
ROS-Industrial Basic Developer’s
Training Class

Southwest Research Institute

1

Session 1:
ROS Basics

Southwest Research Institute

2

Outline

• Intro to ROS

• Catkin (Create workspace)

• Installing packages (existing)

• Packages (create)

• Nodes

• Messages / Topics

3

An Introduction to ROS

4

(Image taken from Willow Garage’s “What is ROS?” presentation)

ROS Versions

Annual releases (“distribution”)

5

Box Turtle C Turtle Diamondback Electric Fuerte Groovy

Mar 2010 Aug 2010 Mar 2011 Aug 2011 April 2012 2012 - 2014

Hydro Indigo Jade Kinetic Lunar Melodic

2013 - 2015 2014 - 2019 2015 - 2017 2016 - 2021 2017 - 2019 2018 - 2023

ROS : The Big Picture

All robots are:

Software connecting Sensors to Actuators
to interact with the Environment

6

software

sensors

environment

actuators

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

ROS : The Big Picture

• Break Complex Software into Smaller Pieces

• Provide a framework, tools, and interfaces for distributed development

• Encourage re-use of software pieces

• Easy transition between simulation and hardware

7

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

sensors

environment

actuators

Our Approach: Collaboration, Modularity, and Simulation

= + + +

Plumbing Tools Capabilities Ecosystem

What is ROS?

ROS is…

(Adapted from Willow Garage’s “What is ROS?” Presentation)

8

ROS is… plumbing

(Adapted from Willow Garage’s “What is ROS?” Presentation)

9

Master

Publisher

Publisher

Subscriber

Subscriber

/topic

(DNS-like)

ROS Plumbing : Drivers

10

● 2d/3d cameras

● laser scanners

● robot actuators

● inertial units

● audio

● GPS

● joysticks

● etc.

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

ROS is …Tools

11

•logging/plotting
•graph visualization
•diagnostics
•visualization

(Adapted from Willow Garage’s “What is ROS?” Presentation)

ROS is…Capabilities

12

Execution

Planning

Perception

(Adapted from Willow Garage’s “What is ROS?” Presentation)

ROS is… an Ecosystem

13

http://metrorobots.com/rosmap.html

ROS is a growing Ecosystem

14

(From Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation)

ROS is International

15

unique wiki visitors July 2017

visitors per million people

 1. Singapore: 1711
 2. Hong Kong: 1255
 3. Switzerland: 526
 4. Taiwan: 500
 5. Germany: 482
...
10. USA: 310

http://wiki.ros.org/Metrics

Does not include visitors
to wiki mirrors

(Singapore, China, ...)

ROS is a Repository

16

ros_comm
("core")

100 KLOC

desktop-full
("core+tools")

400 KLOC

all buildfarm
("universe")
4000 KLOC

only includes publicly released
code!

(From Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics”)

ROS is …

17

https://vimeo.com/245826128

ROS Architecture: Nodes

18

• A Node is a single ROS-enabled program
– Most communication happens between nodes
– Nodes can run on many different devices

• One Master per system

ROS Master
• Enables nodes to locate one another
• Handles Parameter Server

camera
interface

image
processing

motion
logic

robot
planning

robot
interface

ROS Architecture: Packages

19

camera
interface

image
processing

motion
logic

robot
planning

robot
interface

robot
model

ROS Package
(e.g. Pick-and-Place Task)

multiple
nodes

no
nodes

• ROS Packages are groups of related nodes/data

– Many ROS commands are package-oriented

ROS Architecture: MetaPkg

20

camera
interface

image
processing

motion
logic

robot
planning

robot
interface

robot
model

ROS MetaPackage
(e.g. fanuc, ros_industrial, ros_desktop, ...)

• MetaPackages are groups of related packages

– Mostly for convenient install/deployment

ROS Programming

• ROS uses platform-agnostic methods for most
communication
– TCP/IP Sockets, XML, etc.

• Can intermix programming languages

– primary: C++, Python, Lisp

– also: C#, Java, Matlab, etc.

– We will be using C++ for our exercises

21

ROS Resources

22

?

Package
wiki

ROS-I
wiki/github

ROS
Answers

ROS
website

ROS.org Website

• Install Instructions

• Tutorials

• Links

– Packages, ROS Answers, etc.

23

http://ros.org

Package Wiki

• Description / Usage

• Tutorials

• Code / Msg API

24

• Source-Code link

• Bug Reporting

http://wiki.ros.org/<packageName>

ROS Answers

25

http://answers.ros.org

• Quick responses to Good Questions

• Search by text or tag

• Don’t re-invent the wheel!

ROS is a Community

• No Central “Authority” for Help/Support

– Many users can provide better (?) support

– ROS-I Consortium can help fill that need

• Most ROS-code is open-source

– can be reviewed / improved by everyone

– we count on YOU to help ROS grow!

26

What is ROS to you?

Training Goals:

• Show you ROS as a software framework

• Show you ROS as a tool for problem solving

• Apply course concepts to a sample application

• Ask lots of questions and break things.

27

Scan & Plan “Application”

28

ROS

Day 1 Progression

 Install ROS

Create Workspace

Add “resources”

Create Package

Create Node
Basic ROS Node

 Interact with other nodes
Messages

Services

Run Node
 rosrun

 roslaunch

 rosparam

Catkin
Workspace

My Package

Node

Resource

Package

29

Installing ROS

30

Getting ROS

31

http://wiki.ros.org/kinetic/Installation

http://wiki.ros.org/kinetic/Installation

Roscore

roscore is a collection of nodes and programs
that are pre-requisites of a ROS-based system

To check your install, open a terminal and type:

 roscore

To kill the process, press Ctrl+C while in the
window running roscore

32

Exercise 1.0

Exercise 1.0
Basic ROS Install/Setup

33

ROS

Day 1 Progression

 Install ROS (check install)

Create Workspace

Add “resources”

Create Package

Create Node
Basic ROS Node

Interact with other nodes
Messages

Services

Run Node
rosrun

roslaunch

 34

Catkin
Workspace

My Package

Node

Resource

Package

Creating a ROS Workspace

35

Catkin

36

• ROS uses the catkin build system

– based on CMAKE

– cross-platform (Ubuntu, Windows, embedded...)

– replaces older rosbuild system

• different build commands, directory structure, etc.

• most packages have already been upgraded to catkin

• rosbuild: manifest.xml, catkin: package.xml

http://www.clearpathrobotics.com/blog/introducing-catkin/

Catkin Workspace

• Catkin uses a specific directory structure:
– each “project” typically gets its own catkin workspace

– all packages/source files go in the src directory

– temporary build-files are created in build

– results are placed in devel

37

catkin_workspace
src

package_1
package_2

build
devel

Catkin Build Process

Setup (one-time)
1. Create a catkin workspace somewhere

• catkin_ws

• src sub-directory must be created manually
• build, devel directories created automatically

2. Run catkin init from workspace root
3. Download/create packages in src subdir

Compile-Time
1. Run catkin build anywhere in the workspace
2. Run source devel/setup.bash to make workspace

visible to ROS
• Must re-execute in each new terminal window
• Can add to ~/.bashrc to automate this process

38

Exercise 1.1

Exercise 1.1
Create a Catkin Workspace

39

fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

ROS

Day 1 Progression

 Install ROS

 Create Workspace

Add “resources”

Create Package

Create Node
Basic ROS Node

 Interact with other nodes
Messages

Services

Run Node
 rosrun

 roslaunch

40

Catkin
Workspace

My Package

Node

Resource

Package

Add 3rd-Party Packages
(a.k.a. “Resource” Packages)

41

Install options

Debian Packages

• Nearly “automatic”

• Recommended for
end-users

• Stable

• Easy

Source Repositories

• Access “latest” code

• Most at Github.com

• More effort to setup

• Unstable*

42

Can mix both options, as needed

Finding the Right Package

• ROS Website (http://ros.org/browse/)

– Browse/Search for known packages

• ROS Answers (http://answers.ros.org)

– When in doubt... ask someone!

43

http://ros.org/browse/
http://answers.ros.org/

Install using Debian Packages

sudo apt install ros-kinetic-package

44

• Fully automatic install:
• Download .deb package from central ROS repository
• Copies files to standard locations (/opt/ros/kinetic/...)

Also installs any other required dependencies

• sudo apt-get remove ros-distro-package

• Removes software (but not dependencies!)

admin
permissions

manage
“.deb”

install
new “.deb”

all ROS pkgs
start with ros-

ROS
distribution

ROS package
name

Use “-” not “_”

Installing from Source

45

• Find GitHub repo

• Clone repo into your workspace src directory

• Build your catkin workspace

• Now the package and its resources are
available to you

http://www.clearpathrobotics.com/blog/introducing-catkin/

cd catkin_ws/src

git clone http://github.com/user/repo.git

cd catkin_ws

catkin build

Exercise 1.2

Exercise 1.2
Install “resource” packages

46

fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

ROS

Day 1 Progression

 Install ROS

 Create Workspace

 Add “resources”

Create Package

Create Node
Basic ROS Node

 Interact with other nodes
Messages

Services

Run Node
 rosrun

 roslaunch

47

Catkin
Workspace

My Package

Node

Resource

Package

ROS Packages

48

ROS Package Contents

• ROS components are organized into packages
• Packages contain several required files:

– package.xml
• metadata for ROS: package name, description, dependencies, ...

– CMakeLists.txt
• build rules for catkin

49

required
files

package source-files
(vs. catkin workspace src dir)

package
directory catkin_workspace

src
package_1
package

build
devel

package.xml

• Metadata: name, description, author, license ...

50

package.xml

• Metadata: name, description, author, license ...

• Dependencies:
– Common

• <buildtool_depend>: Needed to build itself. (Typically catkin)

• <depend>: Needed to build, export, and execution dependency. (format “2” only)

– Sometimes
• <build_depend>: Needed to build this package.

• <build_export_depend>: Needed to build against this package.

• <exec_depend>: Needed to run code in this package.

– Uncommon
• <test_depend>: Only additional dependencies for unit tests.

• <doc_depend>: Needed to generate documentation.

51

CMakeLists.txt

• Provides rules for building software
– template file contains many examples

include_directories(include ${catkin_INCLUDE_DIRS})

Adds directories to CMAKE include rules

add_executable(myNode src/myNode.cpp src/widget.cpp)

Builds program myNode, from myNode.cpp and widget.cpp

target_link_libraries(myNode ${catkin_LIBRARIES})

Links node myNode to dependency libraries

52

ROS Package Commands

• roscd package_name
Change to package directory

• rospack

– rospack find package_name
Find directory of package_name

– rospack list
List all ros packages installed

– rospack depends package_name
List all dependencies of package_name

53

Create New Package

Easiest way to start a new package

– create directory, required files

– mypkg : name of package to be created

– dep1/2 : dependency package names

• automatically added to CMakeLists and package.xml

• can manually add additional dependencies later

54

catkin create pkg mypkg --catkin-deps dep1 dep2

Exercise 1.3.1

Exercise 1.3.1
Create Package

55

fake_ar_pub

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

ROS

Day 1 Progression

 Install ROS

 Create Workspace

 Add “resources”

 Create Package

Create Node
Basic ROS Node

 Interact with other nodes
Messages

Services

Run Node
 rosrun

 roslaunch

Catkin
Workspace

My Package

Resource

Package

56

ROS Nodes

57

A Simple C++ ROS Node

Simple C++ Program

#include <iostream>

int main(int argc, char* argv[])

{

 std::cout << "Hello World!";

 return 0;

}

Simple C++ ROS Node

#include <ros/ros.h>

int main(int argc, char* argv[])

{

 ros::init(argc, argv, “hello”);

 ros::NodeHandle node;

 ROS_INFO_STREAM("Hello World!“);

 return 0;

}

58

ROS Node Commands

• rosrun package_name node_name
execute ROS node

• rosnode

– rosnode list
View running nodes

– rosnode info node_name
View node details (publishers, subscribers, services, etc.)

– rosnode kill node_name
Kill running node; good for remote machines

Ctrl+C is usually easier

59

“Real World” – Nodes

60

demo_pick_and_place

gripper_action_server

ethercat_io_driver

move_group

joint_trajectory_action

ur5_driver

robot_state_pub

camera_driver

target_recognition_server

rviz

Exercise 1.3.2

Exercise 1.3.2
Create a Node:

In myworkcell_core package
called vision_node

61

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

fake_ar_pub

ROS

Day 1 Progression

 Install ROS

 Create Workspace

 Add “resources”

 Create Package

 Create Node
 Basic ROS Node

 Interact with other nodes
Messages

Services

 Run Node
 rosrun

 roslaunch

Catkin
Workspace

My Package

Node

Resource

Package

62

Topics and Messages

63

ROS Topics/Messages

64

msg … msg … msg

Publisher Node

Publishing msg data
On channel /topic

Publisher Node

Advertises /topic is available
with type msg

Subscriber Node

Subscribed to /topic
with type msg

ROS MASTER

Subscriber Node

Listening for /topic
with type msg

/topic

Topics are for Streaming Data

Topics vs. Messages

• Topics are channels, Messages are data types

– Different topics can use the same Message type

65

camera_1

camera_2

image_processing

image … image …

/camera_1/rgb

image … image …

/camera_2/rgb

Practical Example

66

Calibration Node
Subscribes to
Images from:

/Basler1/image_rect
/Basler2/image_rect
/Basler3/image_rect

…

Basler
Camera Node

sensor_msgs/Image

/Basler1/image_rect

Basler
Camera Node

sensor_msgs/Image

/Basler2/image_rect

Multiple Pub/Sub

• Many nodes can pub/sub to same topic

– comms are direct node-to-node

67

camera_1

image_processing

logger

viewer

/camera_1/rgb

image … image …

Topics : Details

• Each Topic is a stream of Messages:
– sent by publisher(s), received by subscriber(s)

• Messages are asynchronous
– publishers don’t know if anyone’s listening

– messages may be dropped

– subscribers are event-triggered (by incoming messages)

• Typical Uses:
– Sensor Readings: camera images, distance, I/O

– Feedback: robot status/position

– Open-Loop Commands: desired position

68

ROS Messages Types

• Similar to C structures

• Standard data primitives
– Boolean: bool

– Integer: int8,int16,int32,int64

– Unsigned Integer: uint8,uint16,uint32,uint64

– Floating Point: float32, float64

– String: string

• Fixed length arrays: bool[16]

• Variable length arrays: int32[]

• Other: Nest message types for more complex data
structure

69

Message Description File

• All Messages are defined by a .msg file

70

PathPosition.msg
A 2D position and orientation

Header header

float64 x # X coordinate

float64 y # Y coordinate

float64 angle # Orientation

data
type

field
name

comment

other Msg type

Custom ROS Messages

• Custom message types
are defined in msg
subfolder of packages

• Modify CMakeLists.txt
to enable message
generation.

71

CMakeLists.txt

• Lines needed to generate custom msg types

find_package(catkin REQUIRED COMPONENTS

 message_generation)

add_message_files(custom.msg ...)

generate_messages(DEPENDENCIES ...)

catkin_package(CATKIN_DEPENDS roscpp

message_runtime)

72

package.xml

<build_depend> message_generation </build_depend>

<build_export_depend>message_runtime</build_export_depend>

<run_depend>message_runtime</run_depend>

73

ROS Message Commands

• rosmsg list

– Show all ROS topics currently installed on the system

• rosmsg package <package>

– Show all ROS message types in package <package>

• rosmsg show <package>/<message_type>

– Show the structure of the given message type

74

ROS Topic Commands

• rostopic list

– List all topics currently subscribed to and/or publishing

• rostopic type <topic>

– Show the message type of the topic

• rostopic info <topic>
– Show topic message type, subscribers, publishers, etc.

• rostopic echo <topic>

– Echo messages published to the topic to the terminal

• rostopic find <message_type>

– Find topics of the given message type

75

“Real World” – Messages

• Use rqt_msg to view:
– sensor_msgs/JointState

– trajectory_msgs/JointTrajectory

– sensor_msgs/Image

– rosgraph_msgs/Log

76

• Topic Publisher
– Advertises available topic (Name, Data Type)

– Populates message data

– Periodically publishes new data

Topics: Syntax

77

ros::NodeHandle nh;

ros::Publisher pub = nh.advertise<PathPosition>(“/position”, 25);

PathPosition msg;

msg.x=xVal; msg.y=yVal; ...

pub.publish(msg);

ros::spinOnce();

Publisher Object Advertise Topic Message Type

Background
Process

Topic Name Queue Size

Message Data

Publish Message

• Topic Subscriber

– Defines callback function

– Listens for available topic (Name, Data Type)

Topics: Syntax

78

void msg_callback(const PathPosition& msg) {

 ROS_INFO_STREAM(“Received msg: “ << msg);

}

ros::Subscriber sub = nh.subscribe(“/topic”, 25, msg_callback);

Callback Function Message Type Message Data (IN)

Server Object Service Name Callback Ref

Qt

Instead of text editor and building
from terminal…

Use an IDE! Wiki instructions here

79

https://ros-industrial.github.io/ros_qtc_plugin/

fake_ar_pub

Exercise 1.4

Exercise 1.4
Subscribe to fake_ar_publisher

80

vision_node

myworkcell_support

myworkcell_moveit_cfg ur5_driver

myworkcell_node

descartes_node

AR pose

