
Inform Documentation
Release 1.29

Ken Kundert

Apr 27, 2024

CONTENTS

1 Alternatives 3

2 Installation 5

3 Issues 7

4 Quick Tour 9

5 Documentation 15

Index 95

i

ii

Inform Documentation, Release 1.29

Version: 1.29
Released: 2024-04-27
Please post all bugs and suggestions at Inform Issues (or contact me directly at inform@nurdletech.com).

Inform is designed to display messages from programs that are typically run from a console. It provides a collection of
‘print’ functions that allow you to simply and cleanly print different types of messages. For example:

>>> from inform import display, error, os_error
>>> display('This is a plain message.')
This is a plain message.

>>> try:
... with open('config') as f:
... config = f.read()
... except OSError as e:
... error(os_error(e))
error: config: no such file or directory.

The display and error functions are referred to as informants. They behave in a way that is very similar to the print
function that is built-in to Python3, but they also provide some additional features as well. For example, they can be
configured to log their messages and they can be disabled en masse.

Finally, Inform provides a generic exception and a collection of small utilities that are useful when creating messages.

CONTENTS 1

https://github.com/KenKundert/inform/issues
mailto://inform@nurdletech.com

Inform Documentation, Release 1.29

2 CONTENTS

CHAPTER

ONE

ALTERNATIVES

The Python standard library provides the logging package. This package differs from Inform in that it is really intended
to log events to a file. It is more intended for daemons that run in the background and the logging is not meant to
communicate directly to the user in real time, but rather record enough information into a log file for an administrator
to understand how well the program is performing and whether anything unusual is happening.

In contrast, Inform is meant to used to provide information from command line utilities directly to the user in real time.
It is not confined to only logging events, but instead can be used anywhere the normal Python print function would
be used. In effect, Inform allows you to create and use multiple print functions each of which is tailored for a specific
situation or task. This of course is something you could do yourself using the built-in print function, but with Inform
you will not have to embed your print functions in complex condition statements, every message is formatted in a
consistent manner that follows normal Unix conventions, and you can control all of your print functions by configuring
a single object.

3

https://docs.python.org/3/library/logging.html

Inform Documentation, Release 1.29

4 Chapter 1. Alternatives

CHAPTER

TWO

INSTALLATION

Install the latest stable version with:

pip3 install --user inform

Requires Python2.7 or Python3.3 or better.

The source code is available from GitHub. You can download the repository and install using:

git clone https://github.com/KenKundert/inform.git
pip3 install --user inform

5

https://github.com/KenKundert/inform

Inform Documentation, Release 1.29

6 Chapter 2. Installation

CHAPTER

THREE

ISSUES

Please ask questions or report problems on Inform Issues.

7

https://github.com/KenKundert/inform/issues

Inform Documentation, Release 1.29

8 Chapter 3. Issues

CHAPTER

FOUR

QUICK TOUR

4.1 Informants

Inform defines a collection of print-like functions that have different roles. These functions are referred to as ‘infor-
mants’ and include display, warn, error, and fatal. All of them take arguments in the same manner as Python’s built-in
print function and all of them write the desired message to standard output, with the last three adding a header to the
message that indicates the type of message. For example:

>>> from inform import display, error, fatal, warn

>>> display('ice', 9)
ice 9

>>> warn('cannot write to file, logging suppressed.')
warning: cannot write to file, logging suppressed.

>>> filename = 'config'
>>> error('%s: file not found.' % filename)
error: config: file not found.

>>> fatal('defective input file.', culprit=filename)
error: config: defective input file.

Notice that in the error message the filename was explicitly added to the front of the message. This is an extremely
common idiom and it is provided by Inform using the culprit named argument as shown in the fatal message. fatal is
similar to error but additionally terminates the program. To make the error messages stand out, the header is generally
rendered in a color appropriate to the message, so warnings use yellow and errors use red. However, they are not
colored above because messages are only colored if they are being written to the console (a TTY).

In a manner similar to Python3’s built-in print function, unnamed arguments are converted to strings and then joined
using the separator, which by default is a single space but can be specified using the sep named argument.

>>> colors = dict(red='ff5733', green='4fff33', blue='3346ff')

>>> lines = []
>>> for key in sorted(colors.keys()):
... val = colors[key]
... lines.append('{key:>5s} = {val}'.format(key=key, val=val))

>>> display(*lines, sep='\n')
blue = 3346ff

(continues on next page)

9

Inform Documentation, Release 1.29

(continued from previous page)

green = 4fff33
red = ff5733

Alternatively, you can specify an arbitrary collection of named and unnamed arguments, and form them into a message
using the template argument:

>>> for key in sorted(colors.keys()):
... val = colors[key]
... display(val, k=key, template='{k:>5s} = {}')
blue = 3346ff
green = 4fff33
red = ff5733

You can even specify a collection of templates. The first one for which all keys are known is used. For example;

>>> colors = dict(
... red = ('ff5733', 'failure'),
... green = ('4fff33', 'success'),
... blue = ('3346ff', None),
...)

>>> for name in sorted(colors.keys()):
... code, desc = colors[name]
... templates = ('{:>5s} = {} -- {}', '{:>5s} = {}')
... display(name, code, desc, template=templates)
blue = 3346ff
green = 4fff33 -- success
red = ff5733 -- failure

>>> for name in sorted(colors.keys()):
... code, desc = colors[name]
... templates = ('{k:>5s} = {v} -- {d}', '{k:>5s} = {v}')
... display(k=name, v=code, d=desc, template=templates)
blue = 3346ff
green = 4fff33 -- success
red = ff5733 -- failure

All informants support the culprit named argument, which is used to identify the object of the message. The culprit
can be a scalar, as above, or a collection, in which case the members of the collection are joined together:

>>> line = 5
>>> display('syntax error.', culprit=(filename, line))
config, 5: syntax error.

Besides the four informants already described, Inform provides several others, including log, codicil, comment, narrate,
output, notify, debug and panic. Informants in general can write to the log file, to the standard output, or to a notifier.
They can add headers and specify the color of the header and the message. They can also continue the previous message
or they can terminate the program. Each informant embodies a predefined set of these choices. In addition, they are
affected by options passed to the active informer (described next), which is often used to enable or disable informants
based on various verbosity options.

10 Chapter 4. Quick Tour

Inform Documentation, Release 1.29

4.2 Controlling Informants

For more control of the informants, you can import and instantiate the Inform class yourself along with the desired
informants. This gives you the ability to specify options:

>>> from inform import Inform, display, error
>>> Inform(logfile=True, prog_name="teneya", quiet=True)
<...>
>>> display('Initializing ...')

>>> error('file not found.', culprit='data.in')
teneya error: data.in: file not found.

Notice that in this case the call to display did not print anything. That is because the quiet argument was passed to
Inform, which acts to suppress all but error messages. However, a logfile was specified, so the message would be logged.
In addition, the program name was specified, with the result in it being added to the header of the error message.

An object of the Inform class is referred to as an informer (not to be confused with the print functions, which are referred
to as informants). Once instantiated, you can use the informer to change various settings, terminate the program, or
return a count of the number of errors that have occurred.

>>> from inform import Inform, error
>>> informer = Inform(prog_name=False)
>>> error('file not found.', culprit='data.in')
error: data.in: file not found.
>>> informer.errors_accrued()
1

4.3 Utility Functions

Inform provides a collection of utility functions that are often useful when constructing messages.

4.2. Controlling Informants 11

Inform Documentation, Release 1.29

aaa Pretty prints, then returns, its argument; used when debugging code.
Color Class Used to color messages sent to the console.
columns Distribute an array over enough columns to fill the screen.
conjoin Like join, but adds a conjunction like ‘and’ or ‘or’ between the last two items.
cull Strips uninteresting value from collections.
ddd Pretty prints its arguments, used when debugging code.
fmt Similar to format(), but can pull arguments from the local scope.
full_stop Add a period to end of string if it has no other punctuation.
indent Adds indentation.
Info Class A base class that can be used to create helper classes.
is_collection Is object a collection (i.e., is it iterable and not a string)?
is_iterable Is object iterable (includes strings).
is_mapping Is object a mapping (i.e., is it a dictionary or is it dictionary like)?
is_str Is object a string?
join Combines arguments into a string in the same way as an informant.
os_error Generates clean messages for operating system errors
plural Pluralizes a word if needed.
ppp Print function, used when debugging code.
ProgressBar
Class

Used to generate progress bars.

render Converts many of the built-in Python data types into attractive, compact, and easy to read
strings.

sss Prints stack trace, used when debugging code.
vvv Print all variables that have given value, used when debugging code.

One of the most used is os_error. It converts OSError exceptions into a simple well formatted string that can be used
to describe the exception to the user.

>>> from inform import os_error, error
>>> try:
... with open(filename) as f:
... config = f.read()
... except OSError as e:
... error(os_error(e))
error: config: no such file or directory.

4.4 Generic Exception

Inform also provides a generic exception, Error, that can be used directly or can be subclassed to create your own ex-
ceptions. It takes arguments in the same manner as informants, and provides some useful methods used when reporting
errors:

>>> from inform import Error

>>> def read_config(filename):
... try:
... with open(filename) as f:
... config = f.read()
... except OSError as e:
... raise Error(os_error(e))

(continues on next page)

12 Chapter 4. Quick Tour

Inform Documentation, Release 1.29

(continued from previous page)

>>> try:
... read_config('config')
... except Error as e:
... e.report()
error: config: no such file or directory.

4.4. Generic Exception 13

Inform Documentation, Release 1.29

14 Chapter 4. Quick Tour

CHAPTER

FIVE

DOCUMENTATION

5.1 User’s Guide

5.1.1 Using Informants

This package defines a collection of ‘print’ functions that are referred to as informants. They include include log,
comment, codicil, narrate, display, output, notify, debug, warn, error, fatal and panic.

They all take arguments in a manner that is a generalization of Python’s built-in print function. Each of the informants
is used for a specific purpose, but they all take and process arguments in the same manner. These functions are dis-
tinguished in the Predefined Informants section. In this section, the manner in which they process their arguments is
presented.

With the simplest use of the program, you simply import the informants you need and call them, placing those things
that you wish to print in the argument list as unnamed arguments:

>>> from inform import display
>>> display('ice', 9)
ice 9

Informant Arguments

By default, all of the unnamed arguments are converted to strings and then joined together using a space between each
argument. However, you can use named arguments to change this behavior. The following named arguments are used
to control the informants:

sep = ‘ ‘:
Specifies the string used to join the unnamed arguments.

end = ‘\n’:
Specifies a string to append to the message.

file:
The destination stream (a file pointer).

flush = False:
Whether the message should flush the destination stream (not available in python2).

culprit = None:
A string that is added to the beginning of the message that identifies the culprit (the object for which the problem
being reported was found). May also be a number or a tuple that contains strings and numbers. If culprit is a
tuple, the members are converted to strings and joined with culprit_sep (default is ‘, ‘).

15

Inform Documentation, Release 1.29

codicil = None:
A string or a collection of strings that contains messages that are printed after the primary message.

wrap = False:
Specifies whether message should be wrapped. wrap may be True, in which case the default width of 70 is used.
Alternately, you may specify the desired width. The wrapping occurs on the final message after the arguments
have been joined.

template = None:
A template that if present interpolates the arguments to form the final message rather than simply joining the
unnamed arguments with sep. The template is a string, and its format method is called with the unnamed and
named arguments of the message passed as arguments. template may also be a collection of strings, in which
case the first template for which all the necessary arguments are available is used.

remove:
Specifies the argument values that are unavailable to the template.

The first four are also accepted by Python’s built-in print function and have the same behavior.

This example makes use of the sep and end named arguments:

>>> from inform import display

>>> actions = ['r: rewind', 'p: play/pause', 'f: fast forward']
>>> display('The choices include', *actions, sep=',\n ', end='.\n')
The choices include,

r: rewind,
p: play/pause,
f: fast forward.

Culprits

culprit is used to identify the target of the message. If the message is pointing out a problem, the culprit is generally
the source of the problem.

Here is a simple example:

>>> from inform import error

>>> error('file not found.', culprit='now-playing')
error: now-playing: file not found.

Here is an example that demonstrates the wrap and composite culprit features:

>>> value = -1
>>> error(
... 'Encountered illegal value',
... value,
... 'when filtering. Consider regenerating the dataset.',
... culprit=('input.data', 32), wrap=True,
...)
error: input.data, 32:

Encountered illegal value -1 when filtering. Consider regenerating
the dataset.

16 Chapter 5. Documentation

Inform Documentation, Release 1.29

Occasionally the actual culprits are not available where the messages are printed. In this case you can use culprit
caching. Simply cache the culprits in you informer using set_culprit() or add_culprit() and then recall them
when needed using get_culprit(). Both set_culprit and add_culprit are designed to be used with Python’s with
statement.

The following example illustrates the used of culprit caching. Here, the code is spread over several functions, and the
various culprits are known locally but are not passed directly into the function that may report the error. Rather than
explicitly passing the culprits into the various functions, which would clutter up their argument lists, the culprits are
cached in case they are needed.

>>> from inform import add_culprit, get_culprit, set_culprit, error

>>> def read_param(line, parameters):
... name, value = line.split(' = ')
... try:
... parameters[name] = float(value)
... except ValueError:
... error(
... 'expected a number, found:', value,
... culprit=get_culprit(name)
...)

>>> def read_params(lines):
... parameters = {}
... for lineno, line in enumerate(lines):
... with add_culprit(lineno+1):
... read_param(line, parameters)

>>> filename = 'parameters'
>>> with open(filename) as f, set_culprit(filename):
... lines = f.read().splitlines()
... parameters = read_params(lines)
error: parameters, 3, c: expected a number, found: ack

Templates

The template strings are the same as one would use with Python’s built-in format function and string method (as
described in Format String Syntax). The template string can interpolate either named or unnamed arguments. In this
example, named arguments are interpolated:

>>> colors = {
... 'red': ('ff5733', 'failure'),
... 'green': ('4fff33', 'success'),
... 'blue': ('3346ff', None),
... }

>>> for key in sorted(colors.keys()):
... val = colors[key]
... display(k=key, v=val, template='{k:>5s} = {v[0]}')
blue = 3346ff
green = 4fff33
red = ff5733

You can also specify a collection of templates. The first one for which all keys are available is used. For example;

5.1. User’s Guide 17

https://docs.python.org/3/library/string.html#format-string-syntax

Inform Documentation, Release 1.29

>>> for name in sorted(colors.keys()):
... code, desc = colors[name]
... display(name, code, desc, template=('{:>5s} = {} — {}', '{:>5s} = {}'))
blue = 3346ff
green = 4fff33 — success
red = ff5733 — failure

>>> for name in sorted(colors.keys()):
... code, desc = colors[name]
... display(k=name, v=code, d=desc, template=('{k:>5s} = {v} — {d}', '{k:>5s} = {v}
→˓'))
blue = 3346ff
green = 4fff33 — success
red = ff5733 — failure

The first loop interpolates positional (unnamed) arguments, the second interpolates the keyword (named) arguments.

By default, the values that are considered unavailable and so will invalidate a template are those that would be False
when cast to a Boolean. So, by default, the following values are considered unavailable: 0, False, None, ‘’, (), [], {},
etc. You can use the remove named argument to control this. remove may be a function, a collection, or a scalar. The
function would take a single argument that is the value to consider and return True if the value should be unavailable.
The scalar or the collection simply specifies the value or values that should be unavailable.

>>> accounts = dict(checking=1100, savings=0, brokerage=None)

>>> for name, amount in sorted(accounts.items()):
... display(name, amount, template=('{:>10s} = ${}', '{:>10s} = NA'), remove=None)
brokerage = NA
checking = $1100
savings = $0

5.1.2 Predefined Informants

The following informants are predefined in Inform. You can create custom informants using InformantFactory.

All of the informants except panic and debug do not produce any output if mute is set.

log

log = InformantFactory(
output=False,
log=True,

)

Saves a message to the log file without displaying it.

18 Chapter 5. Documentation

Inform Documentation, Release 1.29

comment

comment = InformantFactory(
output=lambda informer: informer.verbose and not informer.mute,
log=True,
message_color='cyan',

)

Displays a message only if verbose is set. Logs the message. The message is displayed in cyan when writing to the
console.

Comments are generally used to document unusual occurrences that might warrant the user’s attention.

codicil

codicil = InformantFactory(is_continuation=True)

Continues a previous message. Continued messages inherit the properties (output, log, message color, etc) of the
previous message. If the previous message had a header, that header is not output and instead the message is indented.
Generally, one does not specify a culprit on codicils.

>>> from inform import Inform, warn, codicil
>>> informer = Inform(prog_name="myprog")
>>> warn('file not found.', culprit='ghost')
myprog warning: ghost: file not found.

>>> codicil('skipping')
skipping

narrate

narrate = InformantFactory(
output=lambda informer: informer.narrate and not informer.mute,
log=True,
message_color='blue',

)

Displays a message only if narrate is set. Logs the message. The message is displayed in blue when writing to the
console.

Narration is generally used to inform the user as to what is going on. This can help place errors and warnings in context
so that they are easier to understand. Distinguishing narration from comments allows them to colored differently and
controlled separately.

5.1. User’s Guide 19

Inform Documentation, Release 1.29

display

display = InformantFactory(
output=lambda informer: not informer.quiet and not informer.mute,
log=True,

)

Displays a message if quiet is not set. Logs the message.

>>> from inform import display
>>> display('We the people ...')
We the people ...

output

output = InformantFactory(
output=lambda informer: not informer.mute,
log=True,

)

Displays and logs a message. This is used for messages that are not errors and that are noteworthy enough that they
need to get through even though the user has asked for quiet.

>>> from inform import output
>>> output('The sky is falling!')
The sky is falling!

notify

notify = InformantFactory(
notify=True,
log=True,

)

Temporarily display the message in a bubble at the top of the screen. Also sends it to the log file. This is used for
messages that the user is otherwise unlikely to see because they have no access to the standard output.

When using notify you may pass in the urgency named argument to specify the urgency of the notification. Its value
must ‘low’, ‘normal’, or ‘critical’ or it will be ignored.

debug

debug = InformantFactory(
severity='DEBUG',
output=True,
log=True,
header_color='magenta',

)

Displays and logs a debugging message. A header with the label DEBUG is added to the message and the header is
colored magenta.

20 Chapter 5. Documentation

Inform Documentation, Release 1.29

>>> from inform import Inform, debug
>>> informer = Inform(prog_name="myprog")
>>> debug('HERE!')
myprog DEBUG: HERE!

Generally one does not use the debug informant directly. Instead one uses the available debugging functions: aaa(),
ddd(), ppp(), sss() and vvv().

warn

warn = InformantFactory(
severity='warning',
header_color='yellow',
output=lambda informer: not informer.quiet and not informer.mute,
log=True,

)

Displays and logs a warning message. A header with the label warning is added to the message. The header is colored
yellow when writing to the console.

>>> from inform import Inform, warn
>>> informer = Inform(prog_name="myprog")
>>> warn('file not found, skipping.', culprit='ghost')
myprog warning: ghost: file not found, skipping.

error

error = InformantFactory(
severity='error',
is_error=True,
header_color='red',
output=lambda informer: not informer.mute,
log=True,

)

Displays and logs an error message. A header with the label error is added to the message. The header is colored red
when writing to the console.

>>> from inform import Inform, error
>>> informer = Inform(prog_name="myprog")
>>> error('invalid value specified, expected a number.', culprit='count')
myprog error: count: invalid value specified, expected a number.

5.1. User’s Guide 21

Inform Documentation, Release 1.29

fatal

fatal = InformantFactory(
severity='error',
is_error=True,
terminate=1,
header_color='red',
output=lambda informer: not informer.mute,
log=True,

)

Displays and logs an error message. A header with the label error is added to the message. The header is colored red
when writing to the console. The program is terminated with an exit status of 1.

>> from inform import fatal, os_error
>> try:
.. with open('config') as f:
.. read_config(f.read())
.. except OSError as e:
.. fatal(os_error(e), codicil='Cannot continue.')
myprog error: config: file not found

Cannot continue.

panic

panic = InformantFactory(
severity='internal error (please report)',
is_error=True,
terminate=3,
header_color='red',
output=True,
log=True,

)

Displays and logs a panic message. A header with the label internal error is added to the message. The header is
colored red when writing to the console. The program is terminated with an exit status of 3.

Modifying Existing Informants

You may adjust the behavior of existing informants by overriding the attributes that were passed in when they were
created. For example, in many cases you might prefer that normal program output is not logged, either because it is
voluminous or because it is sensitive. In that case you can simply override the log attributes for the display and output
informants like so:

from inform import display, output
display.log = False
output.log = False

Any attribute that can be passed into InformantFactory when creating an informant can be overridden. However,
when overriding a color you must use a colorizer rather than a color name:

22 Chapter 5. Documentation

Inform Documentation, Release 1.29

from inform import comment, Color
comment.message_color=Color('cyan')

5.1.3 Informant Control

For more control of the informants, you can import and instantiate the Inform class along with the desired informants.
This gives you the ability to specify options:

>>> from inform import Inform, display, error
>>> Inform(logfile=False, prog_name=False, quiet=True)
<...>

>>> display('hello')

>>> error('file not found.', culprit='data.in')
error: data.in: file not found.

In this example the logfile argument disables opening and writing to the logfile. The prog_name argument stops Inform
from adding the program name to the error message. And quiet turns off non-essential output, and in this case it causes
the output of display to be suppressed.

An object of the Inform class is referred to as an informer (not to be confused with the print functions, which are referred
to as informants). Once instantiated, you can use the informer to change various settings, terminate the program, return
a count of the number of errors that have occurred, etc.

>>> from inform import Inform, error
>>> informer = Inform(prog_name="prog")

>>> error('file not found.', culprit='data.in')
prog error: data.in: file not found.

>>> informer.errors_accrued()
1

You can also use a with statement to invoke the informer. This activates the informer for the duration of the with
statement, returning to the previous informer when the with statement terminates. This is useful when writing tests. In
this case you can provide your own output streams so that you can access the normally printed output of your code:

>>> from inform import Inform, display
>>> import sys
>>> if sys.version[0] == '2':
... # io assumes unicode, which python2 does not provide by default
... # so use StringIO instead
... from StringIO import StringIO
... # Add support for with statement by monkeypatching
... StringIO.__enter__ = lambda self: self
... StringIO.__exit__ = lambda self, exc_type, exc_val, exc_tb: self.close()
... else:
... from io import StringIO

>>> def run_test():
... display('running test')

(continues on next page)

5.1. User’s Guide 23

Inform Documentation, Release 1.29

(continued from previous page)

>>> with StringIO() as stdout, \
... StringIO() as stderr, \
... StringIO() as logfile, \
... Inform(stdout=stdout, stderr=stderr, logfile=logfile) as msg:
... run_test()
...
... num_errors = msg.errors_accrued()
... output_text = stdout.getvalue()
... error_text = stderr.getvalue()
... logfile_text = logfile.getvalue()

>>> num_errors
0

>>> str(output_text)
'running test\n'

>>> str(error_text)
''

>>> str(logfile_text.strip().split('\n')[-1])
'running test'

Logfiles

To configure Inform to generate a logfile you can specify the logfile to Inform or to Inform.set_logfile(). The
logfile can be specified as a string, a pathlib.Path, an open stream, or as a Boolean. If True, a logfile is created and
named ./<prog_name>.log. If False, no logfile is created.

You may want to defer the decision on what should be the logfile without losing the log messages that occur before the
ultimate destination of those messages is set. You can do so using an instance of LoggingCache, which simply saves
the messages in memory until it is replaced, at which point they are transferred to the new logfile. For example:

>>> from inform import Inform, LoggingCache, log, indent
>>> with Inform(logfile=LoggingCache()) as inform:
... log("This message is cached.")
... inform.set_logfile(".mylog")
... log("This message is not cached.")

>>> with open(".mylog") as f:
... print("Contents of logfile:")
... print(indent(f.read()), end='') # +ELLIPSIS
Contents of logfile:

...
This message is cached.
This message is not cached.

An existing logfile will be renamed before creating the logfile if you specify prev_logfile_suffix to Inform . In many
cases, this does not provide enough persistence for the logged information. In that case you can use ntlog, which
accumulates the contents of multiple logfiles into a NestedText file. It allows you to place limits on how many logs to
retain in order to keep the logfile reasonably sized. Visit the accessories page for examples on how to use ntlog.

24 Chapter 5. Documentation

https://github.com/KenKundert/ntlog
https://nestedtext.org

Inform Documentation, Release 1.29

Message Destination

You can specify the output stream when creating an informant. If you do not, then the stream uses is under the control
of Inform’s stream_policy argument.

If stream_policy is set to ‘termination’, then all messages are sent to the standard output except the final termination
message, which is set to standard error. This is suitable for programs whose output largely consists of status messages
rather than data, and so would be unlikely to be used in a pipeline.

If stream_policy is ‘header’. then all messages with headers (those messages produced from informants with severity)
are sent to the standard error stream and all other messages are sent to the standard output. This is more suitable for
programs whose output largely consists of data and so would likely be used in a pipeline.

It is also possible for stream_policy to be a function that takes three arguments, the informant and the standard output
and error streams. It should return the desired stream.

If True is passed to the notify_if_no_tty Inform argument, then error messages are sent to the notifier if the standard
output is not a TTY.

5.1.4 User Defined Informants

You can create your own informants using InformantFactory. One application of this is to support multiple levels
of verbosity. To do this, an informant would be created for each level of verbosity, as follows:

>>> from inform import Inform, InformantFactory

>>> verbose1 = InformantFactory(output=lambda m: m.verbosity >= 1)
>>> verbose2 = InformantFactory(output=lambda m: m.verbosity >= 2)

>>> with Inform(verbosity=0):
... verbose1('First level of verbosity.')
... verbose2('Second level of verbosity.')

>>> with Inform(verbosity=1):
... verbose1('First level of verbosity.')
... verbose2('Second level of verbosity.')
First level of verbosity.

>>> with Inform(verbosity=2):
... verbose1('First level of verbosity.')
... verbose2('Second level of verbosity.')
First level of verbosity.
Second level of verbosity.

The argument verbosity is not an explicitly supported argument of Inform . In this case Inform simply saves the
value and makes it available as an attribute, and it is this attribute that is queried by the lambda function passed to
InformantFactory when creating the informants.

Another use for user-defined informants is to create print functions that output is a particular color:

>>> from inform import InformantFactory, display, output

>>> succeed = InformantFactory(message_color='green', clone=display)
>>> fail = InformantFactory(message_color='red', clone=output)

(continues on next page)

5.1. User’s Guide 25

Inform Documentation, Release 1.29

(continued from previous page)

>>> succeed('This message would be green.')
This message would be green.

>>> fail('This message would be red.')
This message would be red.

A common use for this would be to have success and failure messages. For example, if your program runs a series of
tests, the successes could be printed in green and the failures in red.

In this example, the two informants are first cloned from existing informants before applying any additional arguments.
In this way the success informant inherits the qualities of display and the fail informant inherits the qualities of output
before applying the color. The result is that the success informant suppresses the messages if the user asks for quiet,
but the fail informant does not.

5.1.5 Exceptions

An exception, Error, is provided that takes the same arguments as an informant. This allows you to catch the exception
and handle it if you like. Any arguments you pass into the exception are retained and are available when processing
the exception. The exception provides the Error.report() and Error.terminate() methods that processes the
exception as an error or fatal error if you find that you can do nothing else with the exception.

>>> from inform import Inform, Error

>>> Inform(prog_name='myprog')
<...>
>>> try:
... raise Error('must not be zero.', culprit='naught')
... except Error as e:
... e.report()
myprog error: naught: must not be zero.

Besides culprit, you can use any of the named arguments accepted by informants. In addition, you can also use informant
as a named argument. informant changes the informant that is used when reporting the error. It is often used to convert
an exception to a warning or to a fatal error. For example:

>>> from inform import Inform, Error, warn

>>> Inform(prog_name='myprog')
<...>
>>> def read_files(filenames):
... files = {}
... for filename in filenames:
... try:
... with open(filename) as f:
... files[filename] = f.read()
... except FileNotFoundError:
... raise Error('missing.', culprit=filename, informant=warn)
... return files

>>> filenames = 'parameters swallows worlds'.split()
>>> try:
... files = read_files(filenames)

(continues on next page)

26 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

... except Error as e:

... files = None

... e.report()
myprog warning: worlds: missing.

Error also provides Error.get_message() and Error.get_culprit() methods, which return the message and
the culprit. You can also cast the exception to a string or call the Error.render()method to get a string that contains
both the message and the culprit formatted so that it can be shown to the user.

All positional arguments are available in e.args and any keyword arguments provided are available in e.kwargs.

One common approach to using Error is to pass all the arguments that make up the error message as arguments and
then assemble them into the message by providing a template. In that way the arguments are directly available to the
handler if needed. For example:

>>> from difflib import get_close_matches
>>> from inform import Error, codicil, conjoin, fmt

>>> known_names = 'alpha beta gamma delta epsilon'.split()
>>> name = 'alfa'

>>> try:
... if name not in known_names:
... raise Error(name, choices=known_names, template="name '{}' is not defined.")
... except Error as e:
... candidates = get_close_matches(e.args[0], e.choices, 1, 0.6)
... candidates = conjoin(candidates, conj=' or ')
... e.report()
... codicil(fmt('Did you mean {candidates}?'))
myprog error: name 'alfa' is not defined.

Did you mean alpha?

Notice that useful information (choices) is passed into the exception that may be useful when processing the exception
even though it is not incorporated into the message.

You can override the template by passing a new one to Error.get_message() or Error.render(). With Error.
report() or Error.terminate() you can override any named argument, such as template or culprit. This can be
helpful if you need to translate a message or change it to make it more meaningful to the end user:

>>> try:
... raise Error(name, template="name '{}' is not defined.")
... except Error as e:
... e.report(template="'{}' ist nicht definiert.")
myprog error: 'alfa' ist nicht definiert.

You can catch an Error exception and then reraise it after modifying its named arguments using Error.reraise().
This is helpful when all the information needed for the error message is not available where the initial exception is
detected. Typically new culprits or codicils are added. For example, in the following the filename is added to the
exception using reraise in parse_file:

>>> def parse_lines(lines):
... values = {}
... for i, line in enumerate(lines):
... try:

(continues on next page)

5.1. User’s Guide 27

Inform Documentation, Release 1.29

(continued from previous page)

... k, v = line.split()

... except ValueError:

... raise Error('syntax error.', culprit=i+1)

... values[k] = v

... return values

>>> def parse_file(filename):
... try:
... with open(filename) as f:
... return parse_lines(f.read().splitlines())
... except Error as e:
... e.reraise(culprit=e.get_culprit(filename))

>>> try:
... unladen_airspeed = parse_file('swallows')
... except Error as e:
... e.report()
myprog error: swallows, 2: syntax error.

This example uses Error.get_culprit() to access the existing culprit or culprits of the exception. Regardless of
how many there are, they are always returned as a culprit. It also accepts a culprit as an argument, which is returned
along with and before the culprit from the exception.

Also available is Error.get_codicil(), which behaves similarly except with codicils rather than culprits and the
argument is added after the codicil from the exception rather than before.

Subclassing Error

When creating subclasses of Error you can add a template to the subclass as a way of specifying the error message or
messages that are to be used for that exception. For example:

>>> class InvalidValueError(Error):
... template = 'invalid value.'

>>> try:
... raise InvalidValueError()
... except Error as e:
... e.report()
myprog error: invalid value.

You can include named and unnamed arguments of the exception in the template:

>>> class InvalidValueError(Error):
... template = 'must not be {}.'

>>> try:
... raise InvalidValueError('negative', culprit='rate')
... except Error as e:
... e.report()
myprog error: rate: must not be negative.

You can also specify a list of templates that are tried in order, the first for which all arguments are available is used:

28 Chapter 5. Documentation

Inform Documentation, Release 1.29

>>> class InvalidValueError(Error):
... template = [
... '{} must fall between {min} and {max}.',
... '{} must be greater than {min}.',
... '{} must be less than {max}.',
... '{} must not be {illegal}.',
... '{} must be {legal}.',
... '{} is invalid.',
... 'invalid value.',
...]

>>> rate = -1.0
>>> try:
... if rate < 0:
... raise InvalidValueError(rate, illegal='negative', culprit='rate')
... except Error as e:
... e.report()
myprog error: rate: -1.0 must not be negative.

5.1.6 Utilities

Several utility functions are provided for your convenience. They are often helpful when creating messages.

Color Class

The Color class creates colorizers, which are functions used to render text in a particular color. They combine their
arguments in a manner very similar to an informant and returns the result as a string, except the string is coded for the
chosen color. Uses the sep, template and wrap keyword arguments to combine the arguments.

>> from inform import Color, display

>> green = Color('green')
>> red = Color('red')
>> success = green('pass:')
>> failure = red('FAIL:')

>> failures = {'outrigger': True, 'signalman': False}
>> for name, fails in failures.items():
.. result = failure if fails else success
.. display(result, name)
FAIL: outrigger
pass: signalman

When the messages print, the ‘pass:’ will be green and ‘FAIL:’ will be red.

The Color class has the concept of a colorscheme. There are four supported schemes: None, True, ‘light’, and ‘dark’.
With None the text is not colored, with True the colorscheme of the currently active informer is used. In general it is
best to use the ‘light’ colorscheme on dark backgrounds and the ‘dark’ colorscheme on light backgrounds. You can
pass in the colorscheme using the scheme argument either to the color class or to the colorizer.

Colorizers have one user settable attribute: enable. By default enable is True. If you set it to False the colorizer no
longer renders the text in color:

5.1. User’s Guide 29

Inform Documentation, Release 1.29

>> warning = Color('yellow')
>> warning('This will be yellow on the console.')
This will be yellow on the console.

>> warning.enable = False
>> warning('This will not be yellow.')
This will not be yellow.

Alternatively, you can enable or disable the colorizer when creating it. This example uses the Color.isTTY()method
to determine whether the output stream, the standard output by default, is a console.

>> warning = Color('yellow', enable=Color.isTTY())
>> warning('Cannot find precursor, ignoring.')
Cannot find precursor, ignoring.

columns

inform.columns(array, pagewidth=79, alignment='<', leader=' ')

columns() distributes the values of an array over enough columns to fill the screen.

This example prints out the phonetic alphabet:

>>> from inform import columns

>>> title = 'Display the NATO phonetic alphabet.'
>>> words = """
... Alfa Bravo Charlie Delta Echo Foxtrot Golf Hotel India Juliett Kilo
... Lima Mike November Oscar Papa Quebec Romeo Sierra Tango Uniform
... Victor Whiskey X-ray Yankee Zulu
... """.split()

>>> display(title, columns(words), sep='\n')
Display the NATO phonetic alphabet.

Alfa Echo India Mike Quebec Uniform Yankee
Bravo Foxtrot Juliett November Romeo Victor Zulu
Charlie Golf Kilo Oscar Sierra Whiskey
Delta Hotel Lima Papa Tango X-ray

conjoin

inform.conjoin(iterable, conj=' and ', sep=', ', fmt=None)

conjoin() is like ‘’.join(), but allows you to specify a conjunction that is placed between the last two elements. For
example:

>>> from inform import conjoin
>>> conjoin(['a', 'b', 'c'])
'a, b and c'

>>> conjoin(['a', 'b', 'c'], conj=' or ')
'a, b or c'

30 Chapter 5. Documentation

Inform Documentation, Release 1.29

If you prefer the use of the Oxford comma, you can add it as follow:

>>> conjoin(['a', 'b', 'c'], conj=', and ')
'a, b, and c'

You can specify a format string that is applied to every item in the list before they are joined:

>>> conjoin([10.1, 32.5, 16.9], fmt='${:0.2f}')
'$10.10, $32.50 and $16.90'

cull

inform.cull(collection[, remove])
cull() strips items from a collection that have a particular value. The collection may be list-like (list, tuple, set, etc.)
or a dictionary-like (dict, OrderedDict). A new collection of the same type is returned with the undesirable values
removed.

By default, cull() strips values that would be False when cast to a Boolean (0, False, None, ‘’, (), [], etc.). A particular
value may be specified using the remove as a keyword argument. The value of remove may be a collection, in which
case any value in the collection is removed, or it may be a function, in which case it takes a single item as an argument
and returns True if that item should be removed from the list.

>>> from inform import cull, display
>>> display(*cull(['a', 'b', '', 'd']), sep=', ')
a, b, d

>>> accounts = dict(checking=1100.16, savings=13948.78, brokerage=0)
>>> for name, amount in sorted(cull(accounts).items()):
... display(name, amount, template='{:>10s}: ${:,.2f}')
checking: $1,100.16
savings: $13,948.78

dedent

inform.dedent(text, strip_nl=None, *, bolm=None, wrap=False)

Without its named arguments, dedent behaves just like, and is as equivalent replacement for, textwrap.dedent.

Args:

strip_nl = None:
strip_nl is used to strip off a single leading or trailing newline. strip_nl may be None, ‘s’, ‘e’, or ‘b’ repre-
senting neither, start, end, or both. True may also be passed, which is equivalent to ‘b’.

bolm = None:
The beginning of line mark (bolm) is replaced by a space after the indent is removed. It must be the first
non-space character after the initial newline. Normally bolm is a single character, often ‘|’, but it may be
contain multiple characters, all of which are replaced by spaces.

wrap (bool or int):
If true the string is wrapped using a width of 70. If an integer value is passed, is used as the width of the
wrap.

Examples:

5.1. User’s Guide 31

Inform Documentation, Release 1.29

>>> from inform import dedent

>>> print(dedent('''
... Diaspar
... Lys
... ''', bolm=''))

Diaspar
Lys

>>> print(dedent('''
... | Diaspar
... | Lys
... ''', bolm='|', strip_nl='e'))

Diaspar
| Lys

>>> print(dedent('''
... || Diaspar
... Lys
... ''', bolm='||', strip_nl='s'))

Diaspar
Lys

>>> print(dedent('''
... Diaspar
... Lys
... ''', strip_nl='b'))
Diaspar
Lys

>>> print(dedent('''
... Diaspar
... Lys
... ''', strip_nl='b', wrap=True))
Diaspar Lys

did_you_mean

inform.did_you_mean(candidate, choices)

Given a candidate string from the user, return the closest valid choice.

Args:

candidate (string):
The string given by the user.

choices (iterable):
The set of valid strings that the user was expected to choose from.

Examples:

32 Chapter 5. Documentation

Inform Documentation, Release 1.29

>>> from inform import did_you_mean
>>> did_you_mean('cat', ['cat', 'dog'])
'cat'
>>> did_you_mean('car', ['cat', 'dog'])
'cat'
>>> did_you_mean('car', {'cat': 1, 'dog': 2})
'cat'

fmt

inform.fmt(msg, *args, **kwargs)

fmt() is similar to ‘’.format(), but it can pull arguments from the local scope.

>>> from inform import conjoin, display, fmt

>>> filenames = ['a', 'b', 'c', 'd']
>>> filetype = 'CSV'
>>> display(
... fmt(
... 'Reading {filetype} files: {names}.',
... names=conjoin(filenames),
...)
...)
Reading CSV files: a, b, c and d.

Notice that filetype was not explicitly passed into fmt() even though it was explicitly called out in the format string.
filetype can be left out of the argument list because if fmt does not find a named argument in its argument list, it will
look for a variable of the same name in the local scope.

format_range

inform.format_range(items)

func:format_range can be used to create a succinct, readable string representing a set of numbers.

>>> from inform import format_range
>>> format_range({1, 2, 3, 5})
'1-3,5'

full_stop

inform.full_stop(string)

full_stop() adds a period to the end of the string if needed (if the last character is not a period, question mark or
exclamation mark). It applies str() to its argument, so it is generally a suitable replacement for str in str(exception) when
trying extract an error message from an exception.

This is generally useful if you need to print a string that should have punctuation, but may not.

5.1. User’s Guide 33

Inform Documentation, Release 1.29

>>> from inform import Error, error, full_stop

>>> found = 0
>>> try:
... if found is False:
... raise Error('not found', culprit='marbles')
... elif found < 3:
... raise Error('insufficient number.', culprit='marbles')
... raise Error('not found', culprit='marbles')
... except Error as e:
... error(full_stop(e))
myprog error: marbles: insufficient number.

indent

inform.indent(text, leader=' ', first=0, stops=1, sep='\\n')

indent() indents text. Multiples of leader are added to the beginning of the lines to indent. first is the number of
indentations used for the first line relative to the others (may be negative but (first + stops) should not be. stops is the
default number of indentations to use. sep is the string used to separate the lines.

>>> from inform import display, indent
>>> text = 'a b'.replace(' ', '\n')
>>> display(indent(text))

a
b

>>> display(indent(text, first=1, stops=0))
a

b

>>> display(indent(text, leader='. ', first=-1, stops=2))
. a
. . b

Info Class

The Info class is intended to be used as a helper class. When instantiated, it converts provided keyword arguments to
attributes. Unknown attributes evaluate to None. Info can be used directly, or it can be used as a base class.

>>> from inform import display, Info
>>> class Orwell(Info):
... pass

>>> george = Orwell(peace='war', truth='lies')
>>> display(str(george))
Orwell(peace='war', truth='lies')

>>> display(george.peace)
war

(continues on next page)

34 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

>>> display(george.happiness)
None

is_collection

inform.is_collection(obj)

is_collection() returns True if its argument is a collection. This includes objects such as lists, tuples, sets, dictio-
naries, etc. It does not include strings.

>>> from inform import is_collection

>>> is_collection('') # string
False

>>> is_collection([]) # list
True

>>> is_collection(()) # tuple
True

>>> is_collection({}) # dictionary
True

is_iterable

inform.is_iterable(obj)

is_iterable() returns True if its argument is a collection or a string.

>>> from inform import is_iterable

>>> is_iterable('abc')
True

>>> is_iterable(['a', 'b', 'c'])
True

is_mapping

inform.is_mapping(obj)

is_collection() returns True if its argument is a mapping. This includes dictionary and other dictionary-like objects.

>>> from inform import is_mapping

>>> is_mapping('') # string
False

>>> is_mapping([]) # list
(continues on next page)

5.1. User’s Guide 35

Inform Documentation, Release 1.29

(continued from previous page)

False

>>> is_mapping(()) # tuple
False

>>> is_mapping({}) # dictionary
True

is_str

inform.is_str(obj)

is_str() returns True if its argument is a string-like object.

>>> from inform import is_str

>>> is_str('abc')
True

>>> is_str(['a', 'b', 'c'])
False

join

inform.join(*args, **kwargs)

join() combines the arguments in a manner very similar to an informant and returns the result as a string. Uses the
sep, template and wrap keyword arguments to combine the arguments.

>>> from inform import display, join

>>> accounts = dict(checking=1100.16, savings=13948.78, brokerage=0)
>>> lines = []
>>> for name in sorted(accounts):
... lines.append(join(name, accounts[name], template='{:>10s}: ${:,.2f}'))

>>> display(*lines, sep='\n')
brokerage: $0.00
checking: $1,100.16
savings: $13,948.78

36 Chapter 5. Documentation

Inform Documentation, Release 1.29

os_error

inform.os_error(exception)

os_error() generates clean messages for operating system errors.

>>> from inform import error, os_error

>>> try:
... with open('temperatures.csv') as f:
... contents = f.read()
... except OSError as e:
... error(os_error(e))
myprog error: temperatures.csv: no such file or directory.

parse_range

inform.parse_range(items)

func:parse_range can be used to parse sets of numbers from user-inputted strings.

>>> from inform import parse_range
>>> parse_range('1-3,5')
{1, 2, 3, 5}

ProgressBar Class

The ProgressBar class is used to draw a progress bar as a single text line. The line counts down as progress is made
and reaches 0 as the task completes. Interruptions are handled with grace.

There are three typical ways to use the progress bar. The first is used to illustrate the progress of an iterator. The iterator
must have a length. For example:

>>> from inform import ProgressBar

>>> processed = []
>>> def process(item):
... # this function would implement some expensive operation
... processed.append(item)
>>> items = ['i1', 'i2', 'i3', 'i4', 'i5', 'i6', 'i7', 'i8', 'i9', 'i10']

>>> for item in ProgressBar(items, prefix='Progress: ', width=60):
... process(item)
Progress: 9876543210

>>> display('Processed:', conjoin(processed), end='.\n')
Processed: i1, i2, i3, i4, i5, i6, i7, i8, i9 and i10.

The second is similar to the first, except you just give an integer to indicate how many iterations you wish:

>>> for i in ProgressBar(50, prefix='Progress: '):
... process(i)
Progress: 9876543210

5.1. User’s Guide 37

Inform Documentation, Release 1.29

Finally, the third illustrates progress through a continuous range:

>>> stop = 1e-6
>>> step = 1e-9

>>> with ProgressBar(stop) as progress:
... display('Progress:')
... value = 0
... while value <= stop:
... progress.draw(value)
... value += step
Progress:
9876543210

In this case, you need to notify the progress bar if you decide to exit the loop before its complete unless an exception is
raised that causes the with block to exit:

>>> with ProgressBar(stop) as progress:
... display('Progress:')
... value = 0
... while value <= stop:
... progress.draw(value)
... value += step
... if value > stop/2:
... progress.escape()
... break
Progress:
9876

Without calling escape, the bar would have been terminated with a 0 upon exiting the with block. Using escape() is not
necessary if the with block is exited via an exception:

>>> try:
... with ProgressBar(stop) as progress:
... display('Progress:')
... value = 0
... while value <= stop:
... progress.draw(value)
... value += step
... if value > stop/2:
... raise Error('early exit.')
... except Error as e:
... e.report()
Progress:
9876
myprog error: early exit.

It is possible to pass a second argument to ProgressBar.draw() that indicates the desired marker to use when up-
dating the bar. This is usually used to signal that there was a problem with the update. To do so, you define the desired
markers when instantiating ProgressBar. Each marker consists of a fill character and a color. The color can be
specified by giving its name, with a Color object, or with None. For example, the following example uses markers to
distinguish four types of results: okay, warn, fail, error.

>>> results = 'okay okay okay fail okay fail okay error warn okay'.split()
(continues on next page)

38 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

>>> def process(index):
... # this function would implement some expensive operation
... return results[index]

>>> markers = dict(
... okay=('', None),
... warn=('', None),
... fail=('+', None),
... error=('×', None)
...)

>>> with ProgressBar(len(results), prefix="progress: ", markers=markers) as progress:
... for i in range(len(results)):
... status = results[i]
... progress.draw(i+1, status)
progress: 987++++++65++++++43××××××210

In this case color was not used, but you could specify the following to render the markers in color:

>>> markers = dict(
... okay=('', 'green'),
... warn=('–', 'yellow'),
... fail=('+', 'magenta'),
... error=('×', 'red')
...)

You can also use the Color class:

>>> markers = dict(
... okay=('', Color('green', enable=Color.isTTY())),
... warn=('–', Color('yellow', enable=Color.isTTY())),
... fail=('+', Color('magenta', enable=Color.isTTY())),
... error=('×', Color('red', enable=Color.isTTY()))
...)

The progress bar generally handles interruptions with grace. For example:

>>> for item in ProgressBar(items, prefix='Progress: ', width=60):
... if item == 'i4':
... warn('bad value.', culprit=item)
Progress: 987
myprog warning: i4: bad value.
Progress: 9876543210

Notice that the warning started on a new line and the progress bar was restarted from the beginning after the warning.

Generally the progress bar is not printed if no tasks were performed. In some cases you would like to associate a
progress bar with an iterator, and then decide later whether there are any tasks that require processing. That could be
handled as follows:

>>> with ProgressBar(items, prefix='Progress: ') as progress:
... for i, item in enumerate(items):

(continues on next page)

5.1. User’s Guide 39

Inform Documentation, Release 1.29

(continued from previous page)

... if item.startswith('i'):

... continue

... progress.draw(i)

... process(item)

In this example, every item starts with ‘i’ and so is skipped. The result is that no items are processed and so the progress
bar is not printed.

plural

class inform.plural(count, num='#')

Used with python format strings to conditionally format a phrase depending on whether it refers to a singular or plural
number of things.

The format specification has three sections, separated by ‘/’. The first section is always included, the last section is
included if the given number is plural, and the middle section, which can be omitted, is included if the given number
is singular. If there is only one section, it is used as is for the singular case and an ‘s’ is added to it for the plural case.
If any of the sections contain a ‘#’, it is replaced by the number of things.

You may provide either a number (e.g. 0, 1, 2, . . .) or any object that implements __len__() (e.g. list, dict, set, . . .).
In the latter case, the length of the object will be used to decide whether to use the singular of plural form. Only 1 is
considered to be singular; every other number is considered plural.

If the format string starts with ‘!’ then it is removed and the sense of plurality is reversed (the plural form is used for
one thing, and the singular form is used otherwise). This is useful when pluralizing verbs.

Here is a typical usage:

>>> from inform import plural, conjoin

>>> astronauts = ['John Glenn']
>>> f"The {plural(astronauts):astronaut/s}: {conjoin(astronauts)}"
'The astronaut: John Glenn'

>>> astronauts = ['Neil Armstrong', 'Buzz Aldrin', 'Michael Collins']
>>> f"The {plural(astronauts):astronaut/s}: {conjoin(astronauts)}"
'The astronauts: Neil Armstrong, Buzz Aldrin and Michael Collins'

The count can be inserted into the output by placing # into the format specification.

If using ‘#’ or ‘!’ is inconvenient, you can change them by specifying the num or invert to plural().

Examples:

>>> f"{plural(1):# thing}"
'1 thing'
>>> f"{plural(2):# thing}"
'2 things'

>>> f"{plural(1):# thing/s}"
'1 thing'
>>> f"{plural(2):# thing/s}"
'2 things'

(continues on next page)

40 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

>>> f"{plural(1):/a cactus/# cacti}"
'a cactus'
>>> f"{plural(2):/a cactus/# cacti}"
'2 cacti'

>>> f"{plural(1):# /is/are}"
'1 is'
>>> f"{plural(2):# /is/are}"
'2 are'

>>> f"{plural([]):# thing/s}"
'0 things'
>>> f"{plural([0]):# thing/s}"
'1 thing'

>>> sellers = ['Samson']
>>> buyers = ['Reuben', 'Cherise']
>>> print(f"{plural(sellers):Seller} {plural(sellers):!offer} the following terms:")
Seller offers the following terms:
>>> print(f"{plural(buyers):Buyer} {plural(buyers):!agree} to the following terms:")
Buyers agree to the following terms:

Finally, you can use the format method to directly produce a descriptive string:

>>> plural(2).format("/a cactus/# cacti")
'2 cacti'

The original implementation is from Veedrac.

render

inform.render(obj, sort=None, level=0, tab=' ')

render() recursively converts an object to a string with reasonable formatting. Has built in support for the base Python
types (None, bool, int, float, str, set, tuple, list, and dict). If you confine yourself to these types, the output of render()
can be read by the Python interpreter. Other types are converted to string with repr(). The dictionary keys and set
values are sorted if sort is True. Sometimes this is not possible because the values are not comparable, in which case
render reverts to the natural order.

This example prints several Python data types:

>>> from inform import render, display
>>> s1='alpha string'
>>> s2='beta string'
>>> n=42
>>> S={s1, s2}
>>> L=[s1, n, S]
>>> d = {1:s1, 2:s2}
>>> D={'s': s1, 'n': n, 'S': S, 'L': L, 'd':d}
>>> display('D', '=', render(D, True))
D = {

'L': [
(continues on next page)

5.1. User’s Guide 41

http://stackoverflow.com/questions/21872366/plural-string-formatting

Inform Documentation, Release 1.29

(continued from previous page)

'alpha string',
42,
{'alpha string', 'beta string'},

],
'S': {'alpha string', 'beta string'},
'd': {1: 'alpha string', 2: 'beta string'},
'n': 42,
's': 'alpha string',

}

>>> E={'s': s1, 'n': n, 'S': S, 'L': L, 'd':d, 'D':D}
>>> display('E', '=', render(E, True))
E = {

'D': {
'L': [

'alpha string',
42,
{'alpha string', 'beta string'},

],
'S': {'alpha string', 'beta string'},
'd': {1: 'alpha string', 2: 'beta string'},
'n': 42,
's': 'alpha string',

},
'L': [

'alpha string',
42,
{'alpha string', 'beta string'},

],
'S': {'alpha string', 'beta string'},
'd': {1: 'alpha string', 2: 'beta string'},
'n': 42,
's': 'alpha string',

}

In addition, you can add support for render to your classes by adding one or both of these methods:

_inform_get_args(): returns a list of argument values.

_inform_get_kwargs(): returns a dictionary of keyword arguments.

>>> class Chimera:
... def __init__(self, *args, **kwargs):
... self.args = args
... self.kwargs = kwargs
...
... def _inform_get_args(self):
... return self.args
...
... def _inform_get_kwargs(self):
... return self.kwargs

>>> lycia = Chimera('Lycia', front='lion', middle='goat', tail='snake')
(continues on next page)

42 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

>>> display(render(lycia))
Chimera(

'Lycia',
front='lion',
middle='goat',
tail='snake',

)

render_bar

inform.render_bar(normalized_value, width=72)

render_bar() produces a graphic representation of a normalized value in the form of a bar. normalized_value is
the value to render; it is expected to be a value between 0 and 1. width specifies the maximum width of the line in
characters.

>>> from inform import render_bar, display
>>> for i in range(10):
... value = 1 - i/9.02
... display('{:0.3f}: {}'.format(value, render_bar(value, 70)))
1.000:
0.889:
0.778:
0.667:
0.557:
0.446:
0.335:
0.224:
0.113:
0.002:

If you would like to add delimiters to the bar, you can make each bar fixed width by adding fullwidth=True:

>>> assets = {'property': 13_194, 'cash': 2846, 'equities': 19_301}
>>> total = sum(assets.values())
>>> for key, value in assets.items():
... display(f"{key:>8}: {render_bar(value/total, full_width=True)}")
property:

cash:
equities:

title_case

inform.title_case(string, exceptions=...)

title_case() converts the initial letters in the words of a string to upper case while maintaining any letters that
are already upper case, such as acronyms. Common ‘small’ words are excepted and words within quotes are handled
properly.

>>> from inform import title_case
>>> headline = 'CDC warns about “aggressive” rats as coronavirus shuts down restaurants'

(continues on next page)

5.1. User’s Guide 43

Inform Documentation, Release 1.29

(continued from previous page)

>>> display(title_case(headline))
CDC Warns About “Aggressive” Rats as Coronavirus Shuts Down Restaurants

5.1.7 Debugging Functions

The debugging functions are intended to be used when you want to print something out when debugging your program.
They are colorful to make it easier to find them among the program’s normal output, and a header is added that describes
the location they were called from. This makes it easier to distinguish several debug message and also makes it easy to
find and remove the functions once you are done debugging.

aaa

inform.aaa(arg)

aaa() prints and then returns its argument. The argument may be name or unnamed. If named, the name is used as a
label when printing the value of the argument. It can be used to print the value of a term within an expression without
being forced to replicate that term.

In the following example, a critical statement is instrumented to show the intermediate values in the computation. In
this case it would be difficult to see these intermediate values by replicating code, as calls to the update method has the
side effect of updating the state of the integrator.

>>> from inform import aaa, display
>>> class Integrator:
... def __init__(self, ic=0):
... self.state = ic
... def update(self, vin):
... self.state += vin
... return self.state

>>> int1 = Integrator(1)
>>> int2 = Integrator()
>>> vin = 1
>>> vout = 0
>>> for t in range(1, 3):
... vout = 0.7*aaa(int2=int2.update(aaa(int1=int1.update(vin-vout))))
... display('vout = {}'.format(vout))
myprog DEBUG: <doctest user.rst[...]>, 2, __main__: int1: 2
myprog DEBUG: <doctest user.rst[...]>, 2, __main__: int2: 2
vout = 1.4
myprog DEBUG: <doctest user.rst[...]>, 2, __main__: int1: 1.6
myprog DEBUG: <doctest user.rst[...]>, 2, __main__: int2: 3.6
vout = 2.52

44 Chapter 5. Documentation

Inform Documentation, Release 1.29

ddd

inform.ddd(*args, **kwargs)

ddd() pretty prints all of both its unnamed and named arguments.

>>> from inform import ddd
>>> a = 1
>>> b = 'this is a test'
>>> c = (2, 3)
>>> d = {'a': a, 'b': b, 'c': c}
>>> ddd(a, b, c, d)
myprog DEBUG: <doctest user.rst[...]>, 1, __main__:

1
'this is a test'
(2, 3)
{

'a': 1,
'b': 'this is a test',
'c': (2, 3),

}

If you give named arguments, the name is prepended to its value:

>>> from inform import ddd
>>> ddd(a=a, b=b, c=c, d=d, s='hey now!')
myprog DEBUG: <doctest user.rst[...]>, 1, __main__:

a = 1
b = 'this is a test'
c = (2, 3)
d = {

'a': 1,
'b': 'this is a test',
'c': (2, 3),

}
s = 'hey now!'

If an arguments has a __dict__ attribute, it is printed rather than the argument itself.

>>> from inform import ddd

>>> class Info:
... def __init__(self, **kwargs):
... self.__dict__.update(kwargs)
... ddd(self=self)

>>> contact = Info(email='ted@ledbelly.com', name='Ted Ledbelly')
myprog DEBUG: <doctest user.rst[...]>, 4, __main__.Info.__init__():

self = Info object containing {
'email': 'ted@ledbelly.com',
'name': 'Ted Ledbelly',

}

5.1. User’s Guide 45

Inform Documentation, Release 1.29

ppp

inform.ppp(*args, **kwargs)

ppp() is very similar to the normal Python print function in that it prints out the values of the unnamed arguments
under the control of the named arguments. It also takes the same named arguments as print(), such as sep and end.

If given without unnamed arguments, it will just print the header, which good way of confirming that a line of code has
been reached.

>>> from inform import ppp
>>> a = 1
>>> b = 'this is a test'
>>> c = (2, 3)
>>> d = {'a': a, 'b': b, 'c': c}
>>> ppp(a, b, c)
myprog DEBUG: <doctest user.rst[...]>, 1, __main__: 1 this is a test (2, 3)

sss

inform.sss(ignore_exceptions)

sss() prints a stack trace, which can answer the How did I get here? question better than a simple print function.

>> from inform import sss

>> def foo():
.. sss()
.. print('CONTINUING')

>> foo()
DEBUG: <doctest user.rst[...]>:2, __main__.foo():

Traceback (most recent call last):
...

CONTINUING

vvv

inform.vvv(*args)

vvv() prints variables from the calling scope. If no arguments are given, then all the variables are printed. You can
optionally give specific variables on the argument list and only those variables are printed.

>>> from inform import vvv

>>> vvv(b, d)
myprog DEBUG: <doctest user.rst[...]>, 1, __main__:

b = 'this is a test'
d = {

'a': 1,
'b': 'this is a test',
'c': (2, 3),

}

46 Chapter 5. Documentation

Inform Documentation, Release 1.29

This last feature is not completely robust. The checking is done by value, so if several variables share the value of one
requested, they are all shown.

>>> from inform import vvv

>>> aa = 1
>>> vvv(a)
myprog DEBUG: <doctest user.rst[...]>, 1, __main__:

a = 1
aa = 1
vin = 1

Site Customization

Many people choose to add the importing of the debugging function to their usercustomize.py file. In this way, the
debugging functions are always available without the need to explicitly import them. To accomplish this, create a
usercustomize.py files that contains the following and place it in your site-packages directory:

Include Inform debugging routines
try: # python3

import builtins
except ImportError: # python2

import __builtin__ as builtins

try:
from inform import aaa, ddd, ppp, sss, vvv
builtins.aaa = aaa
builtins.ddd = ddd
builtins.ppp = ppp
builtins.sss = sss
builtins.vvv = vvv

except ImportError:
pass

The path of this file is typically ~/.local/lib/pythonN.M/site-packages/usercustomize.py where M.N is the version num-
ber of your python.

5.1. User’s Guide 47

Inform Documentation, Release 1.29

5.1.8 Inform Helper Functions

An informer (an Inform object) provides a number of useful methods. However, it is common that the informer is not
locally available. To avoid the clutter that would be created by passing the informer around to where ever it is needed,
Inform gives you several alternate ways of accessing these methods. Firstly is get_informer(), which simply returns
the currently active informer. Secondly, Inform provides a collection of functions that provide direct access to the
corresponding methods on the currently active informer. They are:

done

inform.done(exit=True)

done() terminates the program with the normal exit status. It calls Inform.done() for the active informer.

If the exit argument is False, preparations are made for exiting, but sys.exit is not called. Instead, the desired exit status
is returned.

terminate

inform.terminate(status=None, exit=True)

terminate() terminates the program with specified exit status or message. It calls Inform.terminate() for the
active informer.

status may be an integer, boolean, string, or None. An exit status of 1 is used if True or a string is passed in. If None
is passed in then 1 is used for the exit status if an error was reported and 0 otherwise.

If the exit argument is False, preparations are made for exiting, but sys.exit is not called. Instead, the desired exit status
is returned.

terminate_if_errors

inform.terminate_if_errors(status=None, exit=True)

terminate_if_errors() terminates the program with specified exit status or message if an error was previously
reported. It calls Inform.terminate_if_errors() for the active informer.

status may be an integer, boolean, or string. An exit status of 1 is used if True or a string is passed in.

If the exit argument is False, preparations are made for exiting, but sys.exit is not called. Instead, the desired exit status
is returned.

errors_accrued

inform.errors_accrued(reset=False)

errors_accrued() returns the number of errors that have been reported. It calls Inform.errors_accrued() for
the active informer.

If the reset argument is True, the error count is reset to 0.

48 Chapter 5. Documentation

Inform Documentation, Release 1.29

get_prog_name

inform.get_prog_name()

get_prog_name() returns the name of the program. It calls Inform.get_prog_name() for the active informer.

get_informer

inform.get_informer()

get_informer() returns the currently active informer.

set_culprit

inform.set_culprit(culprit)

set_culprit() saves a culprit in the informer for later use. Any existing saved culprit is temporarily moved out of
the way. It calls Inform.set_culprit() for the active informer.

A culprit is a string, number, or tuple of strings or numbers that would be prepended to a message to indicate the object
of the message.

Inform.set_culprit() is used with Python’s with statement. The original saved culprit is restored when the with
statement exits.

See Culprits for an example of set_culprit() use.

add_culprit

inform.add_culprit(culprit)

add_culprit() appends a culprit to any existing saved culprit. It calls Inform.add_culprit() for the active in-
former.

A culprit is a string, number, or tuple of strings or numbers that would be prepended to a message to indicate the object
of the message.

Inform.add_culprit() is used with Python’s with statement. The original saved culprit is restored when the with
statement exits.

See Culprits for an example of add_culprit() use.

get_culprit

inform.get_culprit(culprit=None)

get_culprit() returns the specified culprit, if any, appended to the end of the current culprit that is saved in the
informer. The resulting culprit is always returned as a tuple. It calls Inform.get_culprit() for the active informer.

A culprit is a string, number, or tuple of strings or numbers that would be prepended to a message to indicate the object
of the message.

See Culprits for an example of get_culprit() use.

5.1. User’s Guide 49

Inform Documentation, Release 1.29

5.2 Examples

In general whenever you write a command line utility it is worthwhile importing Inform. At a minimum you would use
it to report errors to the user in a way that stands out from the normal output of your program because it is in color.
From there you can expand your use of Inform in many different directions as appropriate. For example, you can use
Inform for all of your textual output to the user so that you can easily turn on logging or implement verbose and quiet
modes. You can also use Error directly or you can subclass it to access Inform’s rich exception handling. You can use
the various Inform utilities such as the text colors, multiple columns lists, and progress bars.

You can the source text for these examples on GitHub.

5.2.1 Find Debug Functions

This utility examines all python files in the current directory and all subdirectories looking for files that contain the
various debug functions (aaa(), ddd(), ppp(), sss(), and vvv()) etc.) and then it opens those files in the Vim
editor. This allows you to easily remove these functions after you are finished debugging your code.

The places where Inform is used are marked with the inform comment at the end of the line.

To get the prerequisites for this example, run:

> pip3 install --user --upgrade docopt inform shlib

#!/usr/bin/env python3
Description
"""
fdb

Search through all python files in current working directory and all
subdirectories and edit those that contain any Inform debug functions (aaa,
ddd, ppp, sss, vvv). Use *n* to search for debug functions, and *^n* to go
to next file. Going to the next file automatically writes the current file
if any changes were made.

Usage:
fdb [options]

Options:
-l, --list list the files rather than edit them

"""

Imports
from docopt import docopt
from inform import display, os_error, terminate ## inform
import re
from shlib import lsf, Run

Globals
debug_functions = 'aaa ddd ppp sss vvv'.split()
finder = re.compile(r'\b({})\('.format('|'.join(debug_functions)))
vim = 'vim'
vim_search = r'\<\({}\)('.format(r'\|'.join(debug_functions))
vim_flags = 'aw nofen'.split() # autowrite, disable folds

(continues on next page)

50 Chapter 5. Documentation

https://github.com/KenKundert/inform/tree/master/examples

Inform Documentation, Release 1.29

(continued from previous page)

vim_options = 'set {}'.format(' '.join(vim_flags))
Configure ctrl-N to move to first occurrence of search string in next file
while suppressing the annoying 'press enter' message and echoing the
name of the new file so you know where you are.
next_file_map = 'map <C-N> :silent next +//<CR> :file<CR>'
search_pattern = 'silent /{}'.format(vim_search)

Main
cmdline = docopt(__doc__)

determine which files contains any debug function
matches = []
for filepath in lsf(select='**/*.py', reject='inform.py'):

try:
contents = filepath.read_text()
if finder.search(contents):

matches.append(filepath)
except OSError as e:

error(os_error(e)) ## inform
if not matches:

terminate() ## inform

if cmdline['--list']:
display(*matches, sep='\n') ## inform
terminate() ## inform

edit the files
cmd = [

vim,
'+{}'.format('|'.join([vim_options, next_file_map, search_pattern]))

] + matches
editor = Run(cmd, modes='soeW*')
terminate(editor.status) ## inform

5.2.2 Add Keys to SSH Agent

Imagine you have multiple SSH keys, such as your personal keys, work keys, github key, key for your remote backups,
etc. For convenience, you might want to add all of these keys to your SSH agent when you first login. This can become
quite tedious. This script could be used load all of the keys to your agent in one simple action. It assumes the use of
the Avendesora Collaborative Password Manager to securely hold the pass phrases of the keys.

You would put the name of your SSH keys in SSHkeys. The program steps through each key, accessing the passphrase
and key file name from Avendesora, then pexpect interacts with ssh-add to add the passphrase to the SSH agent.

The places where Inform is used are marked with the inform comment at the end of the line. Avendesora uses Inform,
and its PasswordError is a subclass of Error.

To get the prerequisites for this example, run:

> pip3 install --user --upgrade avendesora docopt inform pathlib pexpect

You will also have to update the SSHkeys variable below and add the requisite alias and keyfile attributes to the Aven-
desora accounts that contain your SSH pass phrases.

5.2. Examples 51

https://avendesora.readthedocs.io
https://pexpect.readthedocs.io/en/stable

Inform Documentation, Release 1.29

#!/usr/bin/env python3
"""
Add SSH keys

Add SSH keys to SSH agent.
The following keys are added: {keys}.

Usage:
addsshkeys [options]

Options:
-v, --verbose list the keys as they are being added

A description of how to configure and use this program can be found at
`<https://avendesora.readthedocs.io/en/latest/api.html#example-add-ssh-keys>_.
"""
Assumes that the Avendesora account that contains the ssh key's passphrase
has a name or alias of the form <name>-ssh-key. It also assumes that the
account contains a field named 'keyfile' or 'keyfiles' that contains an
absolute path or paths to the ssh key files in a string.

from avendesora import PasswordGenerator, PasswordError
from inform import Inform, codicil, conjoin, error, narrate ## inform
from docopt import docopt
from pathlib import Path
import pexpect

SSHkeys = 'personal work github backups'.split()
SSHadd = 'ssh-add'

cmdline = docopt(__doc__.format(keys = conjoin(SSHkeys))) ## inform
Inform(narrate=cmdline['--verbose']) ## inform

try:
pw = PasswordGenerator()

except PasswordError as e: ## inform
e.terminate() ## inform

for key in SSHkeys:
name = key + '-ssh-key'
try:

account = pw.get_account(name)
passphrase = str(account.get_passcode().value)
if account.has_field('keyfiles'):

keyfiles = account.get_value('keyfiles').value
else:

keyfiles = account.get_value('keyfile').value
for keyfile in keyfiles.split():

path = Path(keyfile).expanduser()
narrate('adding.', culprit=keyfile) ## inform
try:

sshadd = pexpect.spawn(SSHadd, [str(path)])
sshadd.expect('Enter passphrase for %s: ' % (path), timeout=4)

(continues on next page)

52 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

sshadd.sendline(passphrase)
sshadd.expect(pexpect.EOF)
sshadd.close()
response = sshadd.before.decode('utf-8')
if 'identity added' in response.lower():

continue
except (pexpect.EOF, pexpect.TIMEOUT):

pass
error('failed.', culprit=path) ## inform
response = sshadd.before.decode('utf8')
if response:

codicil('response:', response, culprit=SSHadd) ## inform
if sshadd.exitstatus:

codicil('exit status:', sshadd.exitstatus , culprit=SSHadd)
inform

except PasswordError as e:
e.report(culprit=name) ## inform

5.2.3 Status of Solar Energy System

This utility prints the current status of an Enphase home solar array.

The places where Inform is used are marked with the inform comment at the end of the line.

To get the prerequisites for this example, run:

> pip3 install --user --upgrade docopt inform quantiphy arrow requests

You will also have to tailor the values of the system, api_key and user_id variables to your account.

#!/usr/bin/env python3
"""Solar Production

Displays current production of my solar panels.

Usage:
solar [options]

Options:
-f, --full give full report
-q, --quiet no text output, exit status is zero if array status is normal
-r, --raw output the raw data

"""

Imports
from docopt import docopt
from inform import display, fatal, render, terminate, Color ## inform
from quantiphy import Quantity
from textwrap import dedent
import arrow
import requests
date_keys = 'operational_at last_report_at last_interval_end_at'.split()

(continues on next page)

5.2. Examples 53

Inform Documentation, Release 1.29

(continued from previous page)

power_keys = 'size_w current_power'.split()
energy_keys = 'energy_today energy_lifetime'.split()
status_key = 'status'
normal = Color('green') ## inform
abnormal = Color('red') ## inform
Quantity.set_prefs(prec=2)

Parameters
system = '1736719'
api_key = '6ff307fb00660f4c030b45b2fc1dabc5'
user_id = '24e03c5d24c2d0a7fb43b2ef68'
base_url = f'https://api.enphaseenergy.com/api/v2/systems/{system}'
keys = dict(key = api_key, user_id = user_id)

Program
try:

cmdline = docopt(__doc__)
command = 'summary'
keys = '&'.join(f'{k}={v}' for k, v in keys.items())
url = f'{base_url}/{command}?{keys}'
response = requests.get(url)
data = response.json()

output the raw data and terminate
if cmdline['--raw']:

display(render(data)) ## inform
terminate(data[status_key] != 'normal') ## inform

process dates
for each in date_keys:

if each in data:
date_utc = arrow.get(data[each])
date_local = date_utc.to('US/Pacific')
data[each] = date_local.format('dddd, YYYY-MM-DD @ hh:mm:ss A')

process powers
for each in power_keys:

if each in data:
data[each] = Quantity(data[each], 'W')

data['utilization'] = Quantity(100*data['current_power']/data['size_w'], '%')

process energies
for each in energy_keys:

if each in data:
data[each] = Quantity(data[each], 'Wh')

process status
raw_status = data.get(status_key)
if raw_status == 'normal':

data[status_key] = normal(raw_status) ## inform
elif raw_status:

data[status_key] = abnormal(raw_status) ## inform

(continues on next page)

54 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

display information
if cmdline['--quiet']:

do not display anything, instead return status through exit code
pass

elif cmdline['--full']:
for k, v in data.items():

display(k, v, template='{}: {}') ## inform
else:

display(dedent(''' ## inform
date: {last_report_at}
status: {status}
power: {current_power} ({utilization:.1p})
energy today: {energy_today}
energy lifetime: {energy_lifetime}

'''.format(**data)).strip())

except requests.RequestException as e:
fatal(e) ## inform

except KeyboardInterrupt:
terminate() ## inform

terminate(raw_status != 'normal') ## inform

A typical output of the utility is:

date: Friday, 2018-10-12 @ 03:36:45 PM
status: normal
power: 1.48 kW (44 %)
energy today: 15.2 kWh
energy lifetime: 2.71 MWh

5.2.4 Run Command

This function runs a command and captures it output. It uses Inform’s rich exceptions. If something goes wrong while
invoking the command then all relevant information is attached to the exception and so is available to help build the
most informative error message. In this way, the code that is responsible for reporting the problem to the user can adapt
to the errant command reports its errors (some commands just return an exit status, some output the error in stderr,
some in stdout).

from inform import Error, narrate, os_error
from subprocess import Popen, PIPE

def run(cmd, stdin='', accept=0):
"Run a command and capture its output."
narrate('running:', cmd)

try:
process = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE)
stdout, stderr = process.communicate(stdin.encode('utf8'))
stdout = stdout.decode('utf8')
stderr = stderr.decode('utf8')

(continues on next page)

5.2. Examples 55

Inform Documentation, Release 1.29

(continued from previous page)

status = process.returncode
except OSError as e:

raise Error(msg=os_error(e), cmd=cmd, template = '{msg}')

check exit status
narrate('completion status:', status)
if status < 0 or status > accept:

raise Error(
msg = 'unexpected exit status',
status = status,
stdout = stdout.rstrip(),
stderr = stderr.rstrip(),
cmd = cmd,
template = '{msg} ({status}).'

)
return status, stdout, stderr

try:
status, stdout, stderr = run('unobtanium')

except Error as e:
e.terminate(culprit=e.cmd, codicil=e.stderr)

The output to this command would be something like this:

error: unobtanium: unexpected exit status (127).
/bin/sh: unobtanium: command not found

5.2.5 Networth

This utility use the Avendesora Collaborative Password Manager to keep track of the value of assets and liabilities that
together make up ones networth.

To get the prerequisites for this example, run:

> pip3 install --user --upgrade docopt inform quantiphy arrow requests appdirs

#!/usr/bin/env python3
Description
"""Networth

Show a summary of the networth of the specified person.

Usage:
networth [options] [<profile>]

Options:
-u, --updated show the account update date rather than breakdown

{available_profiles}
Settings can be found in: {settings_dir}.
Typically there is one file for generic settings named 'config' and then one

(continues on next page)

56 Chapter 5. Documentation

https://avendesora.readthedocs.io

Inform Documentation, Release 1.29

(continued from previous page)

file for each profile whose name is the same as the profile name with a '.prof'
suffix. Each of the files may contain any setting, but those values in 'config'
override those built in to the program, and those in the individual profiles
override those in 'config'. The following settings are understood. The values
are those before an individual profile is applied.

Profile values:
default_profile = {default_profile}

Account values:
avendesora_fieldname = {avendesora_fieldname}
value_updated_subfieldname = {value_updated_subfieldname}
date_formats = {date_formats}
max_account_value_age = {max_account_value_age} (in days)
aliases = {aliases}

(aliases is used to fix account names to make them more readable)

Cryptocurrency values:
coins = {coins}
prices_filename = {prices_filename}
max_coin_price_age = {max_coin_price_age} (in seconds)

Bar graph values:
screen_width = {screen_width}
asset_color = {asset_color}
debt_color = {debt_color}

The prices and log files can be found in {cache_dir}.

A description of how to configure and use this program can be found at
<https://avendesora.readthedocs.io/en/latest/api.html#example-net-worth>`_
"""

Imports
from avendesora import PasswordGenerator, PasswordError
from avendesora.gpg import PythonFile
from inform import (

conjoin, display, done, error, fatal, is_str, join, narrate, os_error,
render_bar, terminate, warn, Color, Error, Inform,

)
from quantiphy import Quantity
from docopt import docopt
from appdirs import user_config_dir, user_cache_dir
from pathlib import Path
import arrow

Settings
These can be overridden in ~/.config/networth/config
prog_name = 'networth'
config_filename = 'config'

Avendesora settings

(continues on next page)

5.2. Examples 57

Inform Documentation, Release 1.29

(continued from previous page)

default_profile = 'me'
avendesora_fieldname = 'estimated_value'
value_updated_subfieldname = 'updated'
aliases = {}

cryptocurrency settings (empty coins to disable cryptocurrency support)
proxy = None
prices_filename = 'prices'
coins = None
max_coin_price_age = 86400 # refresh cache if older than this (seconds)

bar settings
screen_width = 79
asset_color = 'green'
debt_color = 'red'

currently we only colorize the bar because ...
- it is the only way of telling whether value is positive or negative
- trying to colorize the value really messes with the column widths and is
not attractive

date settings
date_formats = [

'MMMM YYYY',
'YYMMDD',

]
max_account_value_age = 120 # days

Utility functions
get the age of an account value
def get_age(date, profile):

if date:
for fmt in date_formats:

try:
then = arrow.get(date, fmt)
age = arrow.now() - then
return age.days

except:
pass

warn(
'could not compute age of account value',
'(updated missing or misformatted).',
culprit=profile

)

colorize text
def colorize(value, text = None):

if text is None:
text = str(value)

return debt_color(text) if value < 0 else asset_color(text)

try:
Initialization

(continues on next page)

58 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

settings_dir = Path(user_config_dir(prog_name))
cache_dir = user_cache_dir(prog_name)
Quantity.set_prefs(prec=2)
Inform(logfile=Path(cache_dir, 'log'))
display.log = False # do not log normal output

Read generic settings
config_filepath = Path(settings_dir, config_filename)
if config_filepath.exists():

narrate('reading:', config_filepath)
settings = PythonFile(config_filepath)
settings.initialize()
locals().update(settings.run())

else:
narrate('not found:', config_filepath)

Read command line and process options
available=set(p.stem for p in settings_dir.glob('*.prof'))
available.add(default_profile)
if len(available) > 1:

choose_from = f'Choose <profile> from {conjoin(sorted(available))}.'
default = f'The default is {default_profile}.'
available_profiles = f'{choose_from} {default}\n'

else:
available_profiles = ''

cmdline = docopt(__doc__.format(
**locals()

))
show_updated = cmdline['--updated']
profile = cmdline['<profile>'] if cmdline['<profile>'] else default_profile
if profile not in available:

fatal(
'unknown profile.', choose_from, template=('{} {}', '{}'),
culprit=profile

)

Read profile settings
config_filepath = Path(user_config_dir(prog_name), profile + '.prof')
if config_filepath.exists():

narrate('reading:', config_filepath)
settings = PythonFile(config_filepath)
settings.initialize()
locals().update(settings.run())

else:
narrate('not found:', config_filepath)

Process the settings
if is_str(date_formats):

date_formats = [date_formats]
asset_color = Color(asset_color)
debt_color = Color(debt_color)

(continues on next page)

5.2. Examples 59

Inform Documentation, Release 1.29

(continued from previous page)

Get cryptocurrency prices
if coins:

import requests

cache_valid = False
cache_dir = Path(cache_dir)
cache_dir.mkdir(parents=True, exist_ok=True)
prices_cache = Path(cache_dir, prices_filename)
if prices_cache and prices_cache.exists():

now = arrow.now()
age = now.timestamp - prices_cache.stat().st_mtime
cache_valid = age < max_coin_price_age

if cache_valid:
contents = prices_cache.read_text()
prices = Quantity.extract(contents)
narrate('coin prices are current:', prices_cache)

else:
narrate('updating coin prices')
download latest asset prices from cryptocompare.com
currencies = dict(

fsyms=','.join(coins), # from symbols
tsyms='USD', # to symbols

)
url_args = '&'.join(f'{k}={v}' for k, v in currencies.items())
base_url = f'https://min-api.cryptocompare.com/data/pricemulti'
url = '?'.join([base_url, url_args])
try:

r = requests.get(url, proxies=proxy)
except Exception as e:

must catch all exceptions as requests.get() can generate
a variety based on how it fails, and if the exception is not
caught the thread dies.
raise Error('cannot access cryptocurrency prices:', codicil=str(e))

except KeyboardInterrupt:
done()

try:
data = r.json()

except:
raise Error('cryptocurrency price download was garbled.')

prices = {k: Quantity(v['USD'], '$') for k, v in data.items()}

if prices_cache:
contents = '\n'.join('{} = {}'.format(k,v) for k,v in
prices.items())
prices_cache.write_text(contents)
narrate('updating coin prices:', prices_cache)

prices['USD'] = Quantity(1, '$')
else:

prices = {}

(continues on next page)

60 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

Build account summaries
narrate('running avendesora')
pw = PasswordGenerator()
totals = {}
accounts = {}
total_assets = Quantity(0, '$')
total_debt = Quantity(0, '$')
grand_total = Quantity(0, '$')
width = 0
for account in pw.all_accounts():

get data
data = account.get_composite(avendesora_fieldname)
if not data:

continue
if type(data) != dict:

error(
'expected a dictionary.',
culprit=(account_name, avendesora_fieldname)

)
continue

get account name
account_name = account.get_name()
account_name = aliases.get(account_name, account_name)
account_name = account_name.replace('_', ' ')
width = max(width, len(account_name))

sum the data
updated = None
contents = {}
total = Quantity(0, '$')
odd_units = False
for k, v in data.items():

if k == value_updated_subfieldname:
updated = v
continue

if k in prices:
value = Quantity(v*prices[k], prices[k])
k = 'cryptocurrency'

else:
value = Quantity(v, '$')

if value.units == '$':
total = total.add(value)

else:
odd_units = True

contents[k] = value.add(contents.get(k, 0))
width = max(width, len(k))

for k, v in contents.items():
totals[k] = v.add(totals.get(k, 0))

generate the account summary

(continues on next page)

5.2. Examples 61

Inform Documentation, Release 1.29

(continued from previous page)

age = get_age(data.get(value_updated_subfieldname), account_name)
if show_updated:

desc = updated
else:

desc = ', '.join('{}={}'.format(k, v) for k, v in contents.items() if v)
if len(contents) == 1 and not odd_units:

desc = k
if age and age > max_account_value_age:

desc += f' ({age//30} months old)'
accounts[account_name] = join(

total, desc.replace('_', ' '),
template=('{:7q} {}', '{:7q}'), remove=(None,'')

)

sum assets and debts
if total > 0:

total_assets = total_assets.add(total)
else:

total_debt = total_debt.add(-total)
grand_total = grand_total.add(total)

Summarize by account
display('By Account:')
for name in sorted(accounts):

summary = accounts[name]
display(f'{name:>{width+2}s}: {summary}')

Summarize by investment type
display('\nBy Type:')
largest_share = max(v for v in totals.values() if v.units == '$')
barwidth = screen_width - width - 18
for asset_type in sorted(totals, key=lambda k: totals[k], reverse=True):

value = totals[asset_type]
if value.units != '$':

continue
share = value/grand_total
bar = render_bar(value/largest_share, barwidth)
asset_type = asset_type.replace('_', ' ')
display(f'{asset_type:>{width+2}s}: {value:>7s} ({share:>5.1%}) {bar}')

display(
f'\n{"TOTAL":>{width+2}s}:',
f'{grand_total:>7s} (assets = {total_assets}, debt = {total_debt})'

)

Handle exceptions
except OSError as e:

error(os_error(e))
except KeyboardInterrupt:

terminate('Killed by user.')
except (PasswordError, Error) as e:

e.terminate()
done()

62 Chapter 5. Documentation

Inform Documentation, Release 1.29

The output of this program should look something like this:

By Account:
ameritrade: $705k equities=$315k, cash=$389k
pnc bank: $21.3k cash

john hancock: $80k equities
praxis: $55.7k equities

oppenheimer: $134k equities
tiaa cref: $93k retirement
black rock: $98.4k equities

pimco: $211k equities
jpmorgan: $12.9k equities
hartford: $31k equities

american century: $914k equities

By Type:
equities: $1.85M (78.6%)

cash: $411k (17.4%)
retirement: $93k (3.9%)

TOTAL: $2.36M (assets = $2.36M, debt = $0)

5.3 Classes and Functions

5.3.1 Inform

The Inform class controls the active informants.

class inform.Inform(mute=False, quiet=False, verbose=False, narrate=False, logfile=False,
prev_logfile_suffix=None, error_status=1, prog_name=True, argv=None, version=None,
termination_callback=None, colorscheme='dark', flush=False, stdout=None,
stderr=None, length_thresh=80, culprit_sep=', ', stream_policy='termination',
notify_if_no_tty=False, notifier='notify-send', **kwargs)

Manages all informants, which in turn handle user messaging. Generally informants copy messages to the logfile
while most also send to the standard output as well, however all is controllable.

Parameters

• mute (bool) – All output is suppressed (it is still logged).

With the provided informants all output is suppressed when set (it is still logged). This is
generally used when the program being run is being run by another program that is generating
its own messages and does not want the user confused by additional messages. In this case,
the calling program is responsible for observing and reacting to the exit status of the called
program.

• quiet (bool) – Normal output is suppressed (it is still logged).

With the provided informants normal output is suppressed when set (it is still logged). This
is used when the user has indicated that they are uninterested in any conversational messages
and just want to see the essentials (generally error messages).

• verbose (bool) – Comments are output to user, normally they are just logged.

5.3. Classes and Functions 63

Inform Documentation, Release 1.29

With the provided informants comments are output to user when set; normally they are just
logged. Comments are generally used to document unusual occurrences that might warrant
the user’s attention.

• narrate (bool) – Narration is output to user, normally it is just logged.

With the provided informants narration is output to user when set, normally it is just logged.
Narration is generally used to inform the user as to what is going on. This can help place
errors and warnings in context so that they are easier to understand.

• logfile (path, string, stream, bool) – May be a pathlib path or a string, in which
case it is taken to be the path of the logfile. May be True, in which case ./.<prog_name>.log
is used. May be an open stream. Or it may be False, in which case no log file is created. It
may also be an instance of LoggingCache, which caches the log messages until it is replaced
with Inform.set_logfile().

• prev_logfile_suffix (string) – If specified, the previous logfile will be moved aside
before creating the new logfile.

• error_status (int) – The default exit status to return to the shell when terminating the
program due to an error. The default is 1.

• prog_name (string) – The program name. Is appended to the message headers and used
to create the default logfile name. May be a string, in which case it is used as the name of the
program. May be True, in which case basename(argv[0]) is used. May be False to indicate
that program name should not be added to message headers.

• argv (list of strings) – System command line arguments (logged). By default,
sys.argv is used. If False is passed in, argv is not logged and argv[0] is not available to
be the program name.

• version (string) – program version (logged if provided).

• termination_callback (func) – A function that is called at program termination. This
function is called before the logfile is closed and is only called if Inform processes the pro-
gram termination. If you want to register a function to run regardless of how the program
exit is processed, use the atexit module.

• colorscheme (None, ‘light’, or ‘dark’) – Color scheme to use. None indicates that messages
should not be colorized. Colors are not used if desired output stream is not a TTY.

• flush (bool) – Flush the stream after each write. Is useful if your program is crashing,
causing loss of the latest writes. Can cause programs to run considerably slower if they
produce a lot of output. Not available with python2.

• stdout (stream) – Messages are sent here by default. Generally used for testing. If not
given, sys.stdout is used.

• stderr (stream) – Exceptional messages are sent here by default. Exceptional message in-
clude termination messages and possibly error messages (depends on stream_policy). Gen-
erally used for testing. If not given, sys.stderr is used.

• length_thresh (integer) – Split header from body if line length would be greater than
this threshold.

• culprit_sep (string) – Join string used for culprit collections. Default is ‘, ‘.

• stream_policy (string or func) – The default stream policy, which determines which
stream each informant uses by default (which stream is used if the stream is not specifically
specified when the informant is created).

The following named policies are available:

64 Chapter 5. Documentation

Inform Documentation, Release 1.29

’termination’:
stderr is used for the final termination message. stdout is used otherwise. This is gen-
erally used for programs that are not filters (the output is largely status rather than data
that might be fed into another program through a pipeline).

’header’:
stderr is used for all messages with headers/severities. stdout is used otherwise. This is
generally used for programs that act as filters (the output is largely data that might be fed
into another program through a pipeline). In this case stderr is used for error messages
so they do not pollute the data stream.

May also be a function that returns the stream and takes three arguments: the active infor-
mant, Inform’s stdout, and Inform’s stderr.

If no stream is specified, either explicitly on the informant when it is defined, or through the
stream policy, then Inform’s stdout is used.

• notify_if_no_tty (bool) – If it appears that an error message is expecting to displayed
on the console but the standard output is not a TTY send it to the notifier if this flag is True.

• notifier (str) – Command used to run the notifier. The command will be called with two
arguments, the header and the body of the message.

• **kwargs – Any additional keyword arguments are made attributes that are ignored by In-
form, but may be accessed by the informants.

add_culprit(culprit)
Add to the currently saved culprit.

Similar to Inform.set_culprit() except that this method appends the given culprit to the cached culprit
rather than simply replacing it.

Parameters
culprit (string, number or tuple of strings and numbers) – A culprit or col-
lection of culprits that are cached with the intent that they be available to be included in a
message upon demand. They generally are used to indicate what a message refers to.

This function is designed to work as a context manager, meaning that it meant to be used with Python’s
with statement. It temporarily replaces any existing culprit, but that culprit in reinstated upon exiting the
with statement. Once a culprit is saved, inform.Inform.get_culprit() is used to access it.

See Inform.set_culprit() for an example of a closely related method.

close_logfile(status=None)
Close logfile

If status is given, it is taken to be the exit message or exit status.

disconnect()

Disconnect informer, returning to previous informer.

done(exit=True)
Terminate the program with normal exit status.

Parameters
exit (bool) – If False, all preparations for termination are done, but sys.exit() is not called.
Instead, the exit status is returned.

Returns
The desired exit status is returned if exit is False (the function does not return if exit is True).

5.3. Classes and Functions 65

Inform Documentation, Release 1.29

errors_accrued(reset=False)
Returns number of errors that have accrued.

Parameters
reset (bool) – Reset the error count to 0 if True.

flush_logfile()

Flush the logfile.

get_culprit(culprit=None)
Get the current culprit.

Return the currently cached culprit as a tuple. If a culprit is specified as an argument, it is appended to the
cached culprit without modifying it.

Parameters
culprit (string, number or tuple of strings and numbers) – A culprit or col-
lection of culprits that is appended to the return value without modifying the cached culprit.

Returns
The culprit argument is appended to the cached culprit and the combination is returned. The
return value is always in the form of a tuple even if there is only one component.

See Inform.set_culprit() for an example use of this method.

get_prog_name()

Returns the program name.

join_culprit(culprit)
Join the specified culprits with the current culprit separators.

Culprits are returned from the informer or for exceptions as a tuple. This function allows you to join those
culprits into a string.

Parameters
culprit (tuple of strings or numbers)

Returns
The culprit tuple joined into a string.

set_culprit(culprit)
Set the culprit while temporarily displacing current culprit.

Squirrels away a culprit for later use. Any existing culprit is moved out of the way.

Parameters
culprit (string, number or tuple of strings and numbers) – A culprit or col-
lection of culprits that are cached with the intent that they be available to be included in a
message upon demand. They generally are used to indicate what a message refers to.

This function is designed to work as a context manager, meaning that it meant to be used with Python’s
with statement. It temporarily replaces any existing saved culprit, but that culprit in reinstated upon exiting
the with statement. Once a culprit is saved, inform.Inform.get_culprit() is used to access it.

Example:

>>> from inform import get_culprit, set_culprit, warn

>>> def count_lines(lines):
... empty = 0

(continues on next page)

66 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

... for lineno, line in enumerate(lines):

... if not line:

... warn('empty line.', culprit=get_culprit(lineno+1))

>>> filename = 'pyproject.toml'
>>> with open(filename) as f, set_culprit(filename):
... lines = f.read().splitlines()
... num_lines = count_lines(lines)
warning: pyproject.toml, 25: empty line.
warning: pyproject.toml, 33: empty line.
warning: pyproject.toml, 39: empty line.

set_logfile(logfile, prev_logfile_suffix=None, encoding='utf-8')
Allows you to change the logfile (only available as a method).

Parameters

• logfile – May be a pathlib path. May be a string, in which case it is taken to be the path
of the logfile. May be True, in which case ./.<prog_name>.log is used. May be an open
stream. Or it may be False, in which case no log file is created.

Directory containing the logfile must exist.

• prev_logfile_suffix – If specified, the existing logfile will be renamed before creating
the new logfile. This only occurs the first time the logfile is specified.

• encoding (string) – The encoding to use when writing the file.

set_stream_policy(stream_policy)
Allows you to change the stream policy (see inform.Inform).

suppress_output(mute=True)
Allows you to change the mute flag (only available as a method).

Parameters
mute (bool) – If mute is True all output is suppressed (it is still logged).

terminate(status=None, exit=True)
Terminate the program with specified exit status.

Parameters

• status (int, bool, string, or None) – The desired exit status or exit message. Exit
status is inform.error_status if True is passed in. When None, return inform.error_status if
errors occurred and 0 otherwise. Status may also be a string, in which case it is printed to
stderr without a header and the exit status is inform.error_status.

• exit (bool) – If False, all preparations for termination are done, but sys.exit() is not called.
Instead, the exit status is returned.

Returns
The desired exit status is returned if exit is False (the function does not return if exit is True).

Recommended status codes:

0: success
1: unexpected error
2: invalid invocation

5.3. Classes and Functions 67

Inform Documentation, Release 1.29

3: panic

Of, if your program naturally want to signal pass or failure using its exit status:

0: success
1: failure
2: error
3: panic

terminate_if_errors(status=None, exit=True)
Terminate the program if error count is nonzero.

Parameters

• status (int, bool or string) – The desired exit status or exit message.

• exit (bool) – If False, all preparations for termination are done, but sys.exit() is not called.
Instead, the exit status is returned.

Returns
None is returned if there is no errors, otherwise the desired exit status is returned if exit is
False (the function does not return if there is an error and exit is True).

Direct Access Functions

Several of the above methods are also available as stand-alone functions that act on the currently active informer. This
make it easy to use their functionality even if you do not have local access to the informer.

inform.done(exit=True)
Terminate the program with normal exit status.

Calls inform.Inform.done() for the active informer.

inform.terminate(status=None, exit=True)
Terminate the program with specified exit status.”

Calls inform.Inform.terminate() for the active informer.

inform.terminate_if_errors(status=None, exit=True)
Terminate the program if error count is nonzero.”

Calls inform.Inform.terminate_if_errors() for the active informer.

inform.errors_accrued(reset=False)
Returns number of errors that have accrued.”

Calls inform.Inform.errors_accrued() for the active informer.

inform.get_prog_name()

Returns the program name.

Calls inform.Inform.get_prog_name() for the active informer.

inform.set_culprit(culprit)
Set the culprit while displacing current culprit.

Calls inform.Inform.set_culprit() for the active informer.

68 Chapter 5. Documentation

Inform Documentation, Release 1.29

inform.add_culprit(culprit)
Append to the end of the current culprit.

Calls inform.Inform.add_culprit() for the active informer.

inform.get_culprit(culprit=None)
Get the current culprit.

Calls inform.Inform.get_culprit() for the active informer.

You can also request the active informer:

inform.get_informer()

Returns the active informer.

5.3.2 InformantFactory

class inform.InformantFactory(**kwargs)
Create informants.

An object of InformantFactory is referred to as an informant. It is generally treated as a function that is called to
produce the desired output.

Parameters

• severity (string) – Messages with severities get headers. The header consists of the
severity, the program name (if desired), and the culprit (if provided). If the message text does
not contain a newline it is appended to the header. Otherwise the message text is indented
and placed on the next line.

• is_error (bool) – Message is counted as an error.

• log (bool) – Send message to the log file. May be a boolean or a function that accepts the
informer as an argument and returns a boolean.

• output (bool) – Send message to the output stream. May be a boolean or a function that
accepts the informer as an argument and returns a boolean.

• notify (bool) – Send message to the notifier. The notifier will display the message that
appears temporarily in a bubble at the top of the screen. May be a boolean or a function that
accepts the informer as an argument and returns a boolean.

• terminate (bool or integer) – Terminate the program. Exit status is the value of termi-
nate unless terminate is True, in which case 1 is returned if an error occurred and 0 otherwise.

• is_continuation (bool) – This message is a continuation of the previous message. It
will use the properties of the previous message (output, log, message color, etc) and if the
previous message had a header, that header is not output and instead the message is indented.

• message_color (string) – Color used to display the message. Choose from: black, red,
green, yellow, blue, magenta, cyan or white.

• header_color (string) – Color used to display the header, if one is produced. Choose
from: black, red, green, yellow, blue, magenta, cyan or white.

• stream (stream) – Output stream to use. Typically sys.stdout or sys.stderr. If not specified,
the stream to use will be determine by stream policy of active informer.

• clone (informant) – Clone the attributes of the given informer. Any explicitly specified
arguments override those acquired through cloning.

5.3. Classes and Functions 69

Inform Documentation, Release 1.29

Example:

The following generates two informants, passes, which prints its messages in green, and fails, which
prints its messages in red. Output to the standard output for both is suppressed if quiet is True:

>>> from inform import InformantFactory, display

>>> success = InformantFactory(
... clone = display,
... severity = 'Pass',
... header_color = 'green'
...)
>>> failure = InformantFactory(
... clone = display,
... severity = 'FAIL',
... header_color = 'red'
...)

success and failure are both informants. Once created, they can be used to give messages to the user:

>>> results = [
... (0, 0.005, 0.025),
... (0.5, 0.512, 0.025),
... (1, 0.875, 0.025),
...]
>>> for expected, measured, tolerance in results:
... if abs(expected - measured) > tolerance:
... report = failure
... else:
... report = success
... report(
... measured, expected, measured-expected,
... template='measured = {:.3f}V, expected = {:.3f}V, diff = {:.3f}V
→˓'
...)
Pass: measured = 0.005V, expected = 0.000V, diff = 0.005V
Pass: measured = 0.512V, expected = 0.500V, diff = 0.012V
FAIL: measured = 0.875V, expected = 1.000V, diff = -0.125V

In the console ‘Pass’ is rendered in green and ‘FAIL’ in red.

5.3.3 Inform Utilities

class inform.Color(color, *, scheme=True, enable=True)
Used to create colorizers, which are used to render text in a particular color.

Parameters

• color (string) – The desired color. Choose from: black red green yellow blue magenta
cyan white.

• scheme (string) – Use the specified colorscheme when rendering the text. Choose from
None, ‘light’ or ‘dark’, default is ‘dark’.

• enable (bool) – If set to False, the colorizer does not render the text in color.

70 Chapter 5. Documentation

Inform Documentation, Release 1.29

Example:

>>> from inform import Color
>>> fail = Color('red')

In this example, fail is a colorizer. It behave just like inform.join() in that it combines its arguments into a
string that it returns. The difference is that colorizers add color codes that will cause most terminals to display
the string in the desired color.

Like inform.join(), colorizers take the following arguments:

unnamed arguments:
The unnamed arguments are converted to strings and joined to form the text to be colored.

sep = ‘ ‘:
The join string, used when joining the unnamed arguments.

template = None:
A template that if present interpolates the arguments to form the final message rather than simply
joining the unnamed arguments with sep. The template is a string, and its format method is called
with the unnamed and named arguments of the message passed as arguments.

wrap = False:
Specifies whether message should be wrapped. wrap may be True, in which case the default
width of 70 is used. Alternately, you may specify the desired width. The wrapping occurs on the
final message after the arguments have been joined.

scheme = False:
Use to override the colorscheme when rendering the text. Choose from None, False, ‘light’ or
‘dark’. If you specify False (the default), the colorscheme specified when creating the colorizer
is used.

static isTTY(stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>)
Takes a stream as an argument and returns true if it is a TTY.

Parameters
stream (stream) – Stream to test. If not given, stdout is used as the stream.

Example:

>>> from inform import Color, display
>>> import sys, re

>>> if Color.isTTY(sys.stdout):
... emphasize = Color('magenta')
... else:
... emphasize = str.upper

>>> def highlight(matchobj):
... return emphasize(matchobj.group(0))

>>> display(re.sub('your', highlight, 'Imagine your city without cars.'))
Imagine YOUR city without cars.

classmethod strip_colors(text)
Takes a string as its input and return that string stripped of any color codes.

5.3. Classes and Functions 71

Inform Documentation, Release 1.29

class inform.LoggingCache

Use as logfile if you cannot know the desired location of the logfile until after log messages have been emitted.
It holds the log messages in memory until you establish a logfile. At that point the messages are copied into the
logfile.

Example:

>>> from inform import Inform, LoggingCache, log, indent
>>> with Inform(logfile=LoggingCache()) as inform:
... log("This message is cached.")
... inform.set_logfile(".mylog")
... log("This message is not cached.")

>>> with open(".mylog") as f:
... print("Contents of logfile:")
... print(indent(f.read()), end='') # +ELLIPSIS
Contents of logfile:

...: invoked as: ...

...: log opened on ...
This message is cached.
This message is not cached.

inform.cull(collection, **kwargs)
Cull items of a particular value from a collection.

Parameters

• collection – The collection may be list-like (list, tuples, sets, etc.) or dictionary-like (dict,
OrderedDict, etc.). A new collection of the same type is returned with the undesirable values
removed.

• remove – Must be specified as keyword argument. May be a function, a collection, or a
scalar. The function would take a single argument, one of the values in the collection, and
return True if the value should be culled. The scalar or the collection simply specified the
specific value or values to be culled.

If remove is not specified, the value is culled if its value would be False when cast to a boolean
(0, False, None, ‘’, (), [], {}, etc.)

Example:

>>> from inform import cull, display
>>> from collections import OrderedDict
>>> fruits = OrderedDict([
... ('a','apple'), ('b','banana'), ('c','cranberry'), ('d','date'),
... ('e',None), ('f',None), ('g','guava'),
...])
>>> display(*cull(list(fruits.values())), sep=', ')
apple, banana, cranberry, date, guava

>>> for k, v in cull(fruits).items():
... display('{k} is for {v}'.format(k=k, v=v))
a is for apple
b is for banana
c is for cranberry
d is for date
g is for guava

72 Chapter 5. Documentation

Inform Documentation, Release 1.29

inform.indent(text, leader=' ', first=0, stops=1, sep='\n')
Add indentation.

Parameters

• leader (string) – the string added to be beginning of a line to indent it.

• first (integer) – number of indentations for the first line relative to others (may be neg-
ative but (first + stops) should not be).

• stops (integer) – number of indentations (number of leaders to add to the beginning of
each line).

• sep (string) – the string used to separate the lines

Example:

>>> from inform import display, indent
>>> display(indent('And the answer is ...\n42!', first=-1))
And the answer is ...

42!

inform.is_collection(obj)
Identifies objects that can be iterated over, excluding strings.

Returns True if argument is a collection (tuple, list, set or dictionary).

Example:

>>> from inform import is_collection
>>> is_collection('') # string
False

>>> is_collection([]) # list
True

>>> is_collection(()) # tuple
True

>>> is_collection({}) # dictionary
True

inform.is_iterable(obj)
Identifies objects that can be iterated over, including strings.

Returns True if argument is a collecton or a string.

Example:

>>> from inform import is_iterable
>>> is_iterable('abc')
True

>>> is_iterable(['a', 'b', 'c'])
True

inform.is_mapping(obj)
Identifies objects that are mappings (are dictionary like).

5.3. Classes and Functions 73

Inform Documentation, Release 1.29

Returns True if argument is a mapping.

Example:

>>> from inform import is_mapping
>>> is_mapping('') # string
False

>>> is_mapping([]) # list
False

>>> is_mapping(()) # tuple
False

>>> is_mapping({}) # dictionary
True

inform.is_str(arg)
Identifies strings in all their various guises.

Returns True if argument is a string.

Example:

>>> from inform import is_str
>>> is_str('abc')
True

>>> is_str(['a', 'b', 'c'])
False

5.3.4 User Utilities

class inform.Info(**kwargs)
Generic Data Structure Class

When instantiated, it converts the provided keyword arguments to attributes. Unknown attributes evaluate to
None.

Example:

>>> class Orwell(Info):
... pass

>>> george = Orwell(peace='war', freedom='slavery', ignorance='strength')
>>> print(str(george))
Orwell(

peace='war',
freedom='slavery',
ignorance='strength',

)

>>> george.peace
'war'

(continues on next page)

74 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

>>> george.happiness

render(template)
Render class to a string

Parameters
template (str) – The template string is returned with any instances of {name} replaced by
the value of the corresponding attribute.

Example:

>>> george.render('Peace is {peace}. Freedom is {freedom}. Ignorance is
→˓{ignorance}.')
'Peace is war. Freedom is slavery. Ignorance is strength.'

class inform.ProgressBar(stop, start=0, *, log=False, prefix=None, width=79, informant=True, markers={})
Draw a progress bar.

Parameters

• stop (float, iterable) – The last expected value. May also be an iterable (list, tuple,
iterator, etc), in which case the ProgressBar becomes an interable and start and log are ig-
nored.

• start (float) – The first expected value. May be greater than or less than stop, but it must
not equal stop. Must be specified and must be nonzero and the same sign as stop if log is
True.

• log (bool) – Report the logarithmic progress (start and stop must be positive and nonzero).

• prefix (str) – A string that is output before the progress bar on the same line.

• width (int) – The maximum width of the bar, the largest factor of 10 that is less than or
equal to this value is used.

• informant (informant) – Which informant to use when outputting the progress bar. By
default, inform.display() is used. Passing None or False as informant suppresses the
display of the progress bar.

• markers (dict) – This argument is used to associate a marker name with a pair of values,
a character and a color. If a known marker name is passed to draw(), the resulting update is
rendered using the matching fill character and color. The color may be specified as a string
(the color name), a Color object, or None (uncolored).

Markers should be given in order of increasing priority. If two different markers appear on
non-printing updates, the one that is closer to the end of the dictionary is used on the next
printing update.

There are three typical use cases. First, use to illustrate the progress through an iterator:

for item in ProgressBar(items):
process(item)

Second, use to illustrate the progress through a fixed number of items:

for i in ProgressBar(50):
process(i)

5.3. Classes and Functions 75

Inform Documentation, Release 1.29

Lastly, to illustrate the progress through a continuous range:

stop = 1e-6
step = 1e-9
with ProgressBar(stop) as progress:

value = 0
while value <= stop:

progress.draw(value)
value += step

It produces a bar that grows in order to indicate progress. After progress is complete, it will have produced the
following:

9876543210

It coordinates with the informants so that interruptions are handled cleanly:

987
warning: the sky is falling.
9876543210

This last version can be used to indicate the nature of individual updates. This is usually used to signal that
there was a problem with the update. For example, the following example uses both color and fill character to
distinguish four types of results: okay, warn, fail, error:

results = 'okay okay okay fail okay fail okay error warn okay'.split()

markers = dict(
okay=('', 'green'),
warn=('', 'yellow'),
fail=('×', 'magenta'),
error=('!', 'red')

)
with ProgressBar(len(results), markers=markers) as progress:

for i in range(len(repos)):
result = results[i]
progress.draw(i+1, result)

It produces the following, where each of the types is rendered in the appropriate color:

987××××××65××××××43!!!!!!210

done()

Complete the progress bar.

Not needed if ProgressBar is used with the Python with statement.

draw(abscissa, marker=None)
Draw the progress bar.

escape()

Terminate the progress bar without completing it.

inform.columns(array, pagewidth=79, alignment='<', leader=' ', min_sep_width=2, min_col_width=1)
Distribute array over enough columns to fill the screen.

Returns a multiline string.

76 Chapter 5. Documentation

Inform Documentation, Release 1.29

Parameters

• array (collection of strings) – The array to be printed.

• pagewidth (int) – The number of characters available for each line.

• alignment ('<', '^', or '>') – Whether to left (‘<’), center (‘^’), or right (‘>’) align the
array items in their columns.

• leader (str) – The string to prepend to each line.

• min_sep_width (int) – The minimum number of spaces between columns. Default is 2.

• min_col_width (int) – The minimum number of spaces between columns. Default is 1.

Example:

>>> from inform import columns, display, full_stop
>>> title = 'The NATO phonetic alphabet:'
>>> words = '''
... Alfa Bravo Charlie Delta Echo Foxtrot Golf Hotel India Juliett
... Kilo Lima Mike November Oscar Papa Quebec Romeo Sierra Tango
... Uniform Victor Whiskey X-ray Yankee Zulu
... '''.split()
>>> newline = '''
... '''
>>> display(title, columns(words), sep=newline)
The NATO phonetic alphabet:

Alfa Echo India Mike Quebec Uniform Yankee
Bravo Foxtrot Juliett November Romeo Victor Zulu
Charlie Golf Kilo Oscar Sierra Whiskey
Delta Hotel Lima Papa Tango X-ray

inform.conjoin(iterable, conj=' and ', sep=', ', end='', fmt=None)
Conjunction join.

Parameters

• iterable (list or generator of strings) – The collection of items to be joined.
All items are converted to strings.

• conj (string) – The separator used between the next to last and last values.

• sep (string) – The separator to use when joining the strings in iterable.

• end (string) – Is added to the end of the returned string.

• fmt (string) – A format string used to convert each item in iterable to a string. May be a
function, in which case it called on each member of iterable and must return a string. If fmt
is not given, str() is used.

Return the items of the iterable joined into a string, where conj is used to join the last two items in the list, and
sep is used to join the others.

Examples:

>>> from inform import conjoin, display, Info
>>> display(conjoin([], ' or '))

>>> display(conjoin(['a'], ' or '))
(continues on next page)

5.3. Classes and Functions 77

Inform Documentation, Release 1.29

(continued from previous page)

a

>>> display(conjoin(['a', 'b'], ' or '))
a or b

>>> display(conjoin(['a', 'b', 'c']))
a, b and c

>>> display(conjoin([10.1, 32.5, 16.9], fmt='${:0.2f}'))
$10.10, $32.50 and $16.90

>>> characters = dict(
... bob = 'bob@btca.com',
... ted = 'ted@btca.com',
... carol = 'carol@btca.com',
... alice = 'alice@btca.com',
...)
>>> display(conjoin(characters.items(), fmt='{0[0]:>7} : <{0[1]}>', conj='\n', sep=
→˓'\n'))

bob : <bob@btca.com>
ted : <ted@btca.com>

carol : <carol@btca.com>
alice : <alice@btca.com>

>>> characters = [
... dict(name='bob', email='bob@btca.com'),
... dict(name='ted', email='ted@btca.com'),
... dict(name='carol', email='carol@btca.com'),
... dict(name='alice', email='alice@btca.com'),
...]
>>> display(conjoin(characters, fmt="{0[name]:>7} : <{0[email]}>", conj=', or\n',␣
→˓sep=',\n', end='.'))

bob : <bob@btca.com>,
ted : <ted@btca.com>,

carol : <carol@btca.com>, or
alice : <alice@btca.com>.

>>> characters = [
... Info(name='bob', email='bob@btca.com'),
... Info(name='ted', email='ted@btca.com'),
... Info(name='carol', email='carol@btca.com'),
... Info(name='alice', email='alice@btca.com'),
...]
>>> display(conjoin(characters, fmt='{0.name:>7} : <{0.email}>', conj='; &\n', sep=
→˓';\n', end='.'))

bob : <bob@btca.com>;
ted : <ted@btca.com>;

carol : <carol@btca.com>; &
alice : <alice@btca.com>.

>>> display(conjoin(characters, fmt=lambda a: f'{a.name:>7} : <{a.email}>', conj='\n
→˓', sep='\n'))

(continues on next page)

78 Chapter 5. Documentation

Inform Documentation, Release 1.29

(continued from previous page)

bob : <bob@btca.com>
ted : <ted@btca.com>

carol : <carol@btca.com>
alice : <alice@btca.com>

inform.dedent(text, strip_nl=None, *, bolm=None, wrap=False)
Removes indentation that is common to all lines.

Without its named arguments, dedent behaves just like, and is a equivalent replacement for, textwrap.dedent.

bolm (str):
The beginning of line mark (bolm) is replaced by a space after the indent is removed. It must be the first
non-space character after the initial newline. Normally bolm is a single character, often ‘|’, but it may be
contain multiple characters, all of which are replaced by spaces.

strip_nl = None:
strip_nl is used to strip off a single leading or trailing newline. strip_nl may be None, ‘l’, ‘t’, or ‘b’ repre-
senting neither, leading, trailing, or both. True may also be passed, which is equivalent to ‘b’. Can also use
‘s’ (start) as synonym for ‘l’ and ‘e’ (end) as synonym for ‘t’.

wrap (bool or int):
If true the string is wrapped using a width of 70. If an integer value is passed, is used as the width of the
wrap.

>>> from inform import dedent

>>> print(dedent('''
... Diaspar
... Lys
... ''', bolm=''))

Diaspar
Lys

>>> print(dedent('''
... | Diaspar
... | Lys
... ''', bolm='|', strip_nl='e'))

Diaspar
| Lys

>>> print(dedent('''
... || Diaspar
... Lys
... ''', bolm='||', strip_nl='s'))

Diaspar
Lys

>>> print(dedent('''
... Diaspar
... Lys
... ''', strip_nl='b'))

(continues on next page)

5.3. Classes and Functions 79

Inform Documentation, Release 1.29

(continued from previous page)

Diaspar
Lys

>>> print(dedent('''
... Diaspar
... Lys
... ''', strip_nl='b', wrap=True))
Diaspar Lys

inform.did_you_mean(invalid_str, valid_strs)
Given an invalid string from the user, return the valid string with the most similarity.

Parameters

• invalid_str (string) – The invalid string given by the user.

• valid_strs (iterable) – The set of valid strings that the user was expected to choose
from.

Examples:

>>> from inform import did_you_mean
>>> did_you_mean('cat', ['cat', 'dog'])
'cat'
>>> did_you_mean('car', ['cat', 'dog'])
'cat'
>>> did_you_mean('car', {'cat': 1, 'dog': 2})
'cat'

inform.fmt(message, *args, **kwargs)
Similar to ‘’.format(), but it can pull arguments from the local scope.

Convert a message with embedded attributes to a string. The values for the attributes can come from the argument
list, as with ‘’.format(), or they may come from the local scope (found by introspection).

Examples:

>>> from inform import fmt
>>> s = 'str var'
>>> d = {'msg': 'dict val'}
>>> class Class:
... a = 'cls attr'

>>> display(fmt("by order: {0}, {1[msg]}, {2.a}.", s, d, Class))
by order: str var, dict val, cls attr.

>>> display(fmt("by name: {S}, {D[msg]}, {C.a}.", S=s, D=d, C=Class))
by name: str var, dict val, cls attr.

>> display(fmt("by magic: {s}, {d[msg]}, {c.a}."))
by magic: str var, dict val, cls attr.

You can change the level at which the introspection occurs using the _lvl keyword argument.

_lvl=0 searches for variables in the scope that calls fmt(), the default
_lvl=-1 searches in the parent of the scope that calls fmt()

80 Chapter 5. Documentation

Inform Documentation, Release 1.29

_lvl=-2 searches in the grandparent, etc.
_lvl=1 search root scope, etc.

inform.format_range(items, diff=<function <lambda>>, key=None, str=<class 'str'>, block_delim=', ',
range_delim='-')

Create a string that succinctly represents the given set of items. Groups of consecutive items are succinctly
displayed as a range, and other items are listed individually.

Parameters

• items – An iterable containing the values to format. Any type of iterable can be given,
but it will always be treated as a set (e.g. order doesn’t matter, duplicates are ignored). By
default, the items in the iterable must be non-negative integers, but by customizing the other
arguments, it is possible to support any discrete, ordered type.

• key (callable or None) – A key function used to sort the given values, or None if the
values can be sorted directly.

• str (callable) – A function that can be used to convert an individual value from items into
a string.

• block_delim (str) – The character used to separate individual items and ranges in the
formatted string.

• range_delim (str) – The character used to indicate ranges in the formatted string.

Examples:

>>> from inform import format_range
>>> format_range([1, 2, 3, 5])
'1-3,5'
>>> abc_diff = lambda a, b: ord(b) - ord(a)
>>> format_range('ACDE', diff=abc_diff)
'A,C-E'

inform.full_stop(sentence, end='.', allow='.?!')
Add period to end of string if it is needed.

A full stop (a period) is added if there is no terminating punctuation at the end of the string. The argument is first
converted to a string, and then any white space at the end of the string is removed before looking for terminal
punctuation. The return value is always a string.

Examples:

>>> from inform import full_stop
>>> full_stop('The file is out of date')
'The file is out of date.'

>>> full_stop('The file is out of date.')
'The file is out of date.'

>>> full_stop('Is the file is out of date?')
'Is the file is out of date?'

You can override the allowed and desired endings:

>>> cases = '1, 3 9, 12.'.split()
>>> print(*[full_stop(c, end=',', allow=',.') for c in cases])
1, 3, 9, 12.

5.3. Classes and Functions 81

Inform Documentation, Release 1.29

inform.join(*args, **kwargs)
Combines arguments into a string.

Combines the arguments in a manner very similar to an informant and returns the result as a string. Uses the sep,
template and wrap keyword arguments to combine the arguments.

If template is specified it controls how the arguments are combined and the result returned. Otherwise the
unnamed arguments are joined using the separator and returned.

Parameters

• sep (string) – Use specified string as join string rather than single space. The unnamed
arguments will be joined with using this string as a separator. Default is ‘ ‘.

• template (string or collection of strings) – A python format string. If speci-
fied, the unnamed and named arguments are combined under the control of the strings format
method. This may also be a collection of strings, in which case each is tried in sequence, and
the first for which all the interpolated arguments are known is used. By default, an argument
is ‘known’ if it would be True if casted to a boolean.

• remove – Used if template is a collection.

May be a function, a collection, or a scalar. The function would take a single argument, one
of the values in the collection, and return True if the value should not be considered known.
The scalar or the collection simply specified the specific value of values that should not be
considered known.

If remove is not specified, the value should not be considered known if its value would be
False when cast to a boolean (0, False, None, ‘’, (), [], {}, etc.)

• wrap (bool or int) – If true the string is wrapped using a width of 70. If an integer value
is passed, is used as the width of the wrap.

Examples:

>>> from inform import join
>>> join('a', 'b', 'c', x='x', y='y', z='z')
'a b c'

>>> join('a', 'b', 'c', x='x', y='y', z='z', template='{2} {z}')
'c z'

inform.parse_range(items_str, cast=<class 'int'>, range=<function <lambda>>, block_delim=', ',
range_delim='-')

Parse a set of values from a string where commas can be used to separate individual items and hyphens can be
used to specify ranges of items.

Parameters

• items_str (str) – The string to parse.

• cast (callable) – A function that converts items from the given string to the type that will
be returned. The function will be given a single argument, which will be a string, and should
return that same value casted into the desired type. Note that the casted values will also be
used as the inputs for the range() function.

• range (callable) – A function that produces the values implied by a range. It will be given
two arguments: the start and end of a range. Both arguments will have already been trans-
formed by the cast() function, and the first argument is guaranteed to be less than the second.
The function should return an iterable containing all the values in that range, including the
start and end values.

82 Chapter 5. Documentation

Inform Documentation, Release 1.29

• block_delim (str) – The character used to separate items and ranges.

• range_delim (str) – The character used to indicate a range.

Returns
All of the values specified by the given string.

Return type
set

Examples:

>>> from inform import parse_range
>>> parse_range('1-3,5')
{1, 2, 3, 5}
>>> abc_range = lambda a, b: [chr(x) for x in range(ord(a), ord(b) + 1)]
>>> parse_range('A-C,E', cast=str, range=abc_range)
{'B', 'E', 'C', 'A'}

inform.os_error(e)
Generates clean messages for operating system errors.

Parameters
e (exception) – The value of an OSError exception.

Example:

>>> from inform import display, os_error
>>> try:
... with open('config') as f:
... contents = f.read()
... except OSError as e:
... display(os_error(e))
config: no such file or directory.

class inform.plural(value, *, num='#', invert='!', slash='/')
Conditionally format a phrase depending on whether it refers to a singular or plural number of things.

The format string has three sections, separated by ‘/’. The first section is always included, the last section is
included if the given number is plural, and the middle section (which can be omitted) is included if the given
number is singular. If there is only one section, it is used as is for the singular case and an ‘s’ is added to it for
the plural case. If any of the sections contain a ‘#’, it is replaced by the number of things.

You may provide either a number (e.g. 0, 1, 2, . . .) or any object that implements __len__() (e.g. list, dict, set,
. . .). In the latter case, the length of the object will be used to decide whether to use the singular of plural form.
Only 1 is considered to be singular; every other number is considered plural.

If the format string starts with ‘!’ then it is removed and the sense of plurality is reversed (the plural form is used
for one thing, and the singular form is used otherwise). This is useful when pluralizing verbs.

Examples:

>>> from inform import plural

>>> f"{plural(1):thing}"
'thing'
>>> f"{plural(2):thing}"
'things'

(continues on next page)

5.3. Classes and Functions 83

Inform Documentation, Release 1.29

(continued from previous page)

>>> f"{plural(1):thing/s}"
'thing'
>>> f"{plural(2):thing/s}"
'things'

>>> f"{plural(1):# thing/s}"
'1 thing'
>>> f"{plural(2):# thing/s}"
'2 things'

>>> f"{plural(1):/a cactus/# cacti}"
'a cactus'
>>> f"{plural(2):/a cactus/# cacti}"
'2 cacti'

>>> f"{plural(1):# /is/are}"
'1 is'
>>> f"{plural(2):# /is/are}"
'2 are'

>>> f"{plural([]):# thing/s}"
'0 things'
>>> f"{plural([0]):# thing/s}"
'1 thing'

>>> f"{plural(1):!agree}"
'agrees'
>>> f"{plural(2):!agree}"
'agree'

If ‘/’, ‘#’, or ‘!’ are inconvenient, you can change them by passing the slash, num and invert arguments to plural().

The original implementation is from Veedrac on Stack Overflow: http://stackoverflow.com/questions/21872366/
plural-string-formatting

format(formatter)
Expand plural to a string.

You can use this method to directly expand plural to a string without needing to use f-strings or the string
format method.

Examples:

>>> plural(1).format('thing')
'thing'
>>> plural(3).format('/a cactus/# cacti')
'3 cacti'

inform.render(obj, sort=None, level=None, tab=' ')
Recursively convert object to string with reasonable formatting.

Parameters

• obj – The object to render

84 Chapter 5. Documentation

http://stackoverflow.com/questions/21872366/plural-string-formatting
http://stackoverflow.com/questions/21872366/plural-string-formatting

Inform Documentation, Release 1.29

• sort (bool) – Dictionary keys and set values are sorted if sort is True. Sometimes this is
not possible because the values are not comparable, in which case render reverts to using the
natural order.

• level (int) – The indent level. If not specified and render is called recursively the indent
will be incremented, otherwise the indent is 0.

• tab (string) – The string used when indenting.

render has built in support for the base Python types (None, bool, int, float, str, set, tuple, list, and dict). If
you confine yourself to these types, the output of render can be read by the Python interpreter. Other types are
converted to string with repr().

Example:

>>> from inform import display, render
>>> display('result =', render({'a': (0, 1), 'b': [2, 3, 4]}))
result = {'a': (0, 1), 'b': [2, 3, 4]}

In addition, you can add support for render to your classes by adding one or both of these methods:

_inform_get_args(): returns a list of argument values.

_inform_get_kwargs(): returns a dictionary of keyword arguments.

Example:

>>> class Chimera:
... def __init__(self, *args, **kwargs):
... self.args = args
... self.kwargs = kwargs
...
... def _inform_get_args(self):
... return self.args
...
... def _inform_get_kwargs(self):
... return self.kwargs

>>> lycia = Chimera('Lycia', front='lion', middle='goat', tail='snake')
>>> display(render(lycia))
Chimera(

'Lycia',
front='lion',
middle='goat',
tail='snake',

)

inform.render_bar(value, width=72, full_width=False)
Render graphic representation of a value in the form of a bar

Parameters

• value (real) – Should be normalized (fall between 0 and 1)

• width (int) – The width of the bar in characters when value is 1.

• full_width (bool) – Whether bar should be rendered to fill the whole width using trailing
spaces,. This is useful if you plan to mark the end of the bar.

Examples:

5.3. Classes and Functions 85

Inform Documentation, Release 1.29

>>> from inform import render_bar

>>> assets = {'property': 13_194, 'cash': 2846, 'equities': 19_301}
>>> total = sum(assets.values())
>>> for key, value in assets.items():
... display(f"{key:>8}: {render_bar(value/total, full_width=True)}")
property:

cash:
equities:

inform.title_case(s, exceptions=('and', 'or', 'nor', 'but', 'a', 'an', 'and', 'the', 'as', 'at', 'by', 'for', 'in', 'of', 'on', 'per',
'to'))

Convert to title case

This is an attempt to provide an alternative to ‘’.title() that works with acronyms.

There are several tricky cases to worry about in typical order of importance:

0. Upper case first letter of each word that is not an ‘minor’ word.

1. Always upper case first word.

2. Do not down case acronyms

3. Quotes

4. Hyphenated words: drive-in

5. Titles within titles: 2001 A Space Odyssey

6. Maintain leading spacing

7. Maintain given spacing: This is a test. This is only a test.

The following code addresses 0-3 & 7. It was felt that addressing the others would add considerable complexity.
Case 2 was handled by simply maintaining all upper case letters in the specified string.

Example:

>>> from inform import title_case
>>> cases = '''
... CDC warns about "aggressive" rats as coronavirus shuts down restaurants
... L.A. County opens churches, stores, pools, drive-in theaters
... UConn senior accused of killing two men was looking for young woman
... Giant asteroid that killed the dinosaurs slammed into Earth at ‘deadliest␣
→˓possible angle,’ study reveals
... Maintain given spacing: This is a test. This is only a test.
... '''.strip()

>>> for case in cases.splitlines():
... print(title_case(case))
CDC Warns About "Aggressive" Rats as Coronavirus Shuts Down Restaurants
L.A. County Opens Churches, Stores, Pools, Drive-in Theaters
UConn Senior Accused of Killing Two Men Was Looking for Young Woman
Giant Asteroid That Killed the Dinosaurs Slammed Into Earth at ‘Deadliest Possible␣
→˓Angle,’ Study Reveals
Maintain Given Spacing: This Is a Test. This Is Only a Test.

86 Chapter 5. Documentation

Inform Documentation, Release 1.29

5.3.5 Debug Utilities

inform.aaa(*args, **kwargs)
Print argument, then return it.

Pretty-prints its argument. Argument may be named or unnamed. Allows you to display the value that is only
contained within an expression.

inform.ccc(*args, **kwargs)
Print the class name for all arguments.

inform.ddd(*args, **kwargs)
Print arguments function.

Pretty-prints its arguments. Arguments may be named or unnamed.

inform.ppp(*args, **kwargs)
Print function.

Mimics the normal print function, but colors printed output to make it easier to see and labels it with the location
of the call.

inform.sss(ignore_exceptions=True)
Print a stack trace

Parameters
ignore_exceptions – (bool) If true, the stack trace will exclude the path through exceptions.

inform.vvv(*args)
Print variables function.

Pretty-prints variables from the calling scope. If no arguments are given, all variables are printed. If arguments
are given, only the variables whose value match an argument are printed.

5.3.6 Exceptions

exception inform.Error(*args, **kwargs)
A generic exception.

The exception accepts both unnamed and named arguments. All are recorded and available for later use.

template may be added to the class as an attribute, in which case it acts as the default template for the exception
(used to format the exception arguments into an error message).

The idea of allowing template to be an attribute to Error was originally proposed on the Python Ideas mailing
list by Ryan Fox (https://pypi.org/project/exception-template/).

get_codicil(codicil=None)
Get the codicils.

A codicil is extra text attached to an error that can clarify the error message or to give extra context.

Return the codicil as a tuple. If a codicil is specified as an argument, it is appended to the exception’s codicil
without modifying it.

Parameters
codicil (string or tuple of strings) – A codicil or collection of codicils that is ap-
pended to the return value without modifying the cached codicil.

5.3. Classes and Functions 87

https://pypi.org/project/exception-template/

Inform Documentation, Release 1.29

Returns
The codicil argument is appended to the exception’s codicil and the combination is returned.
The return value is always in the form of a tuple even if there is only one component.

get_culprit(culprit=None)
Get the culprits.

Culprits are extra pieces of information attached to an error that help to identify the source of the error. For
example, file name and line number where the error was found are often attached as culprits.

Return the culprit as a tuple. If a culprit is specified as an argument, it is appended to the exception’s culprit
without modifying it.

Parameters
culprit (string, number or tuple of strings and numbers) – A culprit or col-
lection of culprits that is appended to the return value without modifying the cached culprit.

Returns
The culprit argument is prepended to the exception’s culprit and the combination is returned.
The return value is always in the form of a tuple even if there is only one component.

get_message(template=None)
Get exception message.

Parameters
template (str) – This argument is treated as a format string and is passed both the unnamed
and named arguments. The resulting string is treated as the message and returned.

If not specified, the template keyword argument passed to the exception is used. If there was
no template argument, then the positional arguments of the exception are joined using sep and
that is returned.

Returns
The formatted message without the culprits.

render(template=None, include_codicil=True)
Convert exception to a string for use in an error message.

Parameters

• template (str) – This argument is treated as a format string and is passed both the un-
named and named arguments. The resulting string is treated as the message and returned.

If not specified, the template keyword argument passed to the exception is used. If there
was no template argument, then the positional arguments of the exception are joined using
sep and that is returned.

• include_codicil (bool) – Include the codicil in the rendered message.

Returns
The formatted message with any culprits.

report(**new_kwargs)
Report exception to the user.

Prints the error message on the standard output.

The inform.error() function is called with the exception arguments.

Parameters
**kwargs – report() takes any of the normal keyword arguments normally allowed on an
informant (culprit, template, etc.). Any keyword argument specified here overrides those that
were specified when the exception was first raised.

88 Chapter 5. Documentation

Inform Documentation, Release 1.29

reraise(**new_kwargs)
Re-raise the exception.

terminate(**new_kwargs)
Report exception and terminate.

Prints the error message on the standard output and exits the program.

The inform.fatal() function is called with the exception arguments.

Parameters
**kwargs – report() takes any of the normal keyword arguments normally allowed on an
informant (culprit, template, etc.). Any keyword argument specified here overrides those that
were specified when the exception was first raised.

5.4 Accessories

5.4.1 Logging with ntLog

ntLog is a log file aggregation utility.

Unlike daemons, Inform based applications tend to run on demand. If the application generates a log file, each run
over-writes over a previously generated logfile. This can be problematic if you are interested in keeping a log of events
that do not occur during each run.

ntlog is a utility that accumulates logfiles into NestedText file. It provides NTlog, a class whose instances provide a
output file stream interface. They can be specified to Inform as the logfile, and in doing so, provide an accumulating
logfile. NTlog allows you to specify trimming parameters to keep the logfile from getting too big.

Here are two examples that use ntlog with inform. The first is used with a short-lived processes:

from ntlog import NTlog
from inform import Inform, display, error, log

with (
NTlog('appname.log.nt', keep_for='7d') as ntlog,
Inform(logfile=ntlog) as inform,

):
display('status message')
log('log message')
if there_is_a_problem:

error('error message')
...

The next example demonstrates how to use ntlog with long-lived processes. The difference from the above example is
that ntlog is configured to create a temporary log file and Inform is configured to flush after each write. The temporary
logfile is intended to allow you to monitor the progress of the process as it runs.

with (
NTlog('appname.log.nt', 'appname.log', keep_for='7d') as ntlog,
Inform(logfile=ntlog, flush=True) as inform,

):
display('status message')
log('log message')
if there_is_a_problem:

(continues on next page)

5.4. Accessories 89

https://github.com/KenKundert/ntlog
https://nestedtext.org

Inform Documentation, Release 1.29

(continued from previous page)

error('error message')
...

5.5 Releases

5.5.1 Latest development release

Version: 1.29
Released: 2024-04-27

5.5.2 1.29 (2024-04-27)

• Change strip_nl keys for dedent().

• Added include_codicil argument to Error.render().

5.5.3 1.28 (2023-03-20)

• Use critical urgency by default with notifier if message is an error.

• Ignore BrokenPipeError.

• Add full_width argument to render_bar().

• Require secondary arguments to Color be keyword arguments.

• Require secondary arguments to plural be keyword arguments.

• Add max_col_width parameter to columns().

• Added type hints.

Warning: Color and plural now requires secondary arguments to be specified by name.

5.5.4 1.27 (2022-09-15)

• Add markers to ProgressBar.

• Change order of arguments to dedent().

• Drop support for Python 2.

90 Chapter 5. Documentation

Inform Documentation, Release 1.29

5.5.5 1.26 (2021-09-15)

• Added dedent().

• Added LoggingCache.

5.5.6 1.25 (2021-07-07)

• Allow culprits to be falsy.

5.5.7 1.24 (2021-05-18)

• Defer evaluation of stdout and stderr.

5.5.8 1.23 (2020-08-26)

• Strip out empty culprits and codicils.

5.5.9 1.22 (2020-08-24)

• Added clone argument to InformantFactory.

5.5.10 1.21 (2020-07-20)

• Allow ProgressBar output to be suppressed.

• Allow / to be overridden in plural

• Various enhancements to conjoin() and full_stop().

• Added parse_range() and format_range() functions.

• Added title_case() function.

5.5.11 1.20 (2020-01-08)

• Add format method to plural.

5.5.12 1.19 (2019-09-25)

• Minor fixes.

5.5. Releases 91

Inform Documentation, Release 1.29

5.5.13 1.18 (2019-08-10)

• Wrap now applies to codicils passed as arguments.

• Enhance plural (now supports pluralizing verbs).

• Add fmt argument to conjoin().

• Support template attribute on subclasses of Error.

5.5.14 1.17 (2019-05-16)

• Added is_mapping()

5.5.15 1.16 (2019-04-27)

• Add end support to join().

• Allow previous logfile to be saved.

• Allow urgency to be specified on notifications.

• Allow render() support in user-defined classes with addition of special methods.

5.5.16 1.15 (2019-01-16)

• Added error_status argument to Inform .

• Enhanced plural. This enhancement is not backward
compatible.

• Enhance for render() to allow it to be used in a __repr__ function.

5.5.17 1.14 (2018-12-03)

• Added render_bar() utility function.

• Added ProgressBar class.

• Added Info class.

• Added Inform.join_culprit() method and
join_culprit().

• Allow culprit to be passed into Error.report() and
Error.terminate().

• Added Error.reraise() method.

• Allow a codicil or codicils to be added to any informant.

• Added codicil named argument to informants and Error.

• Added informant named argument to Error.

• Use colorscheme of active informer as default for colorizers.

• Error.get_culprit() now returns a tuple rather than a string.

• Added Error.join_culprit().

92 Chapter 5. Documentation

Inform Documentation, Release 1.29

• Added Error.get_codicil().

5.5.18 1.13 (2018-08-11)

• Added aaa() debug function.

• Added exit argument to done(), terminate(),
and terminate_if_errors().

• terminate() now produces an exit status of 0 if there was
no errors reported.

• Added set_culprit(), add_culprit()
and get_culprit().

5.5.19 1.12 (2018-02-18)

• do not use notify override on continuations.

• tidied up a bit.

5.5.20 1.11 (2017-12-25)

• Released the documentation.

• Added ability to override template in Error.

• Added stream_policy option.

• Added notify_if_no_tty option.

• Informers now stack, so disconnecting from an existing informer reinstates
the previous informer.

• Generalize cull().

• Add support for multiple templates.

• Added join() function.

• genindex

5.5. Releases 93

Inform Documentation, Release 1.29

94 Chapter 5. Documentation

INDEX

A
aaa() (in module inform), 87
add_culprit() (in module inform), 68
add_culprit() (inform.Inform method), 65

C
ccc() (in module inform), 87
close_logfile() (inform.Inform method), 65
Color (class in inform), 70
columns() (in module inform), 76
conjoin() (in module inform), 77
cull() (in module inform), 72

D
ddd() (in module inform), 87
dedent() (in module inform), 79
did_you_mean() (in module inform), 80
disconnect() (inform.Inform method), 65
done() (in module inform), 68
done() (inform.Inform method), 65
done() (inform.ProgressBar method), 76
draw() (inform.ProgressBar method), 76

E
Error, 87
errors_accrued() (in module inform), 68
errors_accrued() (inform.Inform method), 65
escape() (inform.ProgressBar method), 76

F
flush_logfile() (inform.Inform method), 66
fmt() (in module inform), 80
format() (inform.plural method), 84
format_range() (in module inform), 81
full_stop() (in module inform), 81

G
get_codicil() (inform.Error method), 87
get_culprit() (in module inform), 69
get_culprit() (inform.Error method), 88
get_culprit() (inform.Inform method), 66

get_informer() (in module inform), 69
get_message() (inform.Error method), 88
get_prog_name() (in module inform), 68
get_prog_name() (inform.Inform method), 66

I
indent() (in module inform), 72
Info (class in inform), 74
Inform (class in inform), 63
InformantFactory (class in inform), 69
is_collection() (in module inform), 73
is_iterable() (in module inform), 73
is_mapping() (in module inform), 73
is_str() (in module inform), 74
isTTY() (inform.Color static method), 71

J
join() (in module inform), 81
join_culprit() (inform.Inform method), 66

L
LoggingCache (class in inform), 71

O
os_error() (in module inform), 83

P
parse_range() (in module inform), 82
plural (class in inform), 83
ppp() (in module inform), 87
ProgressBar (class in inform), 75

R
render() (in module inform), 84
render() (inform.Error method), 88
render() (inform.Info method), 75
render_bar() (in module inform), 85
report() (inform.Error method), 88
reraise() (inform.Error method), 89

S
set_culprit() (in module inform), 68

95

Inform Documentation, Release 1.29

set_culprit() (inform.Inform method), 66
set_logfile() (inform.Inform method), 67
set_stream_policy() (inform.Inform method), 67
sss() (in module inform), 87
strip_colors() (inform.Color class method), 71
suppress_output() (inform.Inform method), 67

T
terminate() (in module inform), 68
terminate() (inform.Error method), 89
terminate() (inform.Inform method), 67
terminate_if_errors() (in module inform), 68
terminate_if_errors() (inform.Inform method), 68
title_case() (in module inform), 86

V
vvv() (in module inform), 87

96 Index

	Alternatives
	Installation
	Issues
	Quick Tour
	Informants
	Controlling Informants
	Utility Functions
	Generic Exception

	Documentation
	User’s Guide
	Using Informants
	Informant Arguments
	Culprits
	Templates

	Predefined Informants
	log
	comment
	codicil
	narrate
	display
	output
	notify
	debug
	warn
	error
	fatal
	panic
	Modifying Existing Informants

	Informant Control
	Logfiles
	Message Destination

	User Defined Informants
	Exceptions
	Subclassing Error

	Utilities
	Color Class
	columns
	conjoin
	cull
	dedent
	did_you_mean
	fmt
	format_range
	full_stop
	indent
	Info Class
	is_collection
	is_iterable
	is_mapping
	is_str
	join
	os_error
	parse_range
	ProgressBar Class
	plural
	render
	render_bar
	title_case

	Debugging Functions
	aaa
	ddd
	ppp
	sss
	vvv
	Site Customization

	Inform Helper Functions
	done
	terminate
	terminate_if_errors
	errors_accrued
	get_prog_name
	get_informer
	set_culprit
	add_culprit
	get_culprit

	Examples
	Find Debug Functions
	Add Keys to SSH Agent
	Status of Solar Energy System
	Run Command
	Networth

	Classes and Functions
	Inform
	Direct Access Functions

	InformantFactory
	Inform Utilities
	User Utilities
	Debug Utilities
	Exceptions

	Accessories
	Logging with ntLog

	Releases
	Latest development release
	1.29 (2024-04-27)
	1.28 (2023-03-20)
	1.27 (2022-09-15)
	1.26 (2021-09-15)
	1.25 (2021-07-07)
	1.24 (2021-05-18)
	1.23 (2020-08-26)
	1.22 (2020-08-24)
	1.21 (2020-07-20)
	1.20 (2020-01-08)
	1.19 (2019-09-25)
	1.18 (2019-08-10)
	1.17 (2019-05-16)
	1.16 (2019-04-27)
	1.15 (2019-01-16)
	1.14 (2018-12-03)
	1.13 (2018-08-11)
	1.12 (2018-02-18)
	1.11 (2017-12-25)

	Index

