
include Documentation
Release 0.2.2

Max Fischer

Aug 02, 2018





Documentation Topics Overview:

1 include package 3

2 Automatic Bootstrapping 9

3 include 11

4 Indices and tables 13

Python Module Index 15

i



ii



include Documentation, Release 0.2.2

Documentation Topics Overview: 1

https://travis-ci.org/maxfischer2781/include
https://landscape.io/github/maxfischer2781/include/master
https://codecov.io/gh/maxfischer2781/include


include Documentation, Release 0.2.2

2 Documentation Topics Overview:



CHAPTER 1

include package

include.disable(identifier, children_only=False)
Disable an include type

Parameters

• identifier – module or name of the include type

• children_only – disable the include type only for child processes, not the current pro-
cess

The identifier can be specified in multiple ways to disable an include type. See disable() for details.

include.enable(identifier, exclude_children=False)
Enable a previously disabled include type

Parameters

• identifier – module or name of the include type

• exclude_children – disable the include type only for child processes, not the current
process

The identifier can be specified in multiple ways to disable an include type. See disable() for details.

include.path(file_path)
Include module code from a file identified by its path

Parameters file_path (str) – path to a file containing module code

Returns the imported module

Return type module

Comparable to execfile, but respects the rules and constraints of modules. If invoked again with the same
file_path, the same module is returned.

import include
my_config = include.path('/etc/sysconfig/app_conf.py')

3

https://docs.python.org/3/library/stdtypes.html#str


include Documentation, Release 0.2.2

include.source(source_code)
Include module code directly from a string

Parameters source_code (str) – source code of the module

Returns the imported module

Return type module

Comparable to exec in a separate globals namespace, but respects the rules and constraints of modules. If
invoked again with the same source_code, the same module is returned.

>>> import include
>>> my_module = include.source(
>>> """
... def foo():
... return {constant}
... """.format(constant=3))
>>> my_module.foo() == 3
True

1.1 Subpackages

1.1.1 include.base package

Base module for import hook modules

Each include type is backed by (at least) one import hook module. This must implement the install() to explicitly
enable the include type. Importing the import hook module should be free of side-effects, allowing modification before
installation.

Notably, imported modules should live in a separate packagae than the import hook module. This separate package,
preferably include.mount, is free to bootstrap the import hook module as needed.

include.base.IMPORT_PATH = 'include.mount.base'
package name in which to include imported modules

include.base.install()
Enable this type of include

Submodules

include.base.import_hook module

class include.base.import_hook.BaseIncludeLoader(module_prefix)
Bases: object

Import hook to load Python modules from an arbitrary location

Parameters module_prefix (str) – prefix for modules to import

Base class for import hooks to non-standard code sources. Implements the general structure for encoded sources:
a module source translates to an artificial module path of the form <module_prefix>.<encoded_name>.
The module_prefix identifies the code source type (and import hook) while the encoded_name contains
all required information to retrieve the code.

4 Chapter 1. include package

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str


include Documentation, Release 0.2.2

For example, a module_prefix of include.type.files could identify a source file type, and an
encoded_name of SLASHtmpSLASHfooDOTpy point to the path /tmp/foo.py. The resulting module
would appear as include.type.files.SLASHtmpSLASHfooDOTpy.

Note that module_prefix must point to a valid package, not a module. It will be actually imported by the
regular import machinery, and can be used to bootstrap hooks.

The encoded_name is a free form field. The base class provides means to escape invalid and reserved symbols
(/ and .), but subclasses are free to use them if it is suitable for them. Hooks should use encoded_name to
store a URI (or similar) to retrieve source code. As per Python rules, including a dot (.) in the encoded_name
requires the hook to import each portion separately.

find_module(fullname, path=None)
Find the appropriate loader for module name

Parameters

• fullname (str) – __name__ of the module to import

• path (str or None) – __path__ of the parent package already imported

load_module(name)
Load and return a module

Always returns the corresponding module. If the module is already loaded, the existing module is returned.

module2uri(module_name)
Convert an encoded module name to an unencoded source uri

module_prefix

uri2module(uri)
Convert an unencoded source uri to an encoded module name

1.1.2 include.encoded package

Load modules from encoded source code

This include type encodes raw source code as a module name. The resulting module is self-contained: it can be stored,
loaded and transferred without the original source code. Only the dependencies of the module (including include)
must be satisfied.

include.encoded.install()

Submodules

include.encoded.import_hook module

class include.encoded.import_hook.EncodedModuleLoader(module_prefix)
Bases: include.base.import_hook.BaseIncludeLoader

Load python modules from their encoded content

This import hook allows storing and using module content as a compressed data blob.

load_module(name)
Load and return a module

Always returns the corresponding module. If the module is already loaded, the existing module is returned.

1.1. Subpackages 5

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None


include Documentation, Release 0.2.2

module2uri(module_name)
Convert an encoded module name to an unencoded source uri

uri2module(uri)
Convert an unencoded source uri to an encoded module name

1.1.3 include.files package

Load modules from files

include.files.install()

Submodules

include.files.import_hook module

class include.files.import_hook.FilePathLoader(module_prefix)
Bases: include.base.import_hook.BaseIncludeLoader

Load python file from their path

This import hook allows using encoded paths as module names to load modules directly from their file.

load_module(name)
Load and return a module

Always returns the corresponding module. If the module is already loaded, the existing module is returned.

1.1.4 include.mount package

class include.mount.MountLoader(mount_prefix, module_prefix)
Bases: object

find_module(name, path=None)

is_module(name)
Test that name is a module name

is_mount(name)
Test that name is a mount name

load_module(name)
Load and return a module

mount2name(mount)
Convert a mount name to a module name

name2mount(name)
Convert a module name to a mount name

6 Chapter 1. include package

https://docs.python.org/3/library/functions.html#object


include Documentation, Release 0.2.2

1.2 Submodules

1.2.1 include.inhibit module

include.inhibit.DISABLED_TYPES = <include.inhibit.DisabledIncludeTypes for '', children ''>
Default interface to disabled types, see DisabledIncludeTypes

exception include.inhibit.DisabledIncludeError
Bases: exceptions.ImportError

An import operation failed due to its include type being disabled

class include.inhibit.DisabledIncludeTypes
Bases: object

Interface for disabling include types

Meta-container to control disabled include types. The methods disable() and enable() allow to control
which include types can be used.

Disabled types cannot be used to import code, be it explicitly or implicitly via bootstrapping. Once a type is
disabled, attempts to import code with it raise DisabledIncludeError.

This is provided as a two-level filter: each type can be disabled either for both the current and any child process,
or only for child processes. It is not possible to enable an include type for child processes but not the current
process. Note that child processes inherit disabled types only on startup.

Note This is a singleton, as it controls interpreter state.

disable(identifier, children_only=False)
Disable an include type

Parameters

• identifier – module or name of the include type

• children_only – disable the include type only for child processes, not the current
process

The identifier can be specified in multiple ways to disable an include type:

module (include.files or include.mount.files) The base module implementing the include
type. These modules have a module.IMPORT_PATH attribute.

implementation path ("include.files") Import path of the module implementing the include type.

mount path ("include.mount.files") Mount path of the module implementing the include type.

short path ("files") Relative path of the module implementing the include type.

enable(identifier, exclude_children=False)
Enable a previously disabled include type

Parameters

• identifier – module or name of the include type

• exclude_children – disable the include type only for child processes, not the current
process

The identifier can be specified in multiple ways to disable an include type. See disable() for
details.

1.2. Submodules 7

https://docs.python.org/3/library/functions.html#object


include Documentation, Release 0.2.2

environment_key = 'PY_INCLUDE_DISABLE'
Key of the environment storing include types disabled for child processes

class include.inhibit.DisabledTypeLoader(module_prefix)
Bases: include.base.import_hook.BaseIncludeLoader

load_module(name)
Load and return a module

If the module is already loaded, the existing module is returned. Otherwise, raises
DisabledIncludeError.

uri2module(uri)
Convert an unencoded source uri to an encoded module name

Always raises DisabledIncludeError.

8 Chapter 1. include package



CHAPTER 2

Automatic Bootstrapping

Modules imported by include have an automatic bootstrapping mechanism: when imported in another process,
the required import hook is automatically loaded. This allows un/pickling and transferring objects, without explicitly
preparing include in the receiver. The only restriction is that include must be importable before any module code
is run.

2.1 Disabling Bootstrap Hooks

At times, bootstrapping arbitrary include types is not desired. For example, a public web service may desire to run
existing, local configuration code files during startup only. As a simple remedy, individual include types can be
disabled.

To disable include types, both a code and environment interface are available:

Environment Variable PY_INCLUDE_DISABLE A list of include types to disable. Types are indicated by their
module name, such as files for the include.files type. Multiple types may be delimited by commas,
with optional whitespace. For example, the list files, encoded disables imports from files and encoded
source.

Code Interface include.disable() and include.enable() Functions to disable or enable individual in-
clude types. Types may be indicated by a variety of identifiers. See disable() for details.

2.2 Bootstrapping Mechanism

Each include corresponds to an include type implementation and namespace. The former provides the actual import
machinery, such as hooks and name translation. The later is a namespace module, into which all modules imported by
include are inserted.

For each include type, a separate namespace is used. The namespace itself ensures that its include type is installed.
Thus, re-importing a module in a separate process first loads its namespace and thus its import machinery.

9



include Documentation, Release 0.2.2

For example, a file based import is implemented in include.files, and the default namespace is include.
mount. When importing a file foo, it is inserted as include.mount.files.foo. Re-importing include.
mount.files.foo first imports include.mount.files, which in turn installs include.files.

10 Chapter 2. Automatic Bootstrapping



CHAPTER 3

include

The include library is built to use code from arbitrary sources in your application. In contrast to eval, exec and
other code execution, include creates fully featured modules. This makes code viable for pickling, multiprocessing,
IPC and more.

Using include is straight forward - you only need the top level functions of the module:

import include
my_config = include.path('/etc/sysconfig/app_conf.py')

All ugly bits are handled by include - once a module is imported, it works as normal. Even in other processes, the
import machinery is bootstrapped without manual intervention.

For all supported import methods, check out the public inteface of the include module.

11



include Documentation, Release 0.2.2

12 Chapter 3. include



CHAPTER 4

Indices and tables

• genindex

• modindex

• search

Documentation built from include 0.2.2 at Aug 02, 2018.

13



include Documentation, Release 0.2.2

14 Chapter 4. Indices and tables



Python Module Index

i
include, 3
include.base, 4
include.base.import_hook, 4
include.encoded, 5
include.encoded.import_hook, 5
include.files, 6
include.files.import_hook, 6
include.inhibit, 7
include.mount, 6

15



include Documentation, Release 0.2.2

16 Python Module Index



Index

B
BaseIncludeLoader (class in include.base.import_hook),

4

D
disable() (in module include), 3
disable() (include.inhibit.DisabledIncludeTypes method),

7
DISABLED_TYPES (in module include.inhibit), 7
DisabledIncludeError, 7
DisabledIncludeTypes (class in include.inhibit), 7
DisabledTypeLoader (class in include.inhibit), 8

E
enable() (in module include), 3
enable() (include.inhibit.DisabledIncludeTypes method),

7
EncodedModuleLoader (class in in-

clude.encoded.import_hook), 5
environment variable

PY_INCLUDE_DISABLE, 9
environment_key (include.inhibit.DisabledIncludeTypes

attribute), 7

F
FilePathLoader (class in include.files.import_hook), 6
find_module() (include.base.import_hook.BaseIncludeLoader

method), 5
find_module() (include.mount.MountLoader method), 6

I
IMPORT_PATH (in module include.base), 4
include (module), 3
include.base (module), 4
include.base.import_hook (module), 4
include.encoded (module), 5
include.encoded.import_hook (module), 5
include.files (module), 6
include.files.import_hook (module), 6

include.inhibit (module), 7
include.mount (module), 6
install() (in module include.base), 4
install() (in module include.encoded), 5
install() (in module include.files), 6
is_module() (include.mount.MountLoader method), 6
is_mount() (include.mount.MountLoader method), 6

L
load_module() (include.base.import_hook.BaseIncludeLoader

method), 5
load_module() (include.encoded.import_hook.EncodedModuleLoader

method), 5
load_module() (include.files.import_hook.FilePathLoader

method), 6
load_module() (include.inhibit.DisabledTypeLoader

method), 8
load_module() (include.mount.MountLoader method), 6

M
module2uri() (include.base.import_hook.BaseIncludeLoader

method), 5
module2uri() (include.encoded.import_hook.EncodedModuleLoader

method), 5
module_prefix (include.base.import_hook.BaseIncludeLoader

attribute), 5
mount2name() (include.mount.MountLoader method), 6
MountLoader (class in include.mount), 6

N
name2mount() (include.mount.MountLoader method), 6

P
path() (in module include), 3
PY_INCLUDE_DISABLE, 9

S
source() (in module include), 3

17



include Documentation, Release 0.2.2

U
uri2module() (include.base.import_hook.BaseIncludeLoader

method), 5
uri2module() (include.encoded.import_hook.EncodedModuleLoader

method), 6
uri2module() (include.inhibit.DisabledTypeLoader

method), 8

18 Index


	include package
	Automatic Bootstrapping
	include
	Indices and tables
	Python Module Index

