
Industrial Training

Oct 18, 2018

Contents

1 Setup PC 1

2 Prerequisites 3

3 Basic Topics 19

4 Advanced Topics 89

i

ii

CHAPTER 1

Setup PC

1.1 PC Setup

There are two options for utilizing the ROS-Industrial training materials. The first recommended option
is to utilize a pre-configured virtual machine. The second option is to install a native Ubuntu machine with
the required software. The virtual machine approach is by far the easiest option and ensures the fewest
build errors during training but is limited in its ability to connect to certain hardware, particularly over
USB (i.e. kinect-like devices). For the perception training a .bag file is provided so that USB connection
is not required for this training course.

1.1.1 Virtual Machine Configuration (Recommended)

The VM method is the most convenient method of utilizing the training materials:

1. Download virtual box

2. Download ROS Kinetic training VM

3. Import image into virtual box

4. Start virtual machine

5. Log into virtual machine, user: ros-industrial, pass: rosindustrial (no spaces or hyphens)

6. Get the latest changes (Open Terminal).

cd ~/industrial_training
git checkout kinetic
git pull
./.check_training_config.bash

1

https://www.virtualbox.org/wiki/Downloads
http://aeswiki.datasys.swri.edu/vm/ROSI_Training_Kinetic_latest.ova
https://www.virtualbox.org/manual/ch01.html#ovf

Industrial Training

Limitations of Virtual Box

The Virtual Box is limited both in hardware capability(due to VM limitations) and package installs (to save space).
Kinect-based demos aren’t possible due to USB limitations.

Common VM Issues

On most new systems, Virtual Box and VMs work out of the box. The following is a list of issues others have
encountered and solutions:

• Virtualization must be enabled - Older systems do not have virtualization enabled (by default). Virtualization
must be enabled in the BIOS. See http://www.sysprobs.com/disable-enable-virtualization-technology-bios for
more information.

1.1.2 Direct Linux PC Configuration (NOT Recommended)

An installation shell script is provided to run in Ubuntu Linux 16.04 (Xenial Xerus) LTS. This script installs ROS and
any other packages needed for the environment used for this training.

After this step (or if you already have a working ROS environment), clone the training material repository into your
home directory:

git clone -b kinetic https://github.com/ros-industrial/industrial_training.git
~/industrial_training

1.1.3 Configuration Check

The following is a quick check to ensure that the appropriate packages have been installed and the the
industrial_training git repository is current. Enter the following into the terminal:

~/industrial_training/.check_training_config.bash

2 Chapter 1. Setup PC

http://www.sysprobs.com/disable-enable-virtualization-technology-bios
https://github.com/ros-industrial/industrial_training/blob/kinetic/gh_pages/_downloads/ros-kinetic-industrial-training.sh

CHAPTER 2

Prerequisites

2.1 C++

2.2 Linux Fundamentals

Slides

2.2.1 Navigating the Ubuntu GUI

In this exercise, we will familiarize ourselves with the graphical user interface (GUI) of the Ubuntu
operating system.

Task 0: Presentation Slides

Don’t forget about the presentation slides that accompany this Lesson!

Task 1: Familiarize Yourself with the Ubuntu Desktop

At the log-in screen, click in the password input box, enter rosindustrial for the password, and hit enter. The
screen should look like the image below when you log in:

3

Industrial Training

There are several things you will notice on the desktop:

4 Chapter 2. Prerequisites

Industrial Training

1. The gear icon on the top right of the screen brings up a menu which allows the user to log out, shut down the
computer, access system settings, etc. . .

2. The bar on the left side shows running and “favorite” applications, connected thumb drives, etc.

3. The top icon is used to access all applications and files. We will look at this in more detail later.

4. The next icons are either applications which are currently running or have been “pinned” (again, more on pinning
later)

5. Any removable drives, like thumb drives, are found after the application icons.

6. If the launcher bar gets “too full”, clicking and dragging up/down allows you to see the applications that are
hidden.

7. To reorganize the icons on the launcher, click and hold the icon until it “pops out”, then move it to the desired
location.

Task 2: Open and Inspect an Application

Click on the filing-cabinet icon in the launcher. A window should show up, and your desktop should look like some-
thing below:

2.2. Linux Fundamentals 5

Industrial Training

Things to notice:

1. The close, minimize, and maximize buttons typically found on the right-hand side of the window title bar are
found on the left-hand side.

2. The menu for windows are found on the menu bar at the top of the screen, much in the same way Macs do. The
menus, however, only show up when you hover the mouse over the menu bar.

3. Notice that there are triangles on the left and right of the folder icon. The triangles on the left show how many
windows of this application are open, and the right shows which application is currently in the foreground, or
“has focus”. Clicking on these icons when the applications are open does one of two things:

• If there is only one window open, this window gets focus.

• If more than one are open, clicking a second time causes all of the windows to show up in the foreground, so
that you can choose which window to go to (see below):

6 Chapter 2. Prerequisites

Industrial Training

Task 3: Start an Application & Pin it to the Launcher Bar

Click on the launcher button (top left) and type gedit in the search box. The “Text Editor” application (this is actually
gedit) should show up (see below):

2.2. Linux Fundamentals 7

Industrial Training

Click on the application. The text editor window should show up on the screen, and the text editor icon should show
up on the launcher bar on the left-hand side (see below):

8 Chapter 2. Prerequisites

Industrial Training

1. Right-click on the text editor launch icon, and select “Lock to Launcher”.

2. Close the gedit window. The launcher icon should remain after the window closes.

3. Click on the gedit launcher icon. You should see a new gedit window appear.

2.2.2 Exploring the Linux File System

In this exercise, we will look at how to navigate and move files in the Linux file system using the Ubuntu
GUI, and learn some of the basics of Linux file attributes.

Using the File Browser to Navigate

1. Open the folder browser application we opened in the previous exercise. You should see an window like the one
below. The icons and text above the main window show the current location of the window in the file system.

2.2. Linux Fundamentals 9

Navigating-the-Ubuntu-GUI.md

Industrial Training

1. The icons at the top constitute the “location bar” of the file browser. While the location bar is very useful for
navigating in the GUI, it hides the exact location of the window. You can show the location by pressing Ctrl+L.
You should see the location bar turn into something like the image below:

1. The folder browser opens up in the user’s home folder by default. This folder is typically /home/, which in the
ROS-Industrial training computer is /home/ros-industrial. This folder is the only one which the user has full
access to. This is by design for security’s sake.

2. By default, the file browser doesn’t show hidden files (files which begin with a . character) or “backup” files
(which end with a ~ character). To show these files, click on the “View” menu, and select “Show Hidden Files”
(or press Ctrl+H). This will show all of the hidden files. Uncheck the option to re-hide those files.

3. Two hidden directories are never shown: The . folder, which is a special folder that represents the current folder,
and .., which represents the folder which contains the current folder. These will become important in the next
exercise.

4. On the left hand side of the window are some quick links to removable devices, other hard drives, bookmarks,
etc. Click on the “Computer” shortcut link. This will take you to the “root” of the file system, the / folder. All
of the files on the computer are in sub-folders under this folder.

5. Double click on the opt folder, then the ros folder. This is where all of the ROS software resides. Each version
is stored in its own folder; we should see a kinetic folder there. Double-click on that folder. The setup.bash file

10 Chapter 2. Prerequisites

The-Linux-Terminal.md
The-Linux-Terminal.md

Industrial Training

will be used in the terminal exercise to configure the terminal for ROS. The programs, data, etc. are in the bin
and share folders. You generally do not need to modify any of these files directly, but it is good to know where
they reside.

Making Changes

Copying, Moving, and Removing Files

1. Create a directory and file

(a) Make a directory <Home>/ex0.3. We will be working within this folder.

• Inside the file browser, click on the “Home” shortcut in the left sidebar.

• Right click in the file browser’s main panel and select “New Folder”.

• Name the folder “ex0.3” and press “return”.

(b) Make a file test.txt inside the newly-created ex0.3 folder.

• Double-click on the ex0.3 folder. Note how the File Browser header changes to show the current
folder.

• Right click in the file browser’s main panel and select “New Document”, then “Empty Document”.

• Name the file “test.txt” and press “return”.

2. Copying Files

(a) Copy the file using one of the following methods:

• Click and hold on the test.txt file, hold down on the control key, drag somewhere else on the folder,
and release.

• Click on the file, go to the “Copy” from the “Edit” menu, and then “Paste” from the “Edit” menu.
Remember: to see the Menu, hover your mouse above the bar at the top of the screen

(b) Rename the copied file to copy.txt using one of the following methods:

• Right-click on the copied file, select “Rename. . . ” and enter copy.txt.

• Click on the file, press the F2 key, and enter copy.txt.

(c) Create a folder new using one of the following methods:

• Right-click on an open area of the file browser window, select “New Folder”, and naming it new

• Select “New Folder” from the “File” menu, and naming it new

(d) Move the file copy.txt into the new folder by dragging the file into the new folder.

(e) Copy the file test.txt by holding down the Control key while dragging the file into the new folder.

(f) Navigate into the new folder, and delete the test.txt folder by clicking on the file, and pressing the delete
key.

/# The Linux Terminal

In this exercise, we will familiarize ourselves with the Linux terminal.

2.2. Linux Fundamentals 11

The-Linux-Terminal.md

Industrial Training

2.2.3 Starting the Terminal

1. To open the terminal, click on the terminal icon:

2. Create a second terminal window, either by:

• Right-clicking on the terminal and selecting the “Open Terminal” or

• Selecting “Open Terminal” from the “File” menu

3. Create a second terminal within the same window by pressing “Ctrl+Shift+T” while the terminal window is
selected.

4. Close the 2nd terminal tab, either by:

• clicking the small ‘x’ in the terminal tab (not the main terminal window)

• typing exit and hitting enter.

5. The window will have a single line, which looks like this:

ros-industrial@ros-i-kinetic-vm:~$

6. This is called the prompt, where you enter commands. The prompt, by default, provides three pieces of infor-
mation:

(a) ros-industrial is the login name of the user you are running as.

(b) ros-i-kinetic-vm is the host name of the computer.

(c) ~ is the directory in which the terminal is currently in. (More on this later).

7. Close the terminal window by typing exit or clicking on the red ‘x’ in the window’s titlebar.

2.2.4 Navigating Directories and Listing Files

Prepare your environment

1. Open your home folder in the file browser.

2. Double-click on the ex0.3 folder we created in the previous step.

• We’ll use this to illustrate various file operations in the terminal.

3. Right click in the main file-browser window and select “Open in Terminal” to create a terminal window at that
location.

4. In the terminal window, type the following command to create some sample files that we can study later:

• cp -a ~/industrial_training/exercises/0.3/. .

12 Chapter 2. Prerequisites

Industrial Training

ls Command

1. Enter ls into the terminal.

• You should see test.txt, and new listed. (If you don’t see ‘new’, go back and complete the previous
exercise).

• Directories, like new, are colored in blue.

• The file sample_job is in green; this indicates it has its “execute” bit set, which means it can be executed
as a command.

2. Type ls *.txt. Only the file test.txt will be displayed.

3. Enter ls -l into the terminal.

• Adding the -l option shows one entry per line, with additional information about each entry in the direc-
tory.

• The first 10 characters indicate the file type and permissions

• The first character is d if the entry is a directory.

• The next 9 characters are the permissions bits for the file

• The third and fourth fields are the owning user and group, respectively.

• The second-to-last field is the time the file was last modified.

• If the file is a symbolic link, the link’s target file is listed after the link’s file name.

4. Enter ls -a in the terminal.

• You will now see one additional file, which is hidden.

5. Enter ls -a -l (or ls -al) in the command.

• You’ll now see that the file hidden_link.txt points to .hidden_text_file.txt.

pwd and cd Commands

1. Enter pwd into the terminal.

• This will show you the full path of the directory you are working in.

2. Enter cd new into the terminal.

• The prompt should change to ros-industrial@ros-i-kinetic-vm:~/ex0.3/new$.

• Typing pwd will show you now in the directory /home/ros-industrial/ex0.3/new.

3. Enter cd .. into the terminal. * In the previous exercise, we noted that .. is the parent folder. * The prompt
should therefore indicate that the current working directory is /home/ros-industrial/ex0.3.

4. Enter cd /bin, followed by ls.

• This folder contains a list of the most basic Linux commands. Note that pwd and ls are both in this folder.

5. Enter cd ~/ex0.3 to return to our working directory.

• Linux uses the ~ character as a shorthand representation for your home directory.

• It’s a convenient way to reference files and paths in command-line commands.

• You’ll be typing it a lot in this class. . . remember it!

2.2. Linux Fundamentals 13

Exploring-the-Linux-File-System.md
Exploring-the-Linux-File-System.md
Exploring-the-Linux-File-System.md

Industrial Training

If you want a full list of options available for any of the commands given in this section, type man <command>
(where <command> is the command you want information on) in the command line. This will provide you with
built-in documentation for the command. Use the arrow and page up/down keys to scroll, and q to exit.

2.2.5 Altering Files

mv Command

1. Type mv test.txt test2.txt, followed by ls.

• You will notice that the file has been renamed to test2.txt. This step shows how mv can rename files.

2. Type mv test2.txt new, then ls.

• The file will no longer be present in the folder.

3. Type cd new, then ls.

• You will see test2.txt in the folder. These steps show how mv can move files.

4. Type mv test2.txt ../test.txt, then ls.

• test2.txt will no longer be there.

5. Type cd .., then ls.

• You will notice that test.txt is present again. This shows how mv can move and rename files in one
step.

cp Command

1. Type cp test.txt new/test2.txt, then ls new.

• You will see test2.txt is now in the new folder.

2. Type cp test.txt "test copy.txt", then ls -l.

• You will see that test.txt has been copied to test copy.txt. Note that the quotation marks are
necessary when spaces or other special characters are included in the file name.

rm Command

1. Type rm "test copy.txt", then ls -l.

• You will notice that test copy.txt is no longer there.

mkdir Command

1. Type mkdir new2, then ls.

• You will see there is a new folder new2.

You can use the -i flag with cp, mv, and rm commands to prompt you when a file will be overwritten or removed.

14 Chapter 2. Prerequisites

Industrial Training

2.2.6 Job management

Stopping Jobs

1. Type ./sample_job.

• The program will start running.

2. Press Control+C.

• The program should exit.

3. Type ./sample_job sigterm.

• The program will start running.

4. Press Control+C.

• This time the program will not die.

Stopping “Out of Control” Jobs

1. Open a new terminal window.

2. Type ps ax.

3. Scroll up until you find python ./sample_job sigterm.

• This is the job that is running in the first window.

• The first field in the table is the ID of the process (use man ps to learn more about the other fields).

4. Type ps ax | grep sample.

• You will notice that only a few lines are returned.

• This is useful if you want to find a particular process

• Note: this is an advanced technique called “piping”, where the output of one program is passed into the
input of the next. This is beyond the scope of this class, but is useful to learn if you intend to use the
terminal extensively.

5. Type kill <id>, where <id> is the job number you found with the ps ax.

6. In the first window, type ./sample_job sigterm sigkill.

• The program will start running.

7. In the second window, type ps ax | grep sample to get the id of the process.

8. Type kill <id>.

• This time, the process will not die.

9. Type kill -SIGKILL <id>.

• This time the process will exit.

Showing Process and Memory usage

1. In a terminal, type top.

• A table will be shown, updated once per second, showing all of the processes on the system, as well as the
overall CPU and memory usage.

2.2. Linux Fundamentals 15

Industrial Training

2. Press the Shift+P key.

• This will sort processes by CPU utilization. This can be used to determine which processes are using too
much CPU time.

3. Press the Shift+M key.

• This will sort processes by memory utilization This can be used to determine which processes are using
too much memory.

4. Press q or Ctrl+C to exit the program.

Editing Text (and Other GUI Commands)

1. Type gedit test.txt.

• You will notice that a new text editor window will open, and test.txt will be loaded.

• The terminal will not come back with a prompt until the window is closed.

2. There are two ways around this limitation. Try both. . .

3. Starting the program and immediately returning a prompt:

(a) Type gedit test.txt &.

• The & character tells the terminal to run this command in “the background”, meaning the prompt will
return immediately.

(b) Close the window, then type ls.

• In addition to showing the files, the terminal will notify you that gedit has finished.

4. Moving an already running program into the background:

(a) Type gedit test.txt.

• The window should open, and the terminal should not have a prompt waiting.

(b) In the terminal window, press Ctrl+Z.

• The terminal will indicate that gedit has stopped, and a prompt will appear.

(c) Try to use the gedit window.

• Because it is paused, the window will not run.

(d) Type bg in the terminal.

• The gedit window can now run.

(e) Close the gedit window, and type ls in the terminal window.

• As before, the terminal window will indicate that gedit is finished.

Running Commands as Root

1. In a terminal, type ls -a /root.

• The terminal will indicate that you cannot read the folder /root.

• Many times you will need to run a command that cannot be done as an ordinary user, and must be done as
the “super user”

2. To run the previous command as root, add sudo to the beginning of the command.

16 Chapter 2. Prerequisites

Industrial Training

• In this instance, type sudo ls -a /root instead.

• The terminal will request your password (in this case, rosindustrial) in order to proceed.

• Once you enter the password, you should see the contents of the /root directory.

Warning: sudo is a powerful tool which doesn’t provide any sanity checks on what you ask it to do, so be VERY
careful in using it.

2.2. Linux Fundamentals 17

Industrial Training

18 Chapter 2. Prerequisites

CHAPTER 3

Basic Topics

3.1 Session 1 - ROS Concepts and Fundamentals

Slides

3.1.1 ROS-Setup

In this exercise, we will setup ROS to be used from the terminal, and start roscore

Motivation

In order to start programming in ROS, you should know how to install ROS on a new machine as well and check
that the installation worked properly. This module will walk you through a few simple checks of your installed ROS
system. Assuming you are working from the VM, you can skip any installation instructions as ROS is already installed.

Reference Example

Configuring ROS

Further Information and Resources

Installation Instructions

Navigating ROS

Scan-N-Plan Application: Problem Statement

We believe we have a good installation of ROS but let’s test it to make sure.

19

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/kinetic/Installation/Ubuntu
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem

Industrial Training

Scan-N-Plan Application: Guidance

Setup ~/.bashrc

1. If you are ever having problems finding or using your ROS packages make sure that you have your envi-
ronment properly setup. A good way to check is to ensure that environment variables like ROS_ROOT and
ROS_PACKAGE_PATH are set:

printenv | grep ROS

2. If they are not then you might need to ‘source’ some setup.*sh files.

source /opt/ros/kinetic/setup.bash

3. In a “bare” ROS install, you will need to run this command on every new shell you open to have access to the
ROS commands. One of the setup steps in a typical ROS install is to add that command to the end of your
~/.bashrc file, which is run automatically in every new terminal window. Check that your .bashrc file has
already been configured to source the ROS-kinetic setup.bash script:

tail ~/.bashrc

This process allows you to install several ROS distributions (e.g. indigo and kinetic) on the same computer and switch
between them by sourcing the distribution-specific setup.bash file.

Starting roscore

1. roscore is a collection of nodes and programs that are pre-requisites of a ROS-based system. You must have a
roscore running in order for ROS nodes to communicate. It is launched using the roscore command.

roscore

roscore will start up:

• a ROS Master

• a ROS Parameter Server

• a rosout logging node

You will see ending with started core service [/rosout]. If you see roscore: command
not found then you have not sourced your environment, please refer to section 5.1. .bashrc Setup.

2. To view the logging node, open a new terminal and enter:

rosnode list

The logging node is named /rosout

3. Press Ctrl+C in the first terminal window to stop roscore. Ctrl-C is the typical method used to stop most ROS
commands.

3.1.2 Create Catkin Workspace

In this exercise, we will create a ROS catkin workspace.

20 Chapter 3. Basic Topics

Industrial Training

Motivation

Any ROS project begins with making a workspace. In this workspace, you will put all the things related to this
particular project. In this module we will create the workspace where we will build the components of our Scan-N-
Plan application.

Reference Example

Steps to creating a workspace: Creating a Catkin Workspace

Note: Many current examples on ros.org use the older-style catkin_init_workspace commands. These are
similar, but not directly interchangeable with the catkin_tools commands used in this course.

Further Information and Resources

Using a Catkin Workspace: Using a Workspace

Scan-N-Plan Application: Problem Statement

We have a good installation of ROS, and we need to take the first step to setting up our particular application. Your
goal is to create a workspace - a catkin workspace - for your application and its supplements.

Scan-N-Plan Application: Guidance

Create a Catkin Workspace

1. Create the root workspace directory (we’ll use catkin_ws)

cd ~/
mkdir --parents catkin_ws/src
cd catkin_ws

2. Initialize the catkin workspace

catkin init

• Look for the statement “Workspace configuration appears valid”, showing that your catkin workspace was
created successfully. If you forgot to create the src directory, or did not run catkin init from the
workspace root (both common mistakes), you’ll get an error message like “WARNING: Source space does
not yet exist”.

3. Build the workspace. This command may be issued anywhere under the workspace root-directory (i.e.
catkin_ws).

catkin build
ls

• See that the catkin_ws directory now contains additional directories (build, devel, logs).

4. These new directories can be safely deleted at any time (either manually, or using catkin clean). Note that
catkin never changes any files in the src directory. Re-run catkin build to re-create the build/devel/logs
directories.

3.1. Session 1 - ROS Concepts and Fundamentals 21

http://wiki.ros.org/catkin/Tutorials/create_a_workspace
http://wiki.ros.org/catkin/Tutorials/using_a_workspace

Industrial Training

catkin clean
ls
catkin build
ls

5. Make the workspace visible to ROS. Source the setup file in the devel directory.

source devel/setup.bash

• This file MUST be sourced for every new terminal.

• To save typing, add this to your ~/.bashrc file, so it is automatically sourced for each new terminal:

(a) gedit ~/.bashrc

(b) add to the end: source ~/catkin_ws/devel/setup.bash

(c) save and close the editor

3.1.3 Installing Packages

Motivation

Many of the coolest and most useful capabilities of ROS already exist somewhere in its community. Often, stable
resources exist as easily downloadable debian packages. Alternately, some resources are less tested or more “cutting
edge” and have not reached a stable release state; you can still access many of these resources by downloading them
from their repository (usually housed on Github). Getting these git packages takes a few more steps than the debian
packages. In this module we will access both types of packages and install them on our system.

Reference Example

apt-get usage

Further Information and Resources

Ubuntu apt-get How To

Git Get Repo

Git Clone Documentation

Scan-N-Plan Application: Problem Statement

We have a good installation of ROS, and we have an idea of some packages that exist in ROS that we would like to use
within our program. We have found a package which is stable and has a debian package we can download. We’ve also
found a less stable git package that we are interested in. Go out into the ROS world and download these packages!

1. A certain message type exists which you want to use. The stable ROS package is called: calibration_msgs

2. You are using an AR tag, but for testing purposes you would like a node to publish similar info :
fake_ar_publisher

Your goal is to have access to both of these packages’ resources within your package/workspace:

1. calibration_msgs (using apt-get)

22 Chapter 3. Basic Topics

http://www.tecmint.com/useful-basic-commands-of-apt-get-and-apt-cache-for-package-management/
https://help.ubuntu.com/community/AptGet/Howto
https://git-scm.com/book/en/v2/Git-Basics-Getting-a-Git-Repository
https://git-scm.com/docs/git-clone

Industrial Training

2. fake_ar_publisher (from git)

Scan-N-Plan Application: Guidance

Install Package from apt Repository

1. Open a terminal window. Type roscd calibration_msgs.

roscd calibration_msgs

• This command changes the working directory to the directory of the ROS calibration_msgs package.

• You should see an error message ‘No such package/stack ‘calibration_msgs’ .

• This package is not installed on the system, so we will install it.

2. Type apt install ros-kinetic-calibration-msgs.

apt install ros-kinetic-calibration-msgs

• The program will say it cannot install the package, and suggests that we must run the program as root.

• Try pressing the TAB key while typing the package name.

– The system will try to automatically complete the package name, if possible.

– Frequent use of the TAB key will help speed up entry of many typed commands.

3. Type sudo apt install ros-kinetic-calibration-msgs.

sudo apt install ros-kinetic-calibration-msgs

• Note the use of the sudo command to run a command with “root” (administrator) privileges.

• Enter your password, and (if asked) confirm you wish to install the program.

4. Type roscd calibration_msgs again.

roscd calibration_msgs

• This time, you will see the working directory change to /opt/ros/kinetic/share/calibration_msgs.

5. Type sudo apt remove ros-kinetic-calibration-msgs to remove the package.

sudo apt remove ros-kinetic-calibration-msgs

• Don’t worry. We won’t be needing this package for any future exercises, so it’s safe to remove.

6. Type cd ~ to return to your home directory.

cd ~

Download and Build a Package from Source

1. Identify the source repository for the desired package:

(a) Go to github.

(b) Search for fake_ar_publisher.

3.1. Session 1 - ROS Concepts and Fundamentals 23

http://github.com/search

Industrial Training

(c) Click on this repository, and look to the right for the Clone or Download, then copy to clipboard.

2. Clone the fake_ar_publisher repository into the catkin workspace’s src directory.

cd ~/catkin_ws/src
git clone https://github.com/jmeyer1292/fake_ar_publisher.git

• Use Ctrl-Shift-V to paste within the terminal, or use your mouse to right-click and select paste

• Git commands are outside of the scope of this class, but there are good tutorials available here

3. Build the new package using catkin build The build command can be issued from anywhere inside the
catkin workspace

4. Once the build completes, notice the instruction to “re-source setup files to use them”.

• In the previous exercise, we added a line to our ~/.bashrc file to automatically re-source the catkin
setup files in each new terminal.

• This is sufficient for most development activities, but you may sometimes need to re-execute the source
command in your current terminal (e.g. when adding new packages):

source ~/catkin_ws/devel/setup.bash

5. Once the build completes, explore the build and devel directories to see what files were created.

6. Run rospack find fake_ar_publisher to verify the new packages are visible to ROS.

rospack find fake_ar_publisher

• This is a helpful command to troubleshoot problems with a ROS workspace.

• If ROS can’t find your package, try re-building the workspace and then re-sourcing the workspace’s
setup.bash file.

3.1.4 Creating Packages and Nodes

In this exercise, we will create our own ROS package and node.

Motivation

The basis of ROS communication is that multiple executables called nodes are running in an environment and com-
municating with each other in various ways. These nodes exist within a structure called a package. In this module we
will create a node inside a newly created package.

Reference Example

Create a Package

Further Information and Resources

Building Packages

Understanding Nodes

24 Chapter 3. Basic Topics

https://github.com/jmeyer1292/fake_ar_publisher.git
https://help.github.com/articles/git-and-github-learning-resources/
http://wiki.ros.org/ROS/Tutorials/CreatingPackage
http://wiki.ros.org/ROS/Tutorials/BuildingPackages
http://wiki.ros.org/ROS/Tutorials/UnderstandingNodes

Industrial Training

Scan-N-Plan Application: Problem Statement

We’ve installed ROS, created a workspace, and even built a few times. Now we want to create our own package and
our own node to do what we want to do.

Your goal is to create your first ROS node:

1. First you need to create a package inside your catkin workspace.

2. Then you can write your own node

Scan-N-Plan Application: Guidance

Create a Package

1. cd into the catkin workspace src directory Note: Remember that all packages should be created inside a
workspace src directory.

cd ~/catkin_ws/src

2. Use the ROS command to create a package called myworkcell_core with a dependency on roscpp

catkin create pkg myworkcell_core --catkin-deps roscpp

See the catkin_tools documentation for more details on this command.

• This command creates a directory and required files for a new ROS package.

• The first argument is the name of the new ROS package.

• Use --catkin-deps to specify packages which the newly created package depends on.

3. There will now be a folder named myworkcell_core. Change into that folder and edit the package.xml file. Edit
the file and change the description, author, etc., as desired.

cd myworkcell_core
gedit package.xml

If you forget to add a dependency when creating a package, you can add additional dependencies in the pack-
age.xml file.

STOP! We’ll go through a few more lecture slides before continuing this exercise.

Create a Node

1. In the package folder, edit the CMakeLists.txt file using gedit. Browse through the example rules, and add
an executable(add_executable), node named vision_node, source file named vision_node.cpp. Also within the
CMakeLists.txt, make sure your new vision_node gets linked (‘target_link_libraries’) to the catkin libraries.

add_compile_options(-std=c++11)
add_executable(vision_node src/vision_node.cpp)
target_link_libraries(vision_node ${catkin_LIBRARIES})

These lines can be placed anywhere in CMakeLists.txt, but I typically:

• Uncomment existing template examples for add_compile_options near the top (just below
project())

3.1. Session 1 - ROS Concepts and Fundamentals 25

https://catkin-tools.readthedocs.io/en/latest/verbs/catkin_create.html

Industrial Training

• Uncomment and edit existing template examples for add_executable and
target_link_libraries near the bottom

• This helps make sure these rules are defined in the correct order, and makes it easy to remember the proper
syntax.

Note: You’re also allowed to spread most of the CMakeLists rules across multiple lines, as shown in the
target_link_libraries template code

2. In the package folder, create the file src/vision_node.cpp (using gedit).

3. Add the ros header (include ros.h).

/**
** Simple ROS Node

**/
#include <ros/ros.h>

4. Add a main function (typical in c++ programs).

/**
** Simple ROS Node

**/
#include <ros/ros.h>

int main(int argc, char* argv[])
{

}

5. Initialize your ROS node (within the main).

/**
** Simple ROS Node

**/
#include <ros/ros.h>

int main(int argc, char* argv[])
{
// This must be called before anything else ROS-related
ros::init(argc, argv, "vision_node");

}

6. Create a ROS node handle.

/**
** Simple ROS Node

**/
#include <ros/ros.h>

int main(int argc, char* argv[])
{
// This must be called before anything else ROS-related
ros::init(argc, argv, "vision_node");

// Create a ROS node handle
ros::NodeHandle nh;

}

7. Print a “Hello World” message using ROS print tools.

26 Chapter 3. Basic Topics

Industrial Training

/**
** Simple ROS Node

**/
#include <ros/ros.h>

int main(int argc, char* argv[])
{
// This must be called before anything else ROS-related
ros::init(argc, argv, "vision_node");

// Create a ROS node handle
ros::NodeHandle nh;

ROS_INFO("Hello, World!");
}

8. Do not exit the program automatically - keep the node alive.

/**
** Simple ROS Node

**/
#include <ros/ros.h>

int main(int argc, char* argv[])
{
// This must be called before anything else ROS-related
ros::init(argc, argv, "vision_node");

// Create a ROS node handle
ros::NodeHandle nh;

ROS_INFO("Hello, World!");

// Don't exit the program.
ros::spin();

}

ROS_INFO is one of the many logging methods.

• It will print the message to the terminal output, and send it to the /rosout topic for other nodes to monitor.

• There are 5 levels of logging: DEBUG, INFO, WARNING, ERROR, & FATAL.

• To use a different logging level, replace INFO in ROS_INFO or ROS_INFO_STREAM with the appropriate
level.

• Use ROS_INFO for printf-style logging, and ROS_INFO_STREAM for cout-style logging.

9. Build your program (node), by running catkin build in a terminal window

• Remember that you must run catkin build from within your catkin_ws (or any subdirectory)

• This will build all of the programs, libraries, etc. in myworkcell_core

• In this case, it’s just a single ROS node vision_node

Run a Node

1. Open a terminal and start the ROS master.

3.1. Session 1 - ROS Concepts and Fundamentals 27

http://wiki.ros.org/roscpp/Overview/Logging

Industrial Training

roscore

The ROS Master must be running before any ROS nodes can function.

2. Open a second terminal to run your node.

• In a previous exercise, we added a line to our .bashrc to automatically source devel/setup.bash
in new terminal windows

• This will automatically export the results of the build into your new terminal session.

• If you’re reusing an existing terminal, you’ll need to manually source the setup files (since we added a new
node):

source ~/catkin_ws/devel/setup.bash

3. Run your node.

rosrun myworkcell_core vision_node

This runs the program we just created. Remember to use TAB to help speed-up typing and reduce errors.

4. In a third terminal, check what nodes are running.

rosnode list

In addition to the /rosout node, you should now see a new /vision_node listed.

5. Enter rosnode kill /vision_node. This will stop the node.

Note: It is more common to use Ctrl+C to stop a running node in the current terminal window.

Challenge

Goal: Modify the node so that it prints your name. This will require you to run through the build process again.

3.1.5 Topics and Messages

In this exercise, we will explore the concept of ROS messages and topics.

Motivation

The first type of ROS communication that we will explore is a one-way communication called messages which are
sent over channels called topics. Typically one node publishes messages on a topic and another node subscribes to
messages on that same topic. In this module we will create a subscriber node which subscribes to an existing publisher
(topic/message).

Reference Example

Create a Subscriber

28 Chapter 3. Basic Topics

http://wiki.ros.org/ROS/Tutorials/WritingPublisherSubscriber%28c%2B%2B%29

Industrial Training

Further Information and Resources

Understanding Topics

Examining Publisher & Subscriber

Creating Messages and Services

Scan-N-Plan Application: Problem Statement

We now have a base ROS node and we want to build on this node. Now we want to create a subscriber within our
node.

Your goal is to create your first ROS subscriber:

1. First you will want to find out the message structure.

2. You also want to determine the topic name.

3. Last you can write the c++ code which serves as the subscriber.

Scan-N-Plan Application: Guidance

Add the fake_ar_publisher Package as a Dependency

1. Locate the fake_ar_publisher package you downloaded earlier.

rospack find fake_ar_publisher

2. Edit your package’s CMakeLists.txt file (~/catkin_ws/src/myworkcell_core/CMakeLists.
txt). Make the following changes in the matching sections of the existing template file, by uncommenting
and/or editing existing rules.

(a) Tell cmake to find the fake_ar_publisher package:

Find catkin macros and libraries
if COMPONENTS list like find_package(catkin REQUIRED COMPONENTS xyz)
is used, also find other catkin packages
find_package(catkin REQUIRED COMPONENTS

roscpp
fake_ar_publisher

)

(b) Add The catkin runtime dependency for publisher.

The catkin_package macro generates cmake config files for your package
Declare things to be passed to dependent projects
LIBRARIES: libraries you create in this project that dependent projects
→˓also need
CATKIN_DEPENDS: catkin_packages dependent projects also need
DEPENDS: system dependencies of this project that dependent projects also
→˓need
catkin_package(
INCLUDE_DIRS include
LIBRARIES myworkcell_core
CATKIN_DEPENDS
roscpp

(continues on next page)

3.1. Session 1 - ROS Concepts and Fundamentals 29

http://wiki.ros.org/ROS/Tutorials/UnderstandingTopics
http://wiki.ros.org/ROS/Tutorials/ExaminingPublisherSubscriber
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv

Industrial Training

(continued from previous page)

fake_ar_publisher
DEPENDS system_lib
)

(c) Uncomment/edit the add_dependencies line below your add_executable rule:

add_dependencies(vision_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_
→˓EXPORTED_TARGETS})

3. add dependencies into your package’s package.xml:

<depend>fake_ar_publisher</depend>

4. cd into your catkin workspace

cd ~/catkin_ws

5. Build your package and source the setup file to activate the changes in the current terminal.

catkin build
source ~/catkin_ws/devel/setup.bash

6. In a terminal, enter rosmsg list. You will notice that, included in the list, is fake_ar_publisher/
ARMarker. If you want to see only the messages in a package, type rosmsg package <package_name>

7. Type rosmsg show fake_ar_publisher/ARMarker. The terminal will return the types and names of
the fields in the message.

Note that three fields under the header field are indented, indicating that these are members of the
std_msgs/Header message type

Run a Publisher Node

1. In a terminal, type rosrun fake_ar_publisher fake_ar_publisher_node. You should see the
program start up and begin publishing messages.

2. In another terminal, enter rostopic list. You should see /ar_pose_marker among the topics listed.
Entering rostopic type /ar_pose_marker will return the type of the message.

3. Enter rostopic echo /ar_pose_marker. The terminal will show the fields for each message as they
come in, separated by a --- line. Press Ctrl+C to exit.

4. Enter rqt_plot.

(a) Once the window opens, type /ar_pose_marker/pose/pose/position/x in the “Topic:” field
and click the “+” button. You should see the X value be plotted.

(b) Type /ar_pose_marker/pose/pose/position/y in the topic field, and click on the add button.
You will now see both the x and y values being graphed.

(c) Close the window

5. Leave the publisher node running for the next task.

Create a Subscriber Node

1. Edit the vision_node.cpp file.

30 Chapter 3. Basic Topics

Industrial Training

2. Include the message type as a header

#include <fake_ar_publisher/ARMarker.h>

3. Add the code that will be run when a message is received from the topic (the callback).

class Localizer
{
public:
Localizer(ros::NodeHandle& nh)
{

ar_sub_ = nh.subscribe<fake_ar_publisher::ARMarker>("ar_pose_marker", 1,
&Localizer::visionCallback, this);

}

void visionCallback(const fake_ar_publisher::ARMarkerConstPtr& msg)
{

last_msg_ = msg;
ROS_INFO_STREAM(last_msg_->pose.pose);

}

ros::Subscriber ar_sub_;
fake_ar_publisher::ARMarkerConstPtr last_msg_;

};

4. Add the code that will connect the callback to the topic (within main())

int main(int argc, char** argv)
{
...
// The Localizer class provides this node's ROS interfaces
Localizer localizer(nh);

ROS_INFO("Vision node starting");
...

}

• You can replace or leave the “Hello World” print. . . your choice!

• These new lines must go below the NodeHandle declaration, so nh is actually defined.

• Make sure to retain the ros::spin() call. It will typically be the last line in your main routine. Code
after ros::spin() won’t run until the node is shutting down.

5. Run catkin build, then rosrun myworkcell_core vision_node.

6. You should see the positions display from the publisher.

7. Press Ctrl+C on the publisher node. The subscriber will stop displaying information.

8. Start the publisher node again. The subscriber will continue to print messages as the new program runs.

• This is a key capability of ROS, to be able to restart individual nodes without affecting the overall system.

9. In a new terminal, type rqt_graph. You should see a window similar to the one below:

• The rectangles in the the window show the topics currently available on the system.

• The ovals are ROS nodes.

• Arrows leaving the node indicate the topics the node publishes, and arrows entering the node indicate the topics
the node subscribes to.

3.1. Session 1 - ROS Concepts and Fundamentals 31

Industrial Training

3.2 Session 2 - Basic ROS Applications

Slides

3.2.1 Services

In this exercise, we will create a custom service by defining a .srv file. Then we will write server and
client nodes to utilize this service.

Motivation

The first type of ROS communication that we explored was a one-way interaction called messages which are sent over
channels called topics. Now we are going to explore a different communication type, which is a two-way interaction
via a request from one node to another and a response from that node to the first. In this module we will create a service
server (waits for request and comes up with response) and client (makes request for info then waits for response).

Reference Example

Create a Service Server/Client

Further Information and Resources

• Creating Messages & Services

• Understanding Services & Params

• Examining Service Client

Scan-N-Plan Application: Problem Statement

We now have a base ROS node which is subscribing to some information and we want to build on this node. In
addition we want this node to serve as a sub-function to another “main” node. The original vision node will now be
responsible for subscribing to the AR information and responding to requests from the main workcell node.

Your goal is to create a more intricate system of nodes:

1. Update the vision node to include a service server

2. Create a new node which will eventually run the Scan-N-Plan App

• First, we’ll create the new node (myworkcell_core) as a service client. Later, we will expand from there

Scan-N-Plan Application: Guidance

Create Service Definition

1. Similar to the message file located in the fake_ar_publisher package, we need to create a service file. The
following is a generic structure of a service file:

#request

#response

32 Chapter 3. Basic Topics

http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28c%2B%2B%29
http://wiki.ros.org/ROS/Tutorials/CreatingMsgAndSrv
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://wiki.ros.org/ROS/Tutorials/ExaminingServiceClient

Industrial Training

2. Create a folder called srv inside your myworkcell_core package (at same level as the package’s src
folder)

cd ~/catkin_ws/src/myworkcell_core
mkdir srv

3. Create a file (gedit or QT) called LocalizePart.srv inside the srv folder.

4. Inside the file, define the service as outlined above with a request of type string named base_frame and a
response of type geometry_msgs/Pose named pose:

#request
string base_frame

#response
geometry_msgs/Pose pose

5. Edit the package’s CMakeLists.txt and package.xml to add dependencies on key packages:

• message_generation is required to build C++ code from the .srv file created in the previous step

• message_runtime provides runtime dependencies for new messages

• geometry_msgs provides the Pose message type used in our service definition

(a) Edit the package’s CMakeLists.txt file to add the new build-time dependencies to the existing
find_package rule:

find_package(catkin REQUIRED COMPONENTS
roscpp
fake_ar_publisher
geometry_msgs
message_generation

)

(b) Also in CMakeLists.txt, add the new run-time dependencies to the existing catkin_package
rule:

catkin_package(
INCLUDE_DIRS include
LIBRARIES myworkcell_node

CATKIN_DEPENDS
roscpp
fake_ar_publisher
message_runtime
geometry_msgs

DEPENDS system_lib
)

(c) Edit the package.xml file to add the appropriate build/run dependencies:

<build_depend>message_generation</build_depend>
<exec_depend>message_runtime</exec_depend>
<depend>geometry_msgs</depend>

6. Edit the package’s CMakeLists.txt to add rules to generate the new service files:

(a) Uncomment/edit the following CMakeLists.txt rule to reference the LocalizePart service we
defined earlier:

3.2. Session 2 - Basic ROS Applications 33

Industrial Training

Generate services in the 'srv' folder
add_service_files(

FILES
LocalizePart.srv

)

(b) Uncomment/edit the following CMakeLists.txt rule to enable generation of messages and services:

Generate added messages and services with any dependencies listed here
generate_messages(

DEPENDENCIES
geometry_msgs

)

7. NOW! you have a service defined in you package and you can attempt to Build the code to generate the service:

catkin build

Note: (or use Qt!)

Service Server

1. Edit vision_node.cpp; remember that the ros wiki is a resource.

2. Add the header for the service we just created

#include <myworkcell_core/LocalizePart.h>

3. Add a member variable (type: ServiceServer, name: server_), near the other Localizer class mem-
ber variables:

ros::ServiceServer server_;

4. In the Localizer class constructor, advertise your service to the ROS master:

server_ = nh.advertiseService("localize_part", &Localizer::localizePart, this);

5. The advertiseService command above referenced a service callback named localizePart. Cre-
ate an empty boolean function with this name in the Localizer class. Remember that your request and
response types were defined in the LocalizePart.srv file. The arguments to the boolean function are
the request and response type, with the general structure of Package::ServiceName::Request or
Package::ServiceName::Response.

bool localizePart(myworkcell_core::LocalizePart::Request& req,
myworkcell_core::LocalizePart::Response& res)

{

}

6. Now add code to the localizePart callback function to fill in the Service Response. Eventually, this call-
back will transform the pose received from the fake_ar_publisher (in visionCallback) into the
frame specifed in the Service Request. For now, we will skip the frame-transform, and just pass through the data
received from fake_ar_publisher. Copy the pose measurement received from fake_ar_publisher
(saved to last_msg_) directly to the Service Response.

34 Chapter 3. Basic Topics

http://wiki.ros.org/ROS/Tutorials/WritingServiceClient%28c%2B%2B%29

Industrial Training

bool localizePart(myworkcell_core::LocalizePart::Request& req,
myworkcell_core::LocalizePart::Response& res)

{
// Read last message
fake_ar_publisher::ARMarkerConstPtr p = last_msg_;
if (!p) return false;

res.pose = p->pose.pose;
return true;

}

7. You should comment out the ROS_INFO_STREAM call in your visionCallback function, to avoid clutter-
ing the screen with useless info.

8. Build the updated vision_node, to make sure there are no compile errors.

Service Client

1. Create a new node (inside the same myworkcell_core package), named myworkcell_node.cpp. This
will eventually be our main “application node”, that controls the sequence of actions in our Scan & Plan
task. The first action we’ll implement is to request the position of the AR target from the Vision Node’s
LocalizePart service we created above.

2. Be sure to include the standard ros header as well as the header for the LocalizePart service:

#include <ros/ros.h>
#include <myworkcell_core/LocalizePart.h>

3. Create a standard C++ main function, with typical ROS node initialization:

int main(int argc, char **argv)
{
ros::init(argc, argv, "myworkcell_node");
ros::NodeHandle nh;

ROS_INFO("ScanNPlan node has been initialized");

ros::spin();
}

4. We will be using a cpp class “ScanNPlan” to contain most functionality of the myworkcell_node. Create a
skeleton structure of this class, with an empty constructor and a private area for some internal/private variables.

class ScanNPlan
{
public:
ScanNPlan(ros::NodeHandle& nh)
{

}

private:
// Planning components

};

3.2. Session 2 - Basic ROS Applications 35

Industrial Training

5. Within your new ScanNPlan class, define a ROS ServiceClient as a private member variable of the class. Ini-
tialize the ServiceClient in the ScanNPlan constructor, using the same service name as defined earlier (“local-
ize_part”). Create a void function within the ScanNPlan class named start, with no arguments. This will
contain most of our application workflow. For now, this function will call the LocalizePart service and
print the response.

class ScanNPlan
{
public:
ScanNPlan(ros::NodeHandle& nh)
{

vision_client_ = nh.serviceClient<myworkcell_core::LocalizePart>("localize_
→˓part");
}

void start()
{

ROS_INFO("Attempting to localize part");
// Localize the part
myworkcell_core::LocalizePart srv;
if (!vision_client_.call(srv))
{

ROS_ERROR("Could not localize part");
return;

}
ROS_INFO_STREAM("part localized: " << srv.response);

}

private:
// Planning components
ros::ServiceClient vision_client_;

};

6. Now back in myworkcell_node’s main function, instantiate an object of the ScanNPlan class and call
the object’s start function.

ScanNPlan app(nh);

ros::Duration(.5).sleep(); // wait for the class to initialize
app.start();

7. Edit the package’s CMakeLists.txt to build the new node (executable), with its associated dependencies.
Add the following rules to the appropriate sections, directly under the matching rules for vision_node:

add_executable(myworkcell_node src/myworkcell_node.cpp)

add_dependencies(myworkcell_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_
→˓EXPORTED_TARGETS})

target_link_libraries(myworkcell_node ${catkin_LIBRARIES})

8. Build the nodes to check for any compile-time errors:

catkin build

Note: (or use Qt!)

36 Chapter 3. Basic Topics

Industrial Training

Use New Service

1. Enter each of these commands in their own terminal:

roscore
rosrun fake_ar_publisher fake_ar_publisher_node
rosrun myworkcell_core vision_node
rosrun myworkcell_core myworkcell_node

3.2.2 Actions

This Exercise is not part of the standard ROS-I Training Class workflow. Follow the standard ROS tuto-
rials (linked below), for practice using ROS Actions.

ROS Tutorials for C++ Action Client/Server usage

• SimpleActionServer

• SimpleActionClient

3.2.3 Launch Files

In this exercise, we will explore starting groups of nodes at once with launch files.

Motivation

The ROS architecture encourages engineers to use ‘’nodes” as a fundamental unit of organization in their systems,
and applications can quickly grow to require many nodes to operate. Opening a new terminal and running each node
individually quickly becomes unfeasible. It’d be nice to have a tool to bring up groups of nodes at once. ROS ‘’launch”
files are one such tool. It even handles bringing roscore up and down for you.

Reference Example

Roslaunch Examples

Further Information and Resources

Roslaunch XML Specification

Debugging and Launch Files

Scan-N-Plan Application: Problem Statement

In this exercise, you will:

1. Create a new package, myworkcell_support.

2. Create a directory in this package called launch.

3.2. Session 2 - Basic ROS Applications 37

http://wiki.ros.org/actionlib_tutorials/Tutorials/SimpleActionServer%28ExecuteCallbackMethod%29
http://wiki.ros.org/actionlib_tutorials/Tutorials/SimpleActionClient
http://wiki.ros.org/roslaunch/XML#Example_.launch_XML_Config_Files
http://wiki.ros.org/roslaunch/XML
http://wiki.ros.org/roslaunch/Tutorials/Roslaunch%20Nodes%20in%20Valgrind%20or%20GDB

Industrial Training

3. Create a file inside this directory called workcell.launch that:

(a) Launches fake_ar_publisher

(b) Launches vision_node

You may also choose to launch myworkcell_core node with the others or keep it separate. We often configure
systems with two main launch files. In this example, fake_ar_publisher and vision_node are “environment
nodes”, while myworkcell_node is an “application” node.

1. “Environment” Launch File - driver/planning nodes, config data, etc.

2. “Application” Launch File - executes a sequence of actions for a particular application.

Scan-N-Plan Application: Guidance

1. In your workspace, create the new package myworkcell_support with a dependency on
myworkcell_core. Rebuild and source the workspace so that ROS can find the new package:

cd ~/catkin_ws/src
catkin create pkg myworkcell_support --catkin-deps myworkcell_core
catkin build
source ~/catkin_ws/devel/setup.bash

2. Create a directory for launch files (inside the new myworkcell_support package):

roscd myworkcell_support
mkdir launch

3. Create a new file, workcell.launch (inside the launch directory) with the following XML skeleton:

<launch>

</launch>

4. Insert lines to bring up the nodes outlined in the problem statement. See the reference documentation for more
information:

<node name="fake_ar_publisher" pkg="fake_ar_publisher" type="fake_ar_publisher_
→˓node" />
<node name="vision_node" pkg="myworkcell_core" type="vision_node" />

• Remember: All launch-file content must be between the <launch> ... </launch> tag pair.

5. Test the launch file:

roslaunch myworkcell_support workcell.launch

Note: roscore and both nodes were automatically started. Press Ctrl+C to close all nodes started by the launch
file. If no nodes are left running, roscore is also stopped.

6. Notice that none of the usual messages were printed to the console window. Launch files will suppress console
output below the ERROR severity level by default. To restore normal text output, add the output="screen"
attribute to each of the nodes in your launch files:

<node name="fake_ar_publisher" pkg="fake_ar_publisher" type="fake_ar_publisher_
→˓node" output="screen"/>
<node name="vision_node" pkg="myworkcell_core" type="vision_node" output="screen"
→˓/>

38 Chapter 3. Basic Topics

Industrial Training

3.2.4 Parameters

In this exercise, we will look at ROS Parameters for configuring nodes||

Motivation

By this point in these tutorials (or your career), you’ve probably typed the words int main(int argc, char**
argv) more times than you can count. The arguments to main are the means by which a system outside scope
and understanding of your program can configure your program to do a particular task. These are command line
parameters.

The ROS ecosystem has an analogous system for configuring entire groups of nodes. It’s a fancy key-value storage
program that gets brought up as part of roscore. It’s best used to pass configuration parameters to nodes individually
(e.g. to identify which camera a node should subscribe to), but it can be used for much more complicated items.

Reference Example

Understanding Parameters

Further Information and Resource

Roscpp tutorial

Private Parameters

Parameter Server

Scan-N-Plan Application: Problem Statement

In previous exercises, we added a service with the following definition:

request
string base_frame

response
geometry_msgs/Pose pose

So far we haven’t used the request field, base_frame, for anything. In this exercise we’ll use ROS parameters to set
this field. You will need to:

1. Add a private node handle to the main method of the myworkcell_node in addition to the normal one.

2. Use the private node handle to load the parameter base_frame and store it in a local string object.

• If no parameter is provided, default to the parameter to "world".

3. When making the service call to the vision_node, use this parameter to fill out the
request::base_frame field.

4. Add a <param> tag to your launch file to initialize the new value.

3.2. Session 2 - Basic ROS Applications 39

http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams#Using_rosparam
http://wiki.ros.org/roscpp_tutorials/Tutorials/Parameters
http://wiki.ros.org/roscpp_tutorials/Tutorials/AccessingPrivateNamesWithNodeHandle
http://wiki.ros.org/Parameter%20Server

Industrial Training

Scan-N-Plan Application: Guidance

1. Open up myworkcell_node.cpp for editing.

2. Add a new ros::NodeHandle object to the main function, and make it private through its parameters. For
more guidance, see the ros wiki on this subject.

ros::NodeHandle private_node_handle ("~");

3. Create a temporary string object, std::string base_frame;, and then use the private node handle’s API
to load the parameter "base_frame".

private_node_handle.param<std::string>("base_frame", base_frame, "world"); //
→˓parameter name, string object reference, default value

• base_frame parameter should be read after the private_node_handle is declared, but before
app.start() is called

4. Add a parameter to your myworkcell_node “start” function that accepts the base_frame argument, and
assign the value from the parameter into the service request. Make sure to update the app.start call in your
main() routine to pass through the base_frame value you read from the parameter server:

void start(const std::string& base_frame)
{
...
srv.request.base_frame = base_frame;
ROS_INFO_STREAM("Requesting pose in base frame: " << base_frame);
...

}

int main(...)
{
...
app.start(base_frame);
...

}

• srv.request should be set before passing it into the service call (vision_client.call(srv))

5. Now we’ll add myworkcell_node to the existing workcell.launch file, so we can set the
base_frame parameter from a launch file. We’d like the vision_node to return the position of the target
relative to the world frame, for motion-planning purposes. Even though that’s the default value, we’ll specify it
in the launch-file anyway:

<node name="myworkcell_node" pkg="myworkcell_core" type="myworkcell_node" output=
→˓"screen">
<param name="base_frame" value="world"/>

</node>

6. Try it out by running the system.

catkin build
roslaunch myworkcell_support workcell.launch

• Press Ctrl+C to kill the running nodes

• Edit the launch file to change the base_frame parameter value (e.g. to “test2”)

• Re-launch workcell.launch, and observe that the “request frame” has changed

40 Chapter 3. Basic Topics

http://wiki.ros.org/roscpp_tutorials/Tutorials/AccessingPrivateNamesWithNodeHandle
http://docs.ros.org/indigo/api/roscpp/html/classros_1_1NodeHandle.html

Industrial Training

– The response frame doesn’t change, because we haven’t updated vision_node (yet) to handle the
request frame. Vision_node always returns the same frame (for now).

• Set the base_frame back to “world”

3.3 Session 3 - Motion Control of Manipulators

Slides

3.3.1 Introduction to URDF

In this exercise, we will explore how to describe a robot in the URDF format.

Motivation

Many of the coolest and most useful capabilities of ROS and its community involve things like collision checking
and dynamic path planning. It’s frequently useful to have a code-independent, human-readable way to describe the
geometry of robots and their cells. Think of it like a textual CAD description: “part-one is 1 meter left of part-two
and has the following triangle-mesh for display purposes.” The Unified Robot Description Format (URDF) is the most
popular of these formats today. This module will walk you through creating a simple robot cell that we’ll expand upon
and use for practical purposes later.

Reference Example

Building a Visual Robot Model with URDF from Scratch

Further Information and Resources

• XML Specification

• ROS Tutorials

• XACRO Extensions

• SolidWorks to URDF Exporter

Scan-N-Plan Application: Problem Statement

We have the software skeleton of our Scan-N-Plan application, so let’s take the next step and add some physical
context. The geometry we describe in this exercise will be used to:

1. Perform collision checking

2. Understand robot kinematics

3. Perform transformation math Your goal is to describe a workcell that features:

4. An origin frame called world

5. A separate frame with “table” geometry (a flat rectangular prism)

6. A frame (geometry optional) called camera_frame that is oriented such that its Z axis is flipped relative to
the Z axis of world

3.3. Session 3 - Motion Control of Manipulators 41

http://wiki.ros.org/urdf/Tutorials/Building%20a%20Visual%20Robot%20Model%20with%20URDF%20from%20Scratch
http://wiki.ros.org/urdf/XML
http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/xacro
http://wiki.ros.org/sw_urdf_exporter

Industrial Training

Scan-N-Plan Application: Guidance

1. It’s customary to put describing files that aren’t code into their own “support” package. URDFs typically go into
their own subfolder ‘’urdf/’‘. See the abb_irb2400_support package. Add a urdf sub-folder to your application
support package.

2. Create a new workcell.urdf file inside the myworkcell_support/urdf/ folder and insert the fol-
lowing XML skeleton:

<?xml version="1.0" ?>
<robot name="myworkcell" xmlns:xacro="http://ros.org/wiki/xacro">
</robot>

3. Add the required links. See the irb2400_macro.xacro example from an ABB2400. Remember that all URDF
tags must be placed between the <robot> ... </robot> tags.

(a) Add the world frame as a “virtual link” (no geometry).

<link name="world"/>

(b) Add the table frame, and be sure to specify both collision & visual geometry tags. See the box type in
the XML specification.

<link name="table">
<visual>
<geometry>
<box size="1.0 1.0 0.05"/>

</geometry>
</visual>
<collision>
<geometry>
<box size="1.0 1.0 0.05"/>

</geometry>
</collision>

</link>

(c) Add the camera_frame frame as another virtual link (no geometry).

<link name="camera_frame"/>

(d) Connect your links with a pair of fixed joints Use an rpy tag in the world_to_camera joint to set its
orientation as described in the introduction.

<joint name="world_to_table" type="fixed">
<parent link="world"/>
<child link="table"/>
<origin xyz="0 0 0.5" rpy="0 0 0"/>

</joint>

<joint name="world_to_camera" type="fixed">
<parent link="world"/>
<child link="camera_frame"/>
<origin xyz="-0.25 -0.5 1.25" rpy="0 3.14159 0"/>

</joint>

(e) It helps to visualize your URDF as you add links, to verify things look as expected:

42 Chapter 3. Basic Topics

https://github.com/ros-industrial/abb/tree/kinetic/abb_irb2400_support
https://github.com/ros-industrial/abb/blob/84825661073a18e33b68bb01b5bf371edd2efd49/abb_irb2400_support/urdf/irb2400_macro.xacro#L54-L69

Industrial Training

roslaunch urdf_tutorial display.launch model:=<RELATIVE_PATH_TO_URDF>

If nothing shows up in Rviz, you may need to change the base frame in RVIZ (left panel at top) to the name of one of
the links in your model.

3.3.2 Workcell XACRO

In this exercise, we will create an XACRO file representing a simple robot workcell. This will demonstrate
both URDF and XACRO elements.

Motivation

Writing URDFs that involve more than just a few elements can quickly become a pain. Your file gets huge and
duplicate items in your workspace means copy-pasting a bunch of links and joints while having to change their names
just slightly. It’s really easy to make a mistake that may (or may not) be caught at startup. It’d be nice if we could take
some guidance from programming languages themselves: define a component once, then re-use it anywhere without
excessive duplication. Functions and classes do that for programs, and XACRO macros do that for URDFs. XACRO
has other cool features too, like a file include system (think #include), constant variables, math expression evaluation
(e.g., say PI/2.0 instead of 1.57), and more.

Reference Example

Cleaning Up URDF with XACRO Tutorial

Further Information and Resources

Xacro Extension Documentation

Creating a URDF for an Industrial Robot

Scan-N-Plan Application: Problem Statement

In the previous exercise we created a workcell consisting of only static geometry. In this exercise, we’ll add a UR5
robot assembly using XACRO tools.

Specifically, you will need to:

1. Convert the *.urdf file you created in the previous sample into a XACRO file with the xacro extension.

2. Include a file containing the xacro-macro definition of a UR5

3. Instantiate a UR5 in your workspace and connect it to the table link.

Scan-N-Plan Application: Guidance

1. Rename the workcell.urdf file from the previous exercise to workcell.xacro

2. Bring in the ur_description package into your ROS environment. You have a few options:

(a) You can install the debian packages: sudo apt install ros-kinetic-ur-description
ros-kinetic-ur-kinematics

(b) You can clone it from GitHub to your catkin workspace:

3.3. Session 3 - Motion Control of Manipulators 43

http://wiki.ros.org/urdf/Tutorials/Using%20Xacro%20to%20Clean%20Up%20a%20URDF%20File
http://wiki.ros.org/xacro
http://wiki.ros.org/Industrial/Tutorials/Create%20a%20URDF%20for%20an%20Industrial%20Robot
https://github.com/ros-industrial/universal_robot

Industrial Training

cd ~/catkin_ws/src
git clone https://github.com/ros-industrial/universal_robot.git
catkin build
source ~/catkin_ws/devel/setup.bash

It’s not uncommon for description packages to put each “module”, “part”, or “assembly” into its own
file. In many cases, a package will also define extra files that define a complete cell with the given
part so that we can easily visually inspect the result. The UR package defines such a file for the UR5
(ur5_robot.urdf.xacro): It’s a great example for this module.

3. Locate the xacro file that implements the UR5 macro and include it in your newly renamed workcell.xacro
file. Add this include line near the top of your workcell.xacro file, beneath the <robot> tag:

<xacro:include filename="$(find ur_description)/urdf/ur5.urdf.xacro" />

If you explore the UR5 definition file, or just about any other file that defines a Xacro macro, you’ll
find a lot of uses of ${prefix} in element names. Xacro evaluates anything inside a “${}” at
run-time. It can do basic math, and it can look up variables that come to it via properties (ala-global
variables) or macro parameters. Most macros will take a “prefix” parameter to allow a user to create
multiple instances of said macro. It’s the mechanism by which we can make the eventual URDF
element names unique, otherwise we’d get duplicate link names and URDF would complain.

4. Including the ur5.urdf.xacro file does not actually create a UR5 robot in our URDF model. It defines a
macro, but we still need to call the macro to create the robot links and joints. Note the use of the prefix tag,
as discussed above.

<xacro:ur5_robot prefix="" joint_limited="true"/>

Macros in Xacro are just fancy wrappers around copy-paste. You make a macro and it gets turned
into a chunk of links and joints. You still have to connect the rest of your world to that macro’s
results. This means you have to look at the macro and see what the base link is and what the end link
is. Hopefully your macro follows a standard, like the ROS-Industrial one, that says that base links
are named “base_link” and the last link is called “tool0”.

5. Connect the UR5 base_link to your existing static geometry with a fixed link.

<joint name="table_to_robot" type="fixed">
<parent link="table"/>
<child link="base_link"/>
<origin xyz="0 0 0" rpy="0 0 0"/>

</joint>

6. Create a new urdf.launch file (in the myworkcell_support package) to load the URDF model and
(optionally) display it in rviz:

<launch>
<arg name="gui" default="true"/>
<param name="robot_description" command="$(find xacro)/xacro --inorder '$(find

→˓myworkcell_support)/urdf/workcell.xacro'" />
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_

→˓state_publisher"/>
<node name="joint_state_publisher" pkg="joint_state_publisher" type="joint_

→˓state_publisher">
<param name="use_gui" value="$(arg gui)"/>

</node>
<node name="rviz" pkg="rviz" type="rviz" if="$(arg gui)"/>

</launch>

44 Chapter 3. Basic Topics

https://github.com/ros-industrial/universal_robot/blob/indigo-devel/ur_description/urdf/ur5_robot.urdf.xacro

Industrial Training

7. Check the updated URDF in RViz, using the launch file you just created:

roslaunch myworkcell_support urdf.launch

• Set the ‘Fixed Frame’ to ‘world’ and add the RobotModel and TF displays to the tree view on the left, to
show the robot and some transforms.

• Try moving the joint sliders to see the UR5 robot move.

3.3.3 Coordinate Tranforms using TF

In this exercise, we will explore the terminal and C++ commands used with TF, the transform library.

Motivation

It’s hard to imagine a useful, physical “robot” that doesn’t move itself or watch something else move. A useful
application in ROS will inevitably have some component that needs to monitor the position of a part, robot link, or
tool. In ROS, the “eco-system” and library that facilitates this is called TF. TF is a fundamental tool that allows for the
lookup the transformation between any connected frames, even back through time. It allows you to ask questions like:
“What was the transform between A and B 10 seconds ago.” That’s useful stuff.

Reference Example

ROS TF Listener Tutorial

Further Information and Resources

• Wiki Documentation

• TF Tutorials

• TF Listener API

Scan-N-Plan Application: Problem Statement

The part pose information returned by our (simulated) camera is given in the optical reference frame of the camera
itself. For the robot to do something with this data, we need to transform the data into the robot’s reference frame.

Specifically, edit the service callback inside the vision_node to transform the last known part pose from
camera_frame to the service call’s base_frame request field.

Scan-N-Plan Application: Guidance

1. Specify tf as a dependency of your core package.

• Edit package.xml (1 line) and CMakeLists.txt (2 lines) as in previous exercises

2. Add a tf::TransformListener object to the vision node (as a class member variable).

#include <tf/transform_listener.h>
...
tf::TransformListener listener_;

3.3. Session 3 - Motion Control of Manipulators 45

http://wiki.ros.org/tf/Tutorials/Writing%20a%20tf%20listener%20(C%2B%2B)
http://wiki.ros.org/tf
http://wiki.ros.org/tf/Tutorials
http://docs.ros.org/kinetic/api/tf/html/

Industrial Training

3. Add code to the existing localizePart method to convert the reported target pose from its reference frame
(“camera_frame”) to the service-request frame:

(a) For better or worse, ROS uses lots of different math libraries. You’ll need to transform the over-the-wire
format of geometry_msgs::Pose into a tf::Transform object:

tf::Transform cam_to_target;
tf::poseMsgToTF(p->pose.pose, cam_to_target);

(b) Use the listener object to lookup the latest transform between the request.base_frame and the ref-
erence frame from the ARMarker message (which should be “camera_frame”):

tf::StampedTransform req_to_cam;
listener_.lookupTransform(req.base_frame, p->header.frame_id, ros::Time(0),
→˓req_to_cam);

(c) Using the above information, transform the object pose into the target frame.

tf::Transform req_to_target;
req_to_target = req_to_cam * cam_to_target;

(d) Return the transformed pose in the service response.

tf::poseTFToMsg(req_to_target, res.pose);

4. Run the nodes to test the transforms:

catkin build
roslaunch myworkcell_support urdf.launch
roslaunch myworkcell_support workcell.launch

5. Change the “base_frame” parameter in workcell.launch (e.g. to “table”), relaunch the workcell.
launch file, and note the different pose result. Change the “base_frame” parameter back to “world” when
you’re done.

3.3.4 Build a MoveIt! Package

In this exercise, we will create a MoveIt! package for an industrial robot. This package creates the
configuration and launch files required to use a robot with the MoveIt! Motion-Control nodes. In general,
the MoveIt! package does not contain any C++ code.

Motivation

MoveIt! is a free-space motion planning framework for ROS. It’s an incredibly useful and easy-to-use tool for planning
motions between two points in space without colliding with anything. Under the hood MoveIt is quite complicated,
but unlike most ROS libraries, it has a really nice GUI Wizard to get you going.

Reference Example

Using MoveIt with ROS-I

Further Information and Resources

MoveIt’s Standard Wizard Guide

46 Chapter 3. Basic Topics

http://wiki.ros.org/Industrial/Tutorials/Create_a_MoveIt_Pkg_for_an_Industrial_Robot
http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc/setup_assistant/setup_assistant_tutorial.html

Industrial Training

Scan-N-Plan Application: Problem Statement

In this exercise, you will generate a MoveIt package for the UR5 workcell you built in a previous step. This process
will mostly involve running the MoveIt! Setup Assistant. At the end of the exercise you should have the following:

1. A new package called myworkcell_moveit_config

2. A moveit configuration with one group (“manipulator”), that consists of the kinematic chain between the UR5’s
base_link and tool0.

Scan-N-Plan Application: Guidance

1. Start the MoveIt! Setup Assistant (don’t forget auto-complete with tab):

roslaunch moveit_setup_assistant setup_assistant.launch

2. Select “Create New MoveIt Configuration Package”, select the workcell.xacro you created previously,
then “Load File”.

3. Work your way through the tabs on the left from the top down.

(a) Generate a self-collision matrix.

(b) Add a fixed virtual base joint. e.g.

name = 'FixedBase' (arbitrary)
child = 'world' (should match the URDF root link)
parent = 'world' (reference frame used for motion planning)
type = 'fixed'

(c) Add a planning group called manipulator that names the kinematic chain between base_link and
tool0. Note: Follow ROS naming guidelines/requirements and don’t use any whitespace, anywhere.

a. Set the kinematics solver to KDLKinematicsPlugin

(d) Create a few named positions (e.g. “home”, “allZeros”, etc.) to test with motion-planning.

(e) Don’t worry about adding end effectors/grippers or passive joints for this exercise.

(f) Enter author / maintainer info.

Yes, it’s required, but doesn’t have to be valid

(g) Generate a new package and name it myworkcell_moveit_config.

• make sure to create the package inside your catkin_ws/src directory

(h) The current MoveIt! Settup Assistant has a bug that causes some minor errors and abnormal behaviors. To
fix these errors:

i. Edit the myworkcell_core_moveit_config/config/ompl_planning.yaml file.

ii. Append the text string kConfigDefault to each planner name

• e.g. SBL: -> SBLkConfigDefault, etc.

The outcome of these steps will be a new package that contains a large number of launch and configuration files. At this
point, it’s possible to do motion planning, but not to execute the plan on any robot. To try out your new configuration:

catkin build
source ~/catkin_ws/devel/setup.bash
roslaunch myworkcell_moveit_config demo.launch

3.3. Session 3 - Motion Control of Manipulators 47

http://wiki.ros.org/ROS/Patterns/Conventions
https://github.com/ros-planning/moveit/issues/955

Industrial Training

Don’t worry about learning how to use RViz to move the robot; that’s what we’ll cover in the next session!

Using MoveIt! with Physical Hardware

MoveIt!’s setup assistant generates a suite of files that, upon launch:

• Loads your workspace description to the parameter server.

• Starts a node move_group that offers a suite of ROS services & actions for doing kinematics, motion planning,
and more.

• An internal simulator that publishes the last planned path on a loop for other tools (like RViz) to visualize.

Essentially, MoveIt can publish a ROS message that defines a trajectory (joint positions over time), but it doesn’t know
how to pass that trajectory to your hardware.

To do this, we need to define a few extra files.

1. Create a controllers.yaml file (myworkcell_moveit_config/config/controllers.yaml)
with the following contents:

controller_list:
- name: ""

action_ns: joint_trajectory_action
type: FollowJointTrajectory
joints: [shoulder_pan_joint, shoulder_lift_joint, elbow_joint, wrist_1_joint,

→˓wrist_2_joint, wrist_3_joint]

2. Create the joint_names.yaml file (myworkcell_moveit_config/config/joint_names.
yaml):

controller_joint_names: [shoulder_pan_joint, shoulder_lift_joint, elbow_joint,
→˓wrist_1_joint, wrist_2_joint, wrist_3_joint]

3. Fill in the existing, but blank, controller_manager launch file (myworkcell_moveit_config/launch/
myworkcell_moveit_controller_manager.launch.xml):

<launch>
<arg name="moveit_controller_manager"

default="moveit_simple_controller_manager/MoveItSimpleControllerManager"/>
<param name="moveit_controller_manager"

value="$(arg moveit_controller_manager)"/>

<rosparam file="$(find myworkcell_moveit_config)/config/controllers.yaml"/>
</launch>

4. Create a new myworkcell_planning_execution.launch (in myworkcell_moveit_config/
launch):

<launch>
<!-- The planning and execution components of MoveIt! configured to run -->
<!-- using the ROS-Industrial interface. -->

<!-- Non-standard joint names:
- Create a file [robot_moveit_config]/config/joint_names.yaml

controller_joint_names: [joint_1, joint_2, ... joint_N]
- Update with joint names for your robot (in order expected by rbt

→˓controller)

(continues on next page)

48 Chapter 3. Basic Topics

Industrial Training

(continued from previous page)

- and uncomment the following line: -->
<rosparam command="load" file="$(find myworkcell_moveit_config)/config/joint_

→˓names.yaml"/>

<!-- the "sim" argument controls whether we connect to a Simulated or Real
→˓robot -->
<!-- - if sim=false, a robot_ip argument is required -->
<arg name="sim" default="true" />
<arg name="robot_ip" unless="$(arg sim)" />

<!-- load the robot_description parameter before launching ROS-I nodes -->
<include file="$(find myworkcell_moveit_config)/launch/planning_context.launch"

→˓>
<arg name="load_robot_description" value="true" />

</include>

<!-- run the robot simulator and action interface nodes -->
<group if="$(arg sim)">
<include file="$(find industrial_robot_simulator)/launch/robot_interface_

→˓simulator.launch" />
</group>

<!-- run the "real robot" interface nodes -->
<!-- - this typically includes: robot_state, motion_interface, and joint_

→˓trajectory_action nodes -->
<!-- - replace these calls with appropriate robot-specific calls or launch

→˓files -->
<group unless="$(arg sim)">

<include file="$(find ur_bringup)/launch/ur5_bringup.launch" />
</group>

<!-- publish the robot state (tf transforms) -->
<node name="robot_state_publisher" pkg="robot_state_publisher" type="robot_

→˓state_publisher" />

<include file="$(find myworkcell_moveit_config)/launch/move_group.launch">
<arg name="publish_monitored_planning_scene" value="true" />

</include>

<include file="$(find myworkcell_moveit_config)/launch/moveit_rviz.launch">
<arg name="config" value="true"/>

</include>

</launch>

5. Now let’s test the new launch files we created:

roslaunch myworkcell_moveit_config myworkcell_planning_execution.launch

3.3.5 Motion Planning using RViz

In this exercise, we will (finally) learn how to use the MoveIt! RViz plugin to plan and execute motion on
a simulated robot. We will explore the different options and constraints associated with both MoveIt! and
the RViz plugin.

3.3. Session 3 - Motion Control of Manipulators 49

Industrial Training

Launch the Planning Environment

1. Source your catkin workspace.

2. Bring up the planning environment, connected to a ROS-I Simulator node:

roslaunch myworkcell_moveit_config myworkcell_planning_execution.launch

Plugin Display Options

1. Find and test the following display options in the Displays panel, Motion Planning display

• Scene Robot -> Show Robot Visual

• Scene Robot -> Show Robot Collision

• Planning Request -> Query Start State

• Planning Request -> Query Goal State

2. For now, enable display of the Show Robot Visual and Query Goal State, leaving Show Robot Collision and
Query Start State disabled

3. Select the Panel -> Motion Planning - Trajectory Slider menu option to display a
trajectory-preview slider.

• this slider allows for detailed review of the last planned trajectory

Basic Motion

1. In the Motion Planning panel, select the Planning tab

2. Under the Query section, expand the Select Goal State section

• select <random valid> and press Update

• observe the goal position in the graphics window

3. Click Plan to see the robot motion generated by the MoveIt! planning libraries

• deselect Displays -> Motion Planning -> Planned Path -> Loop Animation to stop the cyclic display

• select Displays -> Motion Planning -> Planned Path -> Show Trail to show the swept path

4. Click Execute to run the motion on the Industrial Robot Simulator

• observe that the multi-colored scene robot display updates to show that the robot has “moved” to the goal
position

5. Repeat steps 2-5 a few more times

• try using the interactive marker to manually move the robot to a desired position

• try using a named pose (e.g. “straight up”)

Beyond the Basics

1. Experiment with different Planning Algorithms

• select Context tab, choose a Planning Algorithm (drop-down box next to “OMPL”)

• the RRTkConfigDefault algorithm is often much faster

50 Chapter 3. Basic Topics

Industrial Training

2. Environment Obstacles

• Adjust the Goal State to move the robot into collision with an obstacle (e.g. the table)

– note the colliding links are colored red

– since the position is unreachable, you can see the robot search through different positions as it tries to
find a solution

– try disabling the Use Collision-Aware IK setting on the Context tab

– see that the collisions are still detected, but the solver no longer searches for a collision-free solution

• Try to plan a path through the obstacle

– It may help to have “Collision-Aware IK” disabled when moving the Goal State

– If the robot fails to plan, check the error log and try repeating the plan request

– Because the default planners are sampling-based, they may produce different results on each execution

– You can also try increasing the planning time to allow a successful plan to be created

– Try different planning algorithms in this, more complex, planning task

• Try adding a new obstacle to the scene:

– Under the Scene Objects tab, add the I-Beam.dae CAD model

* This file is located in the industrial_training repo: ~/industrial_training/
exercises/3.4/I-Beam.dae

– Move the I-Beam into an interesting position, using the manipulation handles

– Press Publish Scene, to push the updated position to MoveIt

– Try to plan around the obstacle

3.4 Session 4 - Descartes and Perception

Slides

3.4.1 Motion Planning using C++

In this exercise, we’ll explore MoveIt’s C++ interface to programatically move a robot.

Motivation

Now that we’ve got a working MoveIt! configuration for your workcell and we’ve played a bit in RViz with the
planning tools, let’s perform planning and motion in code. This exercise will introduce you to the basic C++ interface
for interacting with the MoveIt! node in your own program. There are lots of ways to use MoveIt!, but for simple
applications this is the most straight forward.

Reference Example

Move Group Interface tutorial

3.4. Session 4 - Descartes and Perception 51

http://docs.ros.org/kinetic/api/moveit_tutorials/html/doc/move_group_interface/move_group_interface_tutorial.html#setup

Industrial Training

3. Further Information and Resources

• MoveIt! Tutorials

• MoveIt! home-page

Scan-N-Plan Application: Problem Statement

In this exercise, your goal is to modify the myworkcell_core node to:

1. Move the robot’s tool frame to the center of the part location as reported by the service call to your vision node.

Scan-N-Plan Application: Guidance

1. Edit your myworkcell_node.cpp file.

(a) Add #include <tf/tf.h> to allow access to the tf library (for frame transforms/utilities).

• Remember that we already added a dependency on the tf package in a previous exercise.

(b) In the ScanNPlan class’s start method, use the response from the LocalizePart service to initial-
ize a new move_target variable:

geometry_msgs::Pose move_target = srv.response.pose;

• make sure to place this code after the call to the vision_node’s service.

2. Use the MoveGroupInterface to plan/execute a move to the move_target position:

(a) In order to use the MoveGroupInterface class it is necessary to add the
moveit_ros_planning_interface package as a dependency of your myworkcell_core
package. Add the moveit_ros_planning_interface dependency by modifying your package’s
CMakeLists.txt (2 lines) and package.xml (1 line) as in previous exercises.

(b) Add the appropriate “include” reference to allow use of the MoveGroupInterface:

#include <moveit/move_group_interface/move_group_interface.h>

(c) Create a moveit::planning_interface::MoveGroupInterface object in the ScanNPlan
class’s start()method. It has a single constructor that takes the name of the planning group you defined
when creating the workcell moveit package (“manipulator”).

moveit::planning_interface::MoveGroupInterface move_group("manipulator");

(d) Set the desired cartesian target position using the move_group object’s setPoseTarget function.
Call the object’s move() function to plan and execute a move to the target position.

// Plan for robot to move to part
move_group.setPoseReferenceFrame(base_frame);
move_group.setPoseTarget(move_target);
move_group.move();

(e) As described here, the move_group.move() command requires use of an “asynchronous” spinner, to
allow processing of ROS messages during the blocking move() command. Initialize the spinner near
the start of the main() routine after ros::init(argc, argv, "myworkcell_node"), and re-
place the existing ros::spin() command with ros::waitForShutdown(), as shown:

52 Chapter 3. Basic Topics

http://docs.ros.org/kinetic/api/moveit_tutorials/html/
http://moveit.ros.org/
http://docs.ros.org/jade/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroup.html#a4c63625e2e9eb5c342d1fc6732bd8cf7

Industrial Training

ros::AsyncSpinner async_spinner(1);
async_spinner.start();
...
ros::waitForShutdown();

3. Test the system!

catkin build
roslaunch myworkcell_moveit_config myworkcell_planning_execution.launch
roslaunch myworkcell_support workcell.launch

4. More to explore. . .

• In RViz, add a “Marker” display of topic “/ar_pose_visual” to confirm that the final robot position matches
the position published by fake_ar_publisher

• Try repeating the motion planning sequence:

(a) Use the MoveIt rviz interface to move the arm back to the “allZeros” position

(b) Ctrl+C the workcell.launch file, then rerun

• Try updating the workcell_node’s start method to automatically move back to the allZeros
position after moving to the AR_target position. See here for a list of move_group’s available methods.

• Try moving to an “approach position” located a few inches away from the target position, prior to the final
move-to-target.

3.4.2 Introduction to Descartes Path Planning

In this exercise, we will use what was learned in the previous exercises by creating a Descartes planner to
create a robot path.

Motivation

MoveIt! is a framework meant primarily for performing “free-space” motion where the objective is to move a robot
from point A to point B and you don’t particularly care about how that gets done. These types of problems are only a
subset of frequently performed tasks. Imagine any manufacturing ‘’process” like welding or painting. You very much
care about where that tool is pointing the entire time the robot is at work.

This tutorial introduces you to Descartes, a ‘’Cartesian” motion planner meant for moving a robot along some process
path. It’s only one of a number of ways to solve this kind of problem, but it’s got some neat properties:

• It’s deterministic and globally optimum (to a certain search resolution).

• It can search redundant degrees of freedom in your problem (say you have 7 robot joints or you have a process
where the tool’s Z-axis rotation doesn’t matter).

Reference Example

Descartes Tutorial

3.4. Session 4 - Descartes and Perception 53

http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroup.html
http://wiki.ros.org/descartes/Tutorials/Getting%20Started%20with%20Descartes

Industrial Training

Further Information and Resources

Descartes Wiki

APIs:

• descartes_core::PathPlannerBase

• descartes_planner::DensePlanner

• descartes_planner::SparsePlanner

Scan-N-Plan Application: Problem Statement

In this exercise, you will add a new node to your Scan-N-Plan application, based on a reference template, that:

1. Takes the nominal pose of the marker as input through a ROS service.

2. Produces a joint trajectory that commands the robot to trace the perimeter of the marker (as if it is dispensing
adhesive).

Scan-N-Plan Application: Guidance

In the interest of time, we’ve included a file, descartes_node.cpp, that:

1. Defines a new node & accompanying class for our Cartesian path planning.

2. Defines the actual service and initializes the Descartes library.

3. Provides the high level work flow (see planPath function).

Left to you are the details of:

1. Defining a series of Cartesian poses that comprise a robot “path”.

2. Translating those paths into something Descartes can understand.

Setup workspace

1. Clone the Descartes repository into your workspace src/ directory.

cd ~/catkin_ws/src
git clone -b kinetic-devel https://github.com/ros-industrial-consortium/descartes.
→˓git

2. Copy over the ur5_demo_descartes package into your workspace src/ directory.

cp -r ~/industrial_training/exercises/4.1/src/ur5_demo_descartes .

3. Copy over the descartes_node_unfinished.cpp into your core package’s src/ folder and rename it
descartes_node.cpp.

cp ~/industrial_training/exercises/4.1/src/descartes_node_unfinished.cpp
→˓myworkcell_core/src/descartes_node.cpp

4. Add dependencies for the following packages in the CMakeLists.txt& package.xml files, as in previous
exercises.

• ur5_demo_descartes

54 Chapter 3. Basic Topics

http://wiki.ros.org/descartes
http://docs.ros.org/indigo/api/descartes_core/html/classdescartes__core_1_1PathPlannerBase.html
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1DensePlanner.html
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1SparsePlanner.html

Industrial Training

• descartes_trajectory

• descartes_planner

• descartes_utilities

5. Create rules in the myworkcell_core package’s CMakeLists.txt to build a new node called
descartes_node. As in previous exercises, add these lines near similar lines in the template file (not as
a block as shown below).

add_executable(descartes_node src/descartes_node.cpp)
add_dependencies(descartes_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_
→˓EXPORTED_TARGETS})
target_link_libraries(descartes_node ${catkin_LIBRARIES})

Complete Descartes Node

We will create a Service interface to execute the Descartes planning algorithm.

1. Define a new service named PlanCartesianPath.srv in the myworkcell_core package’s srv/ di-
rectory. This service takes the central target position and computes a joint trajectory to trace the target edges.

request
geometry_msgs/Pose pose

response
trajectory_msgs/JointTrajectory trajectory

2. Add the newly-created service file to the add_service_file() rule in the package’s CMakeLists.txt.

3. Since our new service references a message type from another package, we’ll need to add that other pack-
age (trajectory_msgs) as a dependency in the myworkcell_core CMakeLists.txt (3 lines) and
package.xml (1 line) files.

4. Review descartes_node.cpp to understand the code structure. In particular, the planPath method
outlines the main sequence of steps.

5. Search for the TODO commands in the Descartes node file and expand on those areas:

(a) In makeToolPoses, generate the remaining 3 sides of a path tracing the outside of our “AR Marker”
target part.

(b) In makeDescartesTrajectory, convert the path you created into a Descartes Trajectory, one point
at a time.

• Don’t forget to transform each nominal point by the specified reference pose: ref * point

(c) In makeTolerancedCartesianPoint, create a new AxialSymmetricPt from the given pose.

• See here for more documentation on this point type

• Allow the point to be symmetric about the Z-axis (AxialSymmetricPt::Z_AXIS), with an in-
crement of 90 degrees (PI/2 radians)

6. Build the project, to make sure there are no errors in the new descartes_node

3.4. Session 4 - Descartes and Perception 55

http://docs.ros.org/indigo/api/descartes_trajectory/html/classdescartes__trajectory_1_1AxialSymmetricPt.html

Industrial Training

Update Workcell Node

With the Descartes node completed, we now want to invoke its logic by adding a new ServiceClient to the
primary workcell node. The result of this service is a joint trajectory that we must then execute on the robot. This can
be accomplished in many ways; here we will call the JointTrajectoryAction directly.

1. In myworkcell_node.cpp, add include statements for the following headers:

#include <actionlib/client/simple_action_client.h>
#include <control_msgs/FollowJointTrajectoryAction.h>
#include <myworkcell_core/PlanCartesianPath.h>

You do not need to add new dependenies for these libraries/messages, because they are pulled in transitively
from moveit.

2. In your ScanNPlan class, add new private member variables: a ServiceClient for the PlanCartesianPath
service and an action client for FollowJointTrajectoryAction:

ros::ServiceClient cartesian_client_;
actionlib::SimpleActionClient<control_msgs::FollowJointTrajectoryAction> ac_;

3. Initialize these new objects in your constructor. Note that the action client has to be initialized in what is called
the initializer list.

ScanNPlan(ros::NodeHandle& nh) : ac_("joint_trajectory_action", true)
{
// ... code
cartesian_client_ = nh.serviceClient<myworkcell_core::PlanCartesianPath>("plan_

→˓path");
}

4. At the end of the start() function, create a new Cartesian service and make the service request:

// Plan cartesian path
myworkcell_core::PlanCartesianPath cartesian_srv;
cartesian_srv.request.pose = move_target;
if (!cartesian_client_.call(cartesian_srv))
{
ROS_ERROR("Could not plan for path");
return;

}

5. Continue adding the following lines, to execute that path by sending an action directly to the action server
(bypassing MoveIt):

// Execute descartes-planned path directly (bypassing MoveIt)
ROS_INFO("Got cart path, executing");
control_msgs::FollowJointTrajectoryGoal goal;
goal.trajectory = cartesian_srv.response.trajectory;
ac_.sendGoal(goal);
ac_.waitForResult();
ROS_INFO("Done");

6. Build the project, to make sure there are no errors in the new descartes_node

56 Chapter 3. Basic Topics

Industrial Training

Test Full Application

1. Create a new setup.launch file (in workcell_support package) that brings up everything except your
workcell_node:

<include file="$(find myworkcell_moveit_config)/launch/myworkcell_planning_
→˓execution.launch"/>
<node name="fake_ar_publisher" pkg="fake_ar_publisher" type="fake_ar_publisher_
→˓node" />
<node name="vision_node" type="vision_node" pkg="myworkcell_core" output="screen"/
→˓>
<node name="descartes_node" type="descartes_node" pkg="myworkcell_core" output=
→˓"screen"/>

2. Run the new setup file, then your main workcell node:

roslaunch myworkcell_support setup.launch
rosrun myworkcell_core myworkcell_node

It’s difficult to see what’s happening with the rviz planning-loop always running. Disable this loop animation in
rviz (Displays -> Planned Path -> Loop Animation), then rerun myworkcell_node.

Hints and Help

Hints:

• The path we define in makeToolPoses() is relative to some known reference point on the part you are
working with. So a tool pose of (0, 0, 0) would be exactly at the reference point, and not at the origin of the
world coordinate system.

• In makeDescartesTrajectorty(...) we need to convert the relative tool poses into world coordinates
using the “ref” pose.

• In makeTolerancedCartesianPoint(...) consider the following documentation for specific imple-
mentations of common joint trajectory points:

– http://docs.ros.org/indigo/api/descartes_trajectory/html/

• For additional help, review the completed reference code at ~/industrial_training/exercises/4.
1/src

3.4.3 Introduction to Perception

In this exercise, we will experiment with data generated from the Asus Xtion Pro (or Microsoft Kinect)
sensor in order to become more familiar with processing 3D data. We will view its data stream and
visualize the data in various ways under Rviz.

Point Cloud Data File

The start of most perception processing is ROS message data from a sensor. In this exercise, we’ll be using 3D point
cloud data from a common Kinect-style sensor.

1. First, publish the point cloud data as a ROS message to allow display in rviz.

(a) Start roscore running in a terminal.

3.4. Session 4 - Descartes and Perception 57

http://docs.ros.org/indigo/api/descartes_trajectory/html/
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html
http://docs.ros.org/api/sensor_msgs/html/msg/PointCloud2.html

Industrial Training

(b) Create a new directory for this exercise:

mkdir ~/ex4.2
cd ~/ex4.2
cp ~/industrial_training/exercises/4.2/table.pcd .

(c) Publish pointcloud messages from the pre-recorded table.pcd point cloud data file:

cd ~
rosrun pcl_ros pcd_to_pointcloud table.pcd 0.1 _frame_id:=map cloud_pcd:=orig_
→˓cloud_pcd

(d) Verify that the orig_cloud_pcd topic is being published: rostopic list

Display the point cloud in RViz

1. Start an RViz window, to display the results of point-cloud processing

rosrun rviz rviz

2. Add a PointCloud2 display item and set the desired topic.

(a) Select Add at the bottom of the Displays panel

(b) Select PointCloud2

(c) Expand PointCloud2 in the display tree, and select a topic from topic drop down.

• Hint: If you are using the point cloud file, the desired topic is /orig_cloud_pcd.

Experiment with PCL

Next, we will experiment with various command line tool provided by PCL for processing point cloud data. There
are over 140 command line tools available, but only a few will be used as part of this exercise. The intent is to get
you familiar with the capabilities of PCL without writing any code, but these command line tools are a great place to
start when writing your own. Although command line tools are helpful for testing various processing methods, most
applications typically use the C++ libraries directly for “real” processing pipelines. The ROS-I Advanced training
course explores these C++ PCL methods in more detail.

Each of the PCL commands below generates a new point cloud file (.pcd) with the result of the PCL processing
command. Use either the pcl_viewer to view the results directly or the pcd_to_pointcloud command to
publish the point cloud data as a ROS message for display in rviz. Feel free to stop the pcd_to_pointcloud
command after reviewing the results in rviz.

Downsample the point cloud using the pcl_voxel_grid.

1. Downsample the original point cloud using a voxel grid with a grid size of (0.05,0.05,0.05). In a voxel grid, all
points in a single grid cube are replaced with a single point at the center of the voxel. This is a common method
to simplify overly complex/detailed sensor data, to speed up processing steps.

pcl_voxel_grid table.pcd table_downsampled.pcd -leaf 0.05,0.05,0.05
pcl_viewer table_downsampled.pcd

1. View the new point cloud in rviz.(optional)

58 Chapter 3. Basic Topics

Industrial Training

rosrun pcl_ros pcd_to_pointcloud table_downsampled.pcd 0.1 _frame_id:=map cloud_
→˓pcd:=table_downsampled

Note: For the PointCloud2 in rviz change the topic to /table_downsampled to show the new data.

Extracting the table surface from point cloud using the pcl_sac_segmentation_plane.

1. Find the largest plane and extract points that belong to that plane (within a given threshold).

pcl_sac_segmentation_plane table_downsampled.pcd only_table.pcd -thresh 0.01
pcl_viewer only_table.pcd

View the new point cloud in rviz.(optional)

rosrun pcl_ros pcd_to_pointcloud only_table.pcd 0.1 _frame_id:=map cloud_pcd:=only_
→˓table

Note: For the PointCloud2 in rviz change the topic to /only_table to show the new data.

Extracting the largest cluster on the table from point cloud using the pcl_sac_segmentation_plane.

1. Extract the largest point-cluster not belonging to the table.

pcl_sac_segmentation_plane table.pcd object_on_table.pcd -thresh 0.01 -neg 1
pcl_viewer object_on_table.pcd

View the new point cloud in rviz.(optional)

rosrun pcl_ros pcd_to_pointcloud object_on_table.pcd 0.1 _frame_id:=map cloud_
→˓pcd:=object_on_table

Note: For the PointCloud2 in rviz change the topic to /object_on_table to show the new data.

Remove outliers from the cloud using the pcl_outlier_removal.

1. For this example, a statistical method will be used for removing outliers. This is useful to clean up noisy sensor
data, removing false artifacts before further processing.

pcl_outlier_removal table.pcd table_outlier_removal.pcd -method statistical
pcl_viewer table_outlier_removal.pcd

1. View the new point cloud in rviz. (optional)

rosrun pcl_ros pcd_to_pointcloud table_outlier_removal.pcd 0.1 _frame_id:=map cloud_
→˓pcd:=table_outlier_removal

Note: For the PointCloud2 in rviz change the topic to /table_outlier_removal to show the new data.

3.4. Session 4 - Descartes and Perception 59

Industrial Training

Compute the normals for each point in the point cloud using the pcl_normal_estimation.

1. This example estimates the local surface normal (perpendicular) vectors at each point. For each point, the
algorithm uses nearby points (within the specified radius) to fit a plane and calculate the normal vector. Zoom
in to view the normal vectors in more detail.

pcl_normal_estimation only_table.pcd table_normals.pcd -radius 0.1
pcl_viewer table_normals.pcd -normals 10

Mesh a point cloud using the marching cubes reconstruction.

Point cloud data is often unstructured, but sometimes processing algorithms need to operate on a more structured
surface mesh. This example uses the “marching cubes” algorithm to construct a surface mesh that approximates the
point cloud data.

pcl_marching_cubes_reconstruction table_normals.pcd table_mesh.vtk -grid_res 20
pcl_viewer table_mesh.vtk

3.5 Application Demo 1 - Perception-Driven Manipulation

3.5.1 Application Demo 1 - Perception-Driven Manipulation

Perception-Driven Manipulation Introduction

Goal

• The purpose of these exercises is to implement a ROS node that drives a robot through a series of moves and
actions in order to complete a pick and place task. In addition, they will serve as an example of how to integrate
a variety of software capabilities (perception, controller drivers, I/O, inverse kinematics, path planning, collision
avoidance, etc) into a ROS-based industrial application.

Objectives

• Understand the components and structure of a real or simulated robot application.

• Learn how to command robot moves using Moveit!.

• Learn how to move the arm to a joint or Cartesian position.

• Leverage perception capabilities including AR tag recognition and PCL.

• Plan collision-free paths for a pick and place task.

• Control robot peripherals such as a gripper.

Inspect the “pick_and_place_exercise” Package

In this exercise, we will get familiar with all the files that you’ll be interacting with throughout these
exercises.

60 Chapter 3. Basic Topics

Industrial Training

Acquire and initialize the Workspace

cp -r ~/industrial_training/exercises/Perception-Driven_Manipulation/template_ws ~/
→˓perception_driven_ws
cd ~/perception_driven_ws
source /opt/ros/kinetic/setup.bash
catkin init

Download source dependencies

Use the wstool command to download the repositories listed in the src/.rosinstall file

cd ~/perception_driven_ws/src/
wstool update

Download debian dependencies

Make sure you have installed and configured the rosdep tool. Then, run the following command from the
src directory of your workspace.

rosdep install --from-paths . --ignore-src -y

Build your workspace

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles'

If the build fails then revisit the previous two steps to make sure all the dependencies were downloaded.

Source the workspace

Run the following command from your workspace parent directory

source devel/setup.bash

Locate and navigate into the package

cd ~/perception_driven_ws/src/collision_avoidance_pick_and_place/

Look into each file in the launch directory

ur5_setup.launch : Brings up the entire ROS system (MoveIt!, rviz, perception,
→˓ROS-I drivers, robot I/O peripherals)
ur5_pick_and_place.launch : Runs your pick and place node.

3.5. Application Demo 1 - Perception-Driven Manipulation 61

http://wiki.ros.org/wstool
http://wiki.ros.org/rosdep

Industrial Training

Look into the config directory

ur5/
- pick_and_place_parameters.yaml : List of parameters read by the pick and place
→˓node.
- rviz_config.rviz : Rviz configuration file for display properties.
- target_recognition_parameters.yaml : Parameters used by the target recognition
→˓service for detecting the box from the sensor data.
- test_cloud_obstacle_descriptions.yaml : Parameters used to generate simulated
→˓sensor data (simulated sensor mode only)
- collision_obstacles.txt : Description of each obstacle blob added to the
→˓simulated sensor data (simulated sensor mode only)

Look into the src directory

nodes:
- pick_and_place_node.cpp : Main application thread. Contains all necessary headers
→˓and function calls.

tasks: Source files with incomplete function definitions. You will fill with code
→˓where needed in order to complete the exercise.
- create_motion_plan.cpp
- create_pick_moves.cpp
- create_place_moves.cpp
- detect_box_pick.cpp
- pickup_box.cpp
- place_box.cpp
- move_to_wait_position.cpp
- set_attached_object.cpp
- set_gripper.cpp

utilities:
- pick_and_place_utilities.cpp : Contains support functions that will help you
→˓complete the exercise.

Package Setup

In this exercise, we’ll build our package dependencies and configure the package for the Qt Creator IDE.

Build Package Dependencies

In a terminal type:

cd ~/perception_driven_ws
catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles'
source devel/setup.bash

Import Package into QTCreator

In QTCreator do the following:

62 Chapter 3. Basic Topics

Industrial Training

File -> New -> Import ROS Project ->

Open the Main Thread Source File

In the project tab, navigate into the [Source directory]/collision_avoidance_pick_and_place/
src/nodes directory and open the pick_and_place_node.cpp file

Start in Simulation Mode

In this exercise, we will start a ROS system that is ready to move the robot in simulation mode.

Run setup launch file in simulation mode (simulated robot and sensor)

In a terminal

roslaunch collision_avoidance_pick_and_place ur5_setup.launch

Rviz will display all the workcell components including the robot in its default position; at this point your system is
ready. However no motion will take place until we run the pick and place node.

Setup for real sensor and simulated robot

roslaunch collision_avoidance_pick_and_place ur5_setup.launch sim_sensor:=false

Setup for real robot and simulated sensor data

roslaunch collision_avoidance_pick_and_place ur5_setup.launch sim_robot:=false robot_
→˓ip:= [robot ip]

Setup for real robot and real sensor

roslaunch collision_avoidance_pick_and_place ur5_setup.launch sim_robot:=false robot_
→˓ip:= [robot ip] sim_sensor:=false sim_gripper:=false

Initialization and Global Variables

In this exercise, we will take a first look at the main application “pick_and_place_node.cpp”, its public
variables, and how to properly initialize it as a ros node.

Application Variables

In QTCreator, open

3.5. Application Demo 1 - Perception-Driven Manipulation 63

Industrial Training

[Source directory]/collision_avoidance_pick_and_place/include/collision_avoidance_
→˓pick_and_place/pick_and_place_utilities.h

The c++ class ‘pick_and_place_config’ defines public global variables used in various parts of the program. These
variables

ARM_GROUP_NAME = "manipulator";
TCP_LINK_NAME = "tcp_frame";
MARKER_TOPIC = "pick_and_place_marker";
PLANNING_SCENE_TOPIC = "planning_scene";
TARGET_RECOGNITION_SERVICE = "target_recognition";
MOTION_PLAN_SERVICE = "plan_kinematic_path";
WRIST_LINK_NAME = "ee_link";
ATTACHED_OBJECT_LINK_NAME = "attached_object_link";
WORLD_FRAME_ID = "world_frame";
HOME_POSE_NAME = "home";
WAIT_POSE_NAME = "wait";
AR_TAG_FRAME_ID = "ar_frame";
GRASP_ACTION_NAME = "grasp_execution_action";
BOX_SIZE = tf::Vector3(0.1f, 0.1f, 0.1f);
BOX_PLACE_TF = tf::Transform(tf::Quaternion::getIdentity(), tf::Vector3(-0.8f,-

→˓0.2f,BOX_SIZE.getZ()));
TOUCH_LINKS = std::vector<std::string>();
RETREAT_DISTANCE = 0.05f;
APPROACH_DISTANCE = 0.05f;

In the main program (pick_and_place_node.cpp), the global application object provides access to the
program variables through its cfg member. For instance, in order to use the WORLD_FRAME_ID global variable we
would do the following:

ROS_INFO_STREAM("world frame: " << application.cfg.WORLD_FRAME_ID)

Node Initialization

In the pick_and_place_node.cpp file, the following block of code in the “main” function initializes the
PickAndPlace application class and its main ros and MoveIt! components.

int main(int argc,char** argv)
{

geometry_msgs::Pose box_pose;
std::vector<geometry_msgs::Pose> pick_poses, place_poses;

/*
→˓===*/
→˓

/* INITIALIZING ROS NODE
Goal:
- Observe all steps needed to properly initialize a ros node.
- Look into the 'cfg' member of PickAndPlace to take notice of the parameters

→˓that
are available for the rest of the program. */

/*
→˓===*/
→˓

(continues on next page)

64 Chapter 3. Basic Topics

Industrial Training

(continued from previous page)

// ros initialization
ros::init(argc,argv,"pick_and_place_node");
ros::NodeHandle nh;
ros::AsyncSpinner spinner(2);
spinner.start();

// creating pick and place application instance
PickAndPlace application;

// reading parameters
if(application.cfg.init())
{
ROS_INFO_STREAM("Parameters successfully read");

}
else
{
ROS_ERROR_STREAM("Parameters not found");
return 0;

}

// marker publisher
application.marker_publisher = nh.advertise<visualization_msgs::Marker>(

application.cfg.MARKER_TOPIC,1);

// planning scene publisher
application.planning_scene_publisher = nh.advertise<moveit_msgs::PlanningScene>(

application.cfg.PLANNING_SCENE_TOPIC,1);

// MoveIt! interface
application.move_group_ptr = MoveGroupPtr(

new move_group_interface::MoveGroup(application.cfg.ARM_GROUP_NAME));

// motion plan client
application.motion_plan_client = nh.serviceClient<moveit_msgs::GetMotionPlan>

→˓(application.cfg.MOTION_PLAN_SERVICE);

// transform listener
application.transform_listener_ptr = TransformListenerPtr(new

→˓tf::TransformListener());

// marker publisher (rviz visualization)
application.marker_publisher = nh.advertise<visualization_msgs::Marker>(

application.cfg.MARKER_TOPIC,1);

// target recognition client (perception)
application.target_recognition_client = nh.serviceClient<collision_avoidance_pick_

→˓and_place::GetTargetPose>(
application.cfg.TARGET_RECOGNITION_SERVICE);

// grasp action client (vacuum gripper)
application.grasp_action_client_ptr = GraspActionClientPtr(

new GraspActionClient(application.cfg.GRASP_ACTION_NAME,true));

3.5. Application Demo 1 - Perception-Driven Manipulation 65

Industrial Training

Move Arm to Wait Position

The MoveGroup class in MoveIt! allows us to move the robot in various ways. With MoveGroup it
is possible to move to a desired joint position, cartesian goal or a predefined pose created with the Setup
Assistant. In this exercise, we will move the robot to a predefined joint pose.

Locate Function

• In the main program , locate the method call to application.move_to_wait_position().

• Go to the source file of that function by clicking in any part of the function and pressing “F2”.

• Alternatively, browse to the file in [Source directory]/src/tasks/move_to_wait_position.
cpp.

• Remove the fist line containing the following ROS_ERROR_STREAM ... so that the program runs.

Complete Code

• Find every line that begins with the comment Fill Code: and read the description. Then, replace every
instance of the comment ENTER CODE HERE with the appropriate line of code

/* Fill Code:
.
.
.

*/
/* ======== ENTER CODE HERE ======== */

• The name of the predefined “wait” pose was saved in the global variable cfg.WAIT_POSE_NAME during
initialization.

Build Code and Run

• Compile the pick and place node:

– in QTCreator: Build -> Build Project

– Alternatively, in a terminal:

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles' --pkg collision_avoidance_
→˓pick_and_place
source ./devel/setup.bash

• Run your node with the launch file:

roslaunch collision_avoidance_pick_and_place ur5_pick_and_place.launch

• If the robot is not already in the wait position, it should move to the wait position. In the terminal, you will see
something like the following message:

[INFO] [1400553673.460328538]: Move wait Succeeded
[ERROR] [1400553673.460434627]: set_gripper is not implemented yet. Aborting.

66 Chapter 3. Basic Topics

Industrial Training

API References

setNamedTarget()

move()

Open Gripper

In this exercise, the objective is to use a “grasp action client” to send a grasp goal that will open the
gripper.

Locate Function

• In the main program, locate the function call to application.set_gripper().

• Go to the source file of that function by clicking in any part of the function and pressing “F2”.

• Remove the fist line containing the following ROS_ERROR_STREAM ... so that the program runs.

Complete Code

• Find every line that begins with the comment Fill Code: and read the description. Then, replace every
instance of the comment ENTER CODE HERE with the appropriate line of code.

/* Fill Code:
.
.
.

*/
/* ======== ENTER CODE HERE ======== */

• The grasp_goal.goal property can take on three possible values:

grasp_goal.goal = object_manipulation_msgs::GraspHandPostureExecutionGoal::GRASP;
grasp_goal.goal = object_manipulation_

→˓msgs::GraspHandPostureExecutionGoal::RELEASE;
grasp_goal.goal = object_manipulation_msgs::GraspHandPostureExecutionGoal::PRE_

→˓GRASP;

• Once the grasp flag has been set you can send the goal through the grasp action client

Build Code and Run

• Compile the pick and place node:

– in QTCreator: Build -> Build Project

– Alternatively, in a terminal:

catkin build collision_avoidance_pick_and_place

• Run your node with the launch file:

3.5. Application Demo 1 - Perception-Driven Manipulation 67

http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#a5262ff42a454b499d3608b384957a5e4
http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#a3513c41b0c73400fc6713b25bc6b1637

Industrial Training

roslaunch collision_avoidance_pick_and_place ur5_pick_and_place.launch

• If the task succeeds you will see something like the following in the terminal (below). The robot will not move,
only gripper I/O is triggered:

[INFO] [1400553290.464877904]: Move wait Succeeded
[INFO] [1400553290.720864559]: Gripper opened
[ERROR] [1400553290.720985315]: detect_box_pick is not implemented yet. Aborting.

API References

sendGoal()

Detect Box Pick Point

The coordinate frame of the box’s pick can be requested from a ros service that detects it by processing
the sensor data. In this exercise, we will learn how to use a service client to call that ros service for the
box pick pose.

Locate Function

• In the main program, locate the function call to application.detect_box_pick().

• Go to the source file of that function by clicking in any part of the function and pressing “F2”.

• Remove the first line containing the following ROS_ERROR_STREAM ... so that the program runs.

Complete Code

• Find every line that begins with the comment Fill Code: and read the description. Then, replace every
instance of the comment ENTER CODE HERE with the appropriate line of code

/* Fill Code:
.
.
.

*/
/* ======== ENTER CODE HERE ======== */

• The target_recognition_client object in your programs can use the call() method to send a re-
quest to a ros service.

• The ros service that receives the call will process the sensor data and return the pose for the box pick in the
service structure member srv.response.target_pose.

Build Code and Run

• Compile the pick and place node:

– in QTCreator: Build -> Build Project

– Alternatively, in a terminal:

68 Chapter 3. Basic Topics

http://docs.ros.org/kinetic/api/actionlib/html/classactionlib_1_1SimpleActionClient.html#ae6a2e6904495e7c20c59e96af0d86801

Industrial Training

catkin build --pkg collision_avoidance_pick_and_place

• Run your node with the launch file:

roslaunch collision_avoidance_pick_and_place ur5_pick_and_place.launch

• A blue box and voxel grid obstacles will be displayed in rviz. In the terminal you should see a message like the
following:

[INFO] [1400554224.057842127]: Move wait Succeeded
[INFO] [1400554224.311158465]: Gripper opened
[INFO] [1400554224.648747043]: target recognition succeeded
[ERROR] [1400554224.649055043]: create_pick_moves is not implemented yet. Aborting.

API References

call()

Create Pick Moves

The gripper moves through three poses in order to do a pick: Approach, target and retreat. In this exercise,
we will use the box pick transform to create the pick poses for the TCP (Tool Center Point) coordinate
frame and then transform them to the arm’s wrist coordinate frame

Locate Function

• In the main program , locate the function call to application.create_pick_moves().

• Go to the source file of that function by clicking in any part of the function and pressing “F2”.

• Remove the fist line containing the following ROS_ERROR_STREAM ... so that the program runs.

Complete Code

• Find every line that begins with the comment Fill Code: and read the description. Then, replace every
instance of the comment ENTER CODE HERE with the appropriate line of code

/* Fill Code:
.
.
.

*/
/* ======== ENTER CODE HERE ======== */

• The create_manipulation_poses() uses the values of the approach and retreat distances in order to
create the corresponding poses at the desired target.

• Since moveit plans the robot path for the arm’s wrist, then it is necessary to convert all the pick poses to the
wrist coordinate frame.

• The lookupTransform method can provide the pose of a target relative to another pose.

3.5. Application Demo 1 - Perception-Driven Manipulation 69

http://docs.ros.org/kinetic/api/roscpp/html/classros_1_1ServiceClient.html#a8a0c9be49046998a830df625babd396f
http://docs.ros.org/kinetic/api/tf/html/c++/classtf_1_1Transformer.html#a14536fe915c0c702534409c15714aa2f

Industrial Training

Build Code and Run

• Compile the pick and place node

– In QtCreator, use : Build -> Build Project

– Alternatively, in a terminal:

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles' --pkg collision_avoidance_
→˓pick_and_place
source ./devel/setup.bash

• Run your node with the launch file:

roslaunch collision_avoidance_pick_and_place ur5_pick_and_place.launch

• The tcp and wrist position at the pick will be printed in the terminal. You should see something like this:

[INFO] [1400555434.918332145]: Move wait Succeeded
[INFO] [1400555435.172714267]: Gripper opened
[INFO] [1400555435.424279410]: target recognition succeeded
[INFO] [1400555435.424848964]: tcp position at pick: [-0.8, 0.2, 0.17]
[INFO] [1400555435.424912520]: tcp z direction at pick: [8.65611e-17, -8.66301e-17, -
→˓1]
[INFO] [1400555435.424993675]: wrist position at pick: x: -0.81555
y: 0.215563
z: 0.3

[ERROR] [1400555435.425051853]: pickup_box is not implemented yet. Aborting.

API References

lookupTransform

TF Transforms and other useful data types

Pick Up Box

In this exercise, we will move the robot through the pick motion while avoiding obstacles in the environ-
ment. This is to be accomplished by planning for each pose and closing or opening the vacuum gripper
when apropriate. Also, it will be demonstrated how to create a motion plan that MoveIt! can understand
and solve.

Locate Function

• In the main program, locate the function call to application.pickup_box().

• Go to the source file of that function by clicking in any part of the function and pressing “F2”.

• Remove the first line containing the following ROS_ERROR_STREAM ... so that the program runs.

70 Chapter 3. Basic Topics

http://docs.ros.org/kinetic/api/tf/html/c++/classtf_1_1Transformer.html#a14536fe915c0c702534409c15714aa2f
http://wiki.ros.org/tf/Overview/Data%20Types

Industrial Training

Complete Code

• Find every line that begins with the comment Fill Code: and read the description. Then, replace every
instance of the comment ENTER CODE HERE with the appropriate line of code

/* Fill Code:
.
.
.

*/
/* ======== ENTER CODE HERE ======== */

• Inspect the set_attached_object method to understand how to manipulate a robot_state object
which will then be used to construct a motion plan.

• Inspect the create_motion_plan method to see how an entire motion plan request is defined and sent.

• The execute() method sends a motion plan to the robot.

Build Code and Run

• Compile the pick and place node:

– in QTCreator: Build -> Build Project

– Alternatively, in a terminal:

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles' --pkg collision_avoidance_
→˓pick_and_place

• Run your node with the launch file:

roslaunch collision_avoidance_pick_and_place ur5_pick_and_place.launch

• The robot should go through the pick moves (Approach, pick and retreat) in addition to the moves from the
previous exercises. In the terminal you will see something like:

[INFO] [1400555978.404435764]: Execution completed: SUCCEEDED
[INFO] [1400555978.404919764]: Pick Move 2 Succeeded
[ERROR] [1400555978.405061541]: create_place_moves is not implemented yet. Aborting.

API References

MoveGroupInterface class

Create Place Moves

The gripper moves through three poses in order to place the box: Approach, place and retreat. In this
exercise, we will create these place poses for the tcp coordinate frame and then transform them to the
arm’s wrist coordinate frame.

3.5. Application Demo 1 - Perception-Driven Manipulation 71

http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#add236df4ab9ba7b7011ec53f8aa9c026
http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html

Industrial Training

Locate Function

• In the main program , locate the function call to application.create_place_moves().

• Go to the source file of that function by clicking in any part of the function and pressing “F2”.

• Remove the fist line containing the following ROS_ERROR_STREAM ... so that the program runs.

Complete Code

• Find every line that begins with the comment Fill Code: and read the description. Then, replace every
instance of the comment ENTER CODE HERE with the appropriate line of code

/* Fill Code:
.
.
.

*/
/* ======== ENTER CODE HERE ======== */

• The box’s position at the place location is saved in the global variable cfg.BOX_PLACE_TF.

• The create_manipulation_poses() uses the values of the approach and retreat distances in order to
create the corresponding poses at the desired target.

• Since moveit plans the robot path for the arm’s wrist, then it is necessary to convert all the place poses to the
wrist coordinate frame.

• The lookupTransform method can provide the pose of a target relative to another pose.

Build Code and Run

• Compile the pick and place node:

– In QtCreator: Build -> Build Project

– Alternatively, in a terminal:

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles' --workspace collision_
→˓avoidance_pick_and_place

• Run your node with the launch file:

roslaunch collision_avoidance_pick_and_place ur5_pick_and_place.launch

• The tcp and wrist position at the place location will be printed on the terminal. You should see something like:

[INFO] [1400556479.404133995]: Execution completed: SUCCEEDED
[INFO] [1400556479.404574973]: Pick Move 2 Succeeded
[INFO] [1400556479.404866351]: tcp position at place: [-0.4, 0.6, 0.17]
[INFO] [1400556479.404934796]: wrist position at place: x: -0.422
y: 0.6
z: 0.3

[ERROR] [1400556479.404981729]: place_box is not implemented yet. Aborting.

72 Chapter 3. Basic Topics

http://docs.ros.org/kinetic/api/tf/html/c++/classtf_1_1Transformer.html#a14536fe915c0c702534409c15714aa2f

Industrial Training

API References

lookupTransform

TF Transforms and other useful data types

Place Box

In this exercise, we will move the robot through the place motions while avoiding obstacles with an
attached payload. In addition, the gripper must be opened or close at the appropriate time in order to
complete the task.

Locate Function

• In the main program, locate the function call to application.place_box().

• Go to the source file of that function by clicking in any part of the function and pressing “F2”.

• Remove the first line containing the following ROS_ERROR_STREAM ... so that the program runs.

Complete Code

• Find every line that begins with the comment Fill Code: and read the description. Then, replace every
instance of the comment ENTER CODE HERE with the appropriate line of code

/* Fill Code:
.
.
.

*/
/* ======== ENTER CODE HERE ======== */

• The execute() method sends a motion plan to the robot.

Build Code and Run

• Compile the pick and place node:

– in QTCreator: Build -> Build Project

– Alternatively, in a terminal:

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles' --pkg collision_avoidance_
→˓pick_and_place

• Run your node with the launch file:

roslaunch collision_avoidance_pick_and_place ur5_pick_and_place.launch

• At this point your exercise is complete and the robot should move through the pick and place motions and then
back to the wait pose. Congratulations!

3.5. Application Demo 1 - Perception-Driven Manipulation 73

http://docs.ros.org/kinetic/api/tf/html/c++/classtf_1_1Transformer.html#a14536fe915c0c702534409c15714aa2f
http://wiki.ros.org/tf/Overview/Data%20Types
http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#add236df4ab9ba7b7011ec53f8aa9c026

Industrial Training

API References

MoveGroupInterface class

3.6 Application Demo 2 - Descartes Planning and Execution

3.6.1 Application Demo 2 - Descartes Planning and Execution

Introduction

Goal

• This application will demonstrate how to use the various components in the Descartes library for planning and
executing a robot path from a semi-constrained trajectory of points.

Objectives

• Become familiar with the Descartes workflow.

• Learn how to load a custom Descartes RobotModel.

• Learn how to create a semi-constrained trajectory from 6DOF tool poses.

• Plan a robot path with a Descartes Planner.

• Convert a Descartes Path into a MoveIt! message for execution.

• Executing the path on the robot.

Application Structure

In this exercise, we’ll take a look at all the packages and files that will be used during the completion of
these exercises.

Acquire and initialize the Workspace

cd ~/industrial_training/exercises/Descartes_Planning_and_Execution
cp -r template_ws ~/descartes_ws
cd ~/descartes_ws
source /opt/ros/kinetic/setup.bash
catkin init

Download source dependencies

Use the wstool command to download the repositories listed in the src/.rosinstall file

cd ~/descartes_ws/src/
wstool update

74 Chapter 3. Basic Topics

http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html
http://wiki.ros.org/wstool

Industrial Training

Download debian dependencies

Make sure you have installed and configured the rosdep tool. Then, run the following command from the
src directory of your workspace.

rosdep install --from-paths . --ignore-src -y

Build your workspace

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles'

If the build fails, then revisit the previous two steps to make sure all the dependencies were downloaded.

Source the workspace

Run the following command from your workspace parent directory

source devel/setup.bash

List All the Packages in the Application

cd ~/descartes_ws/src
ls -la

• plan_and_run : Contains the source code for the plan_and_run application. You’ll be completing the
exercises by editing source files in this package

• ur5_demo_moveit_config : Contains support files for planning and execution robot motions with Moveit.
This package was generated with the Moveit Setup Assistant

• ur5_demo_support : Provides the robot definition as a URDF file. This URDF is loaded at run time by our
plan_and_run application.

• ur5_demo_descartes : Provides a custom Descartes Robot Model for the UR5 arm. It uses a Inverse-
Kinematics closed form solution; which is significantly faster than the numerical approach used by the Moveit-
StateAdapter.

The plan_and_run package

roscd plan_and_run
ls -la

• src : Application source files.

• src/demo_application.cpp : A class source file that contains the application implementation code.

• src/plan_and_run.cpp : The application main access point. It invokes all the tasks in the application and
wraps them inside the “main” routine.

• src/tasks : A directory that contains all of the source files that you’ll be editing or completing as you make
progress through the exercises.

3.6. Application Demo 2 - Descartes Planning and Execution 75

http://wiki.ros.org/rosdep

Industrial Training

• include : Header files

• include/plan_and_run/demo_application.h : Defines the application skeleton and provides a
number of global variables for passing data at various points in the exercises.

• launch: Launch files needed to run the application

• launch/demo_setup.launch : Loads roscore, moveit and the runtime resources needed by our
application.

• launch/demo_run.launch : Starts our application main executable as a ROS node.

• config: Directory that contains non-critical configuration files.

Main Application Source File

In the “plan_and_run/src/plan_and_run_node.cpp” you’ll find the following code:

int main(int argc,char** argv)
{

ros::init(argc,argv,"plan_and_run");
ros::AsyncSpinner spinner(2);
spinner.start();

// creating application
plan_and_run::DemoApplication application;

// loading parameters
application.loadParameters();

// initializing ros components
application.initRos();

// initializing descartes
application.initDescartes();

// moving to home position
application.moveHome();

// generating trajectory
plan_and_run::DescartesTrajectory traj;
application.generateTrajectory(traj);

// planning robot path
plan_and_run::DescartesTrajectory output_path;
application.planPath(traj,output_path);

// running robot path
application.runPath(output_path);

// exiting ros node
spinner.stop();

return 0;
}

In short, this program will run through each exercise by calling the corresponding function from the application
object. For instance, in order to initialize Descartes the program calls application.iniDescartes(). Thus

76 Chapter 3. Basic Topics

Industrial Training

each exercise consists of editing the source file where that exercise is implemented, so for application.
initDescartes() you’ll be editing the plan_and_run/src/tasks/init_descartes.src source file.

The DemoApplication Class

In the header file “plan_and_run/include/plan_and_run/demo_application.h” you’ll find the def-
inition for the application’s main class along with several support constructs. Some of the important components to
take notice of are as follows:

• Program Variables: Contain hard coded values that are used at various points in the application.

const std::string ROBOT_DESCRIPTION_PARAM = "robot_description";
const std::string EXECUTE_TRAJECTORY_ACTION = "execute_trajectory";
const std::string VISUALIZE_TRAJECTORY_TOPIC = "visualize_trajectory_curve";
const double SERVER_TIMEOUT = 5.0f; // seconds
const double ORIENTATION_INCREMENT = 0.5f;
const double EPSILON = 0.0001f;
const double AXIS_LINE_LENGHT = 0.01;
const double AXIS_LINE_WIDTH = 0.001;
const std::string PLANNER_ID = "RRTConnectkConfigDefault";
const std::string HOME_POSITION_NAME = "home";

• Trajectory Type: Convenience type that represents an array of Descartes Trajectory Points.

typedef std::vector<descartes_core::TrajectoryPtPtr> DescartesTrajectory;

• DemoConfiguration Data Structure: Provides variables whose values are initialize at run-time from corre-
sponding ros parameters.

struct DemoConfiguration
{

std::string group_name; /* Name of the manipulation group
→˓containing the relevant links in the robot */
std::string tip_link; /* Usually the last link in the kinematic

→˓chain of the robot */
std::string base_link; /* The name of the base link of the robot */
std::string world_frame; /* The name of the world link in the URDF

→˓file */
std::vector<std::string> joint_names; /* A list with the names of the mobile

→˓joints in the robot */

/* Trajectory Generation Members:

* Used to control the attributes (points, shape, size, etc) of the robot
→˓trajectory.

* */
double time_delay; /* Time step between consecutive points in the

→˓robot path */
double foci_distance; /* Controls the size of the curve */
double radius; /* Controls the radius of the sphere on which the

→˓curve is projected */
int num_points; /* Number of points per curve */
int num_lemniscates; /* Number of curves*/
std::vector<double> center; /* Location of the center of all the lemniscate

→˓curves */
std::vector<double> seed_pose; /* Joint values close to the desired start of the

→˓robot path */
(continues on next page)

3.6. Application Demo 2 - Descartes Planning and Execution 77

Industrial Training

(continued from previous page)

/*
* Visualization Members

* Used to control the attributes of the visualization artifacts

*/
double min_point_distance; /* Minimum distance between consecutive trajectory

→˓points. */
};

• DemoApplication Class: Main component of the application which provides functions for each step in our
program. It also contains several constructs that turn this application into a ROS node.

class DemoApplication
{
public:

/* Constructor

* Creates an instance of the application class

*/
DemoApplication();
virtual ~DemoApplication();

/* Main Application Functions

* Functions that allow carrying out the various steps needed to run a

* plan an run application. All these functions will be invoked from within

* the main routine.

*/

void loadParameters();
void initRos();
void initDescartes();
void moveHome();
void generateTrajectory(DescartesTrajectory& traj);
void planPath(DescartesTrajectory& input_traj,DescartesTrajectory& output_path);
void runPath(const DescartesTrajectory& path);

protected:

/* Support methods

* Called from within the main application functions in order to perform
→˓convenient tasks.

*/

static bool createLemniscateCurve(double foci_distance, double sphere_radius,
int num_points, int num_lemniscates,
const Eigen::Vector3d& sphere_center,
EigenSTL::vector_Affine3d& poses);

void fromDescartesToMoveitTrajectory(const DescartesTrajectory& in_traj,
trajectory_msgs::JointTrajectory& out_

→˓traj);

void publishPosesMarkers(const EigenSTL::vector_Affine3d& poses);

protected:

(continues on next page)

78 Chapter 3. Basic Topics

Industrial Training

(continued from previous page)

/* Application Data

* Holds the data used by the various functions in the application.

*/
DemoConfiguration config_;

/* Application ROS Constructs

* Components needed to successfully run a ros-node and perform other important

* ros-related tasks

*/
ros::NodeHandle nh_; /* Object used for creating and

→˓managing ros application resources*/
ros::Publisher marker_publisher_; /* Publishes visualization message to

→˓Rviz */
std::shared_ptr<actionlib::SimpleActionClient<moveit_msgs::ExecuteTrajectoryAction>>

→˓ moveit_run_path_client_ptr_; /* Sends a robot trajectory to moveit for execution
→˓*/

/* Application Descartes Constructs

* Components accessing the path planning capabilities in the Descartes library

*/
descartes_core::RobotModelPtr robot_model_ptr_; /* Performs tasks specific to the

→˓Robot
such IK, FK and collision

→˓detection*/
descartes_planner::SparsePlanner planner_; /* Plans a smooth robot path given

→˓a trajectory of points */

};

Application Launch File

This file starts our application as a ROS node and loads up the necessary parameters into the ROS parameter server.
Observe how this is done by opening the “plan_and_run/launch/demo_run.launch” file:

<launch>
<node name="plan_and_run_node" type="plan_and_run_node" pkg="plan_and_run" output=

→˓"screen">
<param name="group_name" value="manipulator"/>
<param name="tip_link" value="tool"/>
<param name="base_link" value="base_link"/>
<param name="world_frame" value="world"/>
<param name="trajectory/time_delay" value="0.1"/>
<param name="trajectory/foci_distance" value="0.07"/>
<param name="trajectory/radius" value="0.08"/>
<param name="trajectory/num_points" value="200"/>
<param name="trajectory/num_lemniscates" value="4"/>
<rosparam param="trajectory/center">[0.36, 0.2, 0.1]</rosparam>
<rosparam param="trajectory/seed_pose">[0.0, -1.03, 1.57 , -0.21, 0.0, 0.0]</

→˓rosparam>
<param name="visualization/min_point_distance" value="0.02"/>

</node>
(continues on next page)

3.6. Application Demo 2 - Descartes Planning and Execution 79

Industrial Training

(continued from previous page)

</launch>

• Some of the important parameters are explained as follows:

• group_name: A namespace that points to the list of links in the robot that are included in the arm’s kinematic
chain (base to end-of-tooling links). This list is defined in the ur5_demo_moveit_config package.

• tip_link: Name of the last link in the kinematic chain, usually the tool link.

• base_link: Name for the base link of the robot.

• world_frame: The absolute coordinate frame of reference for all the objects defined in the planning environment.

• The parameters under the “trajectory” namespace are used to generate the trajectory that is feed into the
Descartes planner.

• trajectory/seed_pose: This is of particular importance because it is used to indicate preferred start and end joint
configurations of the robot when planning the path. If a ‘’seed_pose” wasn’t specified then planning would take
longer since multiple start and end joint configurations would have to be taken into account, leading to multiple
path solutions that result from combining several start and end poses.

General Instructions

In this exercise, we’ll demonstrate how to run the demo as you make progress through the exercises. Also,
it will be shown how to run the system in simulation mode and on the real robot.

Main Objective

In general, you’ll be implementing a plan_and_run node incrementally. This means that in each exercise you’ll be
adding individual pieces that are needed to complete the full application demo. Thus, when an exercise is completed
run the demo in simulation mode in order to verify your results. Only when all of the exercises are finished should you
run it on the real robot.

Complete Exercises

1. To complete an exercise, open the corresponding source file under the src/plan_and_run/src/tasks/
directory. For instance, in Exercise 1 you’ll open load_parameters.cpp.

2. Take a minute to read the header comments for specific instructions for how to complete this particular exercise.
For instance, the load_parameters.cpp file contains the following instructions and hints:

/* LOAD PARAMETERS
Goal:
- Load missing application parameters into the node from the ros parameter server.
- Use a private NodeHandle in order to load parameters defined in the node's

→˓namespace.
Hints:
- Look at how the 'config_' structure is used to save the parameters.
- A private NodeHandle can be created by passing the "~" string to its

→˓constructor.

*/

1. Don’t forget to comment out the line:

80 Chapter 3. Basic Topics

Industrial Training

ROS_ERROR_STREAM("Task '"<<__FUNCTION__ <<"' is incomplete. Exiting"); exit(-1);

This line is usually located at the beginning of each function. Omitting this step will cause the program to exit
immediately when it reaches this point.

1. When you run into a comment block that starts with /* Fill Code: this means that the line(s) of code that
follow are incorrect, commented out or incomplete at best. Read the instructions following Fill Code and
complete that task as described. An example of instructions comment block is the following:

/* Fill Code:

* Goal:

* - Create a private handle by passing the "~" string to its constructor

* Hint:

* - Replace the string in ph below with "~" to make it a private node.

*/

1. The [COMPLETE HERE] entries are meant to be replaced by the appropriate code entry. The right
code entries could either be program variables, strings or numeric constants. One example is shown below:

ros::NodeHandle ph("[COMPLETE HERE]: ?? ");

In this case the correct replacement would be the string "~", so this line would look like this:

ros::NodeHandle ph("~");

1. As you are completing each task in this exercise, you can run the demo (see following sections) to verify that it
was completed properly.

Run Demo in Simulation Mode

1. In a terminal, run the setup launch file as follows:

roslaunch plan_and_run demo_setup.launch

• When the virtual robot is ready , Rviz should be up and running with a UR5 arm in the home position and you’ll
see the following messages in the terminal:

.

.

.

**
* MoveGroup using:

* - CartesianPathService

* - ExecutePathService

* - KinematicsService

* - MoveAction

* - PickPlaceAction

* - MotionPlanService

* - QueryPlannersService

* - StateValidationService

* - GetPlanningSceneService

* - ExecutePathService

**

[INFO] [1430359645.694537917]: MoveGroup context using planning plugin ompl_
→˓interface/OMPLPlanner

(continues on next page)

3.6. Application Demo 2 - Descartes Planning and Execution 81

Industrial Training

(continued from previous page)

[INFO] [1430359645.694700640]: MoveGroup context initialization complete

All is well! Everyone is happy! You can start planning now!

• This launch file only needs to be run once.

1. In a separate terminal, run the application launch file:

roslaunch plan_and_run demo_run.launch

• Look in the Rviz window and the arm should start moving.

Run Demo on the Real Robot

Notes

• Make sure that you can ping the robot and that there aren’t any obstacles near it.

1. In a terminal, run the setup launch file as follows:

roslaunch plan_and_run demo_setup.launch sim:=false robot_ip:=000.000.0.00

Notes:

• Enter the robot’s actual IP address into the robot_ip argument. The robot model in Rviz should be in about
the same position as the real robot.

1. In a separate terminal, run the application launch file:

roslaunch plan_and_run demo_run.launch

• This time the real robot should start moving.

Load Parameters

In this exercise, we’ll load some ROS parameters to initialize important variables within our program.

Locate Exercise Source File

• Go to the main application source file located in plan_and_run/src/plan_and_run_node.cpp.

• In the main program, locate the function call to application.loadParameters().

• Go to the source file for that function located in the plan_and_run/src/tasks/load_parameters.
cpp. Alternatively, in Eclipse you can click in any part of the function and press “F2” to bring up that file.

• Comment out the first line containing the ROS_ERROR_STREAM ... entry so that the function doesn’t quit
immediately.

Complete Code

• Find comment block that starts with /* Fill Code: and complete as described.

• Replace every instance of [COMPLETE HERE] accordingly.

82 Chapter 3. Basic Topics

Industrial Training

Build Code and Run

• cd into your catkin workspace and run:

catkin build --cmake-args -G 'CodeBlocks - Unix Makefiles'
source ./devel/setup.bash

• Then run the application launch file:

roslaunch plan_and_run demo_setup.launch
roslaunch plan_and_run demo_run.launch

API References

ros::NodeHandle

NodeHandle::getParam()

Initialize ROS

In this exercise, we’ll initialize the ros components that our application needs in order to communicate to
MoveIt! and other parts of the system.

Locate Exercise Source File

• Go to the main application source file located in plan_and_run/src/plan_and_run_node.cpp.

• In the main program, locate the function call to application.initRos().

• Go to the source file for that function located in the plan_and_run/src/tasks/init_ros.cpp.

– Alternatively, in QTCreator, click on any part of the function and press “F2” to bring up that file.

• Comment out the first line containing the ROS_ERROR_STREAM ... entry so that the function doesn’t quit
immediately.

Complete Code

• Observe how the ros Publisher marker_publisher_ variable is initialized. The node uses it to publish a
visualization_msgs::!MarkerArray message for visualizing the trajectory in RViz.

• Initialize the moveit_run_path_client_ptr_ action client with the ExecuteTrajectoryAction
type.

• Find comment block that starts with /* Fill Code: and complete as described.

• Replace every instance of [COMPLETE HERE] accordingly.

Build Code and Run

• cd into your catkin workspace and run catkin build

• Then run the application launch file:

3.6. Application Demo 2 - Descartes Planning and Execution 83

http://docs.ros.org/kinetic/api/roscpp/html/classros_1_1NodeHandle.html
http://docs.ros.org/kinetic/api/roscpp/html/classros_1_1NodeHandle.html#a8b5db588e675cf3e360da65bae6a55e4

Industrial Training

roslaunch plan_and_run demo_run.launch

API References

visualization_msgs::MarkerArray

NodeHandle::serviceClient()

Initialize Descartes

This exercise consists of setting up the Descartes Robot Model and Path Planner that our node will use to
plan a path from a semi-constrained trajectory of the tool.

Locate Exercise Source File

• Go to the main application source file located in plan_and_run/src/plan_and_run_node.cpp.

• In the main program, locate the function call to application.initDescartes().

• Go to the source file for that function located in the plan_and_run/src/tasks/init_descartes.
cpp.

– Alternatively, in QTCreator, you can click in any part of the function and press “F2” to bring up that file.

• Comment out the first line containing the ROS_ERROR_STREAM(... entry so that the function doesn’t quit
immediately.

Complete Code

• Invoke the descartes_core::RobotModel::initialize() method in order to properly initialize the robot.

• Similarly, initialize the Descartes planner by passing the robot_model_ variable into the
descartes_core::!DensePlanner::initialize() method.

• Find comment block that starts with /* Fill Code: and complete as described.

• Replace every instance of [COMPLETE HERE] accordingly.

Build Code and Run

• cd into your catkin workspace and run catkin build

• Then run the application launch file:

roslaunch plan_and_run demo_run.launch

API References

descartes_core::RobotModel descartes_planner::DensePlanner

84 Chapter 3. Basic Topics

http://docs.ros.org/api/visualization_msgs/html/msg/MarkerArray.html
http://docs.ros.org/kinetic/api/roscpp/html/classros_1_1NodeHandle.html#a183d4cba0ea5c78f075304b91e07cc61
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1DensePlanner.html#af6e9db3c1dec85046fc836136cf7b0fb
http://docs.ros.org/indigo/api/descartes_core/html/classdescartes__core_1_1RobotModel.html
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1DensePlanner.html

Industrial Training

Move Home

In this exercise, we’ll be using MoveIt! in order to move the arm.

Locate Exercise Source File

• Go to the main application source file located in plan_and_run/src/plan_and_run_node.cpp.

• In the main program , locate the function call to application.moveHome().

• Go to the source file for that function located in the plan_and_run/src/tasks/move_home.cpp.

– Alternatively, in QTCreator, click on any part of the function and press “F2” to bring up that file.

• Comment out the first line containing the ROS_ERROR_STREAM(... entry so that the function doesn’t quit
immediately.

Complete Code

• Use the MoveGroupInterface::move() method in order to move the robot to a target.

• The moveit_msgs::MoveItErrorCodes structure contains constants that you can use to check the result after
calling the move() function.

• Find comment block that starts with /* Fill Code: and complete as described.

• Replace every instance of [COMPLETE HERE] accordingly.

Build Code and Run

• cd into your catkin workspace and run catkin build

• Then run the application launch file:

roslaunch plan_and_run demo_run.launch

API References

setNamedTarget()

MoveGroupInterface class

Generate a Semi-Constrained Trajectory

In this exercise, we’ll be creating a Descartes trajectory from an array of cartesian poses. Each point will
have rotational freedom about the z axis of the tool.

Locate exercise source file

• Go to the main application source file located in plan_and_run/src/plan_and_run_node.cpp.

• In the main program, locate the function call to application.generateTrajectory().

3.6. Application Demo 2 - Descartes Planning and Execution 85

http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#a3513c41b0c73400fc6713b25bc6b1637
http://docs.ros.org/kinetic/api/moveit_msgs/html/msg/MoveItErrorCodes.html
http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#a5262ff42a454b499d3608b384957a5e4
http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html

Industrial Training

• Go to the source file for that function located in the plan_and_run/src/tasks/
generate_trajectory.cpp.

– Alternatively, in QTCreator, click on any part of the function and press “F2” to bring up that file.

• Comment out the first line containing the ROS_ERROR_STREAM(... entry so that the function doesn’t quit
immediately.

Complete Code

• Observe how the ‘createLemniscate()’ is invoked in order to generate all the poses of the tool for the trajectory.
The poses from it are then used to create the Descartes Trajectory.

• Use the AxialSymmetric constructor to specify a point with rotational freedom about the z-axis.

• The AxialSymmetricPt::FreeAxis::Z_AXIS enumeration constant allows you to specify the Z as the free rota-
tional axis

• Find comment block that starts with /* Fill Code: and complete as described .

• Replace every instance of [COMPLETE HERE] accordingly.

Build Code and Run

• CD into your catkin workspace and run catkin build

• The run the application launch file

roslaunch plan_and_run demo_run.launch

API References

descartes_trajectory::AxialSymmetricPt

Plan a Robot Path

In this exercise, we’ll pass our trajectory to the Descartes planner in order to plan a robot path.

Locate Exercise Source File

• Go to the main application source file located in plan_and_run/src/plan_and_run_node.cpp.

• In the main program, locate the function call to application.planPath().

• Go to the source file for that function located in the plan_and_run/src/tasks/plan_path.cpp. Al-
ternatively, in Eclipse you can click in any part of the function and press “F2” to bring up that file.

• Comment out the first line containing the ROS_ERROR_STREAM(... entry so that the function doesn’t quit
immediately.

86 Chapter 3. Basic Topics

http://docs.ros.org/indigo/api/descartes_trajectory/html/classdescartes__trajectory_1_1AxialSymmetricPt.html#a552cfabcd4891ea01886fa1b258de7f1
http://docs.ros.org/indigo/api/descartes_trajectory/html/classdescartes__trajectory_1_1AxialSymmetricPt.html#a65bf672235bde219db6667892efebbc2
http://docs.ros.org/indigo/api/descartes_trajectory/html/classdescartes__trajectory_1_1AxialSymmetricPt.html

Industrial Training

Complete Code

• Observe the use of the AxialSymmetricPt::getClosesJointPose() in order to get the joint values of the robot that
is closest to an arbitrary joint pose. Furthermore, this step allows us to select a single joint pose for the start and
end rather than multiple valid joint configurations.

• Call the DensePlanner::planPath() method in order to compute a motion plan.

• When planning succeeds, use the DensePlanner::getPath() method in order to retrieve the path from the planner
and save it into the output_path variable.

• Find comment block that starts with /* Fill Code: and complete as described.

• Replace every instance of [COMPLETE HERE] accordingly.

Build Code and Run

• cd into your catkin workspace and run catkin build

• Then run the application launch file:

roslaunch plan_and_run demo_run.launch

API References

descartes_planner::DensePlanner

Run a Robot Path

In this exercise, we’ll convert our Descartes path into a MoveIt! trajectory and then send it to the robot.

Locate Exercise Source File

• Go to the main application source file located in plan_and_run/src/plan_and_run_node.cpp.

• In the main program, locate the function call to application.runPath().

• Go to the source file for that function located in the plan_and_run/src/tasks/run_path.cpp.

– Alternatively, in QTCreator, click on any part of the function and press “F2” to bring up that file.

• Comment out the first line containing the ROS_ERROR_STREAM(... entry so that the function doesn’t quit
immediately.

Complete Code

• Find comment block that starts with /* Fill Code: and complete as described.

• Replace every instance of [COMPLETE HERE] accordingly.

3.6. Application Demo 2 - Descartes Planning and Execution 87

http://docs.ros.org/indigo/api/descartes_trajectory/html/classdescartes__trajectory_1_1CartTrajectoryPt.html#a1252c8f49a6e5a7d563b6d4a256b553b
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1DensePlanner.html#a2181f674af57b92023deabb5e8323a2a
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1DensePlanner.html#aafd40b5dc5ed39b4f10e9b47fda0419f
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1DensePlanner.html

Industrial Training

Build Code and Run

• cd into your catkin workspace and run catkin build

• Then run the application launch file:

roslaunch plan_and_run demo_run.launch

API References

MoveGroupInterface::move()

88 Chapter 3. Basic Topics

http://docs.ros.org/kinetic/api/moveit_ros_planning_interface/html/classmoveit_1_1planning__interface_1_1MoveGroupInterface.html#a3513c41b0c73400fc6713b25bc6b1637

CHAPTER 4

Advanced Topics

4.1 Session 5 - Path Planning and Building a Perception Pipeline

Slides

4.1.1 Advanced Descartes Path Planning

In this exercise, we will use advanced features with Descartes to solve a complex path for part being held
by the robot which gets processed by a stationary tool.

Motivation

MoveIt! is a framework meant primarily for performing “free-space” motion where the objective is to move a robot
from point A to point B and you don’t particularly care about how that gets done. These types of problems are only a
subset of frequently performed tasks. Imagine any manufacturing ‘’process” like welding or painting. You very much
care about where that tool is pointing the entire time the robot is at work.

This tutorial introduces you to Descartes, a ‘’Cartesian” motion planner meant for moving a robot along some process
path. It’s only one of a number of ways to solve this kind of problem, but it’s got some neat properties:

• It’s deterministic and globally optimum (to a certain search resolution).

• It can search redundant degrees of freedom in your problem (say you have 7 robot joints or you have a process
where the tool’s Z-axis rotation doesn’t matter).

Reference Example

Descartes Tutorial

89

http://wiki.ros.org/descartes/Tutorials/Getting%20Started%20with%20Descartes

Industrial Training

Further Information and Resources

Descartes Wiki

APIs:

• descartes_core::PathPlannerBase

• descartes_planner::DensePlanner

• descartes_planner::SparsePlanner

Scan-N-Plan Application: Problem Statement

In this exercise, you will add two new nodes, two xacro, and config file to your Scan-N-Plan application, that:

1. Takes the config file puzzle_bent.csv and creates a descartes trajectory where the part is held by the robot
and manipulated around a stationary tool.

2. Produces a joint trajectory that commands the robot to trace the perimeter of the marker (as if it is dispensing
adhesive).

Scan-N-Plan Application: Guidance

In the interest of time, we’ve included several files:

1. The first is a template node adv_descartes_node.cpp where most of the exercise is spent creating the
complicated trajectory for deburring a complicated part.

2. The second node, adv_myworkcell_node.cpp, is a duplicate of the myworkcell_node.cpp that has
been updated to call the adv_plan_path service provided by adv_descartes_node.cpp.

3. The config file puzzle_bent.csv which contains the path relative to the part coordinate system.

4. The two xacro files puzzle_mount.xacro and grinder.xacro which are used to update the urdf/xacro
workcell.xacro file.

Left to you are the details of:

1. Updating the workcell.xacro file to include the two new xacro files.

2. Updating the moveit_config package to define a new Planning Group for this exercise, including the new end-
effector links.

3. Defining a series of Cartesian poses that comprise a robot “path”.

4. Translating those paths into something Descartes can understand.

Setup workspace

1. This exercise uses the same workspace from the Basic Training course. If you don’t have this workspace
(completed through Exercise 4.1), copy the completed reference code and pull in other required dependencies
as shown below. Otherwise move to the next step.

mkdir ~/catkin_ws
cd ~/catkin_ws
cp -r ~/industrial_training/exercises/4.1/src .
cd src
git clone https://github.com/jmeyer1292/fake_ar_publisher.git

(continues on next page)

90 Chapter 4. Advanced Topics

http://wiki.ros.org/descartes
http://docs.ros.org/indigo/api/descartes_core/html/classdescartes__core_1_1PathPlannerBase.html
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1DensePlanner.html
http://docs.ros.org/indigo/api/descartes_planner/html/classdescartes__planner_1_1SparsePlanner.html

Industrial Training

(continued from previous page)

git clone -b kinetic-devel https://github.com/ros-industrial-consortium/descartes.
→˓git
sudo apt install ros-kinetic-ur-kinematics
sudo apt install ros-kinetic-ur-description

2. Copy over the adv_descartes_node_unfinished.cpp into your core package’s src/ folder and rename
it adv_descartes_node.cpp.

cp ~/industrial_training/exercises/5.0/src/adv_descartes_node_unfinished.cpp
→˓myworkcell_core/src/adv_descartes_node.cpp

3. Create rules in the myworkcell_core package’s CMakeLists.txt to build a new node called
adv_descartes_node. As in previous exercises, add these lines near similar lines in the template file
(not as a block as shown below).

add_executable(adv_descartes_node src/adv_descartes_node.cpp)
add_dependencies(adv_descartes_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_
→˓EXPORTED_TARGETS})
target_link_libraries(adv_descartes_node ${catkin_LIBRARIES})

4. Copy over the adv_myworkcell_node.cpp into your core package’s src/ folder.

cp ~/industrial_training/exercises/5.0/src/myworkcell_core/src/adv_myworkcell_
→˓node.cpp myworkcell_core/src/

5. Create rules in the myworkcell_core package’s CMakeLists.txt to build a new node called
adv_myworkcell_node. As in previous exercises, add these lines near similar lines in the template file
(not as a block as shown below).

add_executable(adv_myworkcell_node src/adv_myworkcell_node.cpp)
add_dependencies(adv_myworkcell_node ${${PROJECT_NAME}_EXPORTED_TARGETS} ${catkin_
→˓EXPORTED_TARGETS})
target_link_libraries(adv_myworkcell_node ${catkin_LIBRARIES})

6. Copy over the necessesary config file:

mkdir ~/catkin_ws/src/myworkcell_core/config
cp ~/industrial_training/exercises/5.0/src/myworkcell_core/config/puzzle_bent.csv
→˓myworkcell_core/config/
cp ~/industrial_training/exercises/5.0/src/myworkcell_support/urdf/grinder.xacro
→˓myworkcell_support/urdf/
cp ~/industrial_training/exercises/5.0/src/myworkcell_support/urdf/puzzle_mount.
→˓xacro myworkcell_support/urdf/
mkdir ~/catkin_ws/src/myworkcell_support/meshes
cp ~/industrial_training/exercises/5.0/src/myworkcell_support/meshes/* myworkcell_
→˓support/meshes/

7. Add new package dependencies:

• Add tf_conversions to CMakeLists.txt (2 places) and package.xml (1 place)

Update your workcell.xacro file.

1. Add two <include> tags for the new grinder.xacro and puzzle_mount.xacro files.

2. Attach the grinder to the world link with the following offset:

4.1. Session 5 - Path Planning and Building a Perception Pipeline 91

Industrial Training

<origin xyz="0.0 -0.4 0.6" rpy="0 3.14159 0"/>

• Look in the grinder.xacro file to locate the appropriate <child_link> name.

• Copy one of the other <joint> tag definitions and modify as appropriate.

3. Attach the puzzle mount to the robot’s tool0 frame with the following offset:

<origin xyz="0 0 0" rpy="1.5708 0 0"/>

• Look in the puzzle_mount.xacro file to locate the appropriate <child_link> name. You may
need to study its various <link> and <joint> definitions to find the root link of this part.

• The tool0 frame is standardized across most ROS-I URDFs to be the robot’s end-effector mounting
flange.

4. Launch the demo.launch file within your moveit_config package to verify the workcell. There should be a
grinder sticking out of the table and a puzzle-shaped part attached to the robot.

roslaunch myworkcell_moveit_config demo.launch

Add new planning group to your moveit_config package.

1. Re-run the MoveIt! Setup Assistant and create a new Planning Group named puzzle. Define the kinematic chain
to extend from the base_link to the new part link.

roslaunch myworkcell_moveit_config setup_assistant.launch

• Note: Since you added geometry, you should also regenerate the allowed collision matrix.

Complete Advanced Descartes Node

1. First, the function makePuzzleToolPoses() needs to be completed. The file path for puzzle_bent.csv is
needed. For portability, don’t hardcode the full path. Please use the ROS tool ros::package::getPath()
to retrieve the root path of the relevant package.

• reference getPath() API

2. Next, the function makeDescartesTrajectory() needs to be completed. The transform between world
and grinder_frame needs to be found. Also Each point needs to have the orientation tolerance set for the z-axis
to +/- PI;

• reference lookupTransform() API

• reference tf::conversions namespace

• reference TolerancedFrame definition

• reference OrientationTolerance definition

Update the setup.launch file.

1. Update the file to take a boolean argument named adv so that either the basic or advanced descartes node can
be launched. Use <if> and <unless> modifiers to control which node is launched.

• reference roslaunch XML wiki

92 Chapter 4. Advanced Topics

http://docs.ros.org/kinetic/api/roslib/html/c++/namespaceros_1_1package.html#ae9470dd201aa4e66abb833e710d812a4
http://docs.ros.org/kinetic/api/tf/html/c++/classtf_1_1Transformer.html#ac01a9f8709a828c427f1a5faa0ced42b
http://docs.ros.org/kinetic/api/tf_conversions/html/c++/tf__eigen_8h.html
https://github.com/ros-industrial-consortium/descartes/blob/kinetic-devel/descartes_trajectory/include/descartes_trajectory/cart_trajectory_pt.h#L156
https://github.com/ros-industrial-consortium/descartes/blob/kinetic-devel/descartes_trajectory/include/descartes_trajectory/cart_trajectory_pt.h#L139
http://wiki.ros.org/roslaunch/XML

Industrial Training

Test Full Application

1. Run the new setup file, then your main advanced workcell node:

roslaunch myworkcell_support setup.launch adv:=true
rosrun myworkcell_core adv_myworkcell_node

• Descartes can take several minutes to plan this complex path, so be patient.

• It’s difficult to see what’s happening with the rviz planning-loop animation always running. Dis-
able this loop animation in rviz (Displays -> Planned Path -> Loop Animation) before running
adv_myworkcell_node.

4.1.2 Building a Perception Pipeline

In this exercise, we will fill in the appropriate pieces of code to build a perception pipeline. The end goal will be to
broadcast a transform with the pose information of the object of interest.

Prepare New Workspace:

We will create a new catkin workspace, since this exercise does not overlap with the previous exercises.

1. Disable automatic sourcing of your previous catkin workspace:

(a) gedit ~/.bashrc

(b) comment out (#) the last line, sourcing your ~/catkin_ws/devel/setup.bash

Note: This means you’ll need to manually source the setup file from your new catkin workspace in each
new terminal window.

i. Close gedit and source ROS into your environment

source /opt/ros/kinetic/setup.bash

2. Copy the template workspace layout and files:

cp -r ~/industrial_training/exercises/5.1/template_ws ~/perception_ws
cd ~/perception_ws/

1. Initialize and Build this new workspace

catkin init
catkin build

2. Source the workspace

source ~/perception_ws/devel/setup.bash

1. Copy the PointCloud file from prior Exercise 4.2 to your home directory (~):

cp ~/industrial_training/exercises/4.2/table.pcd ~

2. Import the new workspace into your QTCreator IDE:

• In QTCreator: File -> New File or Project -> Other Project -> ROS Workspace -> ~/perception_ws

4.1. Session 5 - Path Planning and Building a Perception Pipeline 93

Industrial Training

Intro (Review Existing Code)

Most of the infrastructure for a ros node has already been completed for you; the focus of this exercise is the perception
algorithms/pipleline. The CMakelists.txt and package.xml are complete and an executable has been provided. You
could run the executable as is, but you would get errors. At this time we will explore the source code that has been
provided - browse the provided perception_node.cpp file. The following are highlights of what is included.

1. Headers:

• You will have to uncomment the PCL related headers as you go

2. int main():

• The main function has been provided along with a while loop within the main function

3. ROS initialization:

• Both ros::init and ros::NodeHandle have been called/initialized. Additionally there is a private
nodehandle to use if you need to get parameters from a launch file within the node’s namespace.

4. Set up parameters:

• Currently there are three string parameters included in the example: the world frame, the camera frame
and the topic being published by the camera. It would be easy to write up a few nh.getParam lines
which would read these parameters in from a launch file. If you have the time, you should set this up
because there will be many parameters for the pcl methods that would be better adjusted via a launch file
than hardcoded.

5. Set up publishers:

• Two publishers have been set up to publish ros messages for point clouds. It is often useful to visualize
your results when working with image or point cloud processing.

6. Listen for PointCloud2 (within while loop):

• Typically one would listen for a ros message using the ros subscribe method with a callback function, as
done here. However it is often useful to do this outside of a callback function, so we show an example of
listening for a message using ros::topic::waitForMessage.

7. Transform PointCloud2 (within while loop):

• While we could work in the camera frame, things are more understandable/useful if we are looking at the
points of a point cloud in an xyz space that makes more sense with our environment. In this case we are
transforming the points from the camera frame to a world frame.

8. Convert PointCloud2 (ROS to PCL) (within while loop)

9. Convert PointCloud2 (PCL to ROS) and publish (within while loop):

• This step is not necessary, but visualizing point cloud processing results is often useful, so conversion back
into a ROS type and creating the ROS message for publishing is done for you.

So it seems that a lot has been done! Should be easy to finish up. All you need to do is fill in the middle section.

Primary Task: Filling in the blanks

The task of filling in the middle section containing the perception algorithms is an iterative process, so each step has
been broken up into its own sub-task.

94 Chapter 4. Advanced Topics

http://wiki.ros.org/pcl/Tutorials

Industrial Training

Implement Voxel Filter

1. Uncomment the voxel_grid include header, near the top of the file.

2. Change code:

The first step in most point cloud processing pipelines is the voxel filter. This filter not only helps to downsample
your points, but also eliminates any NAN values so that any further filtering or processing is done on real values.
See PCL Voxel Filter Tutorial for hints, otherwise you can copy the below code snippet.

Within perception_node.cpp, find section

/* ==

* Fill Code: VOXEL GRID

* ==*/

Copy and paste the following beneath that banner.

pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_ptr (new pcl::PointCloud<pcl::PointXYZ>
→˓(cloud));
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_voxel_filtered (new pcl::PointCloud
→˓<pcl::PointXYZ> ());
pcl::VoxelGrid<pcl::PointXYZ> voxel_filter;
voxel_filter.setInputCloud (cloud_ptr);
voxel_filter.setLeafSize (float(0.002), float(0.002), float(0.002));
voxel_filter.filter (*cloud_voxel_filtered);

3. Update Publisher Within perception_node.cpp, find section

/* ==

* CONVERT POINTCLOUD PCL->ROS

* PUBLISH CLOUD

* Fill Code: UPDATE AS NECESSARY

* ==*/

Uncomment pcl::toROSMsg, and replace *cloud_ptr with *cloud_voxel_filtered

After each new update, we’ll be swapping out which point-cloud is published for rviz viewing

Note: If you have the time/patience, I would suggest creating a ros publisher for each type of filter. It is often
useful to view the results of multiple filters at once in Rviz and just toggle different clouds.

4. Compile

catkin build

Viewing Results

1. Run the (currently small) perception pipeline. Note: In rviz change the global frame to kinect_link.

cd ~
roscore
rosrun tf2_ros static_transform_publisher 0 0 0 0 0 0 world_frame kinect_link
rosrun pcl_ros pcd_to_pointcloud table.pcd 0.1 _frame_id:=kinect_link cloud_
→˓pcd:=kinect/depth_registered/points

(continues on next page)

4.1. Session 5 - Path Planning and Building a Perception Pipeline 95

http://pointclouds.org/documentation/tutorials/voxel_grid.php#voxelgrid

Industrial Training

(continued from previous page)

rosrun rviz rviz
rosrun lesson_perception perception_node

2. View results

Within Rviz, add a PointCloud2 Display subscribed to the topic “object_cluster”. What you see will be the
results of the voxel filter overlaid on the original point cloud (assuming you have completed exercise 4.2 and
saved a new default config or saved a config for that exercise).

3. When you are done viewing the results, try changing the voxel filter size from 0.002 to 0.100 and view the
results again. Reset the filter to 0.002 when done.

• To see the results of this change, use Ctrl+C to kill the perception node, re-build, and re-run the perception
node.

Note: You do not need to stop any of the other nodes (rviz, ros, etc).

1. When you are satisfied with the voxel filter, use Ctrl+C to stop the perception node.

Implement Pass-through Filters

1. As before, uncomment the PassThrough filter include-header near the top of the file.

2. Change code:

The next set of useful filtering to get the region of interest, is a series of pass-through filters. These filters crop
your point cloud down to a volume of space (if you use x y and z filter). At this point you should apply a series

96 Chapter 4. Advanced Topics

Industrial Training

of pass-through filters, one for each the x, y, and z directions. See PCL Pass-Through Filter Tutorial for hints,
or use code below.

Within perception_node.cpp, find section

/* ==

* Fill Code: PASSTHROUGH FILTER(S)

* ==*/

Copy and paste the following beneath that banner.

pcl::PointCloud<pcl::PointXYZ> xf_cloud, yf_cloud, zf_cloud;
pcl::PassThrough<pcl::PointXYZ> pass_x;
pass_x.setInputCloud(cloud_voxel_filtered);
pass_x.setFilterFieldName("x");
pass_x.setFilterLimits(-1.0,1.0);
pass_x.filter(xf_cloud);

pcl::PointCloud<pcl::PointXYZ>::Ptr xf_cloud_ptr(new pcl::PointCloud
→˓<pcl::PointXYZ>(xf_cloud));
pcl::PassThrough<pcl::PointXYZ> pass_y;
pass_y.setInputCloud(xf_cloud_ptr);
pass_y.setFilterFieldName("y");
pass_y.setFilterLimits(-1.0, 1.0);
pass_y.filter(yf_cloud);

pcl::PointCloud<pcl::PointXYZ>::Ptr yf_cloud_ptr(new pcl::PointCloud
→˓<pcl::PointXYZ>(yf_cloud));
pcl::PassThrough<pcl::PointXYZ> pass_z;
pass_z.setInputCloud(yf_cloud_ptr);
pass_z.setFilterFieldName("z");
pass_z.setFilterLimits(-1.0, 1.0);
pass_z.filter(zf_cloud);

You can change the filter limit values to see different results.

3. Find the pcl::toROSMsg call where the pc2_cloud is populated. This is the point cloud that is published
to RViz display. Replace the current cloud (*cloud_voxel_filter) with the final Passthrough Filter result
(zf_cloud).

4. Compile and run

catkin build
rosrun lesson_perception perception_node

5. View results

Within Rviz, compare PointCloud2 displays based on the /kinect/depth_registered/points (orig-
inal camera data) and object_cluster (latest processing step) topics. Part of the original point cloud has
been “clipped” out of the latest processing result.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 97

http://pointclouds.org/documentation/tutorials/passthrough.php#passthrough

Industrial Training

Note: Try modifying the X/Y/Z FilterLimits (e.g. +/- 0.5), re-build, and re-run. Observe the effects in
rviz. When complete, reset the limite to +/- 1.0.

1. When you are satisfied with the pass-through filter results, press Ctrl+C to kill the node. There is no need to
close or kill the other terminals/nodes.

Plane Segmentation

1. Change code

This method is one of the most useful for any application where the object is on a flat surface. In order to
isolate the objects on a table, you perform a plane fit to the points, which finds the points which comprise the
table, and then subtract those points so that you are left with only points corresponding to the object(s) above
the table. This is the most complicated PCL method we will be using and it is actually a combination of two:
the RANSAC segmentation model, and the extract indices tool. An in depth example can be found on the PCL
Plane Model Segmentation Tutorial; otherwise you can copy the below code snippet.

Within perception_node.cpp, find section:

/* ==

* Fill Code: PLANE SEGEMENTATION

* ==*/

Copy and paste the following beneath that banner.

98 Chapter 4. Advanced Topics

http://pointclouds.org/documentation/tutorials/planar_segmentation.php#planar-segmentation
http://pointclouds.org/documentation/tutorials/planar_segmentation.php#planar-segmentation

Industrial Training

pcl::PointCloud<pcl::PointXYZ>::Ptr cropped_cloud(new pcl::PointCloud
→˓<pcl::PointXYZ>(zf_cloud));
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_f (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud
→˓<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_plane (new pcl::PointCloud
→˓<pcl::PointXYZ> ());
// Create the segmentation object for the planar model and set all the parameters
pcl::SACSegmentation<pcl::PointXYZ> seg;
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setMaxIterations (200);
seg.setDistanceThreshold (0.004);
// Segment the largest planar component from the cropped cloud
seg.setInputCloud (cropped_cloud);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
ROS_WARN_STREAM ("Could not estimate a planar model for the given dataset.") ;
//break;

}

Once you have the inliers (points which fit the plane model), then you can extract the indices within the point-
cloud data structure of the points which make up the plane.

// Extract the planar inliers from the input cloud
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud (cropped_cloud);
extract.setIndices(inliers);
extract.setNegative (false);

// Get the points associated with the planar surface
extract.filter (*cloud_plane);
ROS_INFO_STREAM("PointCloud representing the planar component: " << cloud_plane->
→˓points.size () << " data points.");

Then of course you can subtract or filter out these points from the cloud to get only points above the plane.

// Remove the planar inliers, extract the rest
extract.setNegative (true);
extract.filter (*cloud_f);

2. Find the pcl::toROSMsg call where the pc2_cloud is populated. This is the point cloud that is published
to RViz display. Replace the current cloud (zf_cloud) with the plane-fit outliers result (*cloud_f).

3. Compile and run, as in previous steps. Did you forget to uncomment the new headers used in this step?

4. Evaluate Results

Within Rviz, compare PointCloud2 displays based on the /kinect/depth_registered/points (orig-
inal camera data) and object_cluster (latest processing step) topics. Only points lying above the table
plane remain in the latest processing result.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 99

Industrial Training

5. When you are done viewing the results you can go back and change the”setMaxIterations” and “setDis-
tanceThreshold” values to control how tightly the plane-fit classifies data as inliers/outliers, and view the results
again. Try using values of MaxIterations=100 and DistanceThreshold=0.010

6. When you are satisfied with the plane segmentation results, use Ctrl+C to kill the node. There is no need to
close or kill the other terminals/nodes.

Euclidean Cluster Extraction (optional, but recommended)

1. Change code

This method is useful for any application where there are multiple objects. This is also a complicated PCL
method. An in depth example can be found on the PCL Euclidean Cluster Extration Tutorial.

Within perception_node.cpp, find section

/* ==

* Fill Code: EUCLIDEAN CLUSTER EXTRACTION (OPTIONAL/RECOMMENDED)

* ==*/

Follow along with the PCL tutorial, insert code in this section.

Copy and paste the following beneath the banner.

// Creating the KdTree object for the search method of the extraction
pcl::search::KdTree<pcl::PointXYZ>::Ptr tree (new pcl::search::KdTree
→˓<pcl::PointXYZ>);

*cloud_filtered = *cloud_f;
tree->setInputCloud (cloud_filtered);

(continues on next page)

100 Chapter 4. Advanced Topics

http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction

Industrial Training

(continued from previous page)

std::vector<pcl::PointIndices> cluster_indices;
pcl::EuclideanClusterExtraction<pcl::PointXYZ> ec;
ec.setClusterTolerance (0.01); // 2cm
ec.setMinClusterSize (300);
ec.setMaxClusterSize (10000);
ec.setSearchMethod (tree);
ec.setInputCloud (cloud_filtered);
ec.extract (cluster_indices);

std::vector<sensor_msgs::PointCloud2::Ptr> pc2_clusters;
std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr > clusters;
for (std::vector<pcl::PointIndices>::const_iterator it = cluster_indices.begin ();
→˓ it != cluster_indices.end (); ++it)
{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_cluster (new pcl::PointCloud

→˓<pcl::PointXYZ>);
for (std::vector<int>::const_iterator pit = it->indices.begin (); pit != it->

→˓indices.end (); pit++)
cloud_cluster->points.push_back(cloud_filtered->points[*pit]);

cloud_cluster->width = cloud_cluster->points.size ();
cloud_cluster->height = 1;
cloud_cluster->is_dense = true;
std::cout << "Cluster has " << cloud_cluster->points.size() << " points.\n";
clusters.push_back(cloud_cluster);
sensor_msgs::PointCloud2::Ptr tempROSMsg(new sensor_msgs::PointCloud2);
pcl::toROSMsg(*cloud_cluster, *tempROSMsg);
pc2_clusters.push_back(tempROSMsg);

}

2. Find the pcl::toROSMsg call where the pc2_cloud is populated. This is the point cloud that is published
to RViz display. Replace the current cloud (*cloud_f) with the largest cluster (*(clusters.at(0))).

3. Compile and run, as in previous steps.

4. View results in rviz. Experiment with setClusterTolerance, setMinClusterSize, and
setMaxClusterSize parameters, observing their effects in rviz.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 101

Industrial Training

5. When you are satisfied with the cluster extraction results, use Ctrl+C to kill the node. There is no need to close
or kill the other terminals/nodes.

Create a CropBox Filter

1. Change code

This method is similar to the pass-through filter from Sub-Task 2, but instead of using three pass-through filters
in series, you can use one CropBox filter. Documentation on the CropBox filter and necessary header file can
be found here.

Within perception_node.cpp, find section

/* ==

* Fill Code: CROPBOX (OPTIONAL)

* Instead of three passthrough filters, the cropbox filter can be used

* The user should choose one or the other method

* ==*/

This CropBox filter should replace your passthrough filters, you may delete or comment the passthrough filters.
There is no PCL tutorial to guide you, only the PCL documentation at the link above. The general setup will be
the same (set the output, declare instance of filter, set input, set parameters, and filter).

Set the output cloud:

pcl::PointCloud<pcl::PointXYZ> xyz_filtered_cloud;

Declare instance of filter:

102 Chapter 4. Advanced Topics

http://docs.pointclouds.org/trunk/classpcl_1_1_crop_box.html

Industrial Training

pcl::CropBox<pcl::PointXYZ> crop;

Set input:

crop.setInputCloud(cloud_voxel_filtered);

Set parameters - looking at documentation, CropBox takes an Eigen Vector4f as inputs for max and min values:

Eigen::Vector4f min_point = Eigen::Vector4f(-1.0, -1.0, -1.0, 0);
Eigen::Vector4f max_point = Eigen::Vector4f(1.0, 1.0, 1.0, 0);
crop.setMin(min_point);
crop.setMax(max_point);

Filter:

crop.filter(xyz_filtered_cloud);

If you delete or comment the passthrough filters and have already written the plane segmentation code, then
make sure you update the name of the cloud you are passing into the plane segmentation. Replace zf_cloud with
xyz_filtered_cloud:

pcl::PointCloud<pcl::PointXYZ>::Ptr cropped_cloud(new pcl::PointCloud
→˓<pcl::PointXYZ>(xyz_filtered_cloud));

2. Find the pcl::toROSMsg call where the pc2_cloud is populated. This is the point cloud that is published
to RViz display. Replace the current cloud with the new filtered results (xyz_filtered_cloud).

3. Compile and run, as in previous steps

The following image of the CropBox filter in use will closely resemble the Plane Segmentation filter
image.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 103

Industrial Training

Create a Statistical Outlier Removal

1. Change code

This method does not necessarily add complexity or information to our end result, but it is often useful. A
tutorial can be found here.

Within perception_node.cpp, find section

/* ==

* Fill Code: STATISTICAL OUTLIER REMOVAL (OPTIONAL)

* ==*/

The general setup will be the same (set the output, declare instance of filter, set input, set parameters, and filter).

Set the output cloud:

pcl::PointCloud<pcl::PointXYZ>::Ptr cluster_cloud_ptr= clusters.at(0);
pcl::PointCloud<pcl::PointXYZ>::Ptr sor_cloud_filtered(new pcl::PointCloud
→˓<pcl::PointXYZ>);

Declare instance of filter:

pcl::StatisticalOutlierRemoval<pcl::PointXYZ> sor;

Set input:

sor.setInputCloud (cluster_cloud_ptr);

104 Chapter 4. Advanced Topics

http://pointclouds.org/documentation/tutorials/statistical_outlier.php#statistical-outlier-removal

Industrial Training

Set parameters - looking at documentation, S.O.R. uses the number of neighbors to inspect and the standard-
deviation threshold to use for outlier rejection:

sor.setMeanK (50);
sor.setStddevMulThresh (1.0);

Filter:

sor.filter (*sor_cloud_filtered);

2. Find the pcl::toROSMsg call where the pc2_cloud is populated. Replace the current cloud with the new
filtered results (*sor_cloud_filtered).

3. Compile and run, as in previous steps

Create a Broadcast Transform

While this is not a filter method, it demonstrates how to publish the results of a processing pipeline for other nodes
to use. Often, the goal of a processing pipeline is to generate a measurement, location, or some other message for
other nodes to use. This sub-task broadcasts a TF transform to define the location of the largest box on the table. This
transform could be used by other nodes to identify the position/orientation of the box for grasping.

1. Change/Insert code

Within perception_node.cpp, find section

/* ==

* BROADCAST TRANSFORM (OPTIONAL)

* ==*/

4.1. Session 5 - Path Planning and Building a Perception Pipeline 105

Industrial Training

Follow along with the ROS tutorial. The important modifications to make are within the setting of the posi-
tion and orientation information (setOrigin(tf::Vector3(msg->x, msg->y, 0.0)), and setRotation(q)). Create a
transform:

static tf::TransformBroadcaster br;
tf::Transform part_transform;

//Here in the tf::Vector3(x,y,z) x,y, and z should be calculated based on the
→˓pointcloud filtering results
part_transform.setOrigin(tf::Vector3(sor_cloud_filtered->at(1).x, sor_cloud_
→˓filtered->at(1).y, sor_cloud_filtered->at(1).z));
tf::Quaternion q;
q.setRPY(0, 0, 0);
part_transform.setRotation(q);

Remember that when you set the origin or set the rpy, this is where you should use the results from all the filters
you’ve applied. At this point the origin is set arbitrarily to the first point within. Broadcast that transform:

br.sendTransform(tf::StampedTransform(part_transform, ros::Time::now(), world_
→˓frame, "part"));

2. Compile and Run as usual. In this case, add a TF display to Rviz and observe the new “part” transform located
at the top of the box.

Create a Polygonal Segmentation

When using sensor data for collision detection, it is sometimes necessary to exclude “known” objects from the scene
to avoid interference from these objects. MoveIt! contains methods for masking out a robot’s own geometry as a “Self
Collision” filtering feature. This example shows how to do something similar using PCL’s Polygonal Segmentation
filtering.

1. Change code

This method is similar to the plane segmentation from Sub-Task 3, but instead of segmenting out a plane, you
can segment and remove a prism. Documentation on the PCL Polygonal Segmentation can be found here and
here. The goal in this sub-task is to remove the points that correspond to a known object (e.g. the box we
detected earlier). This particular filter is applied to the entire point cloud (original sensor data), but only after
we’ve already completed the processing steps to identify the position/orientation of the box.

Within perception_node.cpp, add #include <tf_conversions/tf_eigen.h> and find section

/* ==

* Fill Code: POLYGONAL SEGMENTATION (OPTIONAL)

* ==*/

Set the input cloud:

pcl::PointCloud<pcl::PointXYZ>::Ptr sensor_cloud_ptr (new pcl::PointCloud
→˓<pcl::PointXYZ>(cloud));
pcl::PointCloud<pcl::PointXYZ>::Ptr prism_filtered_cloud (new pcl::PointCloud
→˓<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr pick_surface_cloud_ptr(new pcl::PointCloud
→˓<pcl::PointXYZ>);

Declare instance of filter:

106 Chapter 4. Advanced Topics

http://wiki.ros.org/tf/Tutorials/Writing%20a%20tf%20broadcaster%20%28C%2B%2B%29
http://docs.pointclouds.org/1.7.0/classpcl_1_1_convex_hull.html
http://docs.pointclouds.org/trunk/classpcl_1_1_extract_polygonal_prism_data.html

Industrial Training

pcl::ExtractPolygonalPrismData<pcl::PointXYZ> prism;

Set extraction indices:

pcl::ExtractIndices<pcl::PointXYZ> extract_ind;

Set input and output:

prism.setInputCloud(sensor_cloud_ptr);
pcl::PointIndices::Ptr pt_inliers (new pcl::PointIndices());

Set parameters - looking at documentation, ExtractPolygonalPrismData uses a pointcloud defining the polygon
vertices as its input.

// create prism surface
double box_length=0.25;
double box_width=0.25;
pick_surface_cloud_ptr->width = 5;
pick_surface_cloud_ptr->height = 1;
pick_surface_cloud_ptr->points.resize(5);

pick_surface_cloud_ptr->points[0].x = 0.5f*box_length;
pick_surface_cloud_ptr->points[0].y = 0.5f*box_width;
pick_surface_cloud_ptr->points[0].z = 0;

pick_surface_cloud_ptr->points[1].x = -0.5f*box_length;
pick_surface_cloud_ptr->points[1].y = 0.5f*box_width;
pick_surface_cloud_ptr->points[1].z = 0;

pick_surface_cloud_ptr->points[2].x = -0.5f*box_length;
pick_surface_cloud_ptr->points[2].y = -0.5f*box_width;
pick_surface_cloud_ptr->points[2].z = 0;

pick_surface_cloud_ptr->points[3].x = 0.5f*box_length;
pick_surface_cloud_ptr->points[3].y = -0.5f*box_width;
pick_surface_cloud_ptr->points[3].z = 0;

pick_surface_cloud_ptr->points[4].x = 0.5f*box_length;
pick_surface_cloud_ptr->points[4].y = 0.5f*box_width;
pick_surface_cloud_ptr->points[4].z = 0;

Eigen::Affine3d eigen3d;
tf::transformTFToEigen(part_transform,eigen3d);
pcl::transformPointCloud(*pick_surface_cloud_ptr,*pick_surface_cloud_ptr,
→˓Eigen::Affine3f(eigen3d));

prism.setInputPlanarHull(pick_surface_cloud_ptr);
prism.setHeightLimits(-10,10);

Segment:

prism.segment(*pt_inliers);

Remember that after you use the segmentation algorithme that you either want to include or exclude the seg-
mented points using an index extraction.

Set input:

4.1. Session 5 - Path Planning and Building a Perception Pipeline 107

Industrial Training

extract_ind.setInputCloud(sensor_cloud_ptr);
extract_ind.setIndices(pt_inliers);

This time, we invert the index extraction, so that we remove points inside the filter and keep points outside the
filter.

extract_ind.setNegative(true);

Filter:

extract_ind.filter(*prism_filtered_cloud);

2. Find the pcl::toROSMsg call where the pc2_cloud is populated. This is the point cloud that is published
to RViz display. Replace the current cloud with the new filtered results (*prism_filtered_cloud).

3. Compile and run as before.

Note: Notice that the target box has been removed from the point cloud display.

Write a launch file

While this is not a filter method, it is useful when using PCL or other perception methods because of the number of
parameters used in the different methods.

1. Change/Insert code

If you are really awesome and read the Task 1 write-up thoroughly, you will note that it was suggested that you
put your parameters in one place.

Within perception_node.cpp, find section

108 Chapter 4. Advanced Topics

Industrial Training

/*
* SET UP PARAMETERS (COULD TO BE INPUT FROM LAUNCH FILE/TERMINAL)

*/

Ideally, as the given parameter examples showed, you would declare a parameter of a certain type (std::string
frame;), then assign a value for that parameter (frame=”some_name”;). Below is an example of some of the
parameters you could have set.

world_frame="kinect_link";
camera_frame="kinect_link";
cloud_topic="kinect/depth_registered/points";
voxel_leaf_size=0.002f;
x_filter_min=-2.5;
x_filter_max=2.5;
y_filter_min=-2.5;
y_filter_max=2.5;
z_filter_min=-2.5;
z_filter_max=1.0;
plane_max_iter=50;
plane_dist_thresh=0.05;
cluster_tol=0.01;
cluster_min_size=100;
cluster_max_size=50000;

If you took this step, you will be in great shape to convert what you have into something that can be input from a
launch file, or yaml file. You could use the “getParam” method as described in this tutorial. But a better choice
might be to use the param method, which returns a default value if the parameter is not found on the parameter
server. Get params from ros parameter server/launch file, replacing your previous hardcoded values (but leave
the variable declarations!)

cloud_topic = priv_nh_.param<std::string>("cloud_topic", "kinect/depth_registered/
→˓points");
world_frame = priv_nh_.param<std::string>("world_frame", "kinect_link");
camera_frame = priv_nh_.param<std::string>("camera_frame", "kinect_link");
voxel_leaf_size = param<float>("voxel_leaf_size", 0.002);
x_filter_min = priv_nh_.param<float>("x_filter_min", -2.5);
x_filter_max = priv_nh_.param<float>("x_filter_max", 2.5);
y_filter_min = priv_nh_.param<float>("y_filter_min", -2.5);
y_filter_max = priv_nh_.param<float>("y_filter_max", 2.5);
z_filter_min = priv_nh_.param<float>("z_filter_min", -2.5);
z_filter_max = priv_nh_.param<float>("z_filter_max", 2.5);
plane_max_iter = priv_nh_.param<int>("plane_max_iterations", 50);
plane_dist_thresh = priv_nh_.param<float>("plane_distance_threshold", 0.05);
cluster_tol = priv_nh_.param<float>("cluster_tolerance", 0.01);
cluster_min_size = priv_nh_.param<int>("cluster_min_size", 100);
cluster_max_size = priv_nh_.param<int>("cluster_max_size", 50000);

2. Write launch file.

Using gedit or some other text editor, make a new file (‘’lesson_perception/launch/processing_node.launch’‘)
and put the following in it.

<launch>
<node name="processing_node" pkg="lesson_perception" type="perception_node"

→˓output="screen">
<rosparam>
cloud_topic: "kinect/depth_registered/points"

(continues on next page)

4.1. Session 5 - Path Planning and Building a Perception Pipeline 109

http://wiki.ros.org/roscpp_tutorials/Tutorials/Parameters
http://docs.ros.org/kinetic/api/roscpp/html/classros_1_1NodeHandle.html#aa9b23d4206216ed13b5833fb1a090f1a

Industrial Training

(continued from previous page)

world_frame: "world_frame"
camera_frame: "kinect_link"
voxel_leaf_size: 0.001 <!-- mm -->
x_filter_min: -2.5 <!-- m -->
x_filter_max: 2.5 <!-- m -->
y_filter_min: -2.5 <!-- m -->
y_filter_max: 2.5 <!-- m -->
z_filter_min: -2.5 <!-- m -->
z_filter_max: 2.5 <!-- m -->
plane_max_iterations: 100
plane_distance_threshold: 0.03
cluster_tolerance: 0.01
cluster_min_size: 250
cluster_max_size: 500000

</rosparam>
</node>

</launch>

3. Compile as usual. . .

But this time, run the new launch file that was created instead of using rosrun to start the processing node.

The results should look similar to previous runs. However, now you can edit these configuration parameters much
easier! No recompile step is required; just edit the launch-file values and relaunch the node. In a real application, you
could take this approach one step further and implement dynamic_reconfigure support in your node. That would allow
you to see the results of parameter changes in RViz in real-time!

When you are satisfied with the results, go to each terminal and CTRL-C.

We’re all done! So it’s best to make sure everything is wrapped up and closed.

4.1.3 Introduction to STOMP

Motivation

• Learn how to plan with STOMP through !MoveIt!.

Information and Resources

• STOMP for MoveIt!

• Plugins for MoveIt!

Objectives

• Integrate STOMP into !MoveIt! by changing and adding files to a moveit_config package.

• We’ll then generate STOMP plans from the Rviz Motion Planning Plugin

Setup

• Create a workspace

110 Chapter 4. Advanced Topics

http://rosindustrial.org/news/2015/9/25/stomp-for-indigo-presentation-from-the-moveit-community-meeting-3-sept-2015
http://moveit.ros.org/documentation/plugins/
http://docs.ros.org/hydro/api/moveit_ros_visualization/html/doc/tutorial.html

Industrial Training

mkdir --parent ~/catkin_ws/src
cd ~/catkin_ws
catkin init
catkin build
source devel/setup.bash

• Copy over existing exercise

cd ~/catkin_ws/src
cp -r ~/industrial_training/exercises/4.1 .

• Clone industrial_moveit repository into your workspace

cd ~/catkin_ws/src
git clone https://github.com/ros-industrial/industrial_moveit.git
git checkout kinetic-devel

• Install Missing Dependencies

cd ~/catkin_ws/src/4.1
rosinstall . .rosinstall
catkin build

• Create a moveit_config package created with the MoveIt! Setup Assistant

Add STOMP

1. Create a “stomp_planning_pipeline.launch.xml” file in the launch directory of your moveit_config package.
The file should contain the following:

<launch>

<!-- Stomp Plugin for MoveIt! -->
<arg name="planning_plugin" value="stomp_moveit/StompPlannerManager" />

<!-- The request adapters (plugins) ORDER MATTERS -->
<arg name="planning_adapters" value="default_planner_request_adapters/

→˓FixWorkspaceBounds
default_planner_request_adapters/

→˓FixStartStateBounds
default_planner_request_adapters/

→˓FixStartStateCollision
default_planner_request_adapters/

→˓FixStartStatePathConstraints" />

<arg name="start_state_max_bounds_error" value="0.1" />

<param name="planning_plugin" value="$(arg planning_plugin)" />
<param name="request_adapters" value="$(arg planning_adapters)" />
<param name="start_state_max_bounds_error" value="$(arg start_state_max_bounds_

→˓error)" />
<rosparam command="load" file="$(find myworkcell_moveit_config)/config/stomp_

→˓planning.yaml"/>

</launch>

!!! Take notice of the stomp_planning.yaml configuration file, this file must exists in moveit_config package.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 111

http://docs.ros.org/hydro/api/moveit_setup_assistant/html/doc/tutorial.html

Industrial Training

1. Create the “stomp_planning.yaml” configuration file

This file contains the parameters required by STOMP. The parameters are specific to each ‘’planning group”
defined in the SRDF file. So if there are three planning groups “manipulator”, “manipulator_tool”, and “manip-
ulator_rail” then the configuration file defines a specific set of parameters for each planning group:

stomp/manipulator_rail:
group_name: manipulator_rail
optimization:

num_timesteps: 60
num_iterations: 40
num_iterations_after_valid: 0
num_rollouts: 30
max_rollouts: 30
initialization_method: 1 #[1 : LINEAR_INTERPOLATION, 2 : CUBIC_POLYNOMIAL, 3

→˓: MININUM_CONTROL_COST
control_cost_weight: 0.0

task:
noise_generator:
- class: stomp_moveit/NormalDistributionSampling
stddev: [0.05, 0.8, 1.0, 0.8, 0.4, 0.4, 0.4]

cost_functions:
- class: stomp_moveit/CollisionCheck
collision_penalty: 1.0
cost_weight: 1.0
kernel_window_percentage: 0.2
longest_valid_joint_move: 0.05

noisy_filters:
- class: stomp_moveit/JointLimits
lock_start: True
lock_goal: True

- class: stomp_moveit/MultiTrajectoryVisualization
line_width: 0.02
rgb: [255, 255, 0]
marker_array_topic: stomp_trajectories
marker_namespace: noisy

update_filters:
- class: stomp_moveit/PolynomialSmoother
poly_order: 6

- class: stomp_moveit/TrajectoryVisualization
line_width: 0.05
rgb: [0, 191, 255]
error_rgb: [255, 0, 0]
publish_intermediate: True
marker_topic: stomp_trajectory
marker_namespace: optimized

stomp/manipulator:
group_name: manipulator
optimization:

num_timesteps: 40
num_iterations: 40
num_iterations_after_valid: 0
num_rollouts: 10
max_rollouts: 10
initialization_method: 1 #[1 : LINEAR_INTERPOLATION, 2 : CUBIC_POLYNOMIAL, 3

→˓: MININUM_CONTROL_COST
control_cost_weight: 0.0

task:

(continues on next page)

112 Chapter 4. Advanced Topics

Industrial Training

(continued from previous page)

noise_generator:
- class: stomp_moveit/NormalDistributionSampling
stddev: [0.05, 0.4, 1.2, 0.4, 0.4, 0.1]

cost_functions:
- class: stomp_moveit/CollisionCheck
kernel_window_percentage: 0.2
collision_penalty: 1.0
cost_weight: 1.0
longest_valid_joint_move: 0.05

noisy_filters:
- class: stomp_moveit/JointLimits
lock_start: True
lock_goal: True

- class: stomp_moveit/MultiTrajectoryVisualization
line_width: 0.04
rgb: [255, 255, 0]
marker_array_topic: stomp_trajectories
marker_namespace: noisy

update_filters:
- class: stomp_moveit/PolynomialSmoother
poly_order: 5

- class: stomp_moveit/TrajectoryVisualization
line_width: 0.02
rgb: [0, 191, 255]
error_rgb: [255, 0, 0]
publish_intermediate: True
marker_topic: stomp_trajectory
marker_namespace: optimized

!!! Save this file in the config directory of the moveit_config package

2. Modify the move_group.launch file: Open the move_group.launch in the launch directory and change the
pipeline parameter value to stomp as shown below:

.

.

.
<!-- move_group settings -->
<arg name="allow_trajectory_execution" default="true"/>
<arg name="fake_execution" default="false"/>
<arg name="max_safe_path_cost" default="1"/>
<arg name="jiggle_fraction" default="0.05" />
<arg name="publish_monitored_planning_scene" default="true"/>

<!-- Planning Functionality -->
<include ns="move_group" file="$(find myworkcell_moveit_config)/launch/planning_
→˓pipeline.launch.xml">
<arg name="pipeline" value="stomp" />

</include>

.

.

.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 113

Industrial Training

Run MoveIt! with STOMP

1. In a sourced terminal, run the demo.launch file:

roslaunch myworkcell_moveit_config demo.launch

2. In Rviz, select robot start and goal positions and plan:

• In the “Motion Planning” panel, go to the “Planning” tab.

• Click the “Select Start State” drop-down, select “allZeros” and click “Update”

• Click the “Select Goal State” drop-down, select “home” and click “Update”

• Click the “Plan” button and watch the arm move past obstacles to reach the goal position. The blue line shows
the tool path.

Explore STOMP

1. In Rviz, select other “Start” and “Goal” positions and then hit plan and see the robot move.

2. Display the Noisy Trajectories by clicking on the “Marker Array” checkbox in the “Displays” Rviz panel. Hit
the “Plan” button again and you’ll see the noisy trajectory markers as yellow lines.

Note: STOMP explores the workspace by generating a number of noisy trajectories as a result of applying
noise onto the current trajectory. The degree of noise applied can be be changed by adjusting the “stddev”
parameters in the “stomp_config.yaml” file. Larger “stddev” values correspond to larger motions of the
joints.

Configure STOMP

We’ll now change the parameters in the stomp_config.yaml and see what effect those changes have on the planning.

1. Ctrl-C in the terminal where you ran the demo.launch file earlier to stop the move_group planning node.

2. Locate and open up the stomp_config.yaml with your preferred editor.

3. Under the “manipulator_rail” group, take notice of the values assigned to “stddev” parameter. Each value is the
amplitude of the noise applied to the joint at that position in the array. For instance, the leftmost value in the
array will be the value used to set the noise of the first joint “rail_to_base”; which moves the rail along the x
direction. Since the “rail_to_base” is a prismatic joint then its units are in meters; for revolute joints the units
are radians.

4. Change the “stddev” values (preferably one entry at a time), save the file and rerun the “demo.launch” file in the
terminal.

5. Go back to the Rviz window and select arbitrary “Start” and “Goal” positions to see what effect your changes
have had on the planning performance.

More info on the STOMP parameters

The STOMP wiki explains these parameter in more detail.

Code can be found at industrial_training repository in gh_pages folder. Use kinetic branch.

114 Chapter 4. Advanced Topics

Industrial Training

4.1.4 Building a Simple PCL Interface for Python

In this exercise, we will fill in the appropriate pieces of code to build a perception pipeline. The end goal will be to
create point cloud filtering operations to demonstrate functionality between ROS and python.

Prepare New Workspace:

We will create a new catkin workspace, since this exercise does not overlap with the previous PlanNScan exercises.

1. Disable automatic sourcing of your previous catkin workspace:

(a) gedit ~/.bashrc

(b) comment out # the last line, sourcing your ~/catkin_ws/devel/setup.bash

source /opt/ros/kinetic/setup.bash

2. Copy the template workspace layout and files:

cp -r ~/industrial_training/exercises/python-pcl_ws ~
cd ~/python-pcl_ws/

3. Initialize and Build this new workspace

catkin init
catkin build

4. Source the workspace

source ~/python-pcl_ws/devel/setup.bash

5. Download the PointCloud file and place the file in your home directory (~).

6. Import the new workspace into your QTCreator IDE: In QTCreator: File -> New Project -> Import -> Import
ROS Workspace -> ~/python-pcl_ws

Intro (Review Existing Code)

Most of the infrastructure for a ros node has already been completed for you; the focus of this exercise is the perception
algorithms/pipleline. The CMakelists.txt and package.xml are complete and a source file has been provided. You could
build the source as is, but you would get errors. At this time we will explore the source code that has been provided -
browse the provided py_perception_node.cpp file. This tutorial has been modified from training Exercise 5.1 Building
a Perception Pipeline and as such the C++ code has already been set up. If something does not make sense, revisit that
exercise. Open up the preception_node.cpp file and look over the filtering functions.

Create a Python Package

Now that we have converted several filters to C++ functions, we are ready to call it from a Python node. If you have
not done so already, install PyCharm, community edition. This IDE has the necessary parser for editing, without it,
you will not be able to review any syntax issues in Qt.

1. In the terminal, change the directory to your src folder. Create a new package inside your python-pcl_ws:

cd ~/python-pcl_ws/src/
catkin_create_pkg filter_call rospy roscpp perception_msgs

4.1. Session 5 - Path Planning and Building a Perception Pipeline 115

http://ros-industrial.github.io/industrial_training/_source/session5/Building-a-Perception-Pipeline.html
http://ros-industrial.github.io/industrial_training/_source/session5/Building-a-Perception-Pipeline.html

Industrial Training

2. Check that your package was created:

ls

We will not be using ‘perception_msgs’ as we will not be creating custom messages in this course. It is included
for further student knowledge. If you wish for a more in depth explanation including how to implement customer
messages, here is a good MIT resource on the steps taken.

1. Open CMakeLists.txt. You can open the file in Pycharm or Qt (or you can use nano, emacs, vim, or sublime).
Uncomment line 23, and save.

catkin_python_setup()

Creating setup.py

The setup.py file makes your python module available to the entire workspace and subsequent packages. By default,
this isn’t created by the catkin_create_pkg command.

1. In your terminal type

gedit filter_call/setup.py

2. Copy and paste the following to the setup.py file (to paste into a terminal, Ctrl+Shift+V)

! DO NOT MANUALLY INVOKE THIS setup.py, USE CATKIN INSTEAD
from distutils.core import setup
from catkin_pkg.python_setup import generate_distutils_setup
fetch values from package.xml
setup_args = generate_distutils_setup(
packages=[''],
package_dir={'': 'include'},
)
setup(**setup_args)

Change packages = [. . .], to your list of strings of the name of the folders inside your include
folder. By convention, this will be the same name as the package, or filter_call . The configures
filter_call/include/filter_call as a python module available to the whole workspace.

3. Save and close the file.

In order for this folder to be accessed by any other python script, the __init__.py file must
exist.

4. Create one in the terminal by typing:

touch filter_call/include/filter_call/__init__.py

Publishing the Point Cloud

As iterated before, we are creating a ROS C++ node to filter the point cloud when requested by a Python node running
a service request for each filtering operation, resulting in a new, aggregated point cloud. Let’s start with modifying our
C++ code to publish in a manner supportive to python. Remember, the C++ code is already done so all you need to do
is write your python script and view the results in rviz.

116 Chapter 4. Advanced Topics

http://duckietown.mit.edu/media/pdfs/1rpRisFoCYUm0XT78j-nAYidlh-cDtLCdEbIaBCnx9ew.pdf

Industrial Training

Implement a Voxel Filter

1. In py_perception_node.cpp, uncomment the boolean function called filterCallBack (just above‘‘main‘‘)
which performs in the service. This will be the service used by the python client to run subsequent filtering
operations.

bool filterCallback(lesson_perception::FilterCloud::Request& request,
lesson_perception::FilterCloud::Response& response)

{
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_cloud (new pcl::PointCloud

→˓<pcl::PointXYZ>);

if (request.pcdfilename.empty())
{

pcl::fromROSMsg(request.input_cloud, *cloud);
ROS_INFO_STREAM("cloud size: " << cloud->size());

}
else
{

pcl::io::loadPCDFile(request.pcdfilename, *cloud);
}

if (cloud->empty())
{

ROS_ERROR("input cloud empty");
response.success = false;
return false;

}

switch (request.operation)
{

case lesson_perception::FilterCloud::Request::VOXELGRID :
{
filtered_cloud = voxelGrid(cloud, 0.01);
break;

}
default :
{
ROS_ERROR("No valid request found");
return false;

}

}

/*
* SETUP RESPONSE

*/
pcl::toROSMsg(*filtered_cloud, response.output_cloud);
response.output_cloud.header=request.input_cloud.header;
response.output_cloud.header.frame_id="kinect_link";
response.success = true;
return true;

}

2. Within main, uncomment line 240. Save and build.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 117

Industrial Training

priv_nh_.param<double>("leaf_size", leaf_size_, 0.0f);

3. Now that we have the framework for the filtering, open your terminal. Make sure you are in the filter_call
directory. Create a scripts folder.

mkdir scripts

4. If Pycharm is still open, save and close. We need to open Pycharm from the terminal to make sure it is sourced
correctly for C++ node to be heard. To open, source to the pycharm install directory:

cd ~/pycharm-community-2018.1.3/bin
./pycharm.sh

Once open, locate and right click on the folder scripts and create a new python file. Call it filter_call.py

5. Copy and paste the following code at the top of filter_call.py to import necessary libraries:

#!/usr/bin/env python

import rospy
import lesson_perception.srv
from sensor_msgs.msg import PointCloud2

6. We will create an if statement to run our python node when this file is executed. Initalize as follows:

if __name__ == '__main__':
try:

except Exception as e:
print("Service call failed: %s" % str(e))

7. Include a rospy.spin() in the try block to look like the following:

if __name__ == '__main__':
try:

rospy.spin()
except Exception as e:

print("Service call failed: %s" % str(e))

8. Copy and paste the following inside the try block:

=======================
VOXEL GRID FILTER
=======================

srvp = rospy.ServiceProxy('filter_cloud', lesson_perception.srv.FilterCloud)
req = lesson_perception.srv.FilterCloudRequest()
req.pcdfilename = rospy.get_param('~pcdfilename', '')
req.operation = lesson_perception.srv.FilterCloudRequest.VOXELGRID
FROM THE SERVICE, ASSIGN POINTS
req.input_cloud = PointCloud2()

ERROR HANDLING
if req.pcdfilename == '':

raise Exception('No file parameter found')

PACKAGE THE FILTERED POINTCLOUD2 TO BE PUBLISHED

(continues on next page)

118 Chapter 4. Advanced Topics

Industrial Training

(continued from previous page)

res_voxel = srvp(req)
print('response received')
if not res_voxel.success:

raise Exception('Unsuccessful voxel grid filter operation')

PUBLISH VOXEL FILTERED POINTCLOUD2
pub = rospy.Publisher('/perception_voxelGrid', PointCloud2, queue_size=1,
→˓latch=True)
pub.publish(res_voxel.output_cloud)
print("published: voxel grid filter response")

9. Paste the following lines above the try block (still within the if statement) to initialize the python node and
wait for the C++ node’s service.

rospy.init_node('filter_cloud', anonymous=True)
rospy.wait_for_service('filter_cloud')

10. We need to make the python file executable. In your terminal:

chmod +x filter_call/scripts/filter_call.py

Viewing Results

1. In your terminal, run

roscore

2. Source a new terminal and run the C++ filter service node

rosrun lesson_perception py_perception_node

3. Source a new terminal and run the python service caller node. Note your file path may be different.

rosrun filter_call filter_call.py _pcdfilename:="/home/ros-industrial/catkin_ws/
→˓table.pcd"

4. Source a new terminal and run rviz

rosrun rviz rviz

5. Add a new PointCloud2 in rviz

6. In global options, change the fixed frame to kinect_link, and in the PointCloud 2, select your topic to be ‘/per-
ception_voxelGrid’

Note: You may need to uncheck and recheck the PointCloud2.

Implement Pass-Through Filters

1. In py_perception_node.cpp in the lesson_perception package, within main, uncomment these two lines
as well as their intilizations on lines 28 and 29.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 119

Industrial Training

priv_nh_.param<double>("passThrough_max", passThrough_max_, 1.0f);
priv_nh_.param<double>("passThrough_min", passThrough_min_, -1.0f);

2. Update the switch to look as shown below:

switch (request.operation)
{

case lesson_perception::FilterCloud::Request::VOXELGRID :
{

filtered_cloud = voxelGrid(cloud, 0.01);
break;

}
case lesson_perception::FilterCloud::Request::PASSTHROUGH :
{

filtered_cloud = passThrough(cloud);
break;

}
default :
{

ROS_ERROR("No valid request found");
return false;

}

}

3. Save and build

Edit the Python Code

4. Open the python node and copy paste the following code after the voxel grid, before the rospy.spin().
Keep care to maintain indents:

=======================
PASSTHROUGH FILTER
=======================

srvp = rospy.ServiceProxy('filter_cloud', lesson_perception.srv.FilterCloud)
req = lesson_perception.srv.FilterCloudRequest()
req.pcdfilename = ''
req.operation = lesson_perception.srv.FilterCloudRequest.PASSTHROUGH
FROM THE SERVICE, ASSIGN POINTS
req.input_cloud = res_voxel.output_cloud

PACKAGE THE FILTERED POINTCLOUD2 TO BE PUBLISHED
res_pass = srvp(req)
print('response received')
if not res_voxel.success:

raise Exception('Unsuccessful pass through filter operation')

PUBLISH PASSTHROUGH FILTERED POINTCLOUD2
pub = rospy.Publisher('/perception_passThrough', PointCloud2, queue_size=1,
→˓latch=True)
pub.publish(res_pass.output_cloud)
print("published: pass through filter response")

5. Save and run from the terminal, repeating steps outlined for the voxel filter.

Within Rviz, compare PointCloud2 displays based on the /kinect/depth_registered/points (origi-

120 Chapter 4. Advanced Topics

Industrial Training

nal camera data) and perception_passThrough (latest processing step) topics. Part of the original point
cloud has been “clipped” out of the latest processing result.

When you are satisfied with the pass-through filter results, press Ctrl+C to kill the node. There is no need to
close or kill the other terminals/nodes.

Plane Segmentation

This method is one of the most useful for any application where the object is on a flat surface. In order to isolate the
objects on a table, you perform a plane fit to the points, which finds the points which comprise the table, and then
subtract those points so that you are left with only points corresponding to the object(s) above the table. This is the
most complicated PCL method we will be using and it is actually a combination of two: the RANSAC segmentation
model, and the extract indices tool. An in depth example can be found on the PCL Plane Model Segmentation Tutorial;
otherwise you can copy the below code snippet.

1. In py_perception_node.cpp, in main, uncomment the code below as well as their respective intilization param-
eters.

priv_nh_.param<double>("maxIterations", maxIterations_, 200.0f);
priv_nh_.param<double>("distThreshold", distThreshold_, 0.01f);

2. Update the switch statement in filterCallback to look as shown below:

switch (request.operation)
{

case lesson_perception::FilterCloud::Request::VOXELGRID :
{

filtered_cloud = voxelGrid(cloud, 0.01);
break;

}
case lesson_perception::FilterCloud::Request::PASSTHROUGH :
{

filtered_cloud = passThrough(cloud);
break;

}
case lesson_perception::FilterCloud::Request::PLANESEGMENTATION :
{

filtered_cloud = planeSegmentation(cloud);
break;

}
default :
{

ROS_ERROR("No valid request found");
return false;

}

}

3. Save and build

Edit the Python Code

4. Copy paste the following code in filter_call.py, after the passthrough filter section. Keep care to maintain indents:

=======================
PLANE SEGMENTATION

(continues on next page)

4.1. Session 5 - Path Planning and Building a Perception Pipeline 121

http://pointclouds.org/documentation/tutorials/planar_segmentation.php#planar-segmentation

Industrial Training

(continued from previous page)

=======================

srvp = rospy.ServiceProxy('filter_cloud', lesson_perception.srv.FilterCloud)
req = lesson_perception.srv.FilterCloudRequest()
req.pcdfilename = ''
req.operation = lesson_perception.srv.FilterCloudRequest.PLANESEGMENTATION
FROM THE SERVICE, ASSIGN POINTS
req.input_cloud = res_pass.output_cloud

PACKAGE THE FILTERED POINTCLOUD2 TO BE PUBLISHED
res_seg = srvp(req)
print('response received')
if not res_voxel.success:

raise Exception('Unsuccessful plane segmentation operation')

PUBLISH PLANESEGMENTATION FILTERED POINTCLOUD2
pub = rospy.Publisher('/perception_planeSegmentation', PointCloud2, queue_size=1,
→˓latch=True)
pub.publish(res_seg.output_cloud)
print("published: plane segmentation filter response")

5. Save and run from the terminal, repeating steps outlined for the voxel filter.

Within Rviz, compare PointCloud2 displays based on the /kinect/depth_registered/points (origi-
nal camera data) and perception_planeSegmentation (latest processing step) topics. Only points lying
above the table plane remain in the latest processing result.

(a) When you are done viewing the results you can go back and change the ”setMaxIterations” and “setDis-
tanceThreshold” parameter values to control how tightly the plane-fit classifies data as inliers/outliers, and
view the results again. Try using values of maxIterations=100 and distThreshold=0.010

(b) When you are satisfied with the plane segmentation results, use Ctrl+C to kill the node. There is no need
to close or kill the other terminals/nodes.

Euclidian Cluster Extraction

This method is useful for any application where there are multiple objects. This is also a complicated PCL method.
An in depth example can be found on the PCL Euclidean Cluster Extration Tutorial.

1. In py_perception_node.cpp main uncomment the following plus their intilization parameters.

priv_nh_.param<double>("clustTol", clustTol_, 0.01f);
priv_nh_.param<double>("clustMax", clustMax_, 10000.0);
priv_nh_.param<double>("clustMin", clustMin_, 300.0f);

2. Update the switch statement in filterCallback to look as shown below:

switch (request.operation)
{

case lesson_perception::FilterCloud::Request::VOXELGRID :
{

filtered_cloud = voxelGrid(cloud, 0.01);
break;

}
case lesson_perception::FilterCloud::Request::PASSTHROUGH :

(continues on next page)

122 Chapter 4. Advanced Topics

http://pointclouds.org/documentation/tutorials/cluster_extraction.php#cluster-extraction

Industrial Training

(continued from previous page)

{
filtered_cloud = passThrough(cloud);
break;

}
case lesson_perception::FilterCloud::Request::PLANESEGMENTATION :
{

filtered_cloud = planeSegmentation(cloud);
break;

}
case lesson_perception::FilterCloud::Request::CLUSTEREXTRACTION :
{

std::vector<pcl::PointCloud<pcl::PointXYZ>::Ptr> temp
→˓=clusterExtraction(cloud);

if (temp.size()>0)
{

filtered_cloud = temp[0];
}
break;

}
default :
{

ROS_ERROR("No valid request found");
return false;

}

}

3. Save and build

Edit the Python Code

4. Copy paste the following code in filter_call.py after the plane segmentation section. Keep care to maintain
indents:

=======================
CLUSTER EXTRACTION
=======================

srvp = rospy.ServiceProxy('filter_cloud', lesson_perception.srv.FilterCloud)
req = lesson_perception.srv.FilterCloudRequest()
req.pcdfilename = ''
req.operation = lesson_perception.srv.FilterCloudRequest.CLUSTEREXTRACTION
FROM THE SERVICE, ASSIGN POINTS
req.input_cloud = res_seg.output_cloud

PACKAGE THE FILTERED POINTCLOUD2 TO BE PUBLISHED
res_cluster = srvp(req)
print('response received')
if not res_voxel.success:

raise Exception('Unsuccessful cluster extraction operation')

PUBLISH CLUSTEREXTRACTION FILTERED POINTCLOUD2
pub = rospy.Publisher('/perception_clusterExtraction', PointCloud2, queue_size=1,
→˓latch=True)
pub.publish(res_cluster.output_cloud)
print("published: cluster extraction filter response")

5. Save and run from the terminal, repeating steps outlined for the voxel filter.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 123

Industrial Training

(a) When you are satisfied with the cluster extraction results, use Ctrl+C to kill the node. If you are done
experimenting with this tutorial, you can kill the nodes running in the other terminals.

Future Study

The student is encouraged to convert Exercise 5.1 into callable functions and further refine the filtering operations.

Furthermore, for simplicity, the python code was repeated for each filtering instance. The student is encouraged to
create a loop to handle the publishing instead of repeating large chunks of code. The student can also leverage the
full functionality of the parameter handling instead of just using defaults, can set those from python. There are several
more filtering operations not outlined here, if the student wants practice creating those function calls.

4.1.5 OpenCV Image Processing (Python)

In this exercise, we will gain familiarity with both OpenCV and Python, through a simple 2D image-processing
application.

Motivation

OpenCV is a mature, stable library for 2D image processing, used in a wide variety of applications. Much of ROS
makes use of 3D sensors and point-cloud data, but there are still many applications that use traditional 2D cameras
and image processing.

This tutorial uses python to build the image-processing pipeline. Python is a good choice for this application, due to
its ease of rapid prototyping and existing bindings to the OpenCV library.

Further Information and Resources

• OpenCV Website

• OpenCV API

• OpenCV Python Tutorials

• ROS cv_bridge package (Python)

• Writing a Publisher and Subscriber (Python)

• sensor_msgs/Image

Problem Statement

In this exercise, you will create a new node to determine the angular pose of a pump housing using the OpenCV image
processing library. The pump’s orientation is computed using a series of processing steps to extract and compare
geometry features:

1. Resize the image (to speed up processing)

2. Threshold the image (convert to black & white)

3. Locate the pump’s outer housing (circle-finding)

4. Locate the piston sleeve locations (blob detection)

5. Estimate primary axis using bounding box

124 Chapter 4. Advanced Topics

http://ros-industrial.github.io/industrial_training/_source/session5/Building-a-Perception-Pipeline.html
https://opencv.org/
https://docs.opencv.org/3.0-beta/modules/refman.html
https://docs.opencv.org/3.4.2/d6/d00/tutorial_py_root.html
http://wiki.ros.org/cv_bridge/Tutorials/ConvertingBetweenROSImagesAndOpenCVImagesPython
http://wiki.ros.org/rospy_tutorials/Tutorials/WritingPublisherSubscriber
http://docs.ros.org/kinetic/api/sensor_msgs/html/msg/Image.html

Industrial Training

6. Determine orientation using piston sleeve locations

7. Calculate the axis orientation relative to a reference (horizontal) axis

Implementation

Create package

This exercise uses a single package that can be placed in any catkin workspace. The examples below will use the
~/catkin_ws workspace from earlier exercises.

1. Create a new detect_pump package to contain the new python nodes we’ll be making:

cd ~/catkin_ws/src
catkin create pkg detect_pump --catkin-deps rospy cv_bridge

• all ROS packages depend on rospy

• we’ll use cv_bridge to convert between ROS’s standard Image message and OpenCV’s Image object

• cv_bridge also automatically brings in dependencies on the relevant OpenCV modules

2. Create a python module for this package:

cd detect_pump
mkdir nodes

• For a simple package such as this, the Python Style Guide recommends this simplified package structure.

• More complex packages (e.g. with exportable modules, msg/srv defintions, etc.) should us a more complex
package structure, with an __init__.py and setup.py.

– reference Installing Python Scripts

– reference Handling setup.py

Create an Image Publisher

The first node will read in an image from a file and publish it as a ROS Image message on the image topic.

• Note: ROS already contains an image_publisher package/node that performs this function, but we will
duplicate it here to learn about ROS Publishers in Python.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 125

http://docs.ros.org/kinetic/api/catkin/html/howto/format2/installing_python.html
http://docs.ros.org/kinetic/api/catkin/html/howto/format2/installing_python.html
http://docs.ros.org/api/catkin/html/user_guide/setup_dot_py.html
http://docs.ros.org/kinetic/api/sensor_msgs/html/msg/Image.html

Industrial Training

1. Create a new python script for our image-publisher node (nodes/image_pub.py). Fill in the following
template for a skeleton ROS python node:

#!/usr/bin/env python
import rospy

def start_node():
rospy.init_node('image_pub')
rospy.loginfo('image_pub node started')

if __name__ == '__main__':
try:

start_node()
except rospy.ROSInterruptException:

pass

2. Allow execution of the new script file:

chmod u+x nodes/image_pub.py

3. Test run the image publisher:

roscore
rosrun detect_pump image_pump.py

• You should see the “node started” message

4. Read the image file to publish, using the filename provided on the command line

(a) Import the sys and cv2 (OpenCV) modules:

import sys
import cv2

(b) Pass the command-line argument into the start_node function:

def start_node(filename):
...
start_node(rospy.myargv(argv=sys.argv)[1])

• Note the use of rospy.myargv() to strip out any ROS-specific command-line arguments.

(c) In the start_node function, call the OpenCV imread function to read the image. Then use imshow to
display it:

img = cv2.imread(filename)
cv2.imshow("image", img)
cv2.waitKey(2000)

(d) Run the node, with the specified image file:

rosrun detect_pump image_pub.py ~/industrial_training/exercises/5.4/pump.jpg

• You should see the image displayed

• Comment out the imshow/waitKey lines, as we won’t need those any more

• Note that you don’t need to run catkin build after editing the python file, since no compile step
is needed.

126 Chapter 4. Advanced Topics

https://docs.opencv.org/3.0-beta/modules/imgcodecs/doc/reading_and_writing_images.html#imread
https://docs.opencv.org/3.0-beta/modules/highgui/doc/user_interface.html#imshow

Industrial Training

5. Convert the image from OpenCV Image object to ROS Image message:

(a) Import the CvBridge and Image (ROS message) modules:

from cv_bridge import CvBridge
from sensor_msgs.msg import Image

(b) Add a call to the CvBridge cv2_to_imgmsg method:

bridge = CvBridge()
imgMsg = bridge.cv2_to_imgmsg(img, "bgr8")

6. Create a ROS publisher to continually publish the Image message on the image topic. Use a loop with a 1 Hz
throttle to publish the message.

pub = rospy.Publisher('image', Image, queue_size=10)
while not rospy.is_shutdown():

pub.publish(imgMsg)
rospy.Rate(1.0).sleep() # 1 Hz

7. Run the node and inspect the newly-published image message

(a) Run the node (as before):

rosrun detect_pump image_pub.py ~/industrial_training/exercises/5.4/pump.jpg

(b) Inspect the message topic using command-line tools:

rostopic list
rostopic hz /image
rosnode info /image_pub

(c) Inspect the published image using the standalone image_view node

rosrun image_view image_view

Create the Detect_Pump Image-Processing Node

The next node will subscribe to the image topic and execute a series of processing steps to identify the pump’s
orientation relative to the horizontal image axis.

1. As before, create a basic ROS python node (detect_pump.py) and set its executable permissions:

#!/usr/bin/env python
import rospy

known pump geometry
- units are pixels (of half-size image)
PUMP_DIAMETER = 360
PISTON_DIAMETER = 90
PISTON_COUNT = 7

def start_node():
rospy.init_node('detect_pump')
rospy.loginfo('detect_pump node started')

if __name__ == '__main__':

(continues on next page)

4.1. Session 5 - Path Planning and Building a Perception Pipeline 127

https://docs.ros.org/api/cv_bridge/html/python/
http://wiki.ros.org/image_view#image_view.2BAC8-diamondback.image_view

Industrial Training

(continued from previous page)

try:
start_node()

except rospy.ROSInterruptException:
pass

chmod u+x nodes/detect_pump.py

• Note that we don’t have to edit CMakeLists to create new build rules for each script, since python does
not need to be compiled.

2. Add a ROS subscriber to the image topic, to provide the source for images to process.

(a) Import the Image message header

from sensor_msgs.msg import Image

(b) Above the start_node function, create an empty callback (process_image) that will be called when
a new Image message is received:

def process_image(msg):
try:

pass
except Exception as err:

print err

• The try/except error handling will allow our code to continue running, even if there are errors during
the processing pipeline.

(c) In the start_node function, create a ROS Subscriber object:

• subscribe to the image topic, monitoring messages of type Image

• register the callback function we defined above

rospy.Subscriber("image", Image, process_image)
rospy.spin()

• reference: rospy.Subscriber

• reference: rospy.spin

(d) Run the new node and verify that it is subscribing to the topic as expected:

rosrun detect_pump detect_pump.py
rosnode info /detect_pump
rqt_graph

3. Convert the incoming Image message to an OpenCV Image object and display it As before, we’ll use the
CvBridge module to do the conversion.

(a) Import the CvBridge modules:

from cv_bridge import CvBridge

(b) In the process_image callback, add a call to the CvBridge imgmsg_to_cv2 method:

convert sensor_msgs/Image to OpenCV Image
bridge = CvBridge()
orig = bridge.imgmsg_to_cv2(msg, "bgr8")

128 Chapter 4. Advanced Topics

http://docs.ros.org/kinetic/api/rospy/html/rospy.topics.Subscriber-class.html
http://docs.ros.org/kinetic/api/rospy/html/rospy-module.html#spin
https://docs.ros.org/api/cv_bridge/html/python/

Industrial Training

• This code (and all other image-processing code) should go inside the try block, to ensure that pro-
cessing errors don’t crash the node.

• This should replace the placeholder pass command placed in the try block earlier

(c) Use the OpenCV imshow method to display the images received. We’ll create a pattern that can be
re-used to show the result of each image-processing step.

i. Import the OpenCV cv2 module:

import cv2

ii. Add a display helper function above the process_image callback:

def showImage(img):
cv2.imshow('image', img)
cv2.waitKey(1)

iii. Copy the received image to a new “drawImg” variable:

drawImg = orig

iv. Below the except block (outside its scope; at process_image scope, display the drawImg
variable:

show results
showImage(drawImg)

(d) Run the node and see the received image displayed.

4. The first step in the image-processing pipeline is to resize the image, to speed up future processing steps. Add
the following code inside the try block, then rerun the node.

resize image (half-size) for easier processing
resized = cv2.resize(orig, None, fx=0.5, fy=0.5)
drawImg = resized

• you should see a smaller image being displayed

• reference: resize()

5. Next, convert the image from color to grayscale. Run the node to check for errors, but the image will still look
the same as previously.

convert to single-channel image
gray = cv2.cvtColor(resized, cv2.COLOR_BGR2GRAY)
drawImg = cv2.cvtColor(gray, cv2.COLOR_GRAY2BGR)

• Even though the original image looks gray, the JPG file, Image message, and orig OpenCV image are all
3-channel color images.

• Many OpenCV functions operate on individual image channels. Converting an image that appears gray to
a “true” 1-channel grayscale image can help avoid confusion further on.

• We convert back to a color image for drawImg so that we can draw colored overlays on top of the image
to display the results of later processing steps.

• reference: cvtColor()

6. Apply a thresholding operation to turn the grayscale image into a binary image. Run the node and see the
thresholded image.

4.1. Session 5 - Path Planning and Building a Perception Pipeline 129

https://docs.opencv.org/3.0-beta/modules/imgproc/doc/geometric_transformations.html#resize
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html#cvtcolor

Industrial Training

threshold grayscale to binary (black & white) image
threshVal = 75
ret,thresh = cv2.threshold(gray, threshVal, 255, cv2.THRESH_BINARY)
drawImg = cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR)

You should experiment with the threshVal paramter to find a value that works best for this image. Valid
values for this parameter lie between [0-255], to match the grayscale pixel intensity range. Find a value that
clearly highlights the pump face geometry. I found that a value of 150 seemed good to me.

• reference threshold

7. Detect the outer pump-housing circle.

This is not actually used to detect the pump angle, but serves as a good example of feature detection. In a more
complex scene, you could use OpenCV’s Region Of Interest (ROI) feature to limit further processing to only
features inside this pump housing circle.

(a) Use the HoughCircles method to detect a pump housing of known size:

detect outer pump circle
pumpRadiusRange = (PUMP_DIAMETER/2-2, PUMP_DIAMETER/2+2)
pumpCircles = cv2.HoughCircles(thresh, cv2.HOUGH_GRADIENT, 1, PUMP_DIAMETER,
→˓param2=2, minRadius=pumpRadiusRange[0], maxRadius=pumpRadiusRange[1])

• reference: HoughCircles

(b) Add a function to display all detected circles (above the process_image callback):

def plotCircles(img, circles, color):
if circles is None: return

for (x,y,r) in circles[0]:
cv2.circle(img, (int(x),int(y)), int(r), color, 2)

(c) Below the circle-detect, call the display function and check for the expected # of circles (1)

plotCircles(drawImg, pumpCircles, (255,0,0))
if (pumpCircles is None):

raise Exception("No pump circles found!")
elif len(pumpCircles[0])<>1:

raise Exception("Wrong # of pump circles: found {} expected {}".
→˓format(len(pumpCircles[0]),1))
else:

pumpCircle = pumpCircles[0][0]

(d) Run the node and see the detected circles.

• Experiment with adjusting the param2 input to HoughCircles to find a value that seems to work
well. This parameter represents the sensitivity of the detector; lower values detect more circles, but
also will return more false-positives.

• Tru removing the min/maxRadius parameters or reducing the minimum distance between circles
(4th parameter) to see what other circles are detected.

• I found that a value of param2=7 seemed to work well

8. Detect the piston sleeves, using blob detection.

Blob detection analyses the image to identify connected regions (blobs) of similar color. Filtering of the resulting
blob features on size, shape, or other characteristics can help identify features of interest. We will be using
OpenCV’s SimpleBlobDetector.

130 Chapter 4. Advanced Topics

https://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html#threshold
https://docs.opencv.org/3.0-beta/modules/imgproc/doc/feature_detection.html#houghcircles
https://docs.opencv.org/3.2.0/d0/d7a/classcv_1_1SimpleBlobDetector.html

Industrial Training

(a) Add the following code to run blob detection on the binary image:

detect blobs inside pump body
pistonArea = 3.14159 * PISTON_DIAMETER**2 / 4
blobParams = cv2.SimpleBlobDetector_Params()
blobParams.filterByArea = True;
blobParams.minArea = 0.80 * pistonArea;
blobParams.maxArea = 1.20 * pistonArea;
blobDetector = cv2.SimpleBlobDetector_create(blobParams)
blobs = blobDetector.detect(thresh)

• Note the use of an Area filter to select blobs within 20% of the expected piston-sleeve area.

• By default, the blob detector is configured to detect black blobs on a white background. so no addi-
tional color filtering is required.

(b) Below the blob detection, call the OpenCV blob display function and check for the expected # of piston
sleeves (7):

drawImg = cv2.drawKeypoints(drawImg, blobs, (), (0,255,0), cv2.DRAW_MATCHES_
→˓FLAGS_DRAW_RICH_KEYPOINTS)
if len(blobs) <> PISTON_COUNT:

raise Exception("Wring # of pistons: found {} expected {}".
→˓format(len(blobs), PISTON_COUNT))
pistonCenters = [(int(b.pt[0]),int(b.pt[1])) for b in blobs]

(c) Run the node and see if all piston sleeves were properly identified

9. Detect the primary axis of the pump body.

This axis is used to identify the key piston sleeve feature. We’ll reduce the image to contours (outlines), then
find the largest one, fit a rectangular box (rotated for best-fit), and identify the major axis of that box.

(a) Calculate image contours and select the one with the largest area:

determine primary axis, using largest contour
im2, contours, h = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_
→˓SIMPLE)
maxC = max(contours, key=lambda c: cv2.contourArea(c))

(b) Fit a bounding box to the largest contour:

boundRect = cv2.minAreaRect(maxC)

(c) Copy these 3 helper functions to calculate the endpoints of the rectangle’s major axis (above the
process_image callback):

import math
...

def ptDist(p1, p2):
dx=p2[0]-p1[0]; dy=p2[1]-p1[1]
return math.sqrt(dx*dx + dy*dy)

def ptMean(p1, p2):
return ((int(p1[0]+p2[0])/2, int(p1[1]+p2[1])/2))

def rect2centerline(rect):
p0=rect[0]; p1=rect[1]; p2=rect[2]; p3=rect[3];

(continues on next page)

4.1. Session 5 - Path Planning and Building a Perception Pipeline 131

Industrial Training

(continued from previous page)

width=ptDist(p0,p1); height=ptDist(p1,p2);

centerline lies along longest median
if (height > width):

cl = (ptMean(p0,p1), ptMean(p2,p3))
else:

cl = (ptMean(p1,p2), ptMean(p3,p0))

return cl

(d) Call the rect2centerline function from above, with the bounding rectangle calculated earlier. Draw
the centerline on top of our display image.

centerline = rect2centerline(cv2.boxPoints(boundRect))
cv2.line(drawImg, centerline[0], centerline[1], (0,0,255))

10. The final step is to identify the key piston sleeve (closest to centerline) and use position to calculate the pump
angle.

(a) Add a helper function to calculate the distance between a point and the centerline:

def ptLineDist(pt, line):
x0=pt[0]; x1=line[0][0]; x2=line[1][0];
y0=pt[1]; y1=line[0][1]; y2=line[1][1];
return abs((x2-x1)*(y1-y0)-(x1-x0)*(y2-y1))/(math.sqrt((x2-x1)*(x2-

→˓x1)+(y2-y1)*(y2-y1)))

(b) Call the ptLineDist function to find which piston blob is closest to the centerline. Update the drawImg
to show which blob was identified.

find closest piston to primary axis
closestPiston = min(pistonCenters, key=lambda ctr: ptLineDist(ctr,
→˓centerline))
cv2.circle(drawImg, closestPiston, 5, (255,255,0), -1)

(c) Calculate the angle between the 3 key points: piston sleeve centerpoint, pump center, and an arbitrary point
along the horizontal axis (our reference “zero” position).

i. Add a helper function findAngle to calculate the angle between 3 points:

import numpy as np

def findAngle(p1, p2, p3):
p1=np.array(p1); p2=np.array(p2); p3=np.array(p3);
v1=p1-p2; v2=p3-p2;
return math.atan2(-v1[0]*v2[1]+v1[1]*v2[0],v1[0]*v2[0]+v1[1]*v2[1]) *

→˓180/3.14159

ii. Call the findAngle function with the appropriate 3 keypoints:

calculate pump angle
p1 = (orig.shape[1], pumpCircle[1])
p2 = (pumpCircle[0], pumpCircle[1])
p3 = (closestPiston[0], closestPiston[1])
angle = findAngle(p1, p2, p3)
print "Found pump angle: {}".format(angle)

11. You’re done! Run the node as before. The reported pump angle should be near 24 degrees.

132 Chapter 4. Advanced Topics

Industrial Training

Challenge Exercises

For a greater challenge, try the following suggestions to modify the operation of this image-processing example:

1. Modify the image_pub node to rotate the image by 10 degrees between each publishing step. The following
code can be used to rotate an image:

def rotateImg(img, angle):
rows,cols,ch = img.shape
M = cv2.getRotationMatrix2D((cols/2,rows/2),angle,1)
return cv2.warpAffine(img,M,(cols,rows))

2. Change the detect_pump node to provide a service that performs the image detection. Define a custom
service type that takes an input image and outputs the pump angle. Create a new application node that subscribes
to the image topic and calls the detect_pump service.

3. Try using HoughCircles instead of BlobDetector to locate the piston sleeves.

4.2 Session 6 - Documentation, Unit Tests, ROS Utilities and Debug-
ging ROS

Slides

4.2.1 Documentation Generation

Motivation

The ROS Scan-N-Plan application is complete and tested. It is important to thoroughly document the code so that
other developers may easily understand this program.

Information and Resources

doxygen generates documentation from annotated source code

rosdoc_lite is a ROS wrapper for doxygen

Scan-N-Plan Application: Problem Statement

We have completed and tested our Scan-N-Plan program and we need to release the code to the public. Your goal is
to make documentation viewable in a browser. You may accomplish this by annotated the myworkcell_core package
with doxygen syntax and generating documentation with rosdoc_lite.

Scan-N-Plan Application: Guidance

Annotate the Source Code

1. Open the myworkcell_node.cpp file from the previous example.

2. Annotate above the ScanNPlan Class:

4.2. Session 6 - Documentation, Unit Tests, ROS Utilities and Debugging ROS 133

http://www.doxygen.org/
http://wiki.ros.org/rosdoc_lite

Industrial Training

/**
* @brief The ScanNPlan class is a client of the vision and path plan servers. The
→˓ScanNPLan class takes

* these services, computes transforms and published commands to the robot.

*/
class ScanNPlan

1. Annotate above the start method

/**
* @brief start performs the robot alorithms functions of the ScanNPlan of

* the node. The start method makes a service request for a transform that

* localizes the part. The start method moves the "manipulator"

* move group to the localization target. The start method requests

* a cartesian path based on the localization target. The start method

* sends the cartesian path to the actionlib client for execution, bypassig

* MoveIt!

* @param base_frame is a string that specifies the reference frame

* coordinate system.

*/
void start()

1. Annotate above the flipPose

/**
* @brief flipPose rotates the input transform by 180 degrees about the

* x-axis

* @param in geometry_msgs::Pose reference to the input transform

* @return geometry_msgs::Pose of the flipped output transform

*/
geometry_msgs::Pose transformPose(const geometry_msgs::Pose& in) const

1. Annotate above the main function

/**
* @brief main is the ros interface for the ScanNPlan Class

* @param argc ROS uses this to parse remapping arguments from the command line.

* @param argv ROS uses this to parse remapping arguments from the command line.

* @return ROS provides typical return codes, 0 or -1, depending on the

* execution.

*/
int main(int argc, char** argv)

1. Additional annotations may be placed above private variables or other important code elements.

Generate documentation

1. Install rosdoc_lite:

sudo apt install ros-kinetic-rosdoc-lite

1. Build the package so we can source it later:

catkin build

1. Source the package

134 Chapter 4. Advanced Topics

Industrial Training

source ./devel/setup.bash

1. run rosdoc_lite to generate the documentation

roscd myworkcell_core
rosdoc_lite .

View the Documentation

1. Open the documentation in a browser:

firefox doc/html/index.html

1. Navigate to Classes -> ScanNPlan and view the documentation.

4.2.2 Unit Testing

In this exercise we will write a unit tests in the myworkcell_core package.

Motivation

The ROS Scan-N-Plan application is complete and documented. Now we want to test the program to make sure it
behaves as expected.

Information and Resources

Google Test: C++ XUnit test framework

rostest: ROS wrapper for XUnit test framework

catkin testing: Building and running tests with catkin

Problem Statement

We have completed and and documented our Scan-N-Plan program. We need to create a test framework so we can be
sure our program runs as intended after it is built. In addition to ensuring the code runs as intended, unit tests allow
you to easily check if new code changes functionality in unexpected ways. Your goal is to create the unit test frame
work and write a few tests.

Guidance

Create the unit test frame work

1. Create a test folder in the myworkcell_core/src folder. In the workspace directory:

catkin build
source devel/setup.bash
roscd myworkcell_core
mkdir src/test

4.2. Session 6 - Documentation, Unit Tests, ROS Utilities and Debugging ROS 135

https://github.com/google/googletest/blob/master/googletest/docs/primer.md
http://wiki.ros.org/rostest
http://catkin-tools.readthedocs.io/en/latest/verbs/catkin_build.html?highlight=run_tests#building-and-running-tests

Industrial Training

2. Create utest.cpp file in the myworkcell_core/src/test folder:

touch src/test/utest.cpp

3. Open utest.cpp in QT and include ros & gtest:

#include <ros/ros.h>
#include <gtest/gtest.h>

4. Write a dummy test that will return true if executed. This will test our framework and we will replace it later
with more useful tests:

TEST(TestSuite, myworkcell_core_framework)
{
ASSERT_TRUE(true);

}

5. Next include the general main function, which will execute the unit tests we write later:

int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();

}

6. Edit myworkcell_core CMakeLists.txt to build the u_test.cpp file. Append CMakeLists.txt:

if(CATKIN_ENABLE_TESTING)
find_package(rostest REQUIRED)
add_rostest_gtest(utest_node test/utest_launch.test src/test/utest.cpp)
target_link_libraries(utest_node ${catkin_LIBRARIES})

endif()

7. Create a test folder under myworkcell_core

mkdir test

8. Create a test launch file:

touch test/utest_launch.test

9. Open the utest_launch.test file in QT and populate the file:

<?xml version="1.0"?>
<launch>

<node pkg="fake_ar_publisher" type="fake_ar_publisher_node" name="fake_ar_
→˓publisher"/>

<test test-name="unit_test_node" pkg="myworkcell_core" type="utest_node"/>
</launch>

10. Build and test the framework

catkin run_tests myworkcell_core

The console output should show (buried in the midst of many build messages):

136 Chapter 4. Advanced Topics

Industrial Training

[ROSTEST]---

[myworkcell_core.rosunit-unit_test_node/myworkcell_core_framework][passed]

SUMMARY

* RESULT: SUCCESS

* TESTS: 1

* ERRORS: 0

* FAILURES: 0

This means our framework is functional and now we can add usefull unit tests.

Note: You can also run tests directly from the command line, using the launch file we made above: rostest
myworkcell_core utest_launch.test. Note that test files are not built using the regular catkin build command, so
use catkin run_tests myworkcell_core instead.

Add stock publisher tests

1. The rostest package provides several tools for inspecting basic topic characteristics hztest, paramtest, publishtest.
We’ll add some basic tests to verify that the fake_ar_publisher node is outputting the expected topics.

2. Add the test description to the utest_launch.test file:

<test name="publishtest" test-name="publishtest" pkg="rostest" type="publishtest">
<rosparam>
topics:
- name: "/ar_pose_marker"
timeout: 10
negative: False

- name: "/ar_pose_visual"
timeout: 10
negative: False

</rosparam>
</test>

3. Run the test:

catkin run_tests myworkcell_core

You should see:

Summary: 2 tests, 0 errors, 0 failures

Write specific unit tests

1. Since we will be testing the messages we get from the fake_ar_publisher package, include the relevant header
file (in utest.cpp):

#include <fake_ar_publisher/ARMarker.h>

2. Declare a global variable:

4.2. Session 6 - Documentation, Unit Tests, ROS Utilities and Debugging ROS 137

http://wiki.ros.org/rostest/Nodes#hztest
http://wiki.ros.org/rostest/Nodes#paramtest
http://wiki.ros.org/rostest/Nodes#publishtest

Industrial Training

fake_ar_publisher::ARMarkerConstPtr test_msg_;

3. Add a subscriber callback to copy incoming messages to the global variable:

void testCallback(const fake_ar_publisher::ARMarkerConstPtr &msg)
{
test_msg_ = msg;

}

4. Write a unit test to check the reference frame of the ar_pose_marker:

TEST(TestSuite, myworkcell_core_fake_ar_pub_ref_frame)
{

ros::NodeHandle nh;
ros::Subscriber sub = nh.subscribe("/ar_pose_marker", 1, &testCallback);

EXPECT_NE(ros::topic::waitForMessage<fake_ar_publisher::ARMarker>("/ar_pose_
→˓marker", ros::Duration(10)), nullptr);

EXPECT_EQ(1, sub.getNumPublishers());
EXPECT_EQ(test_msg_->header.frame_id, "camera_frame");

}

5. Add some node-initialization boilerplate to the main() function, since our unit tests interact with a running ROS
system. Replace the current main() function with the new code below:

int main(int argc, char **argv)
{
testing::InitGoogleTest(&argc, argv);
ros::init(argc, argv, "MyWorkcellCoreTest");

ros::AsyncSpinner spinner(1);
spinner.start();
int ret = RUN_ALL_TESTS();
spinner.stop();
ros::shutdown();
return ret;

}

6. Run the test:

catkin run_tests myworkcell_core

7. view the results of the test:

catkin_test_results build/myworkcell_core

You should see:

Summary: 3 tests, 0 errors, 0 failures

4.2.3 Using rqt Tools for Analysis

In this exercise we will use rqt_console, rqt_graph and urdf_to_graphviz to understand behavior of the
ROS system.

138 Chapter 4. Advanced Topics

Industrial Training

Motivation

When complicated multi-node ros systems are running it can be important to understand the interactions of nodes.

Information and Resources

Using a catkin workspace

Problem Statement

The Scan-N-Plan application is complete. We would like to further inspect the application using the various ROS rqt
tools.

Guidance

rqt_graph: view node interaction

In complex applications, it may be helpful to get a visual representation of the ROS node interactions.

1. Launch the Scan-N-Plan workcell:

roslaunch myworkcell_support setup.launch

1. In a 2nd terminal, launch the rqt_graph:

rqt_graph

1. Here we can see the basic layout of our Scan-N-Plan application:

2. In a 3rd terminal, launch the descartes path planner.:

rosrun myworkcell_core myworkcell_node

1. You must update the graph while the node is running because the graph will not update automatically.
After the update, we see our updated ROS network contains out myworkcell_node. Also, The mywork-
cell_node is publishing a new topic /move_group/goal which is subscribed by the move_group node.

4.2. Session 6 - Documentation, Unit Tests, ROS Utilities and Debugging ROS 139

http://wiki.ros.org/catkin/Tutorials/using_a_workspace

Industrial Training

rqt_console: view messages:

Now, we would like to see the output of the path planner. rqt_console is a great gui for viewing ROS topics.

1. Kill the rqt_graph application in the 2nd terminal and run rqt_console:

rqt_console

1. Run the path planner:

rosrun myworkcell_core myworkcell_node

1. The rqt_console automatically updates, showing the logic behind the path planner:

140 Chapter 4. Advanced Topics

Industrial Training

rqt_plot: view data plots

rqt_plot is an easy way to plot ROS data in real time. In this example, we will plot robot joint velocities from our path
plan.

1. Kill the rqt_console application in the 2nd terminal and run rqt_plot:

rqt_plot

1. In the Topic field add the following topics:

/joint_states/position[0]
/joint_states/position[1]
/joint_states/position[2]
/joint_states/position[3]
/joint_states/position[4]
/joint_states/position[5]

1. Then run the path planner:

rosrun myworkcell_core myworkcell_node

1. We can see the joint positions streaming in real-time:

4.2.4 ROS Style Guide and ros_lint

Motivation

The ROS Scan-N-Plan application is complete, tested and documented. Now we want to clean up the code according
to the style guide so other developers can easily understand our work.

4.2. Session 6 - Documentation, Unit Tests, ROS Utilities and Debugging ROS 141

Industrial Training

Information and Resources

The Official ROS C++ Style Guide

Automated Style Guide Enforcement

Scan-N-Plan Application: Problem Statement

We have completed and tested our Scan-N-Plan program and we need to release the code to the public. Your goal is to
ensure the code we have created conforms to the ROS C++ Style Guide.

Scan-N-Plan Application: Guidance

Configure Package

1. Add a build dependency on roslint to your package’s package.xml:

<build_depend>roslint</build_depend>

1. Add roslint to catkin REQUIRED COMPONENTS in CMakeLists.txt:

find_package(catkin REQUIRED COMPONENTS
...
roslint

)

1. Invoke roslint function from CMakeLists.txt

roslint_cpp()

Run roslint

1. To run roslint:

roscd myworkcell_core
catkin_make --make-args roslint

4.2.5 Docker AWS

Demo #1 - Run front-end Gazebo host and back-end in Docker

Setup workspace

Front-end (run on host and only contains gui)

in terminal 1

142 Chapter 4. Advanced Topics

http://wiki.ros.org/CppStyleGuide
http://wiki.ros.org/roslint

Industrial Training

mkdir -p ./training/front_ws/src
cd ./training/front_ws/src
gazebo -v
git clone -b gazebo7 https://github.com/fetchrobotics/fetch_gazebo.git
git clone https://github.com/fetchrobotics/robot_controllers.git
git clone https://github.com/fetchrobotics/fetch_ros.git
cd ..
catkin build fetch_gazebo fetch_description

Back-end (run in container)

In this step, we will create a docker image that has the executables we need:

• run /bin/bash in the rosindustrial/core:indigo image then apt-get the package, commiting the result.

• run /bin/bash in the rosindustrial/core:indigo image then build the package from source, commiting the result.

• create a docker container using the fetch Dockerfile, which we will perform.
https://gist.github.com/AustinDeric/242c1edf1c934406f59dfd078a0ce7fa

cd ../fetch-Dockerfile/
docker build --network=host -t rosindustrial/fetch:indigo .

Running the Demo

Run the front-end

Run the front end in terminal 1:

source devel/setup.bash
roslaunch fetch_gazebo playground.launch

Run the backend

There are multiple ways to perform this:

• run /bin/bash in the fetch container and manually run the demo node.

• run the demo node directly in the container, which is the method we will perform

Run the back end in terminal 2:

docker run --network=host rosindustrial/fetch:indigo roslaunch fetch_gazebo_demo demo.
→˓launch

Demo #2 - Run front-end on a web-server and back-end in docker

start the environment

docker run --network=host rosindustrial/fetch:indigo roslaunch fetch_gazebo
→˓playground.launch headless:=true gui:=false

run the gazebo web server:

4.2. Session 6 - Documentation, Unit Tests, ROS Utilities and Debugging ROS 143

Industrial Training

docker run -v "/home/aderic/roscloud/training/front_ws/src/fetch_gazebo/fetch_gazebo/
→˓models/test_zone/meshes/:/root/gzweb/http/client/assets/test_zone/meshes/" -v "/
→˓home/aderic/roscloud/training/front_ws/src/fetch_ros/fetch_description/meshes:/root/
→˓gzweb/http/client/assets/fetch_description/meshes" -it --network=host giodegas/
→˓gzweb /bin/bash

then run the server:

/root/gzweb/start_gzweb.sh && gzserver

run the demo in terminal 3:

docker run --network=host fetch roslaunch fetch_gazebo_demo demo.launch

Demo #3 Robot Web Tools

In this demo we will run an industrial robot URDF viewable in a browser In terminal 1 we will load a robot to the
parameter server

mkdir -p abb_ws/src
git clone -b kinetic-devel https://github.com/ros-industrial/abb.git
docker run -v "/home/aderic/roscloud/training/abb_ws:/abb_ws" --network=host -it
→˓rosindustrial/core:kinetic /bin/bash
cd abb_ws
catkin build
source devel/setup.bash
roslaunch abb_irb5400_support load_irb5400.launch

in terminal 2 we will start the robot web tools:

docker run --network=host rosindustrial/viz:kinetic roslaunch viz.launch

in terminal 3 we will launch the webserver first we need to start a www folder

cp -r abb_ws/src/abb/abb_irb5400_support/ www/

docker run -v "/home/aderic/roscloud/training/www:/data/www" -v "/home/aderic/
→˓roscloud/training/nginx_conf/:/etc/nginx/local/" -it --network=host rosindustrial/
→˓nginx:latest /bin/bash
nginx -c /etc/nginx/local/nginx.conf

144 Chapter 4. Advanced Topics

	Setup PC
	Prerequisites
	Basic Topics
	Advanced Topics

