
REST API Documentation
Documentation

Release 1.0

Indicia Team

Jun 11, 2018

Contents

1 REST API Introduction 3

2 Authentication 5

3 Unique record identifiers 7

4 API Versioning 9

5 Field formats 11

6 API resources 13

7 GET responses 17

i

ii

REST API Documentation Documentation, Release 1.0

Contents:

Contents 1

REST API Documentation Documentation, Release 1.0

2 Contents

CHAPTER 1

REST API Introduction

This document describes a RESTful API implemented in Indicia and BirdTrack allowing the sharing of records be-
tween systems. It can be implemented within other online recording systems wishing to participate in record sharing.

Todo: Appropriate reflection of BSBI and BTO as partners in this development.

BirdTrack and Indicia both collect records from a wide range of taxonomic groups. Although BirdTrack is in its
nature primarily a system for recording birds, it has been extended to allow recording of other taxonomic groups such
as Odonata, which are frequently included on lists produced by bird recorders. However, the expert verifiers who
are engaged with the BTO BirdTrack system do not have the expertise to verify these data and furthermore, these
records would be of great interest to recording schemes such as the British Dragonfly Society who are using Indicia
and iRecord. Similarly, iRecord is used by recorders to enter records from a wide range of taxonomic groups including
birds. However as many bird expert verifiers are already engaged with BirdTrack it would not make sense to encourage
them to use iRecord, especially given the fact that the majority of expert verifiers give their time voluntarily. Therefore
a mechanism for synchronising records from one online recording system to another and to synchronise verification
decisions back again is required.

Note: The RESTful API described here provides the part of the mechanism which exposes records to outside systems;
it does not define how those systems should go about pulling the records from another system’s API into their database.

In general, the master copy of any record remains in the source system, but other systems will be able to annotate
records in the context of verification messages and outcomes. At the minimum, implementations of the REST API
provide the following:

• A list of sets of records which are available to the other participating system (projects).

• A list of records entered onto the system since a given date for each project so that they can be synchronised
into other systems.

• A list of annotations of records as a result of expert verification. This allows verification outcomes to be exported
back to the source of the record. Annotations can be added to a record either by the system performing NBN
Record Cleaner style automated checks, by user comments, or by expert verifiers.

3

REST API Documentation Documentation, Release 1.0

Synchronisation requires that the API is implemented by all participating systems. The following steps describe an
example configuration for synchronisation between iRecord and BirdTrack:

• BirdTrack declares a project created called “BirdTrack Odonata” which filters BirdTrack records to only the
dragonfly and damselfy records.

• BirdTrack is configured to allow iRecord to access it’s API and to allow iRecord to access the BirdTrack Odonata
project.

• iRecord declares a project created called “iRecord Birds” which filters iRecord records to only the bird records.

• iRecord is configured to allow BirdTrack to access it’s API and to allow BirdTrack to access the iRecord Birds
project.

• A process is written as part of the BirdTrack system to run periodically (e.g. nightly). This process calls the
iRecord RESTful API to retrieve entered or changed records in the iRecord Birds project since the last time the
process was run. The records are imported into BirdTrack.

• A process is written as part of the iRecord system to run periodically (nightly?). This process calls the
BirdTrack RESTful API to retrieve entered or changed records in the BirdTrack Odonata project since
the last time the process was run. The records are imported into iRecord.

• The BirdTrack Odonata records are made available to expert verifiers on iRecord. Verification outcomes are
stored in the iRecord database as annotations in the occurrence_comments table.

• The iRecord Birds records is made available to expert verifiers on BirdTrack. Verification outcomes are stored
in the BirdTrack database as annotations.

• The periodic process on BirdTrack requests any verification responses for the BirdTrack Odonata project from
the annotations on iRecord and pulls them back into BirdTrack. BirdTrack then notifies recorders as it sees fit.

• The periodic process on iRecord will request any verification responses for the iRecord Birds project from the
annotations on BirdTrack and pulls them back into iRecord.

• iRecord then notifies recorders as it sees fit.

The API receives requests via URLs and returns JSON format responses. Although other formats (NBN exchange,
CSV, XML etc) could be considered, the existing NBN REST API also returns JSON so this will limit the number of
technologies users of these APIs need to learn.

4 Chapter 1. REST API Introduction

CHAPTER 2

Authentication

Several authentication mechanisms have been reviewed to see if they meet the needs of this API. In particular, the
mechanism must be:

• Secure

• RESTful (and therefore stateless)

• Easily understood and implemented.

Login/session based approaches are not stateless and therefore not truly RESTful, so authentication data must be
presented with every request.

In order to achieve the requirements a protocol based the standard method of using an HMAC (keyed-hash message
authentication code) has been implemented:

1. The requesting entity creates a HMAC-SHA1 value of the complete request url (including parameters). The
hash value uses the user password as the shared secret.

2. The requesting entity adds an Authorization header to the request containing the following string
USER:[user_id]:HMAC:[hmac] where:

• [user_id] is the requesting user’s agreed system identifier

• [hmac] is the HMAC-SHA1 value computed in (1)

3. The receiving entity recomputes the HMAC-SHA1 in the same manner as (1) and any authorisation failure is
returned as HTTP 401 Unauthorized.

This authentication should provide suitable protection against tampering and sufficient level of authentication provid-
ing the shared secret is sufficiently long.

The following example PHP snippet illustrates the code required for authentication against the REST API:

<?php
$sharedSecret = 'mypassword';
$userId = 'ME';
$url = 'http://www.example.com/index.php/services/rest/projects';
$session = curl_init();

(continues on next page)

5

REST API Documentation Documentation, Release 1.0

(continued from previous page)

// Set the POST options.
curl_setopt($session, CURLOPT_URL, $url);
curl_setopt($session, CURLOPT_HEADER, FALSE);
curl_setopt($session, CURLOPT_RETURNTRANSFER, TRUE);
// Create the authentication HMAC.
$hmac = hash_hmac("sha1", $url, $sharedSecret, $raw_output = FALSE);
curl_setopt($session,

CURLOPT_HTTPHEADER,
array("Authorization: USER:$userId:HMAC:$hmac")

);
// Do the request.
$response = curl_exec($session);
$httpCode = curl_getinfo($session, CURLINFO_HTTP_CODE);
$curlErrno = curl_errno($session);
// Check for an error, or check if the http response was not OK.
if ($curlErrno || $httpCode != 200) {
echo "Error occurred accessing $url
";
echo "Rest API error $httpCode
";
if ($curlErrno) {

echo "Error number: $curlErrno
";
echo 'Error message: ' . curl_error($session) . '
';

}
echo 'Response: <pre>' . htmlspecialchars($response) . '
';
throw new exception('Request to server failed');

}
$data = json_decode($response, TRUE);
echo json_encode($data);
?>

6 Chapter 2. Authentication

CHAPTER 3

Unique record identifiers

Each participating system will be given a unique user ID - a code that unqiuely identifies the system to other partic-
ipants. The system identifiers can be mutually agreed since a relatively small number of participating systems will
exist, for example “BRC” or “BTO” would be suitable candidates.

Presumably each participating system will use a standard relational database model with a primary key for all database
tables. As this primary key is likely to be a locally generated sequential integer, the IDs will not be unique across all
databases.

Therefore each participating system will need to prefix it’s user_id to its record IDs to make a globally unique ID, so
record ID 100 on iRecord might be expressed as BRC100 for example. Limiting these to 3 alphabetical characters
makes parsing of IDs easier. The resultant record identifiers only need to be unique within each resource type and not
globally across all resource types.

7

REST API Documentation Documentation, Release 1.0

8 Chapter 3. Unique record identifiers

CHAPTER 4

API Versioning

The default version for all calls is the latest available API version on that system. Requests for a specific API version
can be made by inserting the API version name into the URL segments, placing it before the resource name. For
example:

http://example.com/rest/v1.0/projects

is equivalent to:

http://example.com/rest/projects

when the API is at version 1.0.

The API should normally be used without specifying the version and the option to use the version is only rec-
ommended in specific circumstances, e.g. during development. This approach ensures that resource URIs are
effectively permalinks that will not change over time. For more information on the reasoning here, see http:
//stackoverflow.com/questions/389169/best-practices-for-api-versioning.

9

http://stackoverflow.com/questions/389169/best-practices-for-api-versioning
http://stackoverflow.com/questions/389169/best-practices-for-api-versioning

REST API Documentation Documentation, Release 1.0

10 Chapter 4. API Versioning

CHAPTER 5

Field formats

Dates in requests and responses are formatted to ISO 8601. The following possibilities are accepted:

Format Notes
Date yyyy-mm-dd, e.g. 2014-12-25
Date and time

• yyyy-mm-ddThh:mm:ss, e.g. 2014-12-
25T16:25:27 (without timestamp)

• yyyy-mm-ddThh mm:ss+hh:mm, e.g. 2014-
12-25T16:25:27+02:00 (with timestamp)

11

REST API Documentation Documentation, Release 1.0

12 Chapter 5. Field formats

CHAPTER 6

API resources

The RESTful API defines a set of resources available at the following URLs and request types. Since it is effectively
a uni-directional read only specification, we are using GET for all requests. Resource names are lower case and use
hyphens as a word separator, to meet with current best-practice for URI naming.

Because a server might not want to expose all its records to a client, the API includes the notion of projects that a
client can access. A project is effectively a filter on the underlying records; the mechanism of how this filter may be
defined internally is up to each system. For example, in Indicia a project would use the reporting saved filters system
to allow a flexible definition of the list of records available.

6.1 Resource object definitions

The API returns resource objects (in JSON format), either individually, or in lists depending on the API call made.
The following list of object types are defined for the API.

6.1.1 project

The metadata describing a set of records on the server which are being made available to a client. A project might, for
example, be the bird records from iRecord. For a simplicity of implementation, each project is unique to the calling
client (so clients cannot call projects set up for other clients and there is no need for a many-many relationship).

Projects contain the following fields (fields marked with a * are mandatory):

• id* - the unique identifier of the project. This must be provided with requests for taxon-observations and anno-
tations from within this project.

• href* - provides a link back to the resource API endpoint describing the individual project.

• title* - project title.

• description* - a description of the project.

An example project object is:

13

REST API Documentation Documentation, Release 1.0

{
"id":"BTO12",
"href":"http://www.bto.org/rest/projects/BTO12",
"title":"BTO Odonata",
"description":"Odonata records for verification on iRecord"

}

6.1.2 taxon-observation

The attributes of a single wildlife record.

The API is based on but not exactly the same as the NBN data exchange format field specifications to define taxon
observations, as described in the guide to the NBN data exchange format Version 2.7, September 2014. Field names
are always lowercased. The RecordKey field is replaced by an id field to keep taxon-observations consistent with
other entities exposed by the API. In addition to the fields defined by the NBN exchange format, a lasteditdate field is
required.

Todo: Consider case issues here - should fields be lowercased? T/F values are also inconsistently cased throughout
the spec.

Taxon observations contain the following properties. Properties marked with a * are mandatory though check the
property description for rules relating to the specific field.

• id* - The unique identifier of the observation

• href* - link to the observation’s URI. This can be omitted if the API implementation does not support access to
a single observation by ID.

• srchref - link to the URI of the object in its originating location, if different to href.

• datasetName - name of the dataset this record was sourced from.

• taxonVersionKey* - the Taxon Version Key from the UKSI species database.

• taxonName* - the taxon name used by the recorder.

• zeroAbundance - set to T to indicate an absence record or F otherwise. The default if not provided is F.

• count - integer value representing the count.

• delete - set to T to indicate this record has been deleted.

• sensitive - set to T to indicate a sensitive record or F otherwise. The default if not provided is F.

• startDate* - the start of the range of dates that the record covers, which will be the same as the enddate field
when a record occurred on a single date.

• endDate* - the end of the range of dates that the record covers, which will be the same as the startdate field
when a record occurred on a single date.

• dateType* - see the NBN Gateway Exchange format (http://www.nbn.org.uk/Share-Data/Providing-Data/
NBN-Data-Exchange-format.aspx) for a definition of how date types are defined.

• siteKey - a unique ID for the site if available.

• siteName - the name of the site provided with the record.

• gridReference* - the grid reference notation for the record. Mandatory unless east and north are provided.
British National Grid or Irish Grid notation depending on projection.

14 Chapter 6. API resources

http://www.nbn.org.uk/Share-Data/Providing-Data/NBN-Data-Exchange-format.aspx
http://www.nbn.org.uk/Share-Data/Providing-Data/NBN-Data-Exchange-format.aspx

REST API Documentation Documentation, Release 1.0

• east* - position of record in east/west direction. Mandatory unless gridreference is provided. Either a decimal
longitude or easting.

• north* - position of record in north/south direction. Mandatory unless gridreference is provided. Either a
decimal latitude or northing.

• projection* - indiciates the projection used for gridreference, east and north fields. Can be:

– OSGB

– OSI

– WGS84

– OSGB36

• precision* - the spatial precision of the georeference in metres. Typically the size of the grid square.

• recorder* - the recorder name(s).

• determiner - the name of the person providing the initial identification.

• lastEditDate - returns the date and time time of last edit.

An example taxon-observation object is:

{
"id":"BRC100",
"href":"http://example.com/rest/taxon-observations/BRC100",
"srchref":"http://source-server-at-brc.com/rest/taxon-observations/BRC100",
"datasetName":"iRecord::Mammals::Dorset Mammal Group",
"taxonVersionKey":"NHMSYS0000530482",
"taxonName":"Red Kite",
"startDate":"2014-07-12",
"endDate":"2014-07-12",
"dateType":"D",
"gridReference":"SU956436",
"projection":"OSGB",
"precision":"8",
"recorder":"Joe Brown",
"lastEditDate":"2014-09-12T13:24:11"

}

6.1.3 annotation

The definition of an annotation against a taxon-observation. An annotation is an extra piece of information added after
the initial record creation event and may describe a user comment, verification event or redetermination of the record.

Annotations contain the following fields (fields marked with a * are mandatory):

• id* - The unique identifier of the annotation

• href* - link to the annotation’s URI. This can be omitted if the API implementation does not support access to a
single annotation by ID.

• taxonObservation* - contains a child-object, itself containing the id and href for the taxon observation being
annotated

• taxonVersionKey* - the unique identifier of the taxon concept that this annotation was made against. This might
differ from the original or current taxon concept associated with the record. This allows annotations to maintain
an audit trail of the changing opinions of a record’s identification.

• comment - free text

6.1. Resource object definitions 15

REST API Documentation Documentation, Release 1.0

• statusCode1 - either A (accepted), U (unconfirmed) or N (not accepted) to indicate a status if this annotation is
setting the verification state of the record.

• statusCode2 - provides additional detail regarding the status code. For accepted records, can be 1 (correct) or
2 (considered correct). For unconfirmed records, can be 3 (plausible) or 4 (not reviewed). For not accepted
records, can be 5 (unable to verify) or 6 (incorrect).

• emailAddress - optionally contains the email address of the person creating the annotation. It is recommended
that when a user takes an action that results in an annotation (such as commenting on or verifying a record),
then the system should give the user an option to opt in to providing their email address. If provided, then
on other systems receiving the annotation, the email address must only be made available to the recipient of
the notification. This allows an external communication thread to start to discuss the record. Note that email
addresses should not be provided if the user creating the annotation has not opted in.

• question - t or f to indicate true or false. If true, then this annotation contains a question that needs answering.

• authorName* - name of the comment author.

• dateTime* - ISO 8601 date format for the timestamp of the annotation.

• lastEditDate - returns the date and time time of last edit.

An example annotation object is:

{
"id":"BRC452",
"href":"http://indicia.org.uk/rest/annotations/BRC452",
"taxonObservation":{
"id":"BRC251",
"href":"http://indicia.org.uk/rest/taxon-observations/BRC251"

},
"taxonVersionKey":"NBNSYS0012345678",
"comment":"Some text commenting on the record",
"statusCode1":"A",
"statusCode2":"1",
"emailAddress":"example@example.com",
"question":"f",
"authorName":"John Smith",
"dateTime":"2014-02-01T09:00:22+05:00",
"lastEditDate":"2014-02-01T09:00:22+05:00"

}

16 Chapter 6. API resources

CHAPTER 7

GET responses

Responses to HTTP GET requests are either a single object (one of _project_, _taxon-observation_ or _annotation_
as described above) or a list/array of objects. When returning a list of objects, the each individual response includes
a single page of objects and it may be necessary to make multiple calls to page through the dataset. Therefore the
structure also includes metadata to simple support pagination by providing links to the current, next and previous
page. The following template is used:

{
“data”:[
{ project, taxon-observation or annotation object },
{ project, taxon-observation or annotation object },
{ project, taxon-observation or annotation object },
etc

],
“paging”:{
“self”:”uri for current page in set”,
“previous”:”uri for previous page in set”,
“next”:”uri for next page in set”,

}
}

The next and previous page links are only provided when there is a next or previous page available in the dataset.

7.1 Resource API end-points

The following list of end-points are exposed by an implementation of the REST API:

7.1.1 GET /projects

Retrieves a list of projects available to the client.

The server side needs a mechanism for associating records to “projects” and for associating projects to the accessing
client’s authorisation. So, iRecord might be able to access BirdTrack Odonata records but not bird records, therefore

17

REST API Documentation Documentation, Release 1.0

BirdTrack will need to be able to identify the Odonata records with a unique project ID and to recognise that iRecord
can access this project.

Note: In iRecord, it is likely that projects will be managed using the existing filters system, giving great flexibility
over the records exposed. This is a detail of implementation which does not affect the transfer specification.

Request fields

• page_size - number of records to return in the page.

• page - index of the page to return, default 1.

Response status codes

200 - Success 401 - unauthorized

Response

A successful request receives a list of projects in JSON format, using the GET response template and the project
resource format.

7.1.2 GET /taxon-observations

Retrieve a list of records as a JSON array.

By default the request returns 1 day of records if no end date is specified.

If there are no records, then an empty array should be returned.

Implementations of this API might choose to reject requests for date ranges wider than 1 week, but this restriction can
be omitted where the API is being put to wider use.

Deleted records can be included in batches of updates. A deleted record will at the minimum include the unique
identifier for the record plus a flag “Deleted=t”.

Request fields

Fields marked with a * are mandatory so must be included in the request.

• proj_id* - ID of the project whose records are being requested.

• edited_date_from* - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to records created or
updated on or after this date.

• edited_date_to - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to records created or updated
on or before this date.

• page_size - number of records to return in the page.

• page - index of the page to return, default 1.

Note that this date format confirms to ISO 8601.

18 Chapter 7. GET responses

REST API Documentation Documentation, Release 1.0

Response status codes

• 200 - Success

• 400 - Bad request (Invalid parameters)

• 401 - unauthorized

Response

A successful request receives a list of taxon-observations in JSON format, using the GET response template and the
taxon-observation resource format.

Note: The server is responsible for ensuring that the default sort order of any taxon observations returned is stable and
not affected by edits happening whilst the client pages through the dataset. For example, a sort by creation timestamp
or record ID (if sequentially generated) would be appropriate.

7.1.3 GET /annotations

Retrieve a list of annotations as a JSON array.

Use query parameters in the URL to filter – e.g. edited_date_from, edited_date_to to define the date range for edits to
include. If there are no results then an empty array is returned.

Request fields

Fields marked with a * are mandatory.

• proj_id* - the ID of the project whose annotations are being requested.

• edited_date_from* - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to records created or
updated on or after this date.

• edited_date_to - format yyyy-mm-dd or ISO 8601 yyyy-mm-ddThh:mm:ss. Limits to records created or updated
on or before this date.

• page_size - number of records to return in the page.

• page - index of the page to return, default 1.

Note that the 2 date filter fields relate to the edit date of the annotation record itself and are independent of the taxon-
observation’s edit date.

Response status codes

• 200 - Success

• 400 - Bad request (Invalid parameters)

• 401 - unauthorized

7.1. Resource API end-points 19

REST API Documentation Documentation, Release 1.0

Response

A successful request receives a list of annotations in JSON format, using the GET response template and the annotation
resource format.

20 Chapter 7. GET responses

	REST API Introduction
	Authentication
	Unique record identifiers
	API Versioning
	Field formats
	API resources
	GET responses

