH to this port to visit ipmi-console
ipmi_console_ssh: 9300

Renamed from telnet_listen_port to ipmi_console_port, extracted from bmc
ipmi-console talk with vBMC via this port
ipmi_console_port: 9000

Used by ipmi_sim and qemu
bmc_connection_port: 9100

Socket file to bridge socat and qemu
serial_socket: /tmp/serial

Up to infrasim-compute commit a02417c3

• name

This attribute defines nodes name, which is a unique identifier for infrasim-compute instances on the
same platform. More specifically, it is used as workspace folder name.

NOT Mandatory

Default: “node-0”

Legal Value: String

• type

This attribute defines supported nodes type in InfraSIM. With this attribute, infrasim-compute will
set BMC emulation data for ipmi_sim and BIOS binary for qemu accordingly, you can get corre-
sponding .emu and .bin in /usr/local/etc/infrasim/ by default.

Mandatory

Legal Values:

– “quanta_d51”

– “quanta_t41”

– “dell_c6320”

– “dell_r630”

– “dell_r730”

– “dell_r730xd”

– “s2600kp”, for Rinjin KP

18 Chapter 1. InfraSIM™ Overview and quick start video

https://github.com/InfraSIM/infrasim-compute/commit/a02417c37f6b6fb266244e77e992f66938c73f8d
https://github.com/InfraSIM/infrasim-compute/wiki/Compute-Node-Workspace

InfraSIM Documentation, Release 2.0

– “s2600tp”, for Rinjin TP

– “s2600wtt”, for Hydra, Python

• namespace

This attribute defines the network namespace where the infrasim-compute instance running in, while
there are multiple infrasim-compute instances in one test environment. More specifically, you can
refer to repo infrasim-network to setup two-layer vswitches and network namespaces.

NOT Mandatory

Default: None.

Legal Value: String

• compute

This block defines all attributes used by QEMU. They will finally be translated to one or more qemu
command options. The module infrasim.model.CCompute is handling this translation. This
is much like a definition for libvert, but we may want it to be lite, and compatible with some cus-
tomized qemu feature in InfraSIM.

• compute:boot

This group of attributes set qemu boot characteristics. See -boot in qemu-doc.

• compute:boot:boot_order

This attribute defines boot order for qemu. Will be translated to -boot {boot_order}.

Not Mandatory

Default: “ncd”, means in a order of pxe > disk > cdrom.

Legal Value: See -boot in qemu-doc.

• compute:boot:menu

This attribute can enable interactive boot menus/prompts via menu=on as far as firmware/BIOS
supports them. If menu=on is set and the firmware/BIOS supports boot menus, the interactive boot
menu will be shown when press the shortcuts according to the hint message at boot time. Here is a
bios file which supports interactive boot menus.

Here is a command line to check whether the bios can support menu or not:

boot with an interactive boot menu with 20-second splash time and the bios file "bios.bin"
qemu-system-x86_64 -boot menu=on,splash-time=20000 -bios bios.bin

Perform infrasim init, then this bios file will be downloaded and saved in
/usr/local/share/qemu/bios-256k.bin as InfraSIM default bios file.

Not Mandatory

Default: None, means non-interactive boot, and there will be no menu=on or menu=off option.

Legal Value: on or off.

• compute:boot:splash

This attribute defines the splash picture path. This picture will be passed to bios, enabling user to
show it as logo. This splash file could be a jpeg file or a BMP file in 24 BPP format(true color).
The resolution should be supported by the SVGA mode, so the recommended is 320x240, 640x480,
800x640.

Not Mandatory

1.1. Contents 19

https://github.com/InfraSIM/infrasim-network
http://wiki.qemu.org/Main_Page
https://libvirt.org/
http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html
https://bintray.com/infrasim/generic/download_file?file_path=pool%2Fmain%2FS%2FSeabios%2Finfrasim-seabios_1.1-99ubuntu16.04_amd64.bin
https://bintray.com/infrasim/generic/Seabios

InfraSIM Documentation, Release 2.0

Default: None.

Legal Value: a valid file path, absolute or relative.

• compute:boot:splash-time

This attribute defines the splash time.

Not Mandatory

Default: None, means splash time is 0.

Legal Value: positive integer. 30000 means 30 seconds.

• compute:kvm_enabled

This attribute enable kvm when you announce it as True and your system supports kvm. It will be
translated to --enable-kvm. You can check if your system supports kvm by check if /dev/kvm
exists.

Not Mandatory

Default: Depends on if /dev/kvm exists.

Boolean Table
kvm_enabled /dev/kvm –enable-kvm
true yes yes
true no no
false yes no
false no no
not define yes yes
not define no no

• compute:numa_control

This attribute enable NUMA to improve InfraSIM performance by binding to certain physical cpu. If
you have installed numactl and set this attribute to True, you will run qemu in a way like numactl
--physcpubind={cpu_list} --localalloc.

Not Mandatory

Default: Disabled

• compute:kernel

This attribute specifies the binary kernel file path. It will be used by qemu to install.

Not Mandatory

Default: None.

• compute:initrd

This attribute specifies the initial ram disk path. This INITRD image can be used to provide a place
for qemu to install kernel. See -initrd file in qemu-doc.

Mandatory: depends on if kernel is given.

Default: None.

• compute:cmdline

This attribute will be appended to qemu in string as part of the option --append {cmdline}.
See --append in qemu-doc. It will be then used by qemu as kernel parameters. You can view your
O/S’s kernel parameters by cat /proc/cmdline.

20 Chapter 1. InfraSIM™ Overview and quick start video

http://wiki.qemu.org/Features/KVM
https://en.wikipedia.org/wiki/Non-uniform_memory_access
http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html

InfraSIM Documentation, Release 2.0

Not Mandatory

Default: None, there will be no --append option.

• compute:cpu

This group of attributes set qemu cpu characteristics. The module infrasim.model.CCPU is
handling the information.

• compute:cpu:model

This attribute sets qemu cpu model.

Not Mandatory

Default: “host”

Legal Values: See -cpu model in qemu-doc.

• compute:cpu:features

This attribute adds or removes cpu flags according to your customization. It will be translated to
-cpu Haswell,+vmx for example.

Not Mandatory

Default: “+vmx”

Legal Values: See -cpu model in qemu-doc.

• compute:cpu:quantities

This attribute sets virtual cpu numbers in all. With default socket 2, CCPU calculates
core per socket. Default set to 1 thread per cores. It will be translated to -smp
{cpus},sockets={sockets},cores={cores},threads=1 for example.

Not Mandatory

Default: 2

Legal Values: See -smp in qemu-doc.

• compute:memory

This attribute refers to RAM, which the virtual computer devices use to store information for imme-
diate use. The module infrasim.model.CMemory is handling the information.

• compute:memory:size

This attribute sets the startup RAM size. The default is 1024MB.

Default: 1024

Legal Values: See -m in qemu-doc.

• compute:storage_backend

This block defines backend storage details. It maintains a list of controller structures, and each
controller maintains a list of drive structures.

• compute:storage_backend:-

Each element of this list defines a storage controller, they have some common attributes. The
module infrasim.model.CBaseStorageController is handling the information. Devel-
oper may inherits this class to define other type of controller and specific controller attributes.

Common attributes:

– type

1.1. Contents 21

http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html
http://wiki.qemu.org/download/qemu-doc.html

InfraSIM Documentation, Release 2.0

– max_drive_per_controller

Specific controllers defined:

Controller
Type

Module Attributes

megasas.* in-
frasim.model.MegaSASController

use_jbod sas_address use_msi max_cmds
max_sge

lsi.* in-
frasim.model.LSISASController

.*ahci.* in-
frasim.model.AHCIController

• compute:storage_backend:-:type

Define types of a controller, this makes infrasim-compute model handle other attributes accordingly.

• compute:storage_backend:-:max_drive_per_controller

This is a protection mechanism that you write too much in drives list. If the ac-
tual count of drives exceeds this limitation, infrasim-compute now make more controller,
in the same attribute but different PCI bus number, to mount all drives. The module
infrasim.model.CPCITopologyManager defines this logic.

• compute:storage_backend:-:controller:drives

This attribute defines a list of drives mounted on the controller. Common attributes are managed
by infrasim.model.CBaseDrive. Developer may inherits this class to define other type of
drive and specific attributes.

Common attributes - device personality options:

– bootindex

– serial

– wwn

– version

Common attributes - simulation options:

– format

– cache

– aio

– size

– file

– page-file

Drive type currently depends on the controller it is mounted on:

Controller Type Mounted Drive
Type

Attributes

LSISASController
MegaSASController

in-
frasim.model.SCSIDrive

port_index port_wwn channel scsi-id lun
slot_number product vendor rotation

AHCIController in-
frasim.model.IDEDrive

model

• compute:storage_backend:-:controller:drives:-:bootindex

22 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

Cite from qemu’s bootindex documentation.

Block and net devices have bootindex property. This property is used to determine the order in
which firmware will consider devices for booting the guest OS. If the bootindex property is not set
for a device, it gets lowest boot priority. There is no particular order in which devices with unset
bootindex property will be considered for booting, but they will still be bootable.

NOT Mandatory

Legal Value: integer

Example: Let’s assume we have a QEMU machine with two NICs (virtio, e1000) and two disks
(IDE, virtio):

qemu -drive file=disk1.img,if=none,id=disk1 -device ide-drive,drive=disk1,bootindex=4
-drive file=disk2.img,if=none,id=disk2 -device virtio-blk-pci,drive=disk2,bootindex=3
-netdev type=user,id=net0 -device virtio-net-pci,netdev=net0,bootindex=2 -netdev
type=user,id=net1 -device e1000,netdev=net1,bootindex=1

Given the command above, firmware should try to boot from the e1000 NIC first. If this fails, it
should try the virtio NIC next; if this fails too, it should try the virtio disk, and then the IDE disk.

• compute:storage_backend:-:controller:drives:-:serial

Drive’s serial number.

NOT Mandatory

• compute:storage_backend:-:controller:drives:-:wwn

Refer to WWN (wikipedia).

NOT Mandatory

• compute:storage_backend:-:controller:drives:-:version

• compute:storage_backend:-:controller:drives:-:format

Cite from QEMU:

Specify which disk format will be used rather than detecting the format. Can be used to specifiy
format=raw to avoid interpreting an untrusted format header.

This attribute will be translated to -drive format={format}.

• compute:storage_backend:-:controller:drives:-:cache

Cite from QEMU:

cache is “none”, “writeback”, “unsafe”, “directsync” or “writethrough” and controls how the host
cache is used to access block data.

This attribute will be translated to -drive cache={cache}.

• compute:storage_backend:-:controller:drives:-:aio

Cite from QEMU:

aio is “threads”, or “native” and selects between pthread based disk I/O and native Linux AIO.

This attribute will be translated to -drive aio={aio}.

• compute:storage_backend:-:controller:drives:-:file

Cite from QEMU:

This option defines which disk image to use with this drive.

1.1. Contents 23

https://github.com/qemu/qemu/blob/master/docs/bootindex.txt
https://en.wikipedia.org/wiki/World_Wide_Name
http://download.qemu-project.org/qemu-doc.html#index-_002dchardev
http://download.qemu-project.org/qemu-doc.html#index-_002dchardev
http://download.qemu-project.org/qemu-doc.html#index-_002dchardev
http://man7.org/linux/man-pages/man7/aio.7.html
http://download.qemu-project.org/qemu-doc.html#index-_002dchardev

InfraSIM Documentation, Release 2.0

This attribute will be translated to -drive file={file}.

• compute:storage_backend:-:controller:drives:-:page-file

This option allows user to specify drive page data, which can provide addtional information for client
OS, including mode sense pages and inquiry data pages. The page file is generated by a tool which
can fetch data from HW drive or user defined json file.

Command, e.g. sudo python gen_page_utility.py -d /dev/sdb -o
drive_name.bin, will create a drive page bin file.

For more details, please refer to how-to-generate-drive-page-files.

This attribute will be translated to -device page_file={file}.

• compute:storage_backend:-:controller:drives:-:size

If infrasim-compute application can’t detect existing drive file, it will help user create a drive image
file. A command, e.g. qemu-img create -f qcow2 sda.img 10G, will be called to create
such a drive file in node workspace. This is where size take effects.

Not Mandatory

Default: 8

Legal Values: integer, in unit of GB

• compute:networks

• compute:networks:-:network_mode

• compute:networks:-:network_name

• compute:networks:-:device

• compute:networks:-:mac

• compute:ipmi

• compute:ipmi:interface

• compute:ipmi:chardev

• compute:ipmi:chardev:backend

• compute:ipmi:chardev:host

• compute:ipmi:chardev:reconnect

• compute:ipmi:ioport

• compute:ipmi:Irq

• compute:smbios

• compute:monitor

• compute:monitor:mode

• compute:monitor:chardev

• compute:monitor:chardev:backend

• compute:monitor:chardev:server

• compute:monitor:chardev:wait

• compute:monitor:chardev:path

• compute:vnc_display

24 Chapter 1. InfraSIM™ Overview and quick start video

http://infrasim.readthedocs.io/en/latest/how_to.html#how-to-generate-drive-page-files
https://github.com/InfraSIM/infrasim-compute/wiki/Compute-Node-Workspace

InfraSIM Documentation, Release 2.0

• compute:cdrom

This attribute specify a media when qemu boot from cdrom. You can promote cdrom boot order by
specify d first in compute:boot:boot_order.

Not Mandatory

Legal Values: path to a image file, or directly use cdrom device, e.g. /dev/sr0

• bmc

This block defines attributes used by OpenIPMI. They will finally be translated to one or more
ipmi_sim command options, or be defined in the configuration file for it. The module
infrasim.model.CBMC is handling this translation.

• bmc:interface

This attributes defines both:

– from which network ipmi_sim will listen IPMI request

– BMC’s network properties printed by ipmitool lan print

The module infrasim.model.CBMC takes this attribute and comes out with two variable defined
in ipmi_sim configuration template.

– {{lan_interface}}, network name for ipmitool lan print to print, e.g. “eth0”,
“ens190”.

– {{ipmi_listen_range}}, IP address that ipmi_sim shall listen to and response IPMI com-
mand. If you set a valid interface here, an IP address in string will be assigned to this variable,
e.g. “192.168.1.1”.

Not Mandatory

Default

– {{lan_interface}}: first network device except lo.

– {{ipmi_listen_range}}: ”::”, so that you shall see addr :: 623 in vbmc.conf, it
means ipmi_sim listen to IPMI request on all network on port 623

Valid Interface: Use network devices from ifconfig.

– {{lan_interface}}: the specified network interface.

– {{ipmi_listen_range}}: IP address of lan_interface(“0.0.0.0” if interface has no IP).

Invalid Interface: Network devices that don’t exist.

– {{lan_interface}}: no binding device

– {{ipmi_listen_range}}: no range setting, which means user could only access ipmi_sim
through kcs channel inside qemu OS.

• bmc:username

• bmc:password

• bmc:address

• bmc:channel

• bmc:lancontrol

• bmc:chassiscontrol

• bmc:startcmd

1.1. Contents 25

http://openipmi.sourceforge.net/
https://github.com/InfraSIM/infrasim-compute/blob/master/template/vbmc.conf

InfraSIM Documentation, Release 2.0

• bmc:startnow

• bmc:poweroff_wait

• bmc:historyfru

• bmc:config_file

• bmc:emu_file

• bmc:ipmi_over_lan_port

• racadm

This block defines RACADM (Remote Access Controller ADMin) simulation behavior.

• racadm:interface

This attribute defines on which interface RACADM shall listen to. It will then start as a service,
listening on the certain IP.

Not Mandatory

Default: if you don’t set this attribute, RACADM will start listening on 0.0.0.0

Legal Values: a valid interface with IP address

• racadm:port

This attribute defines on which port RACADM shall listen to. It works with the
:racadm:interface:yamlRacadmInterface.

Not Mandatory

Default: 10022

Legal Values: a valid port that is not being used

• racadm:username

SSH username on RACADM simulation.

Default: admin

• racadm:password

SSH password on RACADM simulation.

Default: admin

• racadm:data

You need to specify a folder name for this attribute, e.g. /home/infrasim/data. In this folder,
you need to provide several pure text files. Each file maintains response for a certain RACADM
command.

RACADM simulation now is not getting runtime data from BIOS binary or IPMI emulation data, but
using this temporary implementation to inject data for RACADM simulation.

Here is a list of supporting data and required text file name (without extension .txt).

26 Chapter 1. InfraSIM™ Overview and quick start video

http://en.community.dell.com/techcenter/systems-management/w/wiki/3205.racadm-command-line-interface-for-drac

InfraSIM Documentation, Release 2.0

RACADM Command Response File Name
getled getled
getsysinfo getsysinfo
storage get pdisks –o storage_get_pdisks_o
get BIOS get_bios
get BIOS.MemSettings get_bios_mem_setting
hwinventory hwinventory
hwinventory nic.Integrated.1-1-1 hwinventory_nic_integrated_1-1-1
hwinventory nic.Integrated.1-2-1 hwinventory_nic_integrated_1-2-1
hwinventory nic.Integrated.1-3-1 hwinventory_nic_integrated_1-3-1
hwinventory nic.Integrated.1-4-1 hwinventory_nic_integrated_1-4-1
get IDRAC get_idrac
setled -l 0 setled_l_0
get LifeCycleController get_life_cycle_controller
get LifeCycleController.LCAttributes get_life_cycle_controller_lc_attributes

• ipmi_console_ssh

• ipmi_console_port

• bmc_connection_port

• serial_socket

This attribute defines a unix socket file to forward data. More specifically, it bridges socat and
qemu for InfraSIM to forward input and output stream as a serial port. With this attribute designed,
you will see socat starts with option unix-listen:<file>, while qemu starts with a socket
chardev -chardev socket,path=<file>,id=...

Not Mandatory

Default: a file named .socket in node workspace

Legal Values: a valid file path, absolute or relative, to create such node

Networking

1. Virtual server NAT or host-only mode, this is default mode implemented in infrasim-compute

• vCompute is accessible ONLY inside Ubuntu host

• Software running in vCompute can access outside network if connecting Ubuntu host NIC with virtual
bridge

• Configuration YAML file can specify which NIC IPMI over LAN traffic flows through

1.1. Contents 27

https://en.wikipedia.org/wiki/Unix_domain_socket
https://github.com/InfraSIM/infrasim-compute/wiki/Compute-Node-Workspace

InfraSIM Documentation, Release 2.0

2. Bridge mode - single

• Work as virtual switch

• Connect BMC NIC and NICs in virtual compute together

• Configuration YAML file controls how many NICs that virtual compute has and specify bridge they
connect to

Note: It requires setting up bridge and connect to NIC of underlying host in advance.

Here’s steps for this example:

brctl addr br0
brctl addif br0 eth1
brctl setfd br0 0
brctl sethello < bridge name > 1
brctl stp br0 no
ifup br0

3. Bridge mode - multiple

28 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

Software Architecture

InfraSIM Components

Below tables demonstrate the simulated hardware elements by InfraSIM.

Terminology Description
InfraSIM

Use the combination of hardware virtualization and emulation technologies to simulate the interfaces and behaviors of hardware elements in the test domain.
The simulated hardware elements are called by
the ‘vXXX’ term, with the prefix “v” for virtual.

vCompute
Virtual Compute Node The simulation of a physical

compute node which includes the core compute
subsystem and the standby BMC that control and
monitor hardware resources of the compute node.

vHost
Virtual Host (CPU subsystem) The simulation of the

core compute subsystem of a compute node.
vHost is the core hardware resources of the com-
pute node that host OS and product applications.

vBMC
virtual BMC. It contains two concepts depending on the reference context:

1. The simulated BMC controller of a compute
node.

2. A wrapping VM image containing virtual
BMC and the whole compute node imple-
mentation.

vSwitch
Virtual Switch The virtualized control, data, or admin

switch.

vPDU
Virtual Smart PDU The simulation of the smart PDU.

1.1. Contents 29

InfraSIM Documentation, Release 2.0

InfraSIM uses hypervisor - either VMWare ESXi or VMWare Workstation or KVM or VirtualBox or container(docker)
- to host virtual elements of infrastructure. These virtual elements are implemented inside virtual machines and consists
of the following components:

• vCompute The virtual node is used to simulate specific server node. The virtual node component is imple-
mented within a virtual machine running on a hypervisor.

Each virtual node implemented a virtual BMC (vBMC) inside. All BMC functionalities such as sensor
data, thresholds, power controls, and boot options are simulated with this module. Both local and remote
IPMI command are fully supported by using popular IPMItool.

There’s one nested QEMU VM included, which is capable of simulating CPUs, DIMMs, and other hard-
ware devices.

• vPDU The vPDU is simulating intelligent PDU which is used to control AC power of other virtual nodes.

• vSwitch The vSwitch is used to simulate network switches, including the connections to the virtual compute
nodes within the virtual infrastructure.

Virtual Node

The following diagram shows a high-level view of components in the virtual node architecture.

30 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

vBMC is able to handle IPMI command from either external network or local virtual compute over vKCS interface, it
is bridged to an external vSwitch, to be accessible to management network.

vCompute is nested QEMU VM. There are two virtual networks attached: one is connected to the same network as
vBMC which allows traffic of DHCP, TFTP, PXE, etc; the other network is used as data network specifically for user
work load.

The vNode could be running on most of popular hypervisors such as VMWare ESXi, VMWare Workstation, KVM,
VirtualBox, as well as container (docker).

Virtual PDU

The following diagram shows a high-level view of components in the virtual PDU architecture as well as shows how
each component interacts with others.

1.1. Contents 31

InfraSIM Documentation, Release 2.0

• SNMP Simulator

The snmp simulator is to simulate SNMP protocol, to respond snmp requests from external sources. It also
supports parsing and responding according to definitions of a vendor-specific MIB data file, if you want to get
more details of this simulator, please reference snmpsim

• vPDU Service

The vPDU service will handle the messages from snmp simulator over pipe, and then call various control
interface to power on, power off, reboot the virtual nodes.

• Control service

The control service is an interface over SSH to configure vPDU such as ip address, simulated data settings,
outlet settings etc.

Virtual Switch

Regarding to vSwitch solution, InfraSIM mainly leverages products from Hypervisor - for example VMWare vSwitch;
or from vendor such as Cisco Nexsus 1000v, Arista vEOS.

Features

Bare-metal server simulation

Here’s a list of physical servers that InfraSIM has simulation support:

• Dell R730XD, R630 and C6320

• Quanta T41, D51

• Intel S2600KP, S2600TP and S2600WTT

32 Chapter 1. InfraSIM™ Overview and quick start video

http://snmpsim.sourceforge.net

InfraSIM Documentation, Release 2.0

Below list all the functionalities, regarding to how InfraSIM simulates behaviors, properties of those physical server.

Virtual BMC

1. Defining channel number and support internal and remote IPMI command

• Virtual BMC is interally accessible (similar with a virtual KCS path) through software applications -
typically ipmitool - running inside virtual server

• Virtual BMC supports IPMI over LAN

• Supports ipmitool “-t” option and specify access channel

2. FRU, Sensors, SDR, LAN, User

• FRU, Sensor and SDR data - simulating what corresponding physical server is presenting

• Define Chassis/Node relation by customizing, Chassis s/n and Node slot information

3. Chassis Control

• Power control and power status monitoring

• Connecting to virtual host to really simulate power control behavior of a physical server

4. IPMI master read/write to simulate I2C device

• Define and inject data for IPMI master read/write of particular I2C device

5. SEL

• System power up event generating in SEL

• SEL event generating on clear operation

• SEL event generating on sensor reading beyond threshold

• Inject SEL entry based on sensor event

• Inject SEL entry based on OEM-defined format

6. Sensor data manipulating and injecting

• Sensor readings dynamically change

• Manually specify sensor (analog type) reading at run time

• Manually specify sensor (discrete type) reading at run time

7. Supports changing boot order, activate/de-activate server Serial-Over-Lan

8. Specify NIC to transfer data for IPMI over LAN

Virtual network interface controller

1. Add, remove NIC for virtual server

2. Randomly generating MAC address for each NIC to prevent duplication

3. Supports NAT, bridge and MACVTAP modes

1.1. Contents 33

InfraSIM Documentation, Release 2.0

Virtual host

1. Support booting from PXE, ISO, HDD

2. SMBIOS data capturing and injecting

3. Define processor, memory properties

Virtual direct-attached storage

1. Specify drive properties:

• SSD or spinning drive

• Serial number

• Physical information

• Enable RAM disk to boost virtual disk drive performance

2. Support drive operation:

• Drive erase for SATA & SAS drives

• Page data injection of INQUIRY/MODE SENSE

Intelligent power distribute unit simulation

InfraSIM has simulation for 2 types of PDU: Panduit PDU and Server Tech PDU. So far it only supports powering
control virtual servers running on top of VMWare ESXi. All supported features include:

1. SNMP interface for management and control

2. Telnet/SSH Service to configure virtual PDU

3. Authentication

4. Retrieve telemetry data

5. Virtual server and outlet binding

6. Power control virtual node hosted by ESXi

7. Notification / Trap

User Guide

This chapter will deep to the InfraSIM usage of virtual servers, virtual PDU.

Customizing virtual Server

All supported virtual server configurations and properties of sub-component in that central configuration file. This
sections describes key blocks and fileds in this YAML configuration file:

• Name of server node:

name: node-1

34 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

• Node type which specify BMC configurations and behavior (server of specific model from specific vendor)
and properties defeined in SMBIOS data. Implementation behind is specifying emulation data for vitual BMC
and SMBIOS to load. Then ultimate, those IPMI command and dmidecode running on virtual server will get
response exactly the same as what you can get from one physical server. By default it loads emulation data of
Quanta D51 type:

type: quanta_d51

• compute - This is one big block which contains several sub-block: storage, network, ipmi

– Storage block is also arranged in an hierarchy way by storage_backend/controller/drives; for every single
drive added, InfraSIM allows defining model/serial number/vendor/media/image file/page file:

vendor: Hitachi
model: HUSMM0SSD
serial: 0SV3XMUA
To set rotation to 1 (SSD), need some customization
on qemu
rotation: 1
Use RAM-disk to accelerate IO
file: /dev/ram0
page-file: /directory/to/page_file_name.bin

• networks - defining network sub-system of virtual server. As below, 2 vmxnet3 type NICs are populated and
connected to virtual switch br0:

-
network_mode: bridge
network_name: br0
device: vmxnet3

-
network_mode: bridge
network_name: br0
device: vmxnet3

Note: Virtual bridge need to be created manually beforehand by using brctl utility

• ipmi - support specifying NIC (from host) attached and BMC credential and emulation data file:

bmc:
interface: br0
username: admin
password: admin
emu_file: chassis/node1/quanta_d51.emu

Storage backend operation

This sections describes storage backend operation supported by InfraSIM.

• Drive erasure.

Drive erasure feature is implemented in Qemu code. After erasing, all data residing on a disk drive will be
overwritten with all zero. Below are examples of SAS and SATA drive erasure performed in Ubuntu 16.04.

– SAS drive erasure.

* First, install sg3-utils:

1.1. Contents 35

InfraSIM Documentation, Release 2.0

apt-get install sg3-utils

* Then, erase drive using sg3-utils:

sg_format --format /dev/sd*

Note: Currently we support ‘-e’, ‘-w’ options.

– SATA drive erasure.

* First, install hdparm:

apt-get install hdparm

* Then, erase drive with user password.

Set security user password:

hdparm --security-set-pass <PASSWD> /dev/sd*

Perform drive erasure:

hdparm --security-erase <PASSWD> /dev/sd*

Note: To disable security user password, please run below command:

hdparm --security-disable <PASSWD> /dev/sd*

* Or, erase drive with master password.

Set security master password:

hdparm --user-master m --security-set-pass <PASSWD> /dev/sd*

Perform drive erasure:

hdparm --user-master m --security-erase <PASSWD> /dev/sd*

– SAS drive erasure.

* First, install sg3-utils:

apt-get install sg3-utils

* Then, erase drive using sg3-utils:

sg_format --format /dev/sd*

Note: Currently we support ‘-e’, ‘-w’ options.

– SATA drive erasure.

* First, install hdparm:

apt-get install hdparm

36 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

* Then, erase drive with user password.

Set security user password:

hdparm --security-set-pass <PASSWD> /dev/sd*

Perform drive erasure:

hdparm --security-erase <PASSWD> /dev/sd*

Note: To disable security user password, please run below command:

hdparm --security-disable <PASSWD> /dev/sd*

* Or, erase drive with master password.

Set security master password:

hdparm --user-master m --security-set-pass <PASSWD> /dev/sd*

Perform drive erasure:

hdparm --user-master m --security-erase <PASSWD> /dev/sd*

BMC run-time manipulating

InfraSIM implemented one IPMI console which allows manipulating BMC behavior at run time; it can be treated
as backdoor of virtual BMC which is particular useful when simulating chassis abnormal conditions and failures. It
includes functionalities:

• Update sensor reading with specified value, or cross-threshold value

• Generate dynamicly-changing reading for specific sensor

• Inject SEL entries for the particular sensors

• Inject SEL entries for arbitry defined format

Here’s instructions on how to use InfraSIM IPMI console:

• Start ipmi console service by running command on host console:

sudo ipmi-console start &

• Enter IPMI_SIM by below command. <vbmc_ip> is localhost if you’re run command in host, otherwise it is
IP address of NIC specified in configuration file for ipmi to use. Prompt means successfull connection to ipmi
console:

ssh <vbmc_ip> -p 9300
IPMI_SIM>

• Enter help to check all the commands supported:

IPMI_SIM>help

1.1. Contents 37

InfraSIM Documentation, Release 2.0

• Below tables show the detail information about each command.

Commands Description
sensor info Get all the sensor information.
sensor mode set <sensorID> <user> Set the sensor mode to the user mode. Leaves the

sensor reading as it currently is until instructed oth-
erwise

sensor mode set <sensorID> <auto> Set the sensor mode to the auto mode. Changes the
sensor reading to a random value between the lnc and
unc thresholds every 5 seconds.

sensor mode set <sensorID> <fault> <lnr | lc | lnc |
unc | uc | unr >

Set the sensor mode to the fault mode. Changes the
sensor reading to a random value to cause a particular
type of fault as instructed (lnr, lc, lnc, unc, uc, unr)

lower non-recoverable threshold
lower critical threshold
lower non-critical threshold
upper non-critical threshold
upper critical threshold
upper non-recoverable threshold

sensor mode get <sensorID> Get the current sensor mode.
sensor value set <sensorID> <value> Set the value for a particular sensor..
sensor value get <sensorID> Get the value of a particular sensor.
sel set <sensorID> <event_id> <’assert’/’deassert’> Inject(Assert/Deassert) a sel error. You can use the

sel set command to add a SEL entry for a particular
sensor.

sel get <sensorID> Get the sel error for a sensor. You can use the sel get
command to get the available events for a particular
sensor.

• Here’s a example on how this console should be used and how it is chaning sensor readings. Let’s prepare 2
terminal consoles: 1 for ipmi console and the other one is just normal console to use ipmitool to check how the
manipulation works.

1. First lets check processor temperature of virtual server:

sudo ipmitool -I lanplus -U admin -P admin -H localhost sensor get Temp_CPU0
Locating sensor record...
Sensor ID : Temp_CPU0 (0xaa)
Entity ID : 65.1
Sensor Type (Threshold) : Temperature
Sensor Reading : 40 (+/- 0) degrees C
Status : ok
Lower Non-Recoverable : na
Lower Critical : na
Lower Non-Critical : na
Upper Non-Critical : 89.000
Upper Critical : 90.000
Upper Non-Recoverable : na
Positive Hysteresis : Unspecified
Negative Hysteresis : Unspecified
Assertions Enabled : unc+ ucr+
Deassertions Enabled : unc+ ucr+

2. Then let’s peek and poke this sensor reading from 40 degree C to 85 degree C in ipmi console:

38 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

IPMI_SIM> sensor value get 0xaa
Temp_CPU0 : 40.000 degrees C
IPMI_SIM>
IPMI_SIM> sensor value set 0xaa 85
Temp_CPU0 : 85.000 degrees C

3. Last we can verify processor temerature sensor reading by issuing IPMI command again to check that
sensor reading is really changed to 85 degree C:

sudo ipmitool -I lanplus -U admin -P admin -H localhost sensor get Temp_CPU0
Locating sensor record...
Sensor ID : Temp_CPU0 (0xaa)
Entity ID : 65.1
Sensor Type (Threshold) : Temperature
Sensor Reading : 85 (+/- 0) degrees C
Status : ok
Lower Non-Recoverable : na
Lower Critical : na
Lower Non-Critical : na
Upper Non-Critical : 89.000
Upper Critical : 90.000
Upper Non-Recoverable : na
Positive Hysteresis : Unspecified
Negative Hysteresis : Unspecified
Assertions Enabled : unc+ ucr+
Deassertions Enabled : unc+ ucr+

vSwitch Setup

You can implement the vSwitch component of InfraSIM by deploying the Cisco Nexus 1000v switch on the ESXi
host.

For more information on downloading and using Cisco Nexus 1000v switch, refer to
http://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html.

Contributing to InfraSIM

Contributions are welcomed and encouraged, in the form of issues and pull requests, but please read the guidelines in
this section before you get involved.

Our project is relatively new, and we do not have many hard and fast rules. As the project grows and more people get
involved, we will add to our guidelines, as needed.

Communicating with Other Users

We maintain a mailing list at https://groups.google.com/d/forum/infrasim. You can visit the group through the web
page or subscribe directly by sending email to infrasim+subscribe@googlegroups.com.

We also have a #infrasim slack channel at https://codecommunity.slack.com/messages/infrasim/. You can receive an
invite by requesting one at http://community.emccode.com.

1.1. Contents 39

http://www.cisco.com/c/en/us/products/switches/nexus-1000v-switch-vmware-vsphere/index.html
https://groups.google.com/d/forum/infrasim
mailto:infrasim+subscribe@googlegroups.com
https://codecommunity.slack.com/messages/infrasim/
http://community.emccode.com

InfraSIM Documentation, Release 2.0

Submitting Contributions

You can submit coding additions or changes for a repository. It’s recommended that you limit your pull requests to a
single issue, keep tests as simple as possible, and make sure your changes don’t break the existing project.

1. Fork the repository and clone it locally.

2. Use a unique branch to make commits and send pull requests.

3. Make sure that the description of the pull request is clear and complete.

4. Run your changes against existing tests or, if necessary, create new ones.

After your pull request is received, our core committers give you feedback on your work and might request that you
make further changes and resubmit the request. The core committers handle all merges.

If you have questions about the disposition of a request, feel free to email one of our core committers.

Core Committer Team

• Bryan.Fu@emc.com

• Robert.Xia@emc.com

• Mark.Ma@emc.com

• Forrest.Gu@emc.com

Please direct general conversation about how to use InfraSIM or discussion about improvements and features to our
mailing list at infrasim@googlegroups.com

Reporting Issues

To report an issue or ask a question:

1. Go to https://github.com/infrasim/infrasim/issues.

2. Search the existing issues for your issue. Make sure your issue is not already reported.

3. If you have new information to share about an existing issue, add your information to the existing discussion.

4. If you have a new issue, report it. Include the following information.

• Problem Description

• Steps to Reproduce

• Actual Results

• Expected Results

• Additional Information

Security Issues

If you discover a security issue, please report it in an email to Infrasim_core_committee@emc.com. Do not use the
Issues section to describe a security issue.

Understanding the Repositories

The https://github.com/InfraSIM/InfraSIM repository acts as a single source location to help you get or build all the
pieces to learn about, take advantage of, and contribute to InfraSIM.

40 Chapter 1. InfraSIM™ Overview and quick start video

mailto:Bryan.Fu@emc.com
mailto:Robert.Xia@emc.com
mailto:Mark.Ma@emc.com
mailto:Forrest.Gu@emc.com
mailto:infrasim@googlegroups.com
https://github.com/infrasim/infrasim/issues
mailto:Infrasim_core_committee@emc.com
https://github.com/InfraSIM/InfraSIM

InfraSIM Documentation, Release 2.0

Coding Guidelines

A best practice is to use the same coding style as the rest of the codebase. In general, write clean code and supply
meaningful and comprehensive code comments.

Contributing to the Documentation

You can contribute to the InfraSIM documentation.

1. Clone the InfraSIM/docs repository.

2. Create a branch to make commits and send pull requests.

3. Make sure that the description of the pull request is clear and complete.

When your pull requests are merged, your changes are automatically published to the documentation site at
http://infrasim.readthedocs.org/en/latest/.

Community Guidelines

Be respectful and polite to other community members. Make everyone in the community feels welcome.

Development Guide

Repositories

The InfraSIM repositories provide you with the code to set up, configure, and test a virtual environment consisting
of simulated servers, storage devices, and smart PDUs. A thorough understanding of the individual repositories is
essential for contributing to the project.

1.1. Contents 41

https://github.com/InfraSIM/docs
http://infrasim.readthedocs.org/en/latest/

InfraSIM Documentation, Release 2.0

Appli-
cation

Repository Description

infrasim-
compute

https://github.com/InfraSIM/infrasim-
compute

infrasim-compute repository includes virtual BMC, and virtual host
implementation. It simulates common functionalities of bare-metal servers
and the properties and behaviors of servers from vendors like Kell, Quanta,
etc. It re-implemented all virtual server features in a different way from what
idic repo does. Major one is its package is application, instead of virtual
machine template like what idic does.

IDIC https://github.com/InfraSIM/idicLegacy virtual compute implementation which packages virtual server node
into one virtual machine template. Idic repository includes vBMC, vCompute,
and vPDU. vBMC is the base OS of virtual BMC. vCompute simulates the
common functionalities of a compute node and the behaviors of a generic
server and several servers from vendors like Dell, Quanta, etc.

vp-
duserv

https://github.com/InfraSIM/vpduservSimulates the behaviors of the IPI PANDUIT PDU which conforms with
vendor and open source specified licenses.

QEMU https://github.com/InfraSIM/qemuQEMU is a generic and open source machine emulator and virtualizer, more
information please access http://wiki.qemu-project.org/.

OpenIPMI https://github.com/InfraSIM/openipmiOpenIPMI library, a library that makes it simple to build complex IPMI
management software.

Test https://github.com/InfraSIM/testScripts for InfraSIM automation and integration tests. It includes the test
framework(puffer) and many test cases against the features InfraSIM
provided.

Tools https://github.com/InfraSIM/toolsVarious tools and scripts to monitor and manage generic and common virtual
nodes, virtual rack build.

vRacksys-
tem

https://github.com/InfraSIM/vracksystemThe vRacksystem provides both REST APIs and WebGUI for deploying and
configuring vNode/vPDU to compose virtual racks.

docs https://github.com/InfraSIM/docsThe InfraSIM documentation available at
http://InfraSIM.readthedocs.org/en/latest/.

Development conventions

• Guidelines for merging pull requests

For code changes, we currently use a guideline of lazy consensus with two positive reviews with at least one of those
reviews being one of the core maintainers and no negative votes. And of course, the gates for the pull requests must
pass as well (unit tests, functional test etc).

If you put a review up, please be explicit with a vote (+1, -1, or +/-0) so we can distinguish questions asking for
information or background from reviews implying that the relevant change should not be merged. Likewise if you put
up a change for review as a pull request, a -1 review comment isn’t a reflection on you as a person, instead is a request
to make a modification before that pull request should be merged.

• Pull request for a new feature is required to contain corresponding functional test.

3rd-party binaries notes

QEMU

InfraSIM leverages QEMU in its implementation. It introduced tested, stable major release from official QEMU
repository. There are also additional code changes kept at infrasim/qemu for purpose of better simulating servers.

We always build QEMU on top of Ubuntu 64-bit 16.04 Linux and wrap it into one Debian package. This package is
available at InfraSIM QEMU Debian. InfraSIM application will download and install it into system before starting its
service.

42 Chapter 1. InfraSIM™ Overview and quick start video

https://github.com/InfraSIM/infrasim-compute
https://github.com/InfraSIM/infrasim-compute
https://github.com/InfraSIM/idic
https://github.com/InfraSIM/vpduserv
https://github.com/InfraSIM/qemu
http://wiki.qemu-project.org/
https://github.com/InfraSIM/openipmi
https://github.com/InfraSIM/test
https://github.com/InfraSIM/tools
https://github.com/InfraSIM/vracksystem
https://github.com/InfraSIM/docs
http://InfraSIM.readthedocs.org/en/latest/
http://www.apache.org/foundation/glossary.html#LazyConsensus
https://github.com/InfraSIM/qemu
https://bintray.com/infrasim/deb/qemu

InfraSIM Documentation, Release 2.0

openipmi

InfraSIM leverages openipmi to simulate BMC properties and behavior. Similarly, there are also additional code
changes kept at infrasim/openipmi for purpose of better simulating servers.

We always build openipmi on top of Ubuntu 64-bit 16.04 Linux and wrap it into one Debian package. This package is
available at InfraSIM OpenIpmi Debian. InfraSIM application will download and install it into system before starting
its service.

Component design notes

• infrasim-compute main components:

1. Server node simulation

2. IPMI consoles

3. Server Emulation data

• Connection and communication path between modules:

• Class UML diagram of main components

1.1. Contents 43

https://github.com/InfraSIM/openipmi
https://bintray.com/infrasim/deb/OpenIpmi
https://github.com/InfraSIM/infrasim-compute/blob/master/infrasim/model.py
https://github.com/InfraSIM/infrasim-compute/tree/master/infrasim/ipmicons
https://github.com/InfraSIM/infrasim-compute/tree/master/data

InfraSIM Documentation, Release 2.0

44 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

Logging and debugging

Virtual serve application run-time log and error message are store at /var/log/infrasim/<node-name>/{openipmi.log,
qemu.log}.

• “openipmi.log” logs the openipmi messages and errors.

• “qemu.log” logs the qemu messages and errors.

Other information need to check and is useful for trouble-shooting:

• InfraSIM virtual server run-time processes and argument list: socat, qemu and ipmi_sim

/usr/bin/socat pty,link=/root/.infrasim/node-0/.pty0,waitslave udp-listen:9003,reuseaddr

qemu-system-x86_64 -vnc :1 -name node-0-node -device sga --enable-kvm -smbios file=/root/.infrasim/node-0/data/quanta_d51_smbios.bin -boot ncd -machine q35,usb=off,vmport=off -chardev socket,id=mon,host=127.0.0.1,port=2345,server,nowait -mon chardev=mon,id=monitor -serial mon:udp:127.0.0.1:9003,nowait -uuid 45429841-fa59-4edb-93fc-adead4c20f55 -chardev socket,id=ipmi0,host=127.0.0.1,port=9002,reconnect=10 -device ipmi-bmc-extern,chardev=ipmi0,id=bmc0 -device isa-ipmi-kcs,bmc=bmc0 -net user -net nic -device ahci,id=sata0 -drive file=/root/.infrasim/sda.img,format=qcow2,if=none,id=drive0,cache=writeback -device ide-hd,bus=sata0.0,drive=drive0 -m 1024 -cpu Haswell,+vmx -smp 2,sockets=2,cores=1,threads=1

/usr/local/bin/ipmi_sim -c /root/.infrasim/node-0/data/vbmc.conf -f /root/.infrasim/node-0/data/quanta_d51.emu -n -s /var/tmp

• Check content of data file in runtime workspace. Refer to content in workspace

Unit test

Major programming language of InfraSIM is Python. Folder InfraSIM/test/unittest contains all Python unit test cases
implementation http://pythontesting.net/framework/unittest/unittest-introduction/ explains what is Python unittest and
guildelines of coming up test case.

Entry point of running unittest is InfraSIM/.unittests. Execute unit test by running:

cd infrasim-compute/
sudo ./.unittests

Functional test

Folder InfraSIM/test/functionaltest contains all the test cases to test virtual server implementation in functionality
wise. Entry point of running functional test is InfraSIM/.functionaltests. Run below command to execute functional
test:

cd infrasim-compute/
sudo ./.functionaltests

Integration test - under construction

Puffer is test framework developed for InfraSIM integration testing. Source code is in InfraSIM/test. It is a framework
which can be easily extended to test products of different type, for example, standalone or web-based software and
firmware. Here’s its block diagram.

1.1. Contents 45

https://github.com/InfraSIM/infrasim-compute/tree/master/test/unit
http://pythontesting.net/framework/unittest/unittest-introduction/
https://github.com/InfraSIM/infrasim-compute/blob/master/.unittests
https://github.com/InfraSIM/infrasim-compute/tree/master/test/functional
https://github.com/InfraSIM/infrasim-compute/blob/master/.functionaltests
https://github.com/InfraSIM/test

InfraSIM Documentation, Release 2.0

For any test target specified, those target behavior encapsulation need to be developed and a set of tests cases need to
be added on top of encapsulation layer. Write test case described how to work out one test cases against InfraSIM.
Below sections introduced all details about setting up buffer and execute InfraSIM testing with it.

Setup environment

Refer to the section 7.1 Physical Servers and ESXi Environment Setup.

Code:

git clone https://github.com/InfraSIM/test.git

Install necessary package:

sudo python test/install/PackageInstall.py

Define environment

You can see a configuration file example in test/configure/stack_example.json. To test your environment, you must
define your environment in a file, and it must be in a valid JSON format.

1. Define the overall test environment.

• (Optional) vRackSystem - The test may leverage vRackSystem and have REST talk.

• available_Hypervisor - A list of hypervisors information. If your test has to handle hypervisors, this
attribute is a required.

• vRacks - A list of virtual racks you have built.

{
"vRackSystem": {},
"available_HyperVisor": [],
"vRacks": [],

}

2. (Optional) Define vRackSystem key information for REST interaction, this definition can be an empty dictio-
nary:

46 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

{
"protocol": "http",
"ip": "192.168.1.1",
"port": 8888,
"username": "admin",
"password": "admin",
"root": "/api/v1"

}

3. Specify hypervisor information using available_HyperVisor.

For a single definition, here is an example:

{
"name": "hyper1",
"type": "ESXi",
"ip": "192.168.1.2",
"username": "username",
"password": "password"

}

4. Specify a list of vRacks. Each definition includes:

• name - any name you like.

• hypervisor - The hypervisor you used in above definition. All virtual node, PDU, and switch are deployed
on this hypervisor.

• vPDU - A list of virtual PDU definition. The list can be empty.

• vSwitch - A list of virtual switch definition. The list can be empty.

• vNode - A list of virtual node definition. The list can be empty.

They are organized in the following list:

{
"name": "vRack1",
"hypervisor": "hyper1",
"vPDU": [],
"vSwitch": [],
"vNode": []

}

5. Specify a list of virtual PDUs. For each definition, you need to maintain:

• name - virtual PDU’s name in hypervisor

• datatstore - on which datastore this PDU is deployed.

• community - control community for SNMP access.

• ip - PDU IP

• outlet - A mapping of outlet to corresponding control password.

Example:

{
"name": "vpdu_1",
"datastore": "Datastore01",
"community": "foo",
"ip": "172.31.128.1",
"outlet": {

1.1. Contents 47

InfraSIM Documentation, Release 2.0

"1.1": "bar",
"1.2": "bar",
"1.3": "bar"

}
}

6. vSwitch is currently not enabled.

7. Specify a list of virtual nodes. For each definition, you need to maintain:

• name - The virtual node’s name in hypervisor.

• datastore - The datastore this node is deployed on.

• power - A list of power control connection, each connection defines a specific PDU and outlet, you may
have two power control, if this list is empty, node will not be controlled by any PDU.

• network - A definition for connection to virtual switch, currently not used.

• bmc - A definition on how to access virtual BMC of this node, including IP, username and password for
ipmi over LAN access.

Example:

{
"name": "vnode_a_20160126114700",
"datastore": "Datastore01",
"power": [

{"vPDU": "vpdu_1", "outlet": "1.1"},
],
"network": [],
"bmc": {

"ip": "172.31.128.2",
"username": "admin",
"password": "admin"

}
}

Verify every IP is available from your test execution environment!

Verify PDU can access substream hypervisor! (see chapter 7.1.3 vPDU Configuration for detail)

Case Runtime Data

Case Runtime Data used to maintain some specific data for different test objects. These data generally require the user
to add and update manually. For example, if you want to test one type of sensor for multiple nodes, you need to add
and update sensor ID corresponds to each node.

1. Configuration file:

Case Runtime Data is defined in the json file which have same name with case script. If name of case script is
T0000_test_HelloWorld.py, the name of runtime data shall be T0000_test_HelloWorld.json.

Here’s an example:

[
{

"name_1": "value_1",
"name_2": "value_2"

}
]

48 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

If your configuration json like above, you can get “value_1” by call self.data[”name_1”] in test case.

Here’s another example:

[
{

"node_1": "0x00",
"node_2": "0x01"

},
{

"node_1": "0x02",
"node_2": "0x03"

}
]

If your configuration json has two objects in an array like above, same case shall be run twice for each runtime
data.

You will get “0x00” by call self.data[”node_1”] in test case for the first time, and “0x02” for the second time.

2. Test Result:

You shall get two separate result and a summary. Case’s final result is the worst result for all execution.

For example, if the case “failed” in first time and “passed” in second time, the final result is still “failed”, the
summary will list all run results.

Run test

Trigger test:

cd test
python puffer.py -s infrasim --stack=<your_configuration>

<your_configuration> can be an absolute or related path of your configuration file. About how to run test, please check
readme for detail:

cat README.md

You log file is kept in a folder of log/InfraSIM, each test task is packaged in a folder with time stamp as it’s folder
name.

Write test case

This section introduces how to write test case in puffer.

1. Create a test script file

• Test Case Name

The name of test case should follow the same format:

T\d+_[a-z0-9A-Z]+_[a-z0-9A-Z]+

In puffer, test case name should:

– Start with capital letter T and case id

– Followed by the field type and short description about this case with underscores in the interval.
Field types defined in class CBaseCase.

1.1. Contents 49

InfraSIM Documentation, Release 2.0

Note: The field type for InfraSIM is idic.

For example, a test case named T123456_idic_CheckPowerStatus:

– T is short for test

– 123456 for case id

– idic for field type

– check the power status for the short description

• Test Suite

You should put your test case scripts into <puffer_directory>/case/<test_suite>. Each folder under
<puffer_directory>/case is a test suite. When you give the suite folder to puffer.py as a parameter, puffer
will executes all test case scripts which in the folder, including subfolders.

2. Create case runtime data file

Case Runtime Data is used to maintain some specific data for different test objects. These data generally require
the user to add and update manually.

The format of case runtime data defined in the json file which have same name and folder with case script.
Please see the chapter Case Runtime Data .

3. Write test case

(a) Import CBaseCase

Class CBaseCase defined in <puffer_directory>/case/CBaseCase.py, contains some member functions
to help test case running:

from case.CBaseCase import *

(b) Class Declaration

We declaration each case as subclass of class CBaseCase and the class name is case name. For example,
if case name is T123456_idic_CheckPowerStatus, the class name should be same to it.

A test case maybe looks like:

from case.CBaseCase import *

class T000000_firmware_shortdescription(CBaseCase):

def __init__(self):
CBaseCase.__init__(self, self.__class__.__name__)

def config(self):
CBaseCase.config(self)

def test(self):
pass

def deconfig(self):
CBaseCase.deconfig(self)

And then, we need to override methods of class CBaseCase, such as config(), test() and deconfig().

(c) Override config()

This method configuration system to expected status, configuration runtime HWIMO environment and
stack environment.

50 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

The HWIMO configuration will set logger to save session log into log file and configuration SSH agent
and stack configuration will build stack object, configuration stack ABS according to dict, build all nodes
and power on.

However, in some case we want to enable some components we need to enable manually in configuration().
For example, if we want to use the ssh inside vbmc, we need enable the bmc_ssh in configuration():

def config(self):
CBaseCase.config(self)
self.enable_bmc_ssh()

(d) Override test()

This method is the main part of the test.

You can:

• Use self.stack to get the stack which build in config().

• Use self.data[] to get case runtime data.

• Use self.monorail to use Monorail API.

• Use self.log() to log the information.

• Use self.result() to save the case result.

For example:

def test(self):
#get racks from stack and get nodes from rack
for obj_rack in self.stack.get_rack_list():

for obj_node in obj_rack.get_node_list():

#log the information
self.log('INFO', 'Check node {} of rack {} ...'

.format(obj_node.get_name(), obj_rack.get_name()))

#get and match outlet power
for power_unit in obj_node.power:

pdu_pwd = power_unit[0].get_outlet_password(power_unit[1])
power_unit[0].match_outlet_password(power_unit[1], pdu_pwd)

#virtual node power control
obj_node.power_on()

#use case runtime data
node_name = obj_node.get_name()
node_lan_channel = self.data[node_name]

#send command to virtual bmc through ssh
obj_bmc = obj_node.get_bmc()
bmc_ssh = obj_bmc.ssh
ssh_rsp = bmc_ssh.send_command_wait_string(

str_command = 'ipmitool -I lanplus -H localhost -U {} -P {} lan print {} {}'.format(obj_bmc.get_username(), obj_bmc.get_password(), node_lan_channel, chr(13)),
wait = '$',
int_time_out = 3,
b_with_buff = False)

#send command to virtual bmc through ipmitool
ret, ipmi_rsp = obj_node.get_bmc().ipmi.ipmitool_standard_cmd('lan print')

1.1. Contents 51

InfraSIM Documentation, Release 2.0

#if case failed
if ret != 0:

self.result(FAIL, 'FAIL_INFORMATION')
else:
#if no issue in this run, case pass.

self.log('INFO', 'PASSED.')

(e) Override deconfig()

This method deconfig system to expected status, reset REST and SSH sessions, deconfig stack and log
handler:

def deconfig(self):
self.log('INFO', 'Deconfig')
CBaseCase.deconfig(self)

How To

How to install VMWare ESXi on Physical Server

1. Requirement of physical server The physical server must support ESXi 6.0 and it should be allocated at least
3 NIC ports. The first NIC port is used for the admin network connection. The second and third NIC ports
are used for control network connection(The second NIC is required. The third NIC is optional). The
fourth NIC port is used for data network connection (optional).

Virtual InfraSIM servers runs in the best performance if hardware-assisting technology has been enabled
on underlying physical machines. These technology includes VT-d feature and AMD-V for processors
from Intel and AMD.

Note: Physical machine - enable VT-d in BIOS

52 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

2. Setting Up Network Connections You must have IP addresses for the physical servers in the test environment
to be used to configure the VMKernal port of ESXi and called as ESXi_Admin_IP.

• Allocate or reserve a static IP address from the Lab admin.

• Connect the server’s admin NIC ports into the Lab network.

• To set up a multiple server environment, connect Port C1 on each server by using an Ethernet switch.

3. Install ESXi 6.0 From the VMWare web site, a 60-day free trial version is available after user registration.

• Go to https://my.vmware.com/web/vmware/details?downloadGroup=ESXI600&productId=490&rPId=7539

• Download the VMWare vSphere Hypervisor 6.0 (ESXi6.0) ISO image.

• Install ESXi 6.0 on each physical server.

• Configure the static IP address ESXi_Admin_IP on first NIC port.

• Set the Administrator user name by using the format <User Name>.

• Set the Administrator Password by using the format <Password>.

4. Installing VMWare vSphere Client (Remote System)

• Go to the VMWare web site.

• Download the VMWare vSphere Client.

• Install the client on a remote system that can connect to the physical servers.

5. Configuring the Virtual Network

1.1. Contents 53

https://my.vmware.com/web/vmware/details?downloadGroup=ESXI600&productId=490&rPId=7539

InfraSIM Documentation, Release 2.0

• Launch the vSphere client and connect to ESXi on the physical server by using ESXi_Admin_IP.

• On the Configuration tab, click Add Networking, to create the Control vSwitch. In the example, the
network label is “VM Network 2”.

• Select Virtual Machine

• Select Create a vSphere standard switch > vmnic2.

54 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

• In the Network Label field, type port group name on target switch.

• Enable the SSH service on ESXi. To do this, open the Configuration tab and select Security Profile.
Then select SSH and click Properties to set the SSH (TSM-SSH) to start and stop manually.

Note: Login to the ESXi server through SSH and echo by issuing the “vhv.enable =
“TRUE”“ command to the /etc/vmware/config file. This command enables nested ESXi
and other hypervisors in vSphere 5.1 or higher version. This step only needs to be done once
by using the command: echo ‘vhv.enable = “TRUE”’ >> /etc/vmware/config.

1.1. Contents 55

InfraSIM Documentation, Release 2.0

Note: Set Promiscuous Mode to Accept and tick Override. To do this, open the Configu-
ration tab and select Networking. Then click Properties of the vSwitch, choose port group,
edit, security, tick the checkbox to override setting and select Accept.

How to deploy InfraSIM virtual server on different type of platforms

There are desires to deploy virtual server on different types of hypervisor like:

• VirtualBox

• KVM

• VMWare product, both VMWare vSphere or VMWare workstation

2 possible ways to achieve this:

• Create virtual machine image for corresponding hypervisor beforehand and them import that image onto hyper-
visors - InfraSIM application is ready in operating system running in virtual machines or containers on top of
specified hypervisor or platform. These images are: OVA file for VMWare workstation or vSphere; QCOW2 file
for KVM/QEMU; BOX or vagrant/VirtualBox, etc. Below listed some steps on how to deploy these template
into different systems:

56 Chapter 1. InfraSIM™ Overview and quick start video

https://www.virtualbox.org/
http://www.linux-kvm.org
https://www.vmware.com

InfraSIM Documentation, Release 2.0

• Spin-up virtual machines running Ubuntu 64-bit 16.04 OS on desired hypervisor and then install infrasim-
compute application. You may also leverage Chef or Ansible to deploy multiple virtual server instances into
multiple virtual machines.

How to generate drive page files

InfraSIM also provides drive page data generating. You can find helpful utility from InfraSIM tools repository. This
section walks through steps. Make sure you have access to hardware so boot an OS on target machine you want to
simulate, and you have sg3_utils installed. We’ve tried both on Ubuntu 14.04 and 16.04, so they are recommended.
First, clone tools to your OS and go to tools/data_generator:

$ cd tools/data_generator

There are 3 ways to generate page files.

1. Fetch pages from a specific physical drive:

$ sudo python gen_page_utility.py -d /dev/sda -o drive_page.bin

2. Fetch pages from all physical drives:

$ sudo python gen_page_utility.py -a

It fetches the pages from every physical drive and save them to seperate bin files.

3. Generate page through json template file

It consists of 3 steps to generate bin file.

First, generate a empty template:

$ python gen_page_utility.py -t -o template.json

Then, modify the content of template.json according to your request and save.

Note: it only supports inquiry page and mode page so far.

Finally, generate page bin file:

$ python gen_page_utility.py -f template.json -o drive_page.bin

How to simulate another server

InfraSIM also provided many utilities, interfaces for developers to build one simulation solution for a physical node
that has not been supported by infraSIM. This sections walk through steps required to build one simulation for one
specific server node. While you may find some helpful utilities from InfraSIM tools repository.

1. Collect SMBIOS

You need access to hardware so boot an OS on target machine you want to simulate. We’ve tried both on Ubuntu
14.04 and 16.04, so they are recommended. Clone tools to your OS, install dmidecode:

$ cd tools/dmidecode-2.12
$ make
$ make install

Collect SMBIOS data with the newly installed dmidecode:

$ dmidecode --dump-bin <your-vnode-name>_smbios.bin

1.1. Contents 57

https://github.com/InfraSIM/tools
https://github.com/InfraSIM/tools
https://github.com/InfraSIM/tools
https://github.com/InfraSIM/tools

InfraSIM Documentation, Release 2.0

2. Collect BMC emulation data

Unlike to collect SMBIOS data, you only need IPMI over LAN access to collect virtual BMC data. Any
environment that can access target machine’s BMC and can run python 2.7 is OK to go. This time, you may
leverage data_generate in tools:

$ cd tools/data_generater
$./gen_emu_utility.py -n <your-vnode-name> auto -H <bmc-ip> -U <bmc-iol-username> -P <bmc-iol-password> -I lanplus

You can specify -h option to get more usage.

The utility may take seconds to run. After everything is done, you can find a file node.emu. This includes
FRU and SDR of your node.

3. Use SMBIOS data and BMC emulation data

After previous step, you get <your-vnode-name>_smbios.bin and node.emu now. To contribute this
new node type, you need to add these data, then specify the type in infrasim-compute yml configuration.

• First, add node data, you can:

$ cd /usr/local/etc/infrasim/
$ mkdir <your-vnode-name>
$ mv path/to/<your-vnode-name>_smbios.bin <your-vnode-name>_smbios.bin
$ mv path/to/node.emu <your-vnode-name>.emu

• A substitution of first step or a better way is to contribute data to infrasim-compute/data/ with
similar structure, and install infrasim-compute again:

$ cd infrasim-compute/data
$ mkdir <your-vnode-name>
$ mv path/to/<your-vnode-name>_smbios.bin <your-vnode-name>_smbios.bin
$ mv path/to/node.emu <your-vnode-name>.emu

$ cd ..
$ sudo python setup.py install

• Second, specify type: <your-vnode-name> in node configuration and start corresponding in-
stance. Refer to customize virtual server and manage node config for detail.

How to simulate another vPDU - Under construction

InfraSIM provided ServerTech and Panduit PDU simulation initially. InfraSIM also provided many utilities, interfaces
for developers to build simulation solution for other physical PDUs. This sections walk through all steps required to
build one simulation for other PDU infraSIM doesn’t support yet.

1. How to retrieve data from physical PDU

If you want to retrieve PDU MIB data, you should have snmpsim installed on your environment.Then run the
following command to produce MIB snapshot for the PDU:

snmprec.py --agent-udpv4-endpoint=<PDU IP address>; --start-oid=1.3.6 --output-file=/path/<target snmprec file>; --variation-module=sql --variation-module-options=dbtype:sqlite3,database:/path/<target pdu database file>,dbtable:snmprec

For more details of how to use snmprec.py, please go to section Producing SNMP snapshots at snmpsim home
page for more help.

2. How to simulate physical PDU in InfraSIM

Once you retrieved data from physical PDU, the next step is to add a virtual PDU in InfraSIM for this physical
server. The following steps will guide you how to do:

58 Chapter 1. InfraSIM™ Overview and quick start video

https://github.com/InfraSIM/tools
https://github.com/InfraSIM/infrasim-compute/wiki/Manage-node-config
http://snmpsim.sourceforge.net
http://snmpsim.sourceforge.net/snapshotting.html

InfraSIM Documentation, Release 2.0

(a) Create a directory named PDU name at idic/vpdu

(b) Create a directory data at idic/vpdu/<PDU name>/data, and copy the data you get from physical server
into data directory.

(c) Copy .config and Makefile into idic/vpdu/<PDU name>, and update target name in Makefile and .config

(d) Clone vpduserv, and implement the new pdu logic based on vendor’s PDU spec.

How to integrate RackHD with InfraSIM

RackHD is an open source project that provides hardware orchestration and management through APIs. For more
information about RackHD, go to http://rackhd.readthedocs.io.

The virtual hardware elements(virtual compute node, virtual PDU, virtual Switch) simulated by InfraSIM can be
managed by RackHD.

The following picture shows the deployment model for the integration of InfraSIM and RackHD:

The networking connection between InfraSIM and RackHD is shown below:

1.1. Contents 59

https://github.com/InfraSIM/vpduserv.git
http://rackhd.readthedocs.io

InfraSIM Documentation, Release 2.0

Please follow below steps to setup the entire environment. After that, RackHD can discover and manage the virtual
server and virtual PDU just as the real physical server and PDU. Note that in the example, virtual machines are spinned
up on VMWare workstation. Configuration is similiar on other platforms.

1. Enable VT-d in BIOS on Physical Server as in chapter 11.1.

2. Create two virtual machines(for InfraSIM/RackHD respectively) inside VMWare workstation, or use ova images
built by InfraSIM and RackHD groups.

3. Create a Custom network(name it VMnet2 here) in VMWare workstation with configuration below:

60 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

4. If you are using VMWare workstation linux version, you might need to change some settings in the OS running
workstation and the vm running InfraSIM.

(a) In the OS running VMWare workstation, turn on promiscuous mode for virtual nic adapter
VMnet2:

...
sudo chmod a+rw /dev/vmnet2
sudo ifconfig vmnet2 promisc
...

(a) Turn on nested option for kvm_intel in InfraSIM vm:

1.1. Contents 61

InfraSIM Documentation, Release 2.0

...
sudo rmmod kvm_intel
sudo modprobe kvm_intel nested=1 ept=1
...

(b) In the VMWare workstation, choose the InfraSIM vm and check Virtualization Intel VT-x/EPT
or AMD-V/RVI in VM settings.

(c) Restart VMWare workstation and the vms.

2. Configure network connection for InfraSIM virtual machine:

(a) In virtual machine settings, create network adapters:

62 Chapter 1. InfraSIM™ Overview and quick start video

InfraSIM Documentation, Release 2.0

(b) Modify /etc/network/interfaces for the BMC and CONTROL networks:

...
auto <BMC ifname>
iface <BMC ifname> inet dhcp
post-up ifconfig <BMC ifname> promisc

auto <CONTROL ifname>
iface <CONTROL ifname> inet dhcp
post-up ifconfig <CONTROL ifname> promisc
...

<BMC ifname> and <CONTROL ifname> are the names of infrasim vm’s BMC and CON-
TROL network adapters. Check ifconfig to get the ifname.

(a) Create a network bridge and add CONTROL interface to the bridge referring to How to create a
bridge.

3. Configure network connection for RackHD virtual machine:

RackHD server should be configured with as least two networks, "Admin network" and
"Control Network".

• “Admin Network” is used to communicate with external servers

• “Control Network” is used to control the virtual servers.

(a) In virtual machine settings, create network adapters:

1.1. Contents 63

https://github.com/InfraSIM/infrasim-compute/wiki/How-to-create-bridge-for-InfraSIM
https://github.com/InfraSIM/infrasim-compute/wiki/How-to-create-bridge-for-InfraSIM

InfraSIM Documentation, Release 2.0

(a) In /etc/network/interfaces, configure the CONTROL network interface to static:

...
auto <CONTROL ifname>
iface <CONTROL ifname> inet static
address 172.31.128.1
netmask 255.255.240.0
...

Check ifconfig to find <CONTROL ifname> for CONTROL network and fill in the com-
mands above.

2. Install RackHD from source code. Please refer RackHD document to setup the RackHD Server.

3. Install InfraSIM from source code.

• Please refer Installation in this document to install InfraSIM.

• Modify yaml file to add BMC binding and change qemu network interface to bridge mode:

...
networks:

-
network_mode: bridge
network_name: <bridge_name>
device: e1000

...
bmc:

interface: <BMC ifname>
...

Note: The default yaml file is stored at ${HOME}/.infrasim/.node_map/default.yml.

4. Start RackHD service and InfraSIM service.

After you setup the environment successfully, you can get the server information and control the servers by RackHD
APIs. More information about how RackHD APIs communicate with the compute server and PDU, Please refer
http://rackhd.readthedocs.org/en/latest/rackhd/index.html#rackhd-api

64 Chapter 1. InfraSIM™ Overview and quick start video

http://rackhd.readthedocs.io/en/latest/rackhd/ubuntu_source_installation.html
http://rackhd.readthedocs.org/en/latest/rackhd/index.html#rackhd-api

InfraSIM Documentation, Release 2.0

How to hotplug devices

InfraSIM incorporate QEMU’s hotplug interface via QMP or HMP to provide device hotplug. This function is exposed
via QEMU monitor, while a feature called infrasim monitor is under construction for easy use.

1. Prerequisites

You need to check these prerequisites before any hotplug operations:

• From source code’s perspective, the device class implements TYPE_HOTPLUG_HANDLER,
and with well implements on plug and unplug handler.

• From QEMU runtime’s perspective, see if option -mon is specified. Either mode=control
or mode=readline has approach to do hotplug operation.

2. Hotplug Example

Here is an example on how to do hotplug on QMP. A basic principle is to define the specific device,
then mount it as a QEMU device. You can learn how to compose the QMP command via QMP
schema. Further more, this article tells you how to write your own QMP command. Another tip is
how to talk with QEMU monitor: write your own code to connect the UNIX or INET socket, or use
unix nc command:

"C" is for client request
"S" is for server reply
Replies are omitted in this example

Issue the qmp_capabilities command, so that QMP enters command mode
C: { "execute": "qmp_capabilities" }
S: ...

Issue the blockdev-add to define one block device
this command could be changed in future version
C: {

"execute": "blockdev-add",
"arguments": {

"bus": "scsi0"
"unit": "5"
"options": {

"id": "scsi0-0-5-0",
"driver": "qcow2",
"file": {

"driver": "file",
"filename": "/home/infrasim/tmp5.img"

}
}

}
}
S: ...

Issue the device_add to mount device on bus
C: {

"execute": "device_add",
"arguments": {

"driver": "scsi-hd",
"id": "tmpscsihd5",
"product": "PX04SMB160",
"ver": "AM04",
"scsi-id": "5",
"bus": "scsi0.0",

1.1. Contents 65

https://github.com/qemu/qemu/blob/b0bcc86d2a87456f5a276f941dc775b265b309cf/include/hw/hotplug.h
https://wiki.qemu.org/Documentation/QMP
https://github.com/qemu/qemu/blob/b0bcc86d2a87456f5a276f941dc775b265b309cf/include/hw/hotplug.h
https://github.com/qemu/qemu/blob/stable-2.10/qapi-schema.json
https://github.com/qemu/qemu/blob/stable-2.10/qapi-schema.json
https://github.com/qemu/qemu/blob/stable-2.10/docs/devel/qapi-code-gen.txt

InfraSIM Documentation, Release 2.0

"drive": "scsi0-0-5-0",
"channel": "0",
"lun": "0",
"serial": "26E0B392TD2P",
"wwn": "5764611469732290481"

}
}
S: ...

Delete device first
C: {

"execute": "device_del",
"arguments": {

"id": "tmpscsihd5"
}

}
S: ...

Clear the block devicev
this command could be changed in the future too
C: {

"execute": "x-blockdev-del",
"arguments": {

"id": "scsi0-0-5-0"
}

}
S: ...

Here’s another example on how to do hotplug on HMP. This example do exactly the same things with
above QMP example. HMP schema indicates how to specify the parameters:

(qemu) drive_add scsi0:5 file=/home/infrasim/tmp5.img,
format=qcow2,id=scsi0-0-5-0,if=none

...
(qemu) device_add scsi-hd,product=PX04SMB160,ver=AM04,

scsi-id=5,bus=scsi0.0,drive=scsi0-0-5-0,channel=0,
serial=26E0B392TD2P,wwn=5764611469732290481,lun=0,
id=tmpscsihd5

...
(qemu) device_del tmpscsihd5
...
(qemu) drive_del scsi0-0-5-0
...

InfraSIM is a Trademark of EMC Corporation.

66 Chapter 1. InfraSIM™ Overview and quick start video

https://github.com/qemu/qemu/blob/stable-2.10/hmp-commands.hx

	InfraSIM™ Overview and quick start video
	Contents

