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Session 1: 
ROS Basics 

Southwest Research Institute 
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Outline 

• Intro to ROS 

• Catkin (Create workspace) 

• Installing packages (existing) 

• Packages (create) 

• Nodes 

• Messages / Topics 

3 



An Introduction to ROS 

4 

(Image taken from Willow Garage’s “What is ROS?” presentation) 



ROS Versions 

Annual releases (“distribution”) 
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Box Turtle C Turtle Diamondback Electric Fuerte Groovy 

Mar 2010 Aug 2010 Mar 2011 Aug 2011 April 2012 2012 - 2014 

Hydro Indigo Jade Kinetic Lunar Melodic 

2013 - 2015 2014 - 2019 2015 - 2017 2016 - 2021 2017 - 2019 2018 - 2023 



ROS : The Big Picture 

All robots are: 

Software connecting Sensors to Actuators 
to interact with the Environment 
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software

sensors

environment

actuators

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation) 



ROS : The Big Picture 

• Break Complex Software into Smaller Pieces 

• Provide a framework, tools, and interfaces for distributed development 

• Encourage re-use of software pieces 

• Easy transition between simulation and hardware 
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(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation) 

sensors

environment

actuators

Our Approach: Collaboration, Modularity, and Simulation



= + + + 

Plumbing Tools Capabilities Ecosystem 

What is ROS? 

ROS is… 

 

 

 

 

 

 
(Adapted from Willow Garage’s “What is ROS?” Presentation) 
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ROS is… plumbing 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(Adapted from Willow Garage’s “What is ROS?” Presentation) 
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Master 

Publisher 

Publisher 

Subscriber 

Subscriber 

/topic 

(DNS-like) 



ROS Plumbing : Drivers 

10 

● 2d/3d cameras 

● laser scanners 

● robot actuators 

● inertial units 

● audio 

● GPS 

● joysticks 

● etc. 

(Adapted from Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation) 



ROS is …Tools 
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•logging/plotting 
•graph visualization 
•diagnostics 
•visualization 

(Adapted from Willow Garage’s “What is ROS?” Presentation) 



ROS is…Capabilities 
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Execution 

Planning 

Perception 

(Adapted from Willow Garage’s “What is ROS?” Presentation) 



ROS is… an Ecosystem 
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http://metrorobots.com/rosmap.html 



ROS is a growing Ecosystem 
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(From Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics” presentation) 



ROS is International 
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unique wiki visitors July 2017 

visitors per million people 

 1. Singapore: 1711 
 2. Hong Kong: 1255 
 3. Switzerland: 526 
 4. Taiwan: 500 
 5. Germany: 482 
... 
10.  USA: 310 

http://wiki.ros.org/Metrics 

Does not include visitors 
to wiki mirrors 

(Singapore, China, ...) 



ROS is a Repository 
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ros_comm 
("core") 

100 KLOC 

desktop-full 
("core+tools") 

400 KLOC 

all buildfarm 
("universe") 
4000 KLOC 

only includes publicly released 
code! 

(From Morgan Quigley’s “ROS: An Open-Source Framework for Modern Robotics”) 



ROS is … 
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https://vimeo.com/245826128 



ROS Architecture: Nodes 
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• A Node is a single ROS-enabled program 
– Most communication happens between nodes 
– Nodes can run on many different devices 

• One Master per system 

ROS Master 
• Enables nodes to locate one another 
• Handles Parameter Server 

camera 
interface 

image 
processing 

motion 
logic 

robot 
planning 

robot 
interface 



ROS Architecture: Packages 
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camera 
interface 

image 
processing 

motion 
logic 

robot 
planning 

robot 
interface 

robot 
model 

ROS Package 
(e.g. Pick-and-Place Task) 

multiple 
nodes 

no 
nodes 

• ROS Packages are groups of related nodes/data 

– Many ROS commands are package-oriented 



ROS Architecture: MetaPkg 
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camera 
interface 

image 
processing 

motion 
logic 

robot 
planning 

robot 
interface 

robot 
model 

ROS MetaPackage 
(e.g. fanuc, ros_industrial, ros_desktop, ...) 

• MetaPackages are groups of related packages 

– Mostly for convenient install/deployment 



ROS Programming 

• ROS uses platform-agnostic methods for most 
communication 
– TCP/IP Sockets, XML, etc. 

 

• Can intermix programming languages 

– primary:  C++, Python, Lisp 

– also: C#, Java, Matlab, etc. 

– We will be using C++ for our exercises 
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ROS Resources 

22 

? 

Package 
wiki 

ROS-I 
wiki/github 

ROS 
Answers 

ROS 
website 



ROS.org Website 

• Install Instructions 

• Tutorials 

• Links 

– Packages, ROS Answers, etc. 
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http://ros.org 



Package Wiki 

• Description / Usage 

• Tutorials 

• Code / Msg API 
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• Source-Code link 

• Bug Reporting 

http://wiki.ros.org/<packageName> 



ROS Answers 
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http://answers.ros.org 

• Quick responses to Good Questions 

• Search by text or tag 

• Don’t re-invent the wheel! 



ROS is a Community 

• No Central “Authority” for Help/Support 

– Many users can provide better (?) support 

– ROS-I Consortium can help fill that need 

 

• Most ROS-code is open-source 

– can be reviewed / improved by everyone 

– we count on YOU to help ROS grow! 
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What is ROS to you? 

Training Goals: 

• Show you ROS as a software framework 

• Show you ROS as a tool for problem solving 

• Apply course concepts to a sample application 

• Ask lots of questions and break things. 
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Scan & Plan “Application” 
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ROS 

Day 1 Progression 

 Install ROS 

Create Workspace 

Add “resources” 

Create Package 

Create Node 
Basic ROS Node 

 Interact with other nodes 
Messages 

Services 

Run Node 
 rosrun 

 roslaunch 

 rosparam 

Catkin 
Workspace 

My Package 

Node 

Resource  

Package 
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Installing ROS 
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Getting ROS 
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http://wiki.ros.org/kinetic/Installation 
 

http://wiki.ros.org/kinetic/Installation


Roscore 

roscore is a collection of nodes and programs 
that are pre-requisites of a ROS-based system 

 

To check your install, open a terminal and type: 

                                   roscore 

 

To kill the process, press Ctrl+C while in the 
window running roscore 
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Exercise 1.0 

Exercise 1.0 
Basic ROS Install/Setup 
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ROS 

Day 1 Progression 

 Install ROS (check install) 

Create Workspace 

Add “resources” 

Create Package 

Create Node 
Basic ROS Node 

Interact with other nodes 
Messages 

Services 

Run Node 
rosrun 

roslaunch 
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Catkin 
Workspace 

My Package 

Node 

Resource  

Package 



 

Creating a ROS Workspace 
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Catkin 
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• ROS uses the catkin build system 

– based on CMAKE 

– cross-platform (Ubuntu, Windows, embedded...) 

– replaces older rosbuild system 

• different build commands, directory structure, etc. 

• most packages have already been upgraded to catkin 

• rosbuild: manifest.xml,   catkin: package.xml 

 

http://www.clearpathrobotics.com/blog/introducing-catkin/ 



Catkin Workspace 

• Catkin uses a specific directory structure: 
– each “project” typically gets its own catkin workspace 

– all packages/source files go in the src directory 

– temporary build-files are created in build 

– results are placed in devel 
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catkin_workspace 
src 

package_1 
package_2 

build 
devel 



Catkin Build Process 

Setup (one-time) 
1. Create a catkin workspace somewhere 

• catkin_ws 

• src sub-directory must be created manually 
• build, devel directories created automatically 

2. Run catkin init from workspace root 
3. Download/create packages in src subdir 

 

Compile-Time 
1. Run catkin build anywhere in the workspace 
2. Run source devel/setup.bash to make workspace 

visible to ROS 
• Must re-execute in each new terminal window 
• Can add to ~/.bashrc to automate this process 
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Exercise 1.1 

Exercise 1.1 
Create a Catkin Workspace 
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fake_ar_pub 

vision_node 

myworkcell_support 

myworkcell_moveit_cfg ur5_driver 

myworkcell_node 

descartes_node 



ROS 

Day 1 Progression 

 Install ROS 

 Create Workspace 

Add “resources” 

Create Package 

Create Node 
Basic ROS Node 

 Interact with other nodes 
Messages 

Services 

Run Node 
 rosrun 

 roslaunch 
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Catkin 
Workspace 

My Package 

Node 

Resource  

Package 



 

Add 3rd-Party Packages 
(a.k.a. “Resource” Packages) 
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Install options 

Debian Packages 

• Nearly “automatic” 

• Recommended for 
end-users 

• Stable 

• Easy 

 

Source Repositories 

• Access “latest” code 

• Most at Github.com 

• More effort to setup 

• Unstable* 
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Can mix both options, as needed 



Finding the Right Package 

• ROS Website (http://ros.org/browse/) 

– Browse/Search for known packages 

 

• ROS Answers (http://answers.ros.org) 

– When in doubt... ask someone! 
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http://ros.org/browse/
http://answers.ros.org/


Install using Debian Packages 

sudo apt install ros-kinetic-package 
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• Fully automatic install: 
• Download .deb package from central ROS repository 
• Copies files to standard locations     (/opt/ros/kinetic/...) 

Also installs any other required dependencies 
 

• sudo apt-get remove ros-distro-package 

• Removes software (but not dependencies!) 

admin 
permissions 

manage 
“.deb” 

install 
new “.deb” 

all ROS pkgs 
start with ros- 

ROS 
distribution 

ROS package 
name 

Use “-” not “_” 



Installing from Source 
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• Find GitHub repo 

• Clone repo into your workspace src directory 

 

 

• Build your catkin workspace  

 

 

• Now the package and its resources are 
available to you 

http://www.clearpathrobotics.com/blog/introducing-catkin/ 

cd catkin_ws/src 

git clone http://github.com/user/repo.git 

cd catkin_ws 

catkin build 



Exercise 1.2 

Exercise 1.2 
Install “resource” packages 
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fake_ar_pub 

vision_node 

myworkcell_support 

myworkcell_moveit_cfg ur5_driver 

myworkcell_node 

descartes_node 



ROS 

Day 1 Progression 

 Install ROS 

 Create Workspace 

 Add “resources” 

Create Package 

Create Node 
Basic ROS Node 

 Interact with other nodes 
Messages 

Services 

Run Node 
 rosrun 

 roslaunch 
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Catkin 
Workspace 

My Package 

Node 

Resource  

Package 



 

ROS Packages 
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ROS Package Contents 

• ROS components are organized into packages 
• Packages contain several required files: 

– package.xml 
• metadata for ROS: package name, description, dependencies, ... 

– CMakeLists.txt 
• build rules for catkin 
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required 
files 

package source-files 
(vs. catkin workspace src dir) 

package 
directory catkin_workspace 

src 
package_1 
package 

build 
devel 



package.xml 

• Metadata: name, description, author, license ... 
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package.xml 

• Metadata: name, description, author, license ... 

• Dependencies: 
– Common 

• <buildtool_depend>: Needed to build itself. (Typically catkin) 

• <depend>: Needed to build, export, and execution dependency.   (format “2” only) 

– Sometimes 
• <build_depend>: Needed to build this package. 

• <build_export_depend>: Needed to build against this package. 

• <exec_depend>: Needed to run code in this package. 

– Uncommon 
• <test_depend>: Only additional dependencies for unit tests. 

• <doc_depend>:  Needed to generate documentation. 
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CMakeLists.txt 

• Provides rules for building software 
– template file contains many examples 

 
include_directories(include ${catkin_INCLUDE_DIRS}) 

Adds directories to CMAKE include rules 

 

add_executable(myNode src/myNode.cpp src/widget.cpp) 

Builds program myNode, from myNode.cpp and widget.cpp 

 

target_link_libraries(myNode ${catkin_LIBRARIES}) 

Links node myNode to dependency libraries 
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ROS Package Commands 

• roscd package_name 
Change to package directory  

 

• rospack 

– rospack find package_name 
Find directory of package_name 

– rospack list 
List all ros packages installed 

– rospack depends package_name 
List all dependencies of package_name 
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Create New Package 

Easiest way to start a new package 

– create directory, required files 

– mypkg :  name of package to be created 

– dep1/2 :  dependency package names 

• automatically added to CMakeLists and package.xml 

• can manually add additional dependencies later 

54 

catkin create pkg mypkg --catkin-deps dep1 dep2 



Exercise 1.3.1 

Exercise 1.3.1 
Create Package 
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fake_ar_pub 

vision_node 

myworkcell_support 

myworkcell_moveit_cfg ur5_driver 

myworkcell_node 

descartes_node 



ROS 

Day 1 Progression 

 Install ROS 

 Create Workspace 

 Add “resources” 

 Create Package 

Create Node 
Basic ROS Node 

 Interact with other nodes 
Messages 

Services 

Run Node 
 rosrun 

 roslaunch 

Catkin 
Workspace 

My Package 

Resource  

Package 
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ROS Nodes 
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A Simple C++ ROS Node 

Simple C++ Program 
 

 

#include <iostream> 

 

int main(int argc, char* argv[])  

{ 

  

 

 

 std::cout << "Hello World!"; 

 

   return 0; 

} 

Simple C++ ROS Node 
 

 

#include <ros/ros.h> 

 

int main(int argc, char* argv[]) 

{ 

  ros::init(argc, argv, “hello”); 

  ros::NodeHandle node; 

 

  ROS_INFO_STREAM("Hello World!“); 

  

  return 0; 

} 
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ROS Node Commands 

• rosrun package_name node_name 
execute ROS node 

 

• rosnode 

– rosnode list 
View running nodes 

– rosnode info node_name 
View node details (publishers, subscribers, services, etc.) 

– rosnode kill node_name 
Kill running node; good for remote machines 

Ctrl+C   is usually easier 
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“Real World” – Nodes 
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demo_pick_and_place 

gripper_action_server 

ethercat_io_driver 

move_group 

joint_trajectory_action 

ur5_driver 

robot_state_pub 

camera_driver 

target_recognition_server 

rviz 



Exercise 1.3.2 

Exercise 1.3.2 
Create a Node: 

In myworkcell_core package 
called vision_node 
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vision_node 

myworkcell_support 

myworkcell_moveit_cfg ur5_driver 

myworkcell_node 

descartes_node 

fake_ar_pub 



ROS 

Day 1 Progression 

 Install ROS 

 Create Workspace 

 Add “resources” 

 Create Package 

 Create Node 
 Basic ROS Node 

 Interact with other nodes 
Messages 

Services 

 Run Node 
 rosrun 

 roslaunch 

Catkin 
Workspace 

My Package 

Node 

Resource  

Package 
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Topics and Messages 
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ROS Topics/Messages 
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msg … msg … msg 

Publisher Node 
 

Publishing msg data 
On channel /topic 

Publisher Node 
 

Advertises /topic is available 
with type msg 

Subscriber Node 
 

Subscribed to /topic 
with type msg 

ROS MASTER 

Subscriber Node 
 

Listening for /topic 
with type msg 

/topic 

Topics are for Streaming Data 



Topics vs. Messages 

• Topics are channels, Messages are data types 

– Different topics can use the same Message type 
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camera_1 

camera_2 

image_processing 

image … image … 

/camera_1/rgb 

image … image … 

/camera_2/rgb 



Practical Example 
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Calibration Node 
Subscribes to 
Images from: 

/Basler1/image_rect 
/Basler2/image_rect 
/Basler3/image_rect 

… 

Basler 
Camera Node 

sensor_msgs/Image 

/Basler1/image_rect 

Basler 
Camera Node 

sensor_msgs/Image 

/Basler2/image_rect 



Multiple Pub/Sub 

• Many nodes can pub/sub to same topic 

– comms are direct node-to-node 
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camera_1 

image_processing 

logger 

viewer 

/camera_1/rgb 

image … image … 



Topics : Details 

• Each Topic is a stream of Messages: 
– sent by publisher(s), received by subscriber(s) 

 

• Messages are asynchronous 
– publishers don’t know if anyone’s listening 

– messages may be dropped 

– subscribers are event-triggered (by incoming messages) 
 

• Typical Uses: 
– Sensor Readings: camera images, distance, I/O 

– Feedback: robot status/position 

– Open-Loop Commands: desired position 
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ROS Messages Types 

• Similar to C structures 

• Standard data primitives 
– Boolean: bool 

– Integer: int8,int16,int32,int64 

– Unsigned Integer: uint8,uint16,uint32,uint64 

– Floating Point: float32, float64 

– String: string 

• Fixed length arrays: bool[16] 

• Variable length arrays: int32[] 

• Other: Nest message types for more complex data 
structure 
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Message Description File 

• All Messages are defined by a .msg file 
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PathPosition.msg 
# A 2D position and orientation 

Header  header 

float64 x     # X coordinate 

float64 y     # Y coordinate 

float64 angle # Orientation 

data 
type 

field 
name 

comment 

other Msg type 



Custom ROS Messages 

• Custom message types 
are defined in msg 
subfolder of packages 

 

• Modify CMakeLists.txt 
to enable message 
generation. 

 

71 



CMakeLists.txt 

• Lines needed to generate custom msg types 

 
find_package(catkin REQUIRED COMPONENTS 

 message_generation) 

 

add_message_files(custom.msg ...) 

 

generate_messages(DEPENDENCIES ...) 

 

catkin_package(CATKIN_DEPENDS roscpp 

message_runtime) 
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package.xml 

<build_depend> message_generation </build_depend> 

<build_export_depend>message_runtime</build_export_depend> 

<run_depend>message_runtime</run_depend> 
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ROS Message Commands 

• rosmsg list 

– Show all ROS topics currently installed on the system 

• rosmsg package <package> 

– Show all ROS message types in package <package> 

• rosmsg show <package>/<message_type> 

– Show the structure of the given message type 
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ROS Topic Commands 

• rostopic list 

– List all topics currently subscribed to and/or publishing 

• rostopic type <topic> 

– Show the message type of the topic 

• rostopic info <topic> 
– Show topic message type, subscribers, publishers, etc. 

• rostopic echo <topic> 

– Echo messages published to the topic to the terminal 

• rostopic find <message_type> 

– Find topics of the given message type 
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“Real World” – Messages 

• Use rqt_msg to view: 
– sensor_msgs/JointState 

– trajectory_msgs/JointTrajectory 

– sensor_msgs/Image 

– rosgraph_msgs/Log 
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• Topic Publisher 
– Advertises available topic (Name, Data Type) 

– Populates message data 

– Periodically publishes new data 

 

Topics: Syntax 
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ros::NodeHandle nh; 

ros::Publisher pub = nh.advertise<PathPosition>(“/position”, 25); 

 

PathPosition msg; 

msg.x=xVal; msg.y=yVal; ... 

 

pub.publish(msg); 

ros::spinOnce(); 

Publisher Object Advertise Topic Message Type 

Background 
Process 

Topic Name Queue Size 

Message Data 

Publish Message 



• Topic Subscriber 

– Defines callback function 

– Listens for available topic (Name, Data Type) 

Topics: Syntax 

78 

void msg_callback(const PathPosition& msg) { 

  ROS_INFO_STREAM(“Received msg: “ << msg); 

} 

 

ros::Subscriber sub = nh.subscribe(“/topic”, 25, msg_callback); 

Callback Function Message Type Message Data  (IN) 

Server Object Service Name Callback Ref 



Qt 

Instead of text editor and building 
from terminal… 

Use an IDE! Wiki instructions here 
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https://ros-industrial.github.io/ros_qtc_plugin/


fake_ar_pub 

Exercise 1.4 

Exercise 1.4 
Subscribe to fake_ar_publisher  
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vision_node 

myworkcell_support 

myworkcell_moveit_cfg ur5_driver 

myworkcell_node 

descartes_node 

AR pose 


