
Incubed Documentation
Release 1.2

Simon Jentzsch

Jun 24, 2019

Concept:

1 Concept 1
1.1 Situation . 1
1.2 Low-Performance Hardware . 2
1.3 Scalability . 2
1.4 Use Cases . 2
1.5 Architecture . 5
1.6 Scaling . 13

2 Getting Started 15
2.1 TypeScript/JavaScript . 15
2.2 As Docker-Container . 16
2.3 C - Implementation . 17
2.4 Java . 18
2.5 Commandline Tool . 18
2.6 Supported Chains . 19
2.7 Registering a own in3-node . 20

3 Technical Background 23
3.1 Ethereum Verification . 23

4 Verifying Blockheaders 31
4.1 Proof of Work . 32
4.2 Proof of Authority . 32

5 Incentivization 33
5.1 Decentralizing Access . 33
5.2 Incentivization for nodes . 33
5.3 Connecting Clients and Server . 34
5.4 Ensuring Client Access . 34
5.5 Deposit . 37
5.6 LoadBalancing . 38
5.7 Free Access . 38
5.8 Convict . 38
5.9 Handling conflicts . 39

6 Decentralizing central services 41
6.1 Incentivication . 43

i

6.2 Verification . 43

7 Threat Model for Incubed 45
7.1 Registry Issues . 45
7.2 Network-Attacks . 47
7.3 Privacy . 48
7.4 Risc Calculation . 49

8 Roadmap 51
8.1 V1.2 Stable - Q3 2019 . 51
8.2 V1.2 Incentivisation - Q3 2019 . 52
8.3 V1.3 eWasm - Q1 2020 . 53
8.4 V1.4 Substrate - Q3 2020 . 53
8.5 V1.5 Services - Q1 2021 . 53

9 IN3-Specification 55
9.1 Incubed Requests . 55
9.2 Incubed Responses . 56
9.3 ChainId . 58
9.4 Registry . 58
9.5 Binary Format . 59
9.6 Communication . 60
9.7 Proofs . 60
9.8 RPC-Methods Ethereum . 60
9.9 PoA Validations . 61

10 API Reference TS 63
10.1 Type AccountProof . 67
10.2 Type AuraValidatoryProof . 67
10.3 Type BlockData . 67
10.4 Type ChainSpec . 68
10.5 Type Client . 68
10.6 Type IN3Config . 69
10.7 Type IN3NodeConfig . 70
10.8 Type IN3NodeWeight . 71
10.9 Type IN3RPCConfig . 71
10.10 Type IN3RPCHandlerConfig . 72
10.11 Type IN3RPCRequestConfig . 73
10.12 Type IN3ResponseConfig . 73
10.13 Type LogData . 74
10.14 Type LogProof . 74
10.15 Type Proof . 74
10.16 Type RPCRequest . 75
10.17 Type RPCResponse . 75
10.18 Type ReceiptData . 75
10.19 Type ServerList . 76
10.20 Type Signature . 76
10.21 Type TransactionData . 76
10.22 Type Transport . 77
10.23 Type AxiosTransport . 77
10.24 Type API . 78
10.25 Type AuthSpec . 79
10.26 Type Block . 80
10.27 Type ChainContext . 80
10.28 Type AccountData . 81

ii

10.29 Type Transaction . 81
10.30 Type Receipt . 81
10.31 Type Account . 82
10.32 Type Signer . 82
10.33 Type BlockType . 82
10.34 Type Address . 82
10.35 Type ABI . 82
10.36 Type Log . 83
10.37 Type BN . 83
10.38 Type Hash . 83
10.39 Type Quantity . 83
10.40 Type LogFilter . 83
10.41 Type TransactionDetail . 84
10.42 Type TransactionReceipt . 84
10.43 Type Data . 85
10.44 Type TxRequest . 85
10.45 Type Hex . 86
10.46 Type Module . 86
10.47 Type ABIField . 86

11 API Reference C 87
11.1 Overview . 87
11.2 Module core . 88
11.3 Module eth_api . 139
11.4 Module eth_basic . 146
11.5 Module eth_full . 152
11.6 Module eth_nano . 175
11.7 Module libin3 . 185
11.8 Module transport_curl . 186
11.9 Module usn_api . 187

Index 193

iii

iv

CHAPTER 1

Concept

To enable smart devices of the internet of things to be connected to the Ethereum blockchain, an Ethereum client needs
to run on this hardware. The same applies to other blockchains, whether based on Ethereum or not. While current
notebooks or desktop computers with a broadband Internet connection are able to run a full node without any problems,
smaller devices such as tablets and smartphones with less powerful hardware or more restricted Internet connection
are capable of running a light node. However, many IoT devices are severely limited in terms of computing capacity,
connectivity and often also power supply. Connecting an IoT device to a remote node enables even low-performance
devices to be connected to blockchain. By using distinct remote nodes, the advantages of a decentralized network are
underminded without being forced to trust single players or there is a risk of malfunction or attack because there is a
single point of failure.

With the presented Trustless Incentivized Remote Node Network, in short INCUBED, it will be possible to establish a
decentralized and secure network of remote nodes, which enables trustworthy and fast access to blockchain for a large
number of low-performance IoT devices.

1.1 Situation

The number of IoT devices is increasing rapidly. This opens up many new possibilities for equipping these devices
with payment or sharing functionality. While desktop computers can run an Ethereum full client without any problems,
small devices are limited in terms of computing power, available memory, Internet connectivity and bandwidth. The
development of Ethereum light clients has significantly contributed to the connection of smaller devices with the
blockchain. Devices like smartphones or computers like Raspberry PI or Samsung Artik 5/7/10 are able to run light
clients. However, the requirements regarding the mentioned resources and the available power supply are not met by
a large number of IoT devices.

One option is to run the client on an external server, which is then used by the device as a remote client. However,
central advantages of the blockchain technology - decentralization rather than having to trust individual players - are
lost this way. There is also a risk that the service will fail due to the failure of individual nodes.

A possible solution for this may be a decentralized network of remote-nodes (netservice nodes) combined with a
protocol to secure access.

1

Incubed Documentation, Release 1.2

1.2 Low-Performance Hardware

There are several classes of IoT devices, for which running a full or light client is somehow problematic and a INNN
can be a real benefit or even a job enabler:

• Devices with insufficient calculation power or memory space

Today, the majority of IoT devices have compute units not capable of running a full client or a light client. To
run such a client, the computer needs to be able to synchronize the blockchain and calculate the state (or at least
the needed part thereof).

• Devices with insufficient power supply

If devices are mobile (for instance a bike lock or an environment sensor) and rely on a battery for power supply,
running a full or a light light, which needs to be constantly synchronized, is not possible.

• Devices which are not permanently connected to the Internet

Devices which are not permantently connected to the Internet, also have trouble running a full or a light client
as these clients need to be in sync before they can be used.

1.3 Scalability

One of the most important topics discussed regarding blockchain technology is scalability. Of course, a working
INCUBED does not solve the scaling problems that more transactions can be executed per second. However, it does
contribute to providing access to the Ethereum network for devices that could not be integrated into existing clients
(full client, light client) due to their lack of performance or availability of a continuous Internet connection with
sufficient bandwidth.

1.4 Use Cases

With the following use cases, some realistic scenarios should be designed in which the use of INCUBED will be at
least useful. These use cases are intended as real-life relevant examples only to envision the potential of this technology
but are by no means a somehow complete list of possible applications.

1.4.1 Publicly Accessible Environment Sensor

Description

An environment sensor, which measures some air quality characteristics, is installed in the city of Stuttgart. All
measuring data is stored locally and can be accessed via the Internet by paying a small fee. Also a hash of the current
data set is published to the public Ethereum blockchain to validate the integrity of the data.

The computational power of the control unit is restricted to collecting the measuring data from the sensors and storing
these data to the local storage. It is able to encrypt or cryptographically sign messages. As this sensor is one of thou-
sands throughout Europe, the energy consumption must be as low as possible. A special low-performance hardware is
installed. An Internet connection is provided, but the available bandwidth is not sufficient to synchrone a blockchain
client.

2 Chapter 1. Concept

Incubed Documentation, Release 1.2

Blockchain Integration

The connection to the blockchain is only needed if someone requests the data and sends the validation hash code to
the smart contract.

The installed hardware (available computational power) and the requirement to minimize energy consumption disable
the installation and operation of a light client without installing addition hardware (like a Samsung Artik 7) as PBCD
(Physical Blockchain Connection Device/Ethereum computer). Also, the available Internet bandwidth would need to
be enhanced to be able to synchronize properly with the blockchain.

Using a netservice-client connected to the INCUBED can be realized using the existing hardware and Internet connec-
tion. No additional hardware or Internet bandwidth is needed. The netservice-client connects to the INCUBED only
to send signed messages, to trigger transactions or to request information from the blockchain.

1.4.2 Smart Bike Lock

Description

An smart bike lock which enables sharing is installed on an e-bike. It is able to connect to the Internet to check if
renting is allowed and the current user is authorized to open the lock.

The computational power of the control unit is restricted to the control of the lock. Because the energy is provided
by the e-bike’s battery, the controller runs only when needed in order to save energy. For this reason, it is also not
possible to maintain a permanent Internet connection.

Blockchain Integration

Running a light-client on such a platform would consume far too much energy, but even synchronizing the client only
when needed would take too much time and require an Internet connection with the corresponding bandwidth, which
is not always the case. With a netservice-client running on the lock, a secure connection to the blockchain can be
established at the required times, even if the Internet connection only allows limited bandwidth. In times when there
is no rental process in action, neither computing power is needed nor data is transferred.

1.4.3 Smart Home - Smart Thermostat

Description

With smart home devices it is possible to realize new business models, e. g. for the energy supply. With smart
thermostats it is possible to bill heating energy pay-per-use. During operation, the thermostat must only be connected
to the blockchain if there is a heating requirement and a demand exists. Then the thermostat must check whether the
user is authorized and then also perform the transactions for payment.

Blockchain Integration

Similar to the cycle lock application, a thermostat does not need to be permanently connected to the blockchain to
keep a client in sync. Furthermore, its hardware is not able to run a full or light client. Here, too, it makes sense to use
a netservice-client. Such a client can be developed especially for this hardware.

1.4. Use Cases 3

Incubed Documentation, Release 1.2

1.4.4 Smartphone App

Description

The range of smartphone apps that can or should be connected to the blockchain is widely diversified. These can be
any apps with payment functions, apps that use blockchain as a notary service, apps that control or lend IoT devices,
apps that visualize data from the blockchain, and much more.

Often these apps only need sporadic access to the blockchain. Due to the limited battery power and limited data
volume, neither a full client nor a light client is really suitable for such applications, as these clients require a permanent
connection to keep the blockchain up-to-date.

Blockchain Integration

In order to minimize energy consumption and the amount of data to be transferred, it makes sense to implement
smartphone applications that do not necessarily require a permanent connection to the Internet and thus also to the
blockchain with a netservice-client. This makes it possible to dispense with a centralized remote server solution, but
only have access to the blockchain when it is needed without having to wait long before the client is synchronized.

1.4.5 Advantages

As has already been pointed out in the use cases, there are various advantages that speak in favor of using INCUBED:

• Devices with low computing power can communicate with the blockchain.

• Devices with a poor Internet connection or limited bandwidth can communicate with the blockchain.

• Devices with a limited power supply can be integrated.

• It is a decentralized solution that does not require a central service provider for remote nodes.

• A remote node does not need to be trusted, as there is a verification facility.

• Existing centralized remote services can be easily integrated.

• Net service clients for special and proprietary hardware can be implemented independently of current Ethereum
developments.

1.4.6 Challenges

Of course, there are several challenges that need to be solved in order to implement a working INCUBED.

Security

The biggest challenge for a decentralized and trust-free system is to ensure that one can make sure that the information
supplied is actually correct. If a full client runs on a device and is synchronized with the network, it can check the
correctness itself. A light client can also check if the block headers match, but does not have the transactions available
and requires a connection to a full client for this information. A remote client that communicates with a full client via
the REST API has no direct way to verify that the answer is correct. In a decentralized network of netservice-nodes
whose trustworthiness is not known, a way to be certain with a high probability that the answer is correct is required.
The INCUBED system provides the nodes that supply the information with additional nodes that serve as validators.

4 Chapter 1. Concept

Incubed Documentation, Release 1.2

Business models

In order to provide an incentive to provide nodes for a decentralized solution, any transaction or query that passes
through such a node would have to be remunerated with an additional fee for the operator of the node. However, this
would further increase the transaction costs, which are already a real problem for micro-payments. However, there are
also numerous non-monetary incentives that encourage participation in this infrastructure.

1.5 Architecture

1.5.1 Overview

An INCUBED network consists of several components:

1. The INCUBED registry (later called registry). This is a Smart Contract deployed on the Ethereum Main-Net
where all nodes that want to participate in the network must register and, if desired, store a security deposit.

2. The INCUBED or Netservice node (later called node), which are also full nodes for the blockchain. The nodes
act as information providers and validators.

3. The INCUBED or Netservice clients (later called client), which are installed e.g. in the IoT devices.

4. Watchdogs who as autonomous authorities (bots) ensure that misbehavior of nodes is uncovered and punished.

Initialization of a Client

Each client gets an initial list of boot nodes by default. Before its first “real” communication with the network, the
current list of nodes must be queried as they are registered in the registry (see section [subsec:IN3-Registry-Smart-
Contract]). Initially, this can only be done using an invalidated query (see figure [fig:unvalidated request]). In order to
have the maximum possible security, this query can and should be made to several or even all boot nodes in order to
obtain a valid list with great certainty.

This list must be updated at regular intervals to ensure that the current network is always available.

Unvalidated Requests / Transactions

Unvalidated queries and transactions are performed by the client by selecting one or more nodes from the registry and
sending them the request (see figure [fig:unvalidated request]). Although the responses cannot be verified directly, the
option to send the request to multiple nodes in parallel remains. The returned results can then be checked for consis-
tency by the client. Assuming that the majority will deliver the correct result (or execute the transaction correctly),
this will at least increase the likelihood of receiving the correct response (Proof of Majority).

There are other requests too that can only be returned as an unverified response. This could be the case, for example:

• Current block number (the node may not have synchronized the latest block yet or may be in a micro fork,. . .)

• Information from a block that has not yet been finalized

• Gas price

The multiple parallel query of several nodes and the verification of the results according to the majority principle is a
standard functionality of the client. With the number of nodes requested in parallel, a suitable compromise must be
made between increased data traffic, effort for processing the data (comparison) and higher security.

The selection of the nodes to be queried must be made at random. In particular, successive queries should always be
sent to different nodes. This way it is not possible, or at least only very difficult, for a possibly misbehaving node
to send specific incorrect answers to a certain client, since it cannot be foreseen at any time that the same client will

1.5. Architecture 5

Incubed Documentation, Release 1.2

also send a follow-up query to the same node, for example, and thus the danger is high that the misbehavior will be
uncovered.

In the case of a misbehavior, the client can blacklist this node or at least reduce the internal rating of this node.
However, inconsistent responses can also be provided unintentionally by a node, i.e. without the intention of spreading
false information. This can happen, for example, if the node has not yet synchronized the current block or is running
on a micro fork. These possibilities must therefore always be taken into consideration when the client “reacts” to such
a response.

An unvalidated answer will be returned unsigned. Thus, it is not possible to punish the sender in case of an incorrect
response, except that the client can blacklist or downgrade the sender in the above-mentioned form.

Validated Requests

The second form of queries are validated requests. The nodes must be able to provide various verification options
and proofs in addition to the result of the request. With validated requests, it is possible to achieve a similar level
of security with an INCUBED client as with a light or even full client, without having to blindly trust a centralized
middleman (as is the case with a remote client). Depending on the security requirements and the available resources
(e.g. computing power), different validations and proofs are possible.

As with an invalidated query, the node to be queried should be selected randomly. However, there are various criteria,
such as the deposited security deposit, reliability and performance from previous requests, etc., which can or must also
be included in the selection.

Call Parameter

A validated request consists of the parts:

• Actual request

• List of validators

• Proof request

• List of already known validations and proofs (optional).

Return values

The return depends on the request:

• The requested information (signed by the node)

• The signed answers of the validators (block hash) - 1 or more

6 Chapter 1. Concept

Incubed Documentation, Release 1.2

• The Merkle Proof

• Request for a payment.

Validation

Validation refers to the checking of a block hash by one or more additional nodes. A client cannot perform this check
on its own. To check the credibility of a node (information provider), the block hash it returns is checked by one or
more independent nodes (validators). If a validator node can detect the malfunction of the originally requested node
(delivery of an incorrect block), it can receive its security deposit and the compromised node is removed from the
registry. The same applies to a validator node.

Since the network connection and bandwidth of a node is often better than that of a client, and the number of client
requests should be as small as possible, the validation requests are sent from the requested node (information provider)
to the validators. These return the signed answer, so that there is no possibility for the information provider to manipu-
late the answer. Since the selection of nodes to act as validators is made only by the client, a potentially malfunctioning
node cannot influence it or select a validator to participate in a conspiracy with it.

If the selected validator is not available or does not respond, the client can specify several validators in the request,
which are then contacted instead of the failed node. For example, if multiple nodes are involved in a conspiracy, the
requested misbehaving node could only send the validation requests to the nodes that support the wrong response.

Proof

The validators only confirm that the block hash of the block from which the requested information originates is correct.
The consistency of the returned response cannot be checked in this way.

Optionally, this information can be checked directly by the client. However, this is obligatory, but considerably
increases safety. On the other hand, more information has to be transferred and a computationally complex check has
to be performed by the client.

When a proof is requested, the node provides the Merkle Tree of the response so that the client can calculate and check
the Merkle Root for the result itself.

Payment and Incentives

As an incentive system for the return of verified responses, the node can request a payment. For this, however, the
node must guarantee with its security deposit that the answer is correct.

There are two strong incentives for the node to provide the correct response with high performance since it loses its
deposit when a validator (wrong block hash) detects misbehavior and is eliminated from the registry, and receives a
reward for this if it provides a correct response.

If a client refuses payment after receiving the correctly validated information which it requested, it can be blacklisted
or downgraded by the node so that it will no longer receive responses to its requests.

If a node refuses to provide the information for no reason, it is blacklisted by the client in return or is at least down-
graded in rating, which means that it may no longer receive any requests and therefore no remuneration in the future.

If the client detects that the Merkle Proof is not correct (although the validated block hash is correct), it cannot attack
the node’s deposit but has the option to blacklist or downgrade the node to no longer ask it. A node caught this way of
misbehavior does not receive any more requests and therefore cannot make any profits.

The security deposit of the node has a decisive influence on how much trust is placed in it. When selecting the node,
a client chooses those nodes that have a corresponding deposit (stake), depending on the security requirements (e.g.
high value of a transaction). Conversely, nodes with a high deposit will also charge higher fees, so that a market with
supply and demand for different security requirements will develop.

1.5. Architecture 7

Incubed Documentation, Release 1.2

1.5.2 IN3-Registry Smart Contract

Each client is able to fetch the complete list including the deposit and other information from the contract, which is
required in order to operate. The client must update the list of nodes logged into the registry during initialization
and regularly during operation to notice changes (e.g. if a node is removed from the registry intentionally or due to
misbehavior detected).

In order to maintain a list of network nodes offering INCUBED-services a smart contract IN3Registry in the Ethereum
Main-Net is deployed. This contract is used to manage ownership and deposit for each node.

contract ServerRegistry {

/// server has been registered or updated its registry props or deposit
event LogServerRegistered(string url, uint props, address owner, uint deposit);

/// a caller requested to unregister a server.
event LogServerUnregisterRequested(string url, address owner, address caller);

/// the owner canceled the unregister-proccess
event LogServerUnregisterCanceled(string url, address owner);

/// a Server was convicted
event LogServerConvicted(string url, address owner);

/// a Server is removed
event LogServerRemoved(string url, address owner);

struct In3Server {
string url; // the url of the server
address owner; // the owner, which is also the key to sign blockhashes
uint deposit; // stored deposit
uint props; // a list of properties-flags representing the capabilities of

→˓the server

// unregister state
uint128 unregisterTime; // earliest timestamp in to to call unregister
uint128 unregisterDeposit; // Deposit for unregistering

(continues on next page)

8 Chapter 1. Concept

Incubed Documentation, Release 1.2

(continued from previous page)

address unregisterCaller; // address of the caller requesting the unregister
}

/// server list of incubed nodes
In3Server[] public servers;

/// length of the serverlist
function totalServers() public view returns (uint) ;

/// register a new Server with the sender as owner
function registerServer(string _url, uint _props) public payable;

/// updates a Server by adding the msg.value to the deposit and setting the props
→˓

function updateServer(uint _serverIndex, uint _props) public payable;

/// this should be called before unregistering a server.
/// there are 2 use cases:
/// a) the owner wants to stop offering the service and remove the server.
/// in this case he has to wait for one hour before actually removing the

→˓server.
/// This is needed in order to give others a chance to convict it in case this

→˓server signs wrong hashes
/// b) anybody can request to remove a server because it has been inactive.
/// in this case he needs to pay a small deposit, which he will lose
// if the owner become active again
// or the caller will receive 20% of the deposit in case the owner does not

→˓react.
function requestUnregisteringServer(uint _serverIndex) payable public;

/// this function must be called by the caller of the requestUnregisteringServer-
→˓function after 28 days

/// if the owner did not cancel, the caller will receive 20% of the server
→˓deposit + his own deposit.

/// the owner will receive 80% of the server deposit before the server will be
→˓removed.

function confirmUnregisteringServer(uint _serverIndex) public ;

/// this function must be called by the owner to cancel the unregister-process.
/// if the caller is not the owner, then he will also get the deposit paid by the

→˓caller.
function cancelUnregisteringServer(uint _serverIndex) public;

/// convicts a server that signed a wrong blockhash
function convict(uint _serverIndex, bytes32 _blockhash, uint _blocknumber, uint8 _

→˓v, bytes32 _r, bytes32 _s) public ;

}

To register, the owner of the node needs to provide the following data:

• props : a bitmask holding properties like.

• url : the public url of the server.

• msg.value : the value sent during this transaction is stored as deposit in the contract.

• msg.sender : the sender of the transaction is set as owner of the node and therefore able to manage it at any

1.5. Architecture 9

Incubed Documentation, Release 1.2

given time.

Deposit

The deposit is an important incentive for the secure operation of the INCUBED network. The risk of losing the deposit
if misconduct is detected motivates the nodes to provide correct and verifiable answers.

The amount of the deposit can be part of the decision criterion for the clients when selecting the node for a request.
The “value” of the request can therefore influence the selection of the node (as information provider). For example, a
request that is associated with a high value may not be sent to a node that has a very low deposit. On the other hand,
for a request for a dashboard, which only provides an overview of some information, the size of the deposit may play
a subordinate role.

1.5.3 Netservice-Node

The net service node (short: node) is the communication interface for the client to the blockchain client. It can be
implemented as a separate application or as an integrated module of a blockchain client (such as Geth or Parity).

Nodes must provide two different services:

• Information Provider

• Validator.

Information Provider

A client directly addresses a node (information provider) to retrieve the desired information. Similar to a remote client,
the node interacts with the blockchain via its blockchain client and returns the information to the requesting client.
Furthermore, the node (information provider) provides the information the client needs to verify the result of the query
(validation and proof). For the service, it can request payment when it returns a validated response.

10 Chapter 1. Concept

Incubed Documentation, Release 1.2

If an information provider is found to return incorrect information as a validated response, it loses its deposit and is
removed from the registry. It can be transferred by a validator or watchdog.

Validator

The second service that a node has to provide is validation. When a client submits a validated request to the information
provider, it also specifies the node(s) that are designated as validators. Each node that is logged on to the registry must
also accept the task as validator.

If a validator is found to return false information as validation, it loses its deposit and is removed from the registry. It
can be transferred by another validator or a watchdog.

Watchdog

Watchdogs are independent bots whose random validators logged in to the registry are checked by specific queries
to detect misbehavior. In order to provide an incentive for validator activity, watchdogs can also deliberately pretend
misbehavior and thus give the validator the opportunity to claim the security deposit.

1.5. Architecture 11

Incubed Documentation, Release 1.2

1.5.4 Netservice-Client

The netservice client (short client) is the instance running on the device that needs the connection to the blockchain. It
communicates with the nodes of the INCUBED network via a REST API.

The client can decide autonomously whether it wants to request an unvalidated or a validated answer (see section. . .).
In addition to communicating with the nodes, the client has the ability to verify the responses by evaluating the majority
(unvalidated request) or validations and proofs (validated requests).

The client receives the list of available nodes of the INCUBED network from the registry and ensures that this list
is always kept up-to-date. Based on the list, the client also manages a local reputation system of nodes to take into
account performance, reliability, trustworthiness and security when selecting a node.

A client can communicate with different blockchains at the same time. In the registry, nodes of different blockchains
(identified by their ID) are registered so that the client can and must filter the list to identify the nodes that can process
(and validate, if necessary) its request.

Local Reputation System

The local reputations system aims to support the selection of a node.

The reputation system is also the only way for a client to blacklist nodes that are unreliable or classified as fraudulent.
This can happen, for example, in the case of an unvalidated query if the results of a node do not match those of the
majority, or in the case of validated queries, if the validation is correct but the proof is incorrect.

Performance-Weighting

In order to balance the network, each client may weight each node by:

𝑤𝑒𝑖𝑔ℎ𝑡 = max(lg(𝑑𝑒𝑝𝑜𝑠𝑖𝑡),1)
max(𝑎𝑣𝑔𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑇 𝑖𝑚𝑒,100)

Based on the weight of each node a random node is chosen for each request. While the deposit is read by the contract,
the avgResponseTime is managed by the client himself. The does so by measuring the time between request and
response and calculate the average (in ms) within the last 24 hours. This way the load is balanced and faster servers
will get more traffic.

1.5.5 Payment / Incentives

To build an incentive-based network, it is necessary to have appropriate technologies to process payments. The pay-
ments to be made in INCUBED (e.g. as a fee for a validated answer) are, without exception micro payments (other
than the deposit of the deposit, which is part of the registration of a node and which is not mentioned here, however).
When designing a suitable payment solution, it must therefore be ensured that a reasonable balance is always found
between the actual fee, transaction costs and transaction times.

Direct Transaction Payment

Direct payment by transaction is of course possible, but this is not possible due to the high transaction costs. Exceptions
to this could be transactions with a high value, so that corresponding transaction costs would be acceptable.

However, such payments are not practical for general use.

12 Chapter 1. Concept

Incubed Documentation, Release 1.2

State Channels

State channels are well-suited for the processing of micropayments. A decisive point of the protocol is that the node
must always be selected randomly (albeit weighted according to further criteria). However, it is not practical for a
client to open a separate state channel (including deposit) with each potential node that it wants to use for a request. To
establish a suitable micropayment system based on state channels, a state channel network such as Raiden is required.
If enough partners are interconnected in such a network and a path can be found between two partners, payments can
also be exchanged between these participants.

Probabilistic Payment

Another way of making small payments is probabilistic micropayments. The idea is based on issuing probabilistic
lottery tickets instead of very small direct payments, which, with a certain probability, promise to pay out a higher
amount. The probability distribution is adjusted so that the expected value corresponds to the payment to be made.

For a probabilistic payment, an amount corresponding to the value of the lottery ticket is deposited. Instead of direct
payment, tickets are now issued that have a high likelihood of winning. If a ticket is not a winning ticket, it expires and
does not entitle the recipient to receive a payment. Winning tickets, on the other hand, entitle the recipient to receive
the full value of the ticket.

Since this value is so high that a transaction is worthwhile, the ticket can be redeemed in exchange for a payment.

Probabilistic payments are particularly suitable for combining a continuous, preferably evenly distributed flow of small
payments into individual larger payments (e.g. for streaming data).

Similar to state channels, a type of payment channel is created between two partners (with an appropriate deposit).

For the application in the INCUBED protocol, it is not practical to establish individual probabilistic payment channels
between each client and requested node, since on the one hand the prerequisite of a continuous and evenly distributed
payment stream is not given and, on the other hand, payments may be very irregularly required (e.g. if a client only
rarely sends queries).

The analog to a state channel network is pooled probabilistic payments. Payers can be pooled and recipients can also
be connected in a pool, or both.

1.6 Scaling

The interface between client and node is independent of the blockchain with which the node communicates. This
allows a client to communicate with multiple blockchains / networks simultaneously as long as suitable nodes are
registered in the registry.

For example, a payment transaction can take place on the Ethereum Mainnet and access authorization can be triggered
in a special application chain.

1.6.1 Multi Chain Support

Each node may support one or more network or chains. The supported list can be read by filtering the list of all servers
in the contract.

The ChainId refers to a list based on EIP-155. The ChainIds defined there will be extended by enabling even custom
chains to register a new chainId.

1.6. Scaling 13

Incubed Documentation, Release 1.2

1.6.2 Conclusion

INCUBED establishes a decentralized network of validatable remote nodes, which enables IoT devices in particular
to gain secure and reliable access to the blockchain. The demands on the client’s computing and storage capacity can
be reduced to a minimum, as can the requirements on connectivity and network traffic.

INCUBED also provides a platform for scaling by allowing multiple blockchains to be accessed in parallel from the
same client. Although INCUBED is designed in the first instance for the Ethereum network (and other chains using
the Ethereum protocol), in principle other networks and blockchains can also be integrated, as long as it is possible to
realize a node that can work as information provider (incl. proof) and validator.

14 Chapter 1. Concept

CHAPTER 2

Getting Started

INCUBED can be used in different ways.

table

Stack Size Code
Base

Use Case

TS/JS 2.7MB
(browser-
ified)

Type-
Script

WebApplication (Client in the Browser) or Mobile Applications

C/C++200kB C IoT-Devices, can be integrated nicely on many micro controllers (like [zephyr-
supported boards] (https://docs.zephyrproject.org/latest/boards/index.html)) or anny
other C/C++ -Application

Java 205kB C Java-Implementation of a native-wrapper
Docker74MB Type-

Script
For replacing existing clients with this docker and connect to incubed via local-
host:8545 without the need to change the architecture

bash 200kB C the commandline utils can be used directly as executable within bash-script or on the
shell

other Languages will be supported soon (or can simply use the shared library directly).

2.1 TypeScript/JavaScript

Installing incubes is as easy as installing any other module:

npm install --save in3

2.1.1 As Provider in Web3

The Incubed Client also implements the Provider-Interface used in the web3-Library and can be used directly.

15

https://docs.zephyrproject.org/latest/boards/index.html

Incubed Documentation, Release 1.2

// import in3-Module
import In3Client from 'in3'
import * as web3 from 'web3'

// use the In3Client as Http-Provider
const web3 = new Web3(new In3Client({

proof : 'standard',
signatureCount: 1,
requestCount : 2,
chainId : 'mainnet'

}).createWeb3Provider())

// use the web3
const block = await web.eth.getBlockByNumber('latest')
...

2.1.2 Direct API

Incubed includes a light API, allowinng not only to use all RPC-Methods in a typesafe way, but also to sign transactions
and call funnctions of a contract without the web3-library.

For more details see the API-Doc

// import in3-Module
import In3Client from 'in3'

// use the In3Client
const in3 = new In3Client({

proof : 'standard',
signatureCount: 1,
requestCount : 2,
chainId : 'mainnet'

})

// use the api to call a funnction..
const myBalance = await in3.eth.callFn(myTokenContract, 'balanceOf(address):uint',
→˓myAccount)

// ot to send a transaction..
const receipt = await in3.eth.sendTransaction({

to : myTokenContract,
method : 'transfer(address,uint256)',
args : [target,amount],
confirmations: 2,
pk : myKey

})

...

2.2 As Docker-Container

In order to start the incubed-client as a standalone client (allowing others none-js-application to connect to it), you can
start the container as

16 Chapter 2. Getting Started

https://github.com/slockit/in3/blob/master/docs/api.md#type-api

Incubed Documentation, Release 1.2

docker run -d -p 8545:8545 slockit/in3:latest --chainId=mainnet

The application would then accept the following arguments:

–nodeLimit the limit of nodes to store in the client.

–keepIn3 if true, the in3-section of thr response will be kept. Otherwise it will be removed after validating the data.
This is useful for debugging or if the proof should be used afterwards.

–format the format for sending the data to the client. Default is json, but using cbor means using only 30-40% of the
payload since it is using binary encoding.

–autoConfig if true the config will be adjusted depending on the request

–retryWithoutProof if true the request may be handled without proof in case of an error. (use with care!)

–includeCode if true, the request should include the codes of all accounts. otherwise only the codeHash is returned.
In this case the client may ask by calling eth_getCode() afterwards

–maxCodeCache number of max bytes used to cache the code in memory

–maxBlockCache number of number of blocks cached in memory

–proof ‘none’ for no verification, ‘standard’ for verifying all important fields, ‘full’ veryfying all fields even if this
means a high payload.

–signatureCount number of signatures requested

–finality percenage of validators signed blockheaders - this is used for PoA (aura)

–minDeposit min stake of the server. Only nodes owning at least this amount will be chosen.

–replaceLatestBlock if specified, the blocknumber latest will be replaced by blockNumber- specified value

–requestCount the number of request send when getting a first answer

–timeout specifies the number of milliseconds before the request times out. increasing may be helpful if the device
uses a slow connection.

–chainId servers to filter for the given chain. The chain-id based on EIP-155.

–chainRegistry main chain-registry contract

–mainChain main chain-id, where the chain registry is running.

–autoUpdateList if true the nodelist will be automaticly updated if the lastBlock is newer

–loggerUrl a url of RES-Endpoint, the client will log all errors to. The client will post to this endpoint JSON like {
id?, level, message, meta? }

2.3 C - Implementation

The C-Implemetation will be released soon!

#include <stdio.h>
#include <in3/client.h> // the core client
#include <eth_full.h> // the full ethereum verifier containing the EVM
#include <in3/eth_api.h> // wrapper for easier use
#include <in3_curl.h> // transport implementation

int main(int argc, char* argv[]) {

(continues on next page)

2.3. C - Implementation 17

Incubed Documentation, Release 1.2

(continued from previous page)

// register a chain-verifier for full Ethereum-Support
in3_register_eth_full();

// create new incubed client
in3_t* c = in3_new();

// set your config
c->transport = send_curl; // use curl to handle the requests
c->requestCount = 1; // number of requests to send
c->chainId = 0x1; // use main chain

// use a ethereum-api instead of pure JSON-RPC-Requests
eth_block_t* block = eth_getBlockByNumber(c, atoi(argv[1]), true);
if (!block)
printf("Could not find the Block: %s", eth_last_error());

else {
printf("Number of verified transactions in block: %i", block->tx_count);
free(block);

}

...
}

More Details are comming soon. . .

2.4 Java

The Java-Implementation uses a wrapper of the C-Implemenation. That’s why you need to make sure the libin3.so or
in3.dll or libin3.dylib can be found in the java.library.path, like

java -Djava.library.path=”path_to_in3;${env_var:PATH}” HelloIN3.class

import org.json.*;
import in3.IN3;

public class HelloIN3 {
//
public static void main(String[] args) {

String blockNumber = args[0];
IN3 in3 = new IN3();
JSONObject result = new JSONObject(in3.sendRPC("eth_getBlockByNumber",{

→˓blockNumberm ,true})));
....

}
}

2.5 Commandline Tool

Based on the C-Implementation a Commandline-Util is build, which executes a JSON-RPC-Request and only delivers
the result. This can be used within bash-scripts:

18 Chapter 2. Getting Started

Incubed Documentation, Release 1.2

CURRENT_BLOCK = `in3 -c kovan eth_blockNumber`

#or to send a transaction

IN3_PK=`cat mysecret_key.txt` in3 eth_sendTransaction '{"from":
→˓"0x5338d77B5905CdEEa7c55a1F3A88d03559c36D73", "to":
→˓"0xb5049E77a70c4ea06355E3bcbfcF8fDADa912481", "value":"0x10000"}'

2.6 Supported Chains

Currently incubed is deployed on the following chains:

2.6.1 Mainnet

Registry : 0x2736D225f85740f42D17987100dc8d58e9e16252

ChainId : 0x1 (alias mainnet)

Status : https://in3.slock.it?n=mainnet

NodeList: https://in3.slock.it/mainnet/nd-3

2.6.2 Kovan

Registry : 0x27a37a1210df14f7e058393d026e2fb53b7cf8c1

ChainId : 0x2a (alias kovan)

Status : https://in3.slock.it?n=kovan

NodeList: https://in3.slock.it/kovan/nd-3

2.6.3 Tobalaba

Registry : 0x845E484b505443814B992Bf0319A5e8F5e407879

ChainId : 0x44d (alias tobalaba)

Status : https://in3.slock.it?n=tobalaba

NodeList: https://in3.slock.it/tobalaba/nd-3

2.6.4 Evan

Registry : 0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e

ChainId : 0x4b1 (alias evan)

Status : https://in3.slock.it?n=evan

NodeList: https://in3.slock.it/evan/nd-3

2.6. Supported Chains 19

https://eth.slock.it/#/main/0x2736D225f85740f42D17987100dc8d58e9e16252
https://in3.slock.it?n=mainnet
https://in3.slock.it/mainnet/nd-3/api/in3_nodeList
https://eth.slock.it/#/kovan/0x27a37a1210df14f7e058393d026e2fb53b7cf8c1
https://in3.slock.it?n=kovan
https://in3.slock.it/kovan/nd-3/api/in3_nodeList
https://eth.slock.it/#/tobalaba/0x845E484b505443814B992Bf0319A5e8F5e407879
https://in3.slock.it?n=tobalaba
https://in3.slock.it/tobalaba/nd-3/api/in3_nodeList
https://eth.slock.it/#/evan/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e
https://in3.slock.it?n=evan
https://in3.slock.it/evan/nd-3/api/in3_nodeList

Incubed Documentation, Release 1.2

2.6.5 Görli

Registry : 0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e

ChainId : 0x5 (alias goerli)

Status : https://in3.slock.it?n=goerli

NodeList: https://in3.slock.it/goerli/nd-3

2.6.6 IPFS

Registry : 0xf0fb87f4757c77ea3416afe87f36acaa0496c7e9

ChainId : 0x7d0 (alias ipfs)

Status : https://in3.slock.it?n=ipfs

NodeList: https://in3.slock.it/ipfs/nd-3

2.7 Registering a own in3-node

If you want to participate in this network and also register a node, you need to send a transaction to the registry-contract
calling registerServer(string _url, uint _props).

ABI of the registry:

[{"constant":true,"inputs":[],"name":"totalServers","outputs":[{"name":"","type":
→˓"uint256"}],"payable":false,"stateMutability":"view","type":"function"},{"constant
→˓":false,"inputs":[{"name":"_serverIndex","type":"uint256"},{"name":"_props","type":
→˓"uint256"}],"name":"updateServer","outputs":[],"payable":true,"stateMutability":
→˓"payable","type":"function"},{"constant":false,"inputs":[{"name":"_url","type":
→˓"string"},{"name":"_props","type":"uint256"}],"name":"registerServer","outputs":[],
→˓"payable":true,"stateMutability":"payable","type":"function"},{"constant":true,
→˓"inputs":[{"name":"","type":"uint256"}],"name":"servers","outputs":[{"name":"url",
→˓"type":"string"},{"name":"owner","type":"address"},{"name":"deposit","type":"uint256
→˓"},{"name":"props","type":"uint256"},{"name":"unregisterTime","type":"uint128"},{
→˓"name":"unregisterDeposit","type":"uint128"},{"name":"unregisterCaller","type":
→˓"address"}],"payable":false,"stateMutability":"view","type":"function"},{"constant
→˓":false,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":
→˓"cancelUnregisteringServer","outputs":[],"payable":false,"stateMutability":
→˓"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex",
→˓"type":"uint256"},{"name":"_blockhash","type":"bytes32"},{"name":"_blocknumber",
→˓"type":"uint256"},{"name":"_v","type":"uint8"},{"name":"_r","type":"bytes32"},{"name
→˓":"_s","type":"bytes32"}],"name":"convict","outputs":[],"payable":false,
→˓"stateMutability":"nonpayable","type":"function"},{"constant":true,"inputs":[{"name
→˓":"_serverIndex","type":"uint256"}],"name":"calcUnregisterDeposit","outputs":[{"name
→˓":"","type":"uint128"}],"payable":false,"stateMutability":"view","type":"function"},
→˓{"constant":false,"inputs":[{"name":"_serverIndex","type":"uint256"}],"name":
→˓"confirmUnregisteringServer","outputs":[],"payable":false,"stateMutability":
→˓"nonpayable","type":"function"},{"constant":false,"inputs":[{"name":"_serverIndex",
→˓"type":"uint256"}],"name":"requestUnregisteringServer","outputs":[],"payable":true,
→˓"stateMutability":"payable","type":"function"},{"anonymous":false,"inputs":[{
→˓"indexed":false,"name":"url","type":"string"},{"indexed":false,"name":"props","type
→˓":"uint256"},{"indexed":false,"name":"owner","type":"address"},{"indexed":false,
→˓"name":"deposit","type":"uint256"}],"name":"LogServerRegistered","type":"event"},{
→˓"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed
→˓":false,"name":"owner","type":"address"},{"indexed":false,"name":"caller","type":
→˓"address"}],"name":"LogServerUnregisterRequested","type":"event"},{"anonymous
→˓":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{"indexed":false,
→˓"name":"owner","type":"address"}],"name":"LogServerUnregisterCanceled","type":"event
→˓"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string"},{
→˓"indexed":false,"name":"owner","type":"address"}],"name":"LogServerConvicted","type
→˓":"event"},{"anonymous":false,"inputs":[{"indexed":false,"name":"url","type":"string
→˓"},{"indexed":false,"name":"owner","type":"address"}],"name":"LogServerRemoved",
→˓"type":"event"}]

(continues on next page)

20 Chapter 2. Getting Started

https://eth.slock.it/#/goerli/0x85613723dB1Bc29f332A37EeF10b61F8a4225c7e
https://in3.slock.it?n=goerli
https://in3.slock.it/goerli/nd-3/api/in3_nodeList
https://eth.slock.it/#/kovan/0xf0fb87f4757c77ea3416afe87f36acaa0496c7e9
https://in3.slock.it?n=ipfs
https://in3.slock.it/ipfs/nd-3/api/in3_nodeList

Incubed Documentation, Release 1.2

(continued from previous page)

To run a incubed node, you simply use docker-compose:

version: '2'
services:

incubed-server:
image: slockit/in3-server:latest
volumes:
- $PWD/keys:/secure # directory where the

→˓private key is stored
ports:
- 8500:8500/tcp # open the port 8500 to

→˓be accessed by public
command:
- --privateKey=/secure/myKey.json # internal path to the key
- --privateKeyPassphrase=dummy # passphrase to unlock

→˓the key
- --chain=0x1 # chain (kovan)
- --rpcUrl=http://incubed-parity:8545 # url of the kovan-client
- --registry=0xFdb0eA8AB08212A1fFfDB35aFacf37C3857083ca # url of the incubed-

→˓registry
- --autoRegistry-url=http://in3.server:8500 # check or register this

→˓node for this url
- --autoRegistry-deposit=2 # deposit to use when

→˓registering

incubed-parity:
image: slockit/parity-in3:v2.2 # parity-image with the

→˓getProof-function implemented
command:
- --auto-update=none # do not automaticly

→˓update the client
- --pruning=archive
- --pruning-memory=30000 # limit storage

2.7. Registering a own in3-node 21

Incubed Documentation, Release 1.2

22 Chapter 2. Getting Started

CHAPTER 3

Technical Background

3.1 Ethereum Verification

The Incubed is also often called Minimal Verifying Client because it may not sync, but still is able to verify all
incoming data. This is possible since ethereum is based on a technology allowing to verify almost any value.

Our goal was to verify at least all standard eth_... rpc methods as described in the Specification.

In order to prove something, you always need a starting value. In our case this is the BlockHash. Why do we use
the BlockHash? If you know the BlockHash of a block, you can easily verify the full BlockHeader. And since the
BlockHeader contains the stateRoot, transationRoot and receiptRoot, these can be verified as well. And the rest will
simply depend on them.

There is also another reason why the BlockHash is so important. This is the only value you are able to access from
within a SmartContract, because the evm supports a OpCode (BLOCKHASH), which allows you to read the last 256
Blockhashes, which gives us the chance to even verify the blockhash onchain.

Depending on the method, different proofs are needed, which are described in this document.

• Block Proof - verifies the content of the BlockHeader

• Transaction Proof - verifies the input data of a transaction

• Receipt Proof - verifies the outcome of a transaction

• Log Proof - verifies the response of eth_getPastLogs

• Account Proof - verifies the state of an account

• Call Proof - verifies the result of a eth_call - response

3.1.1 BlockProof

BlockProofs are used whenever you want to read data of a Block and verify them. This would be:

• eth_getBlockTransactionCountByHash

23

https://github.com/ethereum/wiki/wiki/JSON-RPC
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbyhash

Incubed Documentation, Release 1.2

• eth_getBlockTransactionCountByNumber

• eth_getBlockByHash

• eth_getBlockByNumber

The eth_getBlockBy... methods return the Block-Data. In this case all we need is somebody verifying the
blockhash, which is don by requiring somebody who stored a deposit and would lose it, to sign this blockhash.

The Verification is then simply by creating the blockhash and comparing this to the signed one.

The Blockhash is calculated by serializing the blockdata with rlp and hashing it:

blockHeader = rlp.encode([
bytes32(parentHash),
bytes32(sha3Uncles),
address(miner || coinbase),
bytes32(stateRoot),
bytes32(transactionsRoot),
bytes32(receiptsRoot || receiptRoot),
bytes256(logsBloom),
uint(difficulty),
uint(number),
uint(gasLimit),
uint(gasUsed),
uint(timestamp),
bytes(extraData),

... sealFields
? sealFields.map(rlp.decode)
: [

bytes32(b.mixHash),
bytes8(b.nonce)

]
])

For POA-Chains the blockheader will use the sealFields (instead of mixHash and nonce) which are already rlp-
encoded and should be added as raw data when using rlp.encode.

if (keccak256(blockHeader) !== singedBlockHash)
throw new Error('Invalid Block')

In case of the eth_getBlockTransactionCountBy... the proof contains the full blockHeader already ser-
ilalized + all transactionHashes. This is needed in order to verify them in a merkleTree and compare them with the
transactionRoot

3.1.2 Transaction Proof

TransactionProofs are used for the following transaction-methods:

• eth_getTransactionByHash

• eth_getTransactionByBlockHashAndIndex

• eth_getTransactionByBlockNumberAndIndex

In order to verify we need :

1. serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and
number of the transaction. (See BlockProof)

24 Chapter 3. Technical Background

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblocktransactioncountbynumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getblockbynumber
https://github.com/slockit/in3/blob/master/src/util/serialize.ts#L120
https://github.com/ethereum/wiki/wiki/RLP
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyhash
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblockhashandindex
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionbyblocknumberandindex

Incubed Documentation, Release 1.2

2. serialize the transaction-data

transaction = rlp.encode([
uint(tx.nonce),
uint(tx.gasPrice),
uint(tx.gas || tx.gasLimit),
address(tx.to),
uint(tx.value),
bytes(tx.input || tx.data),
uint(tx.v),
uint(tx.r),
uint(tx.s)

])

1. verify the merkleProof of the transaction with

verifyMerkleProof(
blockHeader.transactionRoot, /* root */,
keccak256(proof.txIndex), /* key or path */
proof.merkleProof, /* serialized nodes starting with the root-node */
transaction /* expected value */

)

The Proof-Data will look like these:

{
"jsonrpc": "2.0",
"id": 6,
"result": {
"blockHash": "0xf1a2fd6a36f27950c78ce559b1dc4e991d46590683cb8cb84804fa672bca395b",
"blockNumber": "0xca",
"from": "0x7e5f4552091a69125d5dfcb7b8c2659029395bdf",
"gas": "0x55f0",
"gasPrice": "0x0",
"hash": "0xe9c15c3b26342e3287bb069e433de48ac3fa4ddd32a31b48e426d19d761d7e9b",
"input": "0x00",
"value": "0x3e8"
...

},
"in3": {
"proof": {

"type": "transactionProof",
"block": "0xf901e6a040997a53895b48...", // serialized blockheader
"merkleProof": [/* serialized nodes starting with the root-node */

→˓"f868822080b863f86136808255f0942b5ad5c4795c026514f8317c7a215e218dccd6cf8203e8001ca0dc967310342af5042bb64c34d3b92799345401b26713b43faf253bd4bf972cbba0464bade028ba54e0f78482757feeda354f3abedac35955ec07f822aad8d020c4
→˓"

],
"txIndex": 0,
"signatures": [...]

}
}

}

3.1.3 Receipt Proof

Proofs for the transactionReceipt are used for the following transaction-method:

3.1. Ethereum Verification 25

Incubed Documentation, Release 1.2

• eth_getTransactionReceipt

In order to verify we need :

1. serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and
number of the transaction. (See BlockProof)

2. serialize the transaction receipt

transactionReceipt = rlp.encode([
uint(r.status || r.root),
uint(r.cumulativeGasUsed),
bytes256(r.logsBloom),
r.logs.map(l => [
address(l.address),
l.topics.map(bytes32),
bytes(l.data)

])
].slice(r.status === null && r.root === null ? 1 : 0))

1. verify the merkleProof of the transaction receipt with

verifyMerkleProof(
blockHeader.transactionReceiptRoot, /* root */,
keccak256(proof.txIndex), /* key or path */
proof.merkleProof, /* serialized nodes starting with the root-node */
transactionReceipt /* expected value */

)

1. Since the merkle-Proof is only proving the value for the given transactionIndex, we also need to prove that the
transactionIndex matches the transactionHash requested. This is done by adding another MerkleProof for the
Transaction itself as described in the Transaction Proof

3.1.4 Log Proof

Proofs for logs are only for the one rpc-method:

• eth_getLogs

Since logs or events are based on the TransactionReceipts, the only way to prove them is by proving the Transaction-
Receipt each event belongs to.

That’s why this proof needs to provide

• all blockheaders where these events occured

• all TransactionReceipts + their MerkleProof of the logs

• all MerkleProofs for the transactions in order to prove the transactionIndex

The Proof data structure will look like this:

Proof {
type: 'logProof',
logProof: {

[blockNr: string]: { // the blockNumber in hex as key
block : string // serialized blockheader
receipts: {
[txHash: string]: { // the transactionHash as key

txIndex: number // transactionIndex within the block

(continues on next page)

26 Chapter 3. Technical Background

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactionreceipt
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getlogs

Incubed Documentation, Release 1.2

(continued from previous page)

txProof: string[] // the merkle Proof-Array for the transaction
proof: string[] // the merkle Proof-Array for the receipts

}
}

}
}

}

In order to verify we need :

1. deserialize each blockheader and compare the blockhash with the signed hashes. (See BlockProof)

2. for each blockheader we verify all receipts by using

verifyMerkleProof(
blockHeader.transactionReceiptRoot, /* root */,
keccak256(proof.txIndex), /* key or path */
proof.merkleProof, /* serialized nodes starting with the root-node */
transactionReceipt /* expected value */

)

1. The resulting values are the receipts. For each log-entry, we are comparing the verified values of the receipt with
the returned logs to ensure that they are correct.

3.1.5 Account Proof

Prooving an account-value applies to these functions:

• eth_getBalance

• eth_getCode

• eth_getTransactionCount

• eth_getStorageAt

eth_getProof

For the Transaction or Block Proofs all needed data can be found in the block itself and retrieved through standard rpc
calls, but if we want to approve the values of an account, we need the MerkleTree of the state, which is not accessable
through the standard rpc. That’s why we have created a EIP to add this function and also implemented this in geth and
parity:

• parity (Status: pending pull request) - Docker

• geth (Status: pending pull request) - Docker

This function accepts 3 parameter :

1. account - the address of the account to proof

2. storage - a array of storage-keys to include in the proof.

3. block - integer block number, or the string “latest”, “earliest” or “pending”

{
"jsonrpc": "2.0",
"id": 1,

(continues on next page)

3.1. Ethereum Verification 27

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getbalance
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getcode
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_gettransactioncount
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getstorageat
https://github.com/ethereum/EIPs/issues/1186
https://github.com/paritytech/parity/pull/9001
https://hub.docker.com/r/slockit/parity-in3/tags/
https://github.com/ethereum/go-ethereum/pull/17737
https://hub.docker.com/r/slockit/geth-in3/tags/

Incubed Documentation, Release 1.2

(continued from previous page)

"method": "eth_getProof",
"params": [
"0x7F0d15C7FAae65896648C8273B6d7E43f58Fa842",
["0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421"],
"latest"

]
}

The result will look like this:

{
"jsonrpc": "2.0",
"result": {
"accountProof": [

"0xf90211a...0701bc80",
"0xf90211a...0d832380",
"0xf90211a...5fb20c80",
"0xf90211a...0675b80",
"0xf90151a0...ca08080"

],
"address": "0x7f0d15c7faae65896648c8273b6d7e43f58fa842",
"balance": "0x0",
"codeHash": "0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470",
"nonce": "0x0",
"storageHash": "0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421

→˓",
"storageProof": [

{
"key": "0x56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421",
"proof": [
"0xf90211a...0701bc80",
"0xf90211a...0d832380"

],
"value": "0x1"

}
]

},
"id": 1

}

In order to run the verification the blockheader is needed as well.

The Verification of such a proof is done in the following steps:

1. serialize the blockheader and compare the blockhash with the signed hash as well as with the blockHash and
number of the transaction. (See BlockProof)

2. Serialize the account, which holds the 4 values:

account = rlp.encode([
uint(nonce),
uint(balance),
bytes32(storageHash || ethUtil.KECCAK256_RLP),
bytes32(codeHash || ethUtil.KECCAK256_NULL)

])

1. verify the merkle Proof for the account using the stateRoot of the blockHeader:

28 Chapter 3. Technical Background

Incubed Documentation, Release 1.2

verifyMerkleProof(
block.stateRoot, // expected merkle root
util.keccak(accountProof.address), // path, which is the hashed address
accountProof.accountProof.map(bytes), // array of Buffer with the merkle-proof-data
isNotExistend(accountProof) ? null : serializeAccount(accountProof), // the expected
→˓serialized account
)

In case the account does exist yet, (which is the case if none == startNonce and codeHash
== '0xc5d2460186f7233c927e7db2dcc703c0e500b653ca82273b7bfad8045d85a470'), the proof
may end with one of these nodes:

• the last node is a branch, where the child of the next step does not exist.

• the last node is a leaf with different relative key

Both would prove, that this key does not exist.

1. Verify each merkle Proof for the storage using the storageHash of the account:

verifyMerkleProof(
bytes32(accountProof.storageHash), // the storageRoot of the account
util.keccak(bytes32(s.key)), // the path, which is the hash of the key
s.proof.map(bytes), // array of Buffer with the merkle-proof-data
s.value === '0x0' ? null : util.rlp.encode(s.value) // the expected value or none

→˓to proof non-existence
))

3.1.6 Call Proof

Call Proofs are used whenever you are calling a read-only function of smart contract:

• eth_call

Verifying the result of a eth_call is a little bit more complex. Because the response is a result of executing opcodes
in the vm. The only way to do so, is to reproduce it and execute the same code. That’s why a Call Proof needs to
provide all data used within the call. This means :

• all referred accounts including the code (if it is a contract), storageHash, nonce and balance.

• all storage keys, which are used (This can be found by tracing the transaction and collecting data based on th
SLOAD-opcode)

• all blockdata, which are referred at (besides the current one, also the BLOCKHASH-opcodes are referring to
former blocks)

For Verifying you need to follow these steps:

1. serialize all used blockheaders and compare the blockhash with the signed hashes. (See BlockProof)

2. Verify all used accounts and their storage as showed in Account Proof

3. create a new VM with a MerkleTree as state and fill in all used value in the state:

// create new state for a vm
const state = new Trie()
const vm = new VM({ state })

// fill in values
for (const adr of Object.keys(accounts)) {

(continues on next page)

3.1. Ethereum Verification 29

https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_call
https://github.com/ethereumjs/ethereumjs-vm

Incubed Documentation, Release 1.2

(continued from previous page)

const ac = accounts[adr]

// create an account-object
const account = new Account([ac.nonce, ac.balance, ac.stateRoot, ac.codeHash])

// if we have a code, we will set the code
if (ac.code) account.setCode(state, bytes(ac.code))

// set all storage-values
for (const s of ac.storageProof)
account.setStorage(state, bytes32(s.key), rlp.encode(bytes32(s.value)))

// set the account data
state.put(address(adr), account.serialize())

}

// add listener on each step to make sure it uses only values found in the proof
vm.on('step', ev => {

if (ev.opcode.name === 'SLOAD') {
const contract = toHex(ev.address) // address of the current code
const storageKey = bytes32(ev.stack[ev.stack.length - 1]) // last element

→˓on the stack is the key
if (!getStorageValue(contract, storageKey))
throw new Error(`incomplete data: missing key ${storageKey}`)

}
/// ... check other opcodes as well

})

// create a transaction
const tx = new Transaction(txData)

// run it
const result = await vm.runTx({ tx, block: new Block([block, [], []]) })

// use the return value
return result.vm.return

In the future we will be using the same approach to verify calls with ewasm.

30 Chapter 3. Technical Background

CHAPTER 4

Verifying Blockheaders

Since all proofs always include the blockheader, it is crucial to verify the correctness of these data as well. But verifica-
tion depends on the consensys of the underlying blockchain. (for Details See Ethereum Verification and MerkleProof
)

Proof or Work Proof of Authority Proof of Stake

Client

Node B

Node A

 response
 + proof
 + signed
 header

 sign

Node C

Client

Node

 response
 + proof
 + header

Client

Node Node (Validator)

 header
 response
 + proof
 + header

31

Incubed Documentation, Release 1.2

4.1 Proof of Work

Currently, the public chain uses Proof of Work. This makes it very hard to verify the header, since anybody can produce
such a header. So the only way to verify that this is an accepted block, is to let registered nodes sign the blockhash. If
they are wrong, they lose their previously stored deposit. For the client this means that the required security depends
on the deposit stored by the nodes. That’s why a client may be configured to require multiple signatures and even a
minimal deposit:

client.sendRPC('eth_getBalance', [account, 'latest'], chain, {
minDeposit: web3.utils.toWei(10,'ether'),
signatureCount: 3

})

The minDeposit lets the client preselect only nodes with at least that much deposit. The signatureCount asks
for multiple signatures and so increases the security.

Since most clients are small devices with limited bandwith, the client is not asking for the signatures directly from the
nodes, but chooses one node and let this node run a subrequest to get the signatures. This means less requests for the
clients, but also at least one node checks the signatures and convicts the other if they lied.

4.2 Proof of Authority

The good thing about Proof of Authority is that there is already a signature included in the blockheader. So if we know
who is allowed to sign a block, we can do not need an additional blockhash signed. The only critical information we
rely on is the list of validators.

Currently there are 2 Consensys algorithms:

4.2.1 Aura

Aura is used by parity only and there are 2 ways to configure such:

• static list of nodes (like the kovan-network) - In this case the validatorlist is included in the chain-spec and
cannot change, which makes it very easy for a client to verify blockheaders.

• validator contract - a contract which offers a function getValidators(). Depending on the chain this
contract may contain rules that define how validators may change. But this flexibility comes with a price. It
makes it harder for a client to find a secure way to detect validator changes. That’s why the proof for such a
contract depends on the rules layed out in the contract and is chain-specific.

4.2.2 Clique

Clique is a protocol developed by the geth-team and is now also supported by parity (see görli-testnet). Instead of
relying on a contract, clique defines a protocol of how validator nodes may change. All votes are done directly in the
blockheader. This makes it easier to prove, since it does not rely on any contract.

The Incubed nodes will check all the blocks for votes and create a validatorlist which defines the validatorset
for any given blocknumber. This also includes the proof in form of all blockheaders that either voted the new node
in or out. This way the client can ask for the list and automatically update the internal list after he verified each
blockheader and vote. Even though malicious nodes cannot forge the signatures of a validator, that may skip votes in
the validatorlist. That is why a validatorlist update should always be done by running multiple requests and merging
them together.

32 Chapter 4. Verifying Blockheaders

CHAPTER 5

Incentivization

Important: This concept is still in development and discussion and not yet fully implemented.

The original idea of blockchain is a permissionless peer-to-peer network in which anybody can participate if he only
runs a node and syncs with other peers. Since this is still true, we know that such a node won’t run on a small
IoT-device.

5.1 Decentralizing Access

This is why a lot of users try remote-nodes to server their devices. But this introduces a new single point of failure and
the risk of man-in-the-middle attacks.

So the first step is to decentralize remote nodes by sharing rpc-nodes with other apps.

centralized centralized per Dapp Incubed

infura

a b c

C

c

B

b

A

a

A

a bc

B C

5.2 Incentivization for nodes

In order to incentivize a node to serve requests to clients, there must be something to gain (payment) or to lose (access
to other nodes for its clients).

33

Incubed Documentation, Release 1.2

5.3 Connecting Clients and Server

As a simple rule we can define:

The Incubed network will serve your client requests if you also run an honest node.

This requires to connect a client key (used to sign his requests) with a registered server. Clients are able to share keys
as long as the owner of the node is able to ensure their security. This makes it possible to use one key for the same
mobile app or device. The owner may also register as many keys as he wants for his server or even change them from
time to time. (as long as only one client key points to one server) The key is registered in a client-contract, holding a
mapping of the key to the server address.

cloud

ServerRegistryClientRegistry

Server A

Server B

Server C

Server A

cap:10

http://rpc.s1..

Server B

cap:100

http://rpc.s2..

Server C

cap:20

http://rpc.s3..

a

b

c

d

e

5.4 Ensuring Client Access

Connecting a client key to a server does not mean he relies on it, but his requests are simply served in the same quality
as the connected node serves other clients. This creates a very strong incentive to deliver all clients, because if a
server node were offline or refused to deliver, eventually other nodes would also deliver less or even stop responding
to requests coming from the connected clients.

34 Chapter 5. Incentivization

Incubed Documentation, Release 1.2

To actually find out which node delivers to clients, each server node uses one of the client keys to send Test-Requests
and measure the availability based on verified responses.

Verifying Nodes

A

B

C

D

E

The servers measure the 𝐴𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦 by checking periodically (like every hour in order to make sure a malicious
server will not respond to test requests only, these requests may be sent through an anonymous network like tor)

Based on the long-term (>1 day) and short-term (<1 day) availibility the score is calculated:

𝐴 =
𝑅𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

𝑅𝑠𝑒𝑛𝑡

In order to balance long-term availability and short-term issues, each node measures both and calculates a factor for
the score. This factor should ensure that a short-term issues will not drop the score immediately, but keep it up for a
while and then drop. Also, long-term availibility must be rewarded by dropping more slowly.

𝐴 = 1− (1− 𝐴𝑙𝑜𝑛𝑔 + 5 ·𝐴𝑠ℎ𝑜𝑟𝑡

6
)10

• 𝐴𝑙𝑜𝑛𝑔 - the ratio between valid request received and sent within the last month

• 𝐴𝑠ℎ𝑜𝑟𝑡 - the ratio between valid request received and sent within the last 24h

5.4. Ensuring Client Access 35

Incubed Documentation, Release 1.2

Depending on the long-term availibility the disconnected node will lose its score over time.

The final score is then calulated:

𝑠𝑐𝑜𝑟𝑒 =
𝐴 ·𝐷𝑤𝑒𝑖𝑔ℎ𝑡 · 𝐶𝑚𝑎𝑥

𝑤𝑒𝑖𝑔ℎ𝑡

• 𝐴 - the Availibility of the node.

• 𝑤𝑒𝑖𝑔ℎ𝑡 - the weight of the incoming request from that servers clients (See LoadBalancing)

• 𝐶𝑚𝑎𝑥 - the maximal Number of open or parallel Requests the own server can handle (will be taken from the
registry)

• 𝐷𝑤𝑒𝑖𝑔ℎ𝑡 - the weight of the Deposit of the node

This score is then used as the priority for incoming requests. This is done by keeping track of the number of currently
open or serving requests. Whenever a new request comes in, the node does the following:

1. check the signature

2. calculate the score based on the score of the node it is connected with.

3. accept or reject the request

if (score < openRequests) reject()

36 Chapter 5. Incentivization

Incubed Documentation, Release 1.2

This way nodes reject requests with a lower score when the load increases. For a client, this means if I have a low
score and the load in the network is high, my clients may get rejected often and so have to wait longer for responses.
And if I have a score of 0, they are blacklisted even.

5.5 Deposit

Storing a high deposit brings more security to the network. This is important for proof-of-work-chains. In order to
reflect the benefit in the score, the client multiplies it with the 𝐷𝑤𝑒𝑖𝑔ℎ𝑡 (the Deposit Weight)

𝐷𝑤𝑒𝑖𝑔ℎ𝑡 =
1

1 + 𝑒
1− 3𝐷

𝐷𝑎𝑣𝑔

• 𝐷 - the stored Deposit of the node

• 𝐷𝑎𝑣𝑔 - the average Deposit of all nodes

A node without any deposit will so get only 26.8% of the max cap while any node with an average deposit gets 88%
and above and quickly reaches 99%

5.5. Deposit 37

Incubed Documentation, Release 1.2

5.6 LoadBalancing

In an optimal network, each server would handle the same amount as the servers and all clients would have an equal
share. In order to prevent situations where 80% of the requests come from clients belonging to the same node, while
the node only delivers 10% of requests in the network, we need to decrease the score for clients sending more requests
than their shares. So for each node the weight can be calculated by:

𝑤𝑒𝑖𝑔ℎ𝑡𝑛 =

𝑛∑︁
𝑖=0

𝐶𝑖 ·𝑅𝑛

𝑛∑︁
𝑖=0

𝑅𝑖 · 𝐶𝑛

• 𝑅𝑛 - number of request serverd to one of the clients connected to the node

•
𝑛∑︁

𝑖=0

𝑅𝑖 - total number of request serverd

•
𝑛∑︁

𝑖=0

𝐶𝑖 - total number of capacities of the registered servers

• 𝐶𝑛 - Capacity of the registered node

Each node will update the 𝑠𝑐𝑜𝑟𝑒 and the 𝑤𝑒𝑖𝑔ℎ𝑡 for the other nodes after each check and this way prioritize incoming
requests.

The capacity of a node is the maximal number of parallel request it can handle and is stored in the ServerRegistry.
This way all client know the cap and will weigh the nodes accordingly, which leads to more load to stronger servers.
A node declaring a high capacity will gain a higher score and so its clients will get more reliable responses. On the
other hand, if you cannot deliver the load, you may lose your availability and so you score.

5.7 Free Access

Each node may allow free access for clients without any signature. A special option --freeScore=2 is used when
starting the server. For any client requests without a signature, this 𝑠𝑐𝑜𝑟𝑒 is used. Setting this value to 0 would not
allow any free clients.

if (!signature) score = conf.freeScore

A low value for freeScore would server requests only if the current load or the open requests are less then this number,
which would mean that getting a response from the network without signing may take very long because this client
would send a lot of requests until he is lucky enough to get a response if the load is high. Chances are a lot higher if
the load is very low.

5.8 Convict

Even though servers are allowed to register without a deposit, convicting is still a hard punishment. Because in this
case the server is not part of the registry anymore and all his connected clients are treated as without signature. In this
case, his devices or app will probably stop working or be extremely slow. (depending on the freeScore configured in
all the nodes)

38 Chapter 5. Incentivization

Incubed Documentation, Release 1.2

5.9 Handling conflicts

In case of a conflict, each client has now at least one server he knows he can trust since it is run by the same owner.
This makes it impossible for attackers to use Blacklist-Attacks or other threats which can be solved by requiring a
response from the “home”-node.

5.9. Handling conflicts 39

Incubed Documentation, Release 1.2

40 Chapter 5. Incentivization

CHAPTER 6

Decentralizing central services

Important: This concept is still in early development and discussion and not implemented yet, but planned in future
milestones.

Many DAPPs still need some offchain-services, like search-services running on a server, which of course can be seen
as single point of failure. In order to dectralize these even dapp-specific services they must fullfill these criteria:

1. stateless - since requests may be send to different servers they cannot hold a users state, which would only be
available on one node.

2. deterministic - all servers need to produce the exact same result

If these requirements are met, the service can be registered defining the server behavior in a docker image.

41

Incubed Documentation, Release 1.2

ServiceRegistry
ServerRegistry

cloud

Matrix

matrix/matrix:latest

wasm

Server A

offer

rewards

http://rpc.s1..

Server B

offer

rewards

http://rpc.s2..

Search

slockit/search:latest

wasm

Whisper

whisper:latest

wasm

Server C

offer

rewards

http://rpc.s3..

Server A

Matrix

Search

Server B

WhisperServer C

42 Chapter 6. Decentralizing central services

Incubed Documentation, Release 1.2

6.1 Incentivication

Each Server can define

• a list of services as offer

• a list of services to reward

The main idea is simply:

if you run my service I will run yours

Each Server can specifiy which services we would like to see used. If another server offers them, he will also run at
least as many rewareded services of the other node.

6.2 Verification

Each Service specify a Verifier, which is a wasm-module (specified through a ipfs-hash). This wasm offers 2 function:

function minRequests():number

function verify(request:RPCRequest[], responses:RPCResponse[])

A minimal version could simply asure running at least 2 requests and comparing them. In case they differ they can

• check with the “home”-server

• convict nodes

6.2.1 convicting

As a generic service convicting on chain can not be done, but each server is able to verify the result and if false
downgrade the score.

6.1. Incentivication 43

Incubed Documentation, Release 1.2

44 Chapter 6. Decentralizing central services

CHAPTER 7

Threat Model for Incubed

7.1 Registry Issues

7.1.1 Long Time Attack

Status: open

A client is offline for a long time and did not update the nodelist. During this time a Server has now been convicted
and/or removed from the list. The client may now send a request to this server, which means it cannot be convicted
anymore and the client has no way to know that.

Solutions:

CHR: Yes. I think often the fallback is “out of service”. What will happen is that those random Nodes
(A,C) will not respond. We (Slock.it) could help them update the list in a centralized way.

But I think the best way is the following: Allow nodes to commit to stay in the registry for a fixed amount
of time. In that time they can not withdraw their funds. Client will most likely look first for those,
especially those who only need data from the chain occasionally.

SIM: Yes this could help, but only protects from regular unregistering. If you convict a server, then this
timeout does not help.

In order to remove this issue completely you would need a trusted authority where you can update the
nodeList first. > But for the 100% decentralized way, you can only reduce it by asking multiple servers.
Since they will also pass the latest blocknumber when the nodeList changed, the client will find out, that
he needs to update the nodeList and by having multiple Requests in parallel he reduces the risk of relying
on a manipulated nodeList. Because the malicious Server may return a correct nodeList for an older block
when this server was still valid and even get signatures for this, but not for a newer BlockNumber, which
can only be found out by asking as many servers an needed.

Another point is, that as long as the signature does not come from the same server, the Data-Provider
will always check, so even if you request a signature from a server that is not part of the list anymore, the
DataProvider will reject this. An in order to use this attack both (The DataProvider and BlockHashSigner)
must work together in order to provide a proof that matches the wrong blockhash.

45

Incubed Documentation, Release 1.2

CHR: Correct. I think the strategy for clients who have been offline for a while is to first get multiple
signed blockhashes from different source (ideally from bootstrap nodes similar to light clients and ask for
the current list). Actually, we could define the same bootstrap nodes as are currently hard coded in parity
and geth

7.1.2 Inactive Server Spam Attack

Status: solved

Everyone can register a lot of servers that don’t even exist or are not running. He may even put in a decent deposit. Of
course the client would try and find out that these nodes are inactive. If an attacker is able to onboard enough inactive
servers, the chances for an in3 client to find a working server decreases.

Solutions:

In order to register a server, the owner has to pay a deposit calculated by the formula:

𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑚𝑖𝑛 =
86400 · 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑎𝑣𝑒𝑟𝑎𝑔𝑒
(𝑡𝑛𝑜𝑤 − 𝑡𝑙𝑎𝑠𝑡𝑅𝑒𝑔𝑖𝑠𝑡𝑒𝑟𝑒𝑑)

To avoid some exploitation of the formula, the deposit_average gets capped at 50 ether. This means, that the
maximum deposit_min calculated by this formula is about 4,3mio ether when trying to register 2 servers within
1 block. In the first year there will also be an enforced deposit-limit of 50 ether, so it will be impossible to rapidly
register new servers, giving us more time to react on possible spam attacks (e.g. through voting).

In addition, the smart contract provides a voting function for removing inactive servers: In order to vote, a server has
to sign a message with a current block and the owner of the server he wants to get voted out. Only the latest 256
blockhashes are allowed, so every signature will effectively expire after roughly 1 hour. The power of each vote will
be calculated by the amount of time when the server was registered. To make sure that the oldest servers won’t get
too powerful, the votingPower gets capped at 1 year and won’t increase further. The server being voted out will also
gets an oppositional voting power that is capped at 2 years. In order for the server to be voted out, the combined
votingPower of all the servers has to be greater then the oppositional voting power and also more the accumulated
voting power has to be greater than at least 50% of all the chosen voters.

As with a high amount of registered in3-servers the handling of all votes would become impossible, we cap the
maximal amount of signatures at 24: This means to vote out an server that has been active for more then 2 years,
24 in3-servers with a lifetime of 1 month are required to vote. This number decreases when more older servers are
voting. This mechanic will prevent the rapid onboarding of many malicious in3-servers that would vote all regular
servers and take control of the in3-nodelist. In addition, we do not allow all servers to vote. Instead, we chose up to
24 servers randomly with the blockhash as seed. For the vote to succeed, they have to sign on the same blockhash and
have enough voting power.

In order to “punish” the a server-owner for having an inactive server, after a successful vote he will lose 1% of his
deposit while the rest gets locked until his deposit timeout expires, ensuring possible liabilities. A part of this 1%
deposit will be used to reimburse the transaction costs, the rest will be burned. To make sure that the transaction
always will be payed, a minimum deposit of 10 finney (= 0.01 ether) is also enforced.

7.1.3 Self Convict Attack

Status: solved

A User may register a mailcious Server and even store a deposit, but as soon as he signes a wrong blockhash use a 2nd
Account and convict himself in order to get the deposit before somebody else can.

Solutions:

46 Chapter 7. Threat Model for Incubed

Incubed Documentation, Release 1.2

SIM: In this case cas the Attacker would lose 50% of his deposit, because this will be burned. But this
also means he would get the other half and so the price he would have to pay for lying is up to 50% of his
deposit. This should be considered by the clients when picking nodes for signatures.

7.1.4 Convict Frontrunner Attack

Status: solved

Servers are acting as watchdogs and automaticly call convict if they receive a wrong blockhash. This will cost them
some gas to send the transaction. Especially if

the block is older than 256 blocks, this may even cost a lot of gas, since the server needs to put blockhashes into the
BlockhashRegistry first. But he is incentiviced to do so, because after successfully convicting he gets a reward (50%
of the deposit). A miner or other Attacker could now simply wait for a pending transaction for convict and simply use
the data and send the same transaction with a high gasprice, which eventually mean, his transaction would be mined
first and the server, after putting so much work and costs into preparing the convict, will get nothing.

Solution: Convicting a server requires two steps: The 1st one is calling the convict function with the blocknumber
of the wrongly signed block and keccak256(_blockhash, sender, v, r, s). Both the real blockhash
and the provided hash will be stored in the smart contract. In a 2nd step the function revealConvict function has
to be called. The missing information are revealed there, but only the previous sender is able to reproduce the provided
hash of the 1st transaction, thus being able to convict a server.

7.2 Network-Attacks

7.2.1 Blacklist Attack

Status: open

If the client has no direct internet connection and must rely on a proxy or the phone to do the requests, this would
give the intermedier the chance to set up a malicious server. This is done by simply forwarding the Request to its own
server instead of the requested one. Of course he may prepare a wrong answer, but he cannot fake the signatures of
the blockhash. But instead of sending back any signed hashes, he may return no signatures, which indicates to the
client, that those were not willing to sign them. Then the client will blacklist them and request the signature from other
nodes. The Proxy or Relay could return no signature and repeat that until all are blacklisted and client finally asks for
the signature from a malicious node, which would then give the signature and the response. Since both come from a
bad acting server, he will not convict himself and so prepare a proof for a wrong response.

Solutions:

First we may consider signing the response of the Data provider-Node, even if this signature can not be
used to convict, but then the client knows that this response came from the client he requested and als was
checked by him. This would reduce the chances of this attack, since this would mean, the client picked
2 random Servers, that both are acting malicious together. If the client blacklisted more than 50% of the
nodes, he should stop. The only issues here is, that the client does not know, whether this is a ‘Inactive
Server Spam Attack’ or not. In case of the a ‘Inactive Server Spam Attack’ it would actually be good,
to blacklist 90% of the servers and still be able to work with the remaining 10%, but if the proxy is the
problem, then the client needs to stop blacklisting.

CHR: I think the client needs a list of nodes (bootstrape nodes) which needs to sign in the case the response
is no signature at all. No signature at all should default to untrusted relayer. In this case it needs to go
to trusted relayers. Or ask the untrusted relayer to get a signature from one of the trusted relayers. If he
forwards the signed reponse, he should become trusted again.

7.2. Network-Attacks 47

Incubed Documentation, Release 1.2

7.2.2 DDOS-Attacks

Since the URLS of the Network are known, they may be targets for DDOS-Attacks.

Solution:

Each node is reponsible for protecting with services like Cloudflare. Also the nodes should have a upper
limit of concurrent requests it can handle. The response with status 500 should indicate reaching this
limit. This will still lead to blacklisting, but this protects the node by not sending more requests.

CHR: The same is true for bootstrapping nodes of the foundation

7.2.3 None Verifying Data Provider

A Data Provider should always check the signatures of blockhash he received from the signers and of course he
incentivised to do so, because then he can get their deposit, but after getting the deposit he is not incentivised to report
this to the client. There are 2 szenariose :

1. The Data Provider is getting the signature, but not checking it. In this case at least the verification inside the
client will fail since the provided blockheader does not match.

2. The Data Provider works together with Signer. In this case he would prepare a wrong blockheader that fits to
the wrong blockhash and would pass the verification inside the client.

Solutions:

SIM: In this case only a higher number of signatures could increase security.

7.3 Privacy

7.3.1 Private Keys as API-Keys

For the scoring-model we are using private keys. The perfect security-model would be registering each client, which
is almost impossible on mainnet, if you have a lot of devices. So Using shared keys will very likely to happen, but this
a nightmare for security experts.

Solution:

1. limit the power of such a key, so the worst thing that can happen, is a leaked key could be used by other client
which will then be able to use the score of the server the key is assigned to.

2. keep the private key secretly and manage the connection to the server only offchain.

7.3.2 Filtering of Nodes

All nodes are known with its URL in the ServerRegistry-contract. For countries trying to filter blockchain-requests
this makes it easy to add these URLs on blacklists of firewalls, which would stop the incubed network.

Solution:

Support Onion-URLs, dynamic IPs, LORA, BLE or other protocols.

48 Chapter 7. Threat Model for Incubed

Incubed Documentation, Release 1.2

7.3.3 Inspecting Data in Relays or Proxies

For Devices, like BLE a Relay like a phone is used to connect to the internet. Since relay is able to read the content it
is possible to read the data or even pretend the server not responding. (See Blacklist-Attack)

Solution:

Encrypt the data by using the public key of the server. This can only be decrypted by the target-server
with the private key.

7.4 Risc Calculation

Just like the light client there is no 100% Security to protect from malicious Servers. The only way to reach this,
would be to trust special authority nodes for signing the blockhash. For all other nodes we must always assume they
are trying to find ways to cheat. The risc of losing the deposit is significantly lower, if the DataProvider Node and the
Signing Nodes are run by the same Attacker. In this case he will not only skip checks, but also prepare the data and
the proof and also a blockhash that matches the blockheader. If this is the only request and the client would have no
other anchor, he would accept a malicious response.

Depending on how many malicious Nodes have registered themselves and are working together, the risc can be calcu-
lated. If 10% of all registered Nodes would be run by a Attacker (with the same deposit as the rest) , the risk of getting
a malicious Response would be: 1% with only 1 signature and go down to 0,006% with 3 Signatures:

Alt
text

In case of a attacker controlling 50% of all nodes, it looks a bit different. Here one signature would give you a risk of
25% to get a bad response and it takes more than 4 Signatures to reduce this under 1%.

7.4. Risc Calculation 49

Incubed Documentation, Release 1.2

Alt
text

Solution:

The risk can be reduced by sending 2 requests in parallel. This way the attacker can not be sure that his
attack would be successful because chances are higher to detect this. If both requests lead to a different
result, this conflict can be forwarded to as many server as possible, where these server then can check the
blockhash and may convict the malicious server.

50 Chapter 7. Threat Model for Incubed

CHAPTER 8

Roadmap

Incubed implements 2 Versions.

• Typescript / Javascript , which is optimized for dapps, webapps or mobile apps.

• embedded C optimized for microcontrollers and all other use cases.

8.1 V1.2 Stable - Q3 2019

The first stable release, which was published after devcon. It contains full verification of all relevant ethereum rpc-calls
(except eth_call for eWasm-Contracts), but no payment or incentivisation included yet.

• Failsafe Connection - The Incubed client will connect to any ethereum-blockchain (providing in3-servers) by
randomly selecting nodes within the Incubed-network and automatically retry with different nodes, if the node
cannot be reached or delivers verifiable responses.

• Reputation Management - Nodes which are not available will be automatically temporarily blacklisted and
loose repuatation. The selection of a node is based on the weight (or performance) of the node and its availability.

• Automatic Nodelist Updates - All Incubed nodes are registered in smart contracts onchain and will trigger
events if the nodelist changes. Each request will always return the blocknumber of the last event, so the client
knows when to update its nodelist.

• Partial Nodelist - In order to support small devices, the nodelist can be limited and still be fully verfied by
basing the selection of nodes deterministically on a client-generated seed.

• MultiChain Support - Incubed is currently supporting any ethereum-based chain. The client can even run
parallel requests to different networks without the need to synchronize first.

• Preconfigured Boot Nodes - While you can configure any registry contract, the standard version contains
configuration with boot nodes for mainnet, kovan, evan, tobalaba and ipfs.

• Full Verification of JSON-RPC-Methods - Incubed is able to fully verify all important JSPN-RPC-Methods.
This even includes calling functions in smart contract and verifying their return value (eth_call), which
means executing each opcode locally in the client in order to confirm the result.

51

Incubed Documentation, Release 1.2

• IPFS-Support - Incubed is able to write and read IPFS-content and verify the data by hashing and creating the
the multihash.

• Caching Support - an optional cache allows to store the result of rpc-requests and automatically use it again
within a configurable time span or if the client if offline. This also includes RPC-Requests, blocks, code and
nodelists)

• Custom Configuration - The client is highly customizable. For each single request a configuration can be
explicitly passed or by adjusting it through events (client.on('beforeRequest',...)). This allows
to optimize proof-level or number of requests to be sent depending on the context.

• Proof-Levels Incubed supports different proof-levels: none - for no verifiaction, standard - for verifying
only relevant properties and full - for complete vertification including uncle blocks or previous Transaction
(higher payload))

• Security-Levels - configurable number of signatures (for PoW) and minimal deposit stored.

• PoW-Support - For PoW blocks are verified based on blockhashes signed by Incubed nodes storing a deposit
which they lose if this blockhash is not correct.

• PoA-Support - For PoA-Chains (using Aura) blockhashes are verified by extracting the signature from the
sealed fields of the blockheader and by using the aura-algorithm to determine the signer from the Validatorlist
(with static Validatorlist or contract based validators)

• Finality-Support - For PoA-Chains the client can require a configurable number of signatures (in percent) to
accept them as final.

• Flexible Transport-layer - The communication-layer between clients and nodes can be overridden, but already
support different transport formats (json/cbor/in3)

• Replace Latest-Blocks - Since most applications per default always ask request for the latest block, which
cannot be considered as final in a PoW-Chain, a configuration allows to automatically use a certain blockheight
to run the request. (like 6 blocks)

• Light Ethereum API - Incubed comes with a typesafe simple API, which covers all standard JSON-RPC-
Requests (in3.eth.getBalance('0x52bc44d5378309EE2abF1539BF71dE1b7d7bE3b5')).
This API also includes support for signing and sending transactions as well as calling methods in smart contracts
without a complete ABI by simply passing the signature of the method as argument.

• TypeScript Support - as Incubed is written 100% in typescript, you get all the advantages of a typesafe
tollchain.

• Integrations - Incubed has been succesfully tested in all major browsers, nodejs and even react-native.

8.2 V1.2 Incentivisation - Q3 2019

This release will introduce the Incentivisation-Layer, which should help provide more nodes to create the decentralized
Network.

• PoA Clique - Support Clique PoA to verify Blockheader.

• Signed Requests - Incubed supports the Incentivisation-Layer which requires signed requests in order to assign
client requests to certain nodes.

• Network-Balancing - Nodes will balance the Network based on Load and Reputation.

52 Chapter 8. Roadmap

Incubed Documentation, Release 1.2

8.3 V1.3 eWasm - Q1 2020

For eth_call-Verification the client and server must be able to execute the code. This release adds the ability to
also

• eWasm - Support eWasm Contracts in eth_casll.

8.4 V1.4 Substrate - Q3 2020

Supporting Polkadot or any Substrate-based chains.

• Substrate - Framework support

• Runtime-Optimization - Using pre-compiled Runtimes.

8.5 V1.5 Services - Q1 2021

Generic Interface for any deterministic Service (as docker-container) to be decentralized and verified.

8.3. V1.3 eWasm - Q1 2020 53

Incubed Documentation, Release 1.2

54 Chapter 8. Roadmap

CHAPTER 9

IN3-Specification

This document describes the communication between a incubed client and a incubed node. This communication is
based on requests which use extended JSON-RPC-Format. Especially for ethereum-based requests this means each
node also accepts all standard requests as at https://github.com/ethereum/wiki/wiki/JSON-RPC, which also includes
handling Bulk-requests.

Each request may add an optional in3 property defining the verification behavior for incubed.

9.1 Incubed Requests

Requests without a in3 property will also get a response without in3. This allows any incubed node to also act as a
raw ethereum json-rpc endpoint. The in3 property in the request is defined as following:

• chainId string<hex> - the requested chainId. This property is optinal, but should always be specified in
case a node may support multiple chains. In this case the default of the node would be used, which may end up
in a undefined behavior since the client can not know the default.

• includeCode boolean - applies only for eth_call-requests. if true, the request should include the codes
of all accounts. otherwise only the the codeHash is returned. In this case the client may ask by calling
eth_getCode() afterwards

• verifiedHashes string<bytes32>[] - if the client sends a array of blockhashes the server will not deliver
any signatures or blockheaders for these blocks, but only return a string with a number. This allows to client to
skip requiring signed blockhashes for blocks already verified.

• latestBlock integer - if specified, the blocknumber latest will be replaced by blockNumber- specified
value. This allows the incubed client to define finality for PoW-Chains, which is important, since the latest-
block can not considered final and therefore it would be unlikely to find nodes willing to sign a blockhash for
such a block.

• useRef boolean - if true binary-data (starting with a 0x) will be refered if occuring again. This decreases the
payload especially for recurring data such as merkle proofs. If supported the server (and client) will keep track
of each binary value storing them in a temporary array. If the previously used value is used again the server
replaces it with :<index> the client then resolves such refs by lookups in the temp array.

55

https://www.jsonrpc.org/specification

Incubed Documentation, Release 1.2

• useBinary boolean - if true binary-data will be used. This format is optimzed for embedded devices and
reduces the payload to about 30%. For details see the Binary-spec

• useFullProof boolean - if true all data in the response will be proven, which leads to a higher payload. The
result depends on the method called and will be specified there.

• finality number - For PoA-Chains it will deliver additional proof to reach finaliy. if given, the server will
deliver the blockheaders of the following blocks until at least the number in percent of the validators is reached.

• verification string - defines the kind of proof the client is asking forMust be one of the these values :

– 'never’ : no proof will be delivered (default). Also no in3-property will be added to the response, but
only the raw json-rpc response will be returned

– 'proof’ : The proof will be created including blockheader, but without any signed blockhashes

– 'proofWithSignature’ : The returned proof will also includ signed blockhashes as required in
signatures

• signatures string<address>[] - a list of addresses(as 20bytes in hex) requested to sign the blockhash.

A Example of an incubed request may look like this:

{
"jsonrpc": "2.0",
"id": 2,
"method": "eth_getTransactionByHash",
"params": ["0xf84cfb78971ebd940d7e4375b077244e93db2c3f88443bb93c561812cfed055c"],
"in3": {

"chainId": "0x1",
"verification": "proofWithSignature",
"signatures":["0x784bfa9eb182C3a02DbeB5285e3dBa92d717E07a"]

}
}

9.2 Incubed Responses

Each incubed node responses is based on JSON-RPC, but also adds then in3 -property. If the request does not contain
a in3-property or does not require proof, the response must also omit the in3 property.

If the proof is requested, the in3-property is defined with the following properties:

• proof Proof - the Proof-data, which depends on the requested method. For more details, see the Proofs section.

• lastNodeList number - the blocknumber for the last block updating the nodelist. This blocknumber should be
used to indicate changes in the nodelist. If the client has a smaller blocknumber he should update the nodeList.

• lastValidatorChange number - only for PoA-chains. the blocknumber of the last change of the validatorList.
If the client has a smaller number he needs to update the validatorlist first. For details see PoA Validations

• currentBlock number - the current blocknumber. This number may be stored in the client in order to run
sanity checks for latest blocks or eth_blockNumber, since they cannot be verified directly.

An example of such a response would look like this:

{
"jsonrpc": "2.0",
"result": {
"blockHash": "0x2dbbac3abe47a1d0a7843d378fe3b8701ca7892f530fd1d2b13a46b202af4297",
"blockNumber": "0x79fab6",

(continues on next page)

56 Chapter 9. IN3-Specification

Incubed Documentation, Release 1.2

(continued from previous page)

"chainId": "0x1",
"condition": null,
"creates": null,
"from": "0x2c5811cb45ba9387f2e7c227193ad10014960bfc",
"gas": "0x186a0",
"gasPrice": "0x4a817c800",
"hash": "0xf84cfb78971ebd940d7e4375b077244e93db2c3f88443bb93c561812cfed055c",
"input":

→˓"0xa9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c400000
→˓",

"nonce": "0xa8",
"publicKey":

→˓"0x6b30c392dda89d58866bf2c1bedf8229d12c6ae3589d82d0f52ae588838a475aacda64775b7a1b376935d732bb8022630a01c4926e71171eeda938b644d83365
→˓",

"r": "0x4666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96",
"raw":

→˓"0xf8ab81a88504a817c800830186a094d3ebdaea9aeac98de723f640bce4aa07e2e4419280b844a9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c40000025a04666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96a05089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d
→˓",

"s": "0x5089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d",
"standardV": "0x0",
"to": "0xd3ebdaea9aeac98de723f640bce4aa07e2e44192",
"transactionIndex": "0x3e",
"v": "0x25",
"value": "0x0"

},
"id": 2,
"in3": {

"proof": {
"type": "transactionProof",
"block":

→˓"0xf90219a03d050deecd980b16cad9752133333ccdface463cc69e784f32dd981e2e751e34a01dcc4de8dec75d7aab85b567b6ccd41ad312451b948a7413f0a142fd40d4934794829bd824b016326a401d083b33d092293333a830a012892951590f62f4b2802f88e8fddc09c951ad2cac23803e07c4f11e01991907a018a21c8413fc7fc29f09d12f75515993ab38858bfa9e5632670cbba3358f0cfaa02fc4436c96ae4d100921c20b5cb601252de68ddde159bc89f3353555eff0ccccb901009034d281f0400b0920d21f7795b09d8c2b9cd48a939ce476aa84f486c68855684c0804a304a444a17c0ca4420e32a3b29a8218802d9fab5112a82b8d60e12203400084c2a236149a4a44905e120540a1478261a55a399229fe046595236900025de213ea6a000612901d6008080a6f773755182105c9100048a40eb458808a0334a2c5927a9308f300962916898c861a888d8d780508061c2bc54c866078216042497a0cd05dfa65948b8dc4144ca64144883c2422a5280848021328d8a8e41602890d122b0110c27bc014193502a7690d40e00f03a879080b0073f1ae4ab0232b93630c068ecb7b4b923de0012566855524a000502c87906480151e81d2b032870709c2784add128379fab6837a3f58837a12f8845d0b4673987070796520e4b883e5bda9e7a59ee4bb99e9b1bc9329ad43a0e21b342112a946b58fa2f50739166c20aed4647d3ad8e37210d451fb8b243870888f95c17c0647e1f9
→˓",

"merkleProof": [

→˓"0xf90131a00150ff50e29f3df34b89870f183c85a82a73f21722d7e6c787e663159f165010a0b8c56f207a223067c7ae5df7420221327c32f89f36cef8a14c33e5a4e67be9cfa0112091138bbf6bde2e20c88b08d10f8ea08ec298f2daac34d76fc8e248379dc5a0c737a71d34faa7c864930707ac7870b2c7cc28e7d489d21330acfa8deb72d805a075811c4bdef2cc74095e57cacce23debab8ea8e6d8937932678d2fd444367ea9a0e79e4e445e517b7b31ad626acabec77a6e0c846207b91f01ac33e804af096325a07065708e1a9e9b865dbd5e19e521224ae554a5d3064257e5401d7cad900f555aa01a71ef57896ce378fd51bf44a1d0b538d3587d9aecdbf3c6c7f6794bbb0f0fa8a0d720eecae23cd40af5c534b90b00f33b7ec0638b11cc7809058110bf984a02d48080808080808080
→˓",

→˓"0xf90211a0f4a5e4a1197190f910e4a026f50bd6a169716b52be42c99ddb043ad9b4da6117a09ad1def70dd1d991331d013719cca31d35111cf75d3046dffdc9d1897ecfce29a01ada8fa2d6a7f9b44394a0d7fafe8a59810e48596e1258adb57ca51a6a014024a0eeb2d6482d696d623ae7f868aa3463790041c4863f1d47f84d6629f2d5ee88c5a0f1c04c4bc88aa5f24c7e5ac401c5246cf17834e7e68d4b2c9b656a37f510aff1a040446d66c0039c4806ee13da02ebe408abab366332ec2355367ca0dec5aab273a0775b1f53ad22fdcb6fef814d34b910be6a2e6463febb174d4f2064626baf639fa0bb1668055775f8ba59bf071465ffe68db4f916a7eb0ea07126b71d3e30a8fd70a08ad25a05847cdeec5261154c5ae89f03f2a8a813e8804983c677dc0d39e26bfca0a0c6f9e3e55cabbe3a9c0c6713aeb4e70135b9abe21b50bb6e04e6f4a09888d5a011d5422e577e357d26390492378b9328518b263310574b1e0d9e322031485a22a0c2f4f15a1ba6585a87a0dcca7b45dc0bbcd72830df61888d7abf16fef6a4df72a02bf0d1675ebf1c1f2af6793edf748e3184c2ac5522a6640a1b04d3b7bad7e23ca0c80cf2596da4c35f6c5e5348791c64c10d80ccd7668d6ef73a2454f0f11a0f59a03e54112466dbd3791d6e1e281d25470b884c96406e39bd83e8a806cfc8e60219a00e2cc674fa10aefb4dea53ac114e28c6353d30b315d4ba280ab4741920a60ce280
→˓",

→˓"0xf8b020b8adf8ab81a88504a817c800830186a094d3ebdaea9aeac98de723f640bce4aa07e2e4419280b844a9059cbb000000000000000000000000290648fc6f2cb27a2a81dc35a429090872991b920015af1d78b58c40000025a04666976b528fc7802edd9330b935c7d48fce0144ce97ade8236da29878c1aa96a05089dca7ecf7b061bec3cca7726aab1fcb4c8beb51517886f91c9b0ca710b09d
→˓"

],
"txIndex": 62,
"signatures": [

{
"blockHash":

→˓"0x2dbbac3abe47a1d0a7843d378fe3b8701ca7892f530fd1d2b13a46b202af4297",
"block": 7994038,
"r": "0xef73a527ae8d38b595437e6436bd4fa037d50550bf3840ad0cd3c6ca641a951e",
"s": "0x6a5815db16c12b890347d42c014d19b60e1605d2e8e64b729f89e662f9ce706b",
"v": 27,
"msgHash":

→˓"0xa8fc6e2564e496efc5fd7db8e70f03fd50af53e092f47c98329c84c96026fdff"
}

]
},

(continues on next page)

9.2. Incubed Responses 57

Incubed Documentation, Release 1.2

(continued from previous page)

"currentBlock": 7994124,
"lastValidatorChange": 0,
"lastNodeList": 6619795

}
}

9.3 ChainId

Incubed support multiple chains and a client may even run request to different chains in parallel. While in most cases
a chain refers to a specific running blockchain, chainIds may also refer to abstract networks such as ipfs. So then
definition of a chain in the context of incubed is simply a distributed data domain offering verifieable api-functions
implemented in a in3-node.

Each Chain is identified by a uint64 identifier written as hex-value. (without leading zeros) Since incubed started
with ethereum, the chainIds for public ethereum-chains are based on the intrinsic chainId of the ethereum-chain. See
https://chainid.network .

For each Chain incubed manages a list of nodes as stored in the server registry and a chainspec describing the verifi-
cation. These chainspecs are hold in the client as they specify the rules how responses may be validated.

9.4 Registry

As Incubed aims for a fully decentralized access to the blockchain, the registry is implemented as a ethereum smart
contract.

This contract serves different purposes. Primary it serves to manage all the incubed nodes, i.e. it manages both the
onboarding and also unregistering process. In order to do so, it also has to manage the deposits: reverting when the
amount of provided ether is smaller than the current minimum deposit; but also locking and/or sending back deposits
after a servers leaves the in3-netwerk.

In addition, the contract is also used to secure the in3-netwerk by providing functions to convict servers that provided
a wrongly signed block and also having a function to vote out inactive servers.

9.4.1 Node structure

Each Incubed node must be registered in the ServerRegistry in order to be known to the network. A node or server is
defined as

• url string - the public url of the node, which must accept JSON-RPC Requests.

• owner address - the owner of the node with the permission to edit or remove the node.

• signer address - the address used when signing blockhashes. This address must be unique withitn the
nodeList.

• timeout uint64 - timeout after which the owner is allowed to receive his stored deposit. This information
is also important for the client, since a invalid blockhash-signature can only convicted as long as the server is
registered. A long timout may give a higher security since the node can not lie and unregister right away.

• deposit uint256 - the deposit stored for the node, which the node will lose if it signes a wrong blockhash.

• props uint64 - a bitmask defining the capabilities of the node:

58 Chapter 9. IN3-Specification

Incubed Documentation, Release 1.2

– 0x01 : proof : the node is able to deliver proof, if not set it may only server pure Ethereum JSON/RPC,
thus also simple remote nodes may be registered as incubed nodes.

– 0x02 : multichain : the same rpc endpoint may also accept requests for different chains.

– 0x04 : archive : if set, the node is able to support archive requests returning older states. If not only a
pruned node is running.

– 0x08 : http : if set the node will also server requests on standardn http even if the url specifies https. This
is relevant for small embedded devices trying to save resources by not having to run the TLS.

– 0x10 : binary : if set, the node accepts request with binary:true. This reduces the payload to about
30% for embedded devices.

More properties will be added in future versions.

• unregisterTime uint64 - the earliest timestamp when the node can unregister itself by calling
confirmUnregisteringServer. This will only be set after the node requests a unregister. For the client
nodes with a unregisterTime set have a less trust, since he will not be able to convict after this timestamp.

• registerTime uint64 - the timestamp, when the server was registered.

• weight uint64 - the number of parallel requests this node may accept. A higher number indicates a stronger
node, which will be used withtin the incentivication layer to calculate the score.

The following functions are offered within the registry:

9.4.2 NodeRegistry functions

//TODO add interface for new contract.

9.4.3 BlockHashRegistry functions

9.5 Binary Format

Since Incubed is optimized for embedded devices, server may not only support JSON, but a special binary-format.
This binary-format is highly optimized for small devices and will reduce the payload to about 30%. This is achieved
with following optimizations:

• All strings starting with 0xare interpreted as binary data and stored as such, which reduces the size of the data
to 50%.

• All propertyNames of JSON-Objects are hashed to a 16bit-value, reducing the size of the data to a signifivant
amount. (depending on the propertyName).

the hash is calculated very easy like this:

static d_key_t key(const char* c) {
uint16_t val = 0, l = strlen(c);
for (; l; l--, c++) val ^= *c | val << 7;
return val;

}

The binary format is based on JSON-structure, but uses a RLP-encoding aproach. Each node or value is represented
by a these 4 values:

• type d_type_t - 3 bit : defining the type of the element.

9.5. Binary Format 59

Incubed Documentation, Release 1.2

• len uint32_t - 5 bit : the length of the data (for bytes/string/array/object). For (boolean or integer) the length
will specify the value.

• key uint16_t - the key hash of the property. This value will only passed, if the structure is a property of a
JSON-Object.

• value bytes_t - the bytes or value of the node (only for strings or bytes)

The serialization depends on the type, which is defined in the first 3 bits of the first byte of the element:

d_type_t type = *val >> 5; // first 3 bits define the type
uint8_t len = *val & 0x1F; // the other 5 bits (0-31) the length

the len depends on ther size of the data. so the last 5 bit of the first bytes are interpreted as following:

• 0x00 - 0x1c : the length is taken as is from the 5 bits.

• 0x1d - 0x1f : the length is taken by reading the value of the next len - 0x1c bytes.

After the type-byte and optional length bytes the 2 bytes representing the property hash is added, but only if the
elemtent is a property of a JSON-object.

Depending on these type the length will be used to read the next bytes:

• 0x0 : binary data - This would be a value or property with binary data. The len will be used to read the
number of bytes as binary data.

• 0x1 : string data - This would be a value or property with string data. The len will be used to read the number
of bytes (+1) as string. The string will always be null-terminated, since it will allow small devices to use the
data directly instead copying memory in RAM.

• 0x2 : array - represents a array node, where the len represents the number of elements in the array. The array
elements will be added right after the array-node.

• 0x3 : object - a JSON-object with len properties comming next. In this case the properties following this
element will have a key specified.

• 0x4 : boolean - boolean value where len must be either 0x1= true or 0x0 = false.

• 0x5 : integer - a integer-value with max 29 bit (since the 3 bits are used for the type). if the value is higher than
0x20000000, it will be stored as binary data.

• 0x6 : null - represents a null-value. if this value has a len> 0 it will indicate the beginning of data, where len
will be used to specify the number of elements to follow. This is optional, but helps small devices to allocate the
right amount of memory.

9.6 Communication

9.7 Proofs

9.8 RPC-Methods Ethereum

This section describes the behavior for each standard-rpc-method.

60 Chapter 9. IN3-Specification

Incubed Documentation, Release 1.2

9.8.1 web3_clientVersion

Returns the underlying client version.

See web3_clientversion for spec. No Proof or verifiaction possible.

9.8.2 web3_sha3

Returns Keccak-256 (not the standardized SHA3-256) of the given data.

See web3_sha3 for spec. No Proof returned, but the client must verify the result by hashing the request data itself.

9.8.3 net_version

Returns the current network id.

See net_version for spec. No Proof returned, but the client must verify the result by comparing it to the used chainId.

9.8.4 eth_blockNumber

Returns the number of most recent block.

See eth_blockNumber for spec. No Proof returned, since there is none, but the client should verify the result by
comparing it to the current blocks returned from other. With the blockTime from the chainspec including a tolerance
the cuurrent blocknumber may be checked if in the proposed range.

9.8.5 eth_getBalance

Returns the balance of the account of given address.

See eth_getBalance for spec.

A AccountProof, since there is none, but the client should verify the result by comparing it to the current blocks
returned from other. With the blockTime from the chainspec including a tolerance the cuurrent blocknumber may
be checked if in the proposed range.

9.9 PoA Validations

9.9. PoA Validations 61

https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_clientversion
https://github.com/ethereum/wiki/wiki/JSON-RPC#web3_sha3
https://github.com/ethereum/wiki/wiki/JSON-RPC#net_version
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_blockNumber
https://github.com/ethereum/wiki/wiki/JSON-RPC#eth_getBalance

Incubed Documentation, Release 1.2

62 Chapter 9. IN3-Specification

CHAPTER 10

API Reference TS

This page contains a list of all Datastructures and Classes used within the TypeScript IN3 Client.

• AccountProof : interface - the Proof-for a single Account

• AuraValidatoryProof : interface - a Object holding proofs for validator logs. The key is the blockNumber
as hex

• BlockData : interface - Block as returned by eth_getBlockByNumber

• ChainSpec : interface - describes the chainspecific consensus params

• IN3Client : class - Client for N3.

• IN3Config : interface - the iguration of the IN3-Client. This can be paritally overriden for every request.

• IN3NodeConfig : interface - a configuration of a in3-server.

• IN3NodeWeight : interface - a local weight of a n3-node. (This is used internally to weight the requests)

• IN3RPCConfig : interface - the configuration for the rpc-handler

• IN3RPCHandlerConfig : interface - the configuration for the rpc-handler

• IN3RPCRequestConfig : interface - additional config for a IN3 RPC-Request

• IN3ResponseConfig : interface - additional data returned from a IN3 Server

• LogData : interface - LogData as part of the TransactionReceipt

• LogProof : interface - a Object holding proofs for event logs. The key is the blockNumber as hex

• Proof : interface - the Proof-data as part of the in3-section

• RPCRequest : interface - a JSONRPC-Request with N3-Extension

• RPCResponse : interface - a JSONRPC-Responset with N3-Extension

• ReceiptData : interface - TransactionReceipt as returned by eth_getTransactionReceipt

• ServerList : interface - a List of nodes

63

Incubed Documentation, Release 1.2

• Signature : interface - Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the
X coordinate of a point R, modulo the curve order n.

• TransactionData : interface - Transaction as returned by eth_getTransactionByHash

• Transport : interface - A Transport-object responsible to transport the message to the handler.

• AxiosTransport : class - Default Transport impl sending http-requests.

• cbor

– createRefs(val :T, cache :string[] = []) :T

– decodeRequests(request :Buffer) :RPCRequest[]

– decodeResponses(responses :Buffer) :RPCResponse[]

– encodeRequests(requests :RPCRequest[]) :Buffer - turn

– encodeResponses(responses :RPCResponse[]) :Buffer

– resolveRefs(val :T, cache :string[] = []) :T

• chainAliases

– goerli :string

– ipfs :string

– kovan :string

– main :string

– mainnet :string

– tobalaba :string

• chainData

– callContract(client :Client, contract :string, chainId :string, signature :string, args :any[],
config :IN3Config) :Promise<any>

– getChainData(client :Client, chainId :string, config :IN3Config) :Promise<>

• createRandomIndexes(len :number, limit :number, seed :Buffer, result :number[] = []) :number[]

• eth : class

• header

– AuthSpec :interface - Authority specification for proof of authority chains

– checkBlockSignatures(blockHeaders :string|Buffer|Block|BlockData[], getChainSpec :)
:Promise<number> - verify a Blockheader and returns the percentage of finality

– getChainSpec(b :Block, ctx :ChainContext) :Promise<AuthSpec>

– getSigner(data :Block) :Buffer

• serialize

– Block :class - encodes and decodes the blockheader

– AccountData :interface - Account-Object

– BlockData :interface - Block as returned by eth_getBlockByNumber

– LogData :interface - LogData as part of the TransactionReceipt

– ReceiptData :interface - TransactionReceipt as returned by eth_getTransactionReceipt

64 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/index.ts#L33
https://github.com/slockit/in3/blob/master/src/util/cbor.ts#L86
https://github.com/slockit/in3/blob/master/src/util/cbor.ts#L30
https://github.com/slockit/in3/blob/master/src/util/cbor.ts#L44
https://github.com/slockit/in3/blob/master/src/util/cbor.ts#L26
https://github.com/slockit/in3/blob/master/src/util/cbor.ts#L41
https://github.com/slockit/in3/blob/master/src/util/cbor.ts#L107
https://github.com/slockit/in3/blob/master/src/index.ts#L82
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L698
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L698
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L698
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L698
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L698
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L698
https://github.com/slockit/in3/blob/master/src/index.ts#L49
https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L27
https://github.com/slockit/in3/blob/master/src/modules/eth/chainData.ts#L36
https://github.com/slockit/in3/blob/master/src/client/serverList.ts#L32
https://github.com/slockit/in3/blob/master/src/index.ts#L39
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L27
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L211
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L76
https://github.com/slockit/in3/blob/master/src/index.ts#L36

Incubed Documentation, Release 1.2

– TransactionData :interface - Transaction as returned by eth_getTransactionByHash

– Account :Buffer[] - Buffer[] of the Account

– BlockHeader :Buffer[] - Buffer[] of the header

– Receipt : - Buffer[] of the Receipt

– Transaction :Buffer[] - Buffer[] of the transaction

– rlp - RLP-functions

– address(val :any) :any - converts it to a Buffer with 20 bytes length

– blockFromHex(hex :string) :Block - converts a hexstring to a block-object

– blockToHex(block :any) :string - converts blockdata to a hexstring

– bytes(val :any) :any - converts it to a Buffer

– bytes256(val :any) :any - converts it to a Buffer with 256 bytes length

– bytes32(val :any) :any - converts it to a Buffer with 32 bytes length

– bytes8(val :any) :any - converts it to a Buffer with 8 bytes length

– createTx(transaction :any) :any - creates a Transaction-object from the rpc-transaction-data

– hash(val :Block|Transaction|Receipt|Account|Buffer) :Buffer - returns the hash of the ob-
ject

– serialize(val :Block|Transaction|Receipt|Account) :Buffer - serialize the data

– toAccount(account :AccountData) :Buffer[]

– toBlockHeader(block :BlockData) :Buffer[] - create a Buffer[] from RPC-Response

– toReceipt(r :ReceiptData) :Object - create a Buffer[] from RPC-Response

– toTransaction(tx :TransactionData) :Buffer[] - create a Buffer[] from RPC-Response

– uint(val :any) :any - converts it to a Buffer with a variable length. 0 = length 0

– uint64(val :any) :any

• storage

– getStorageArrayKey(pos :number, arrayIndex :number, structSize :number = 1, structPos :number
= 0) :any - calc the storrage array key

– getStorageMapKey(pos :number, key :string, structPos :number = 0) :any - calcs the storage Map
key.

– getStorageValue(rpc :string, contract :string, pos :number, type
:'address'|'bytes32'|'bytes16'|'bytes4'|'int'|'string', keyOrIndex
:number|string, structSize :number, structPos :number) :Promise<any> - get a storage
value from the server

– getStringValue(data :Buffer, storageKey :Buffer) :string| - creates a string from storage.

– getStringValueFromList(values :Buffer[], len :number) :string - concats the storage values to a
string.

– toBN(val :any) :any - converts any value to BN

• transport

– AxiosTransport :class - Default Transport impl sending http-requests.

65

https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L33
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L27
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L36
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L30
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L25
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L145
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L313
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L308
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L143
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L137
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L139
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L141
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L280
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L131
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L128
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L191
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L152
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L200
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L177
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L147
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L149
https://github.com/slockit/in3/blob/master/src/index.ts#L42
https://github.com/slockit/in3/blob/master/src/modules/eth/storage.ts#L28
https://github.com/slockit/in3/blob/master/src/modules/eth/storage.ts#L40
https://github.com/slockit/in3/blob/master/src/modules/eth/storage.ts#L88
https://github.com/slockit/in3/blob/master/src/modules/eth/storage.ts#L50
https://github.com/slockit/in3/blob/master/src/modules/eth/storage.ts#L69
https://github.com/slockit/in3/blob/master/src/modules/eth/storage.ts#L76
https://github.com/slockit/in3/blob/master/src/index.ts#L45

Incubed Documentation, Release 1.2

– Transport :interface - A Transport-object responsible to transport the message to the handler.

• typeDefs

– AccountProof : Object

– AuraValidatoryProof : Object

– ChainSpec : Object

– IN3Config : Object

– IN3NodeConfig : Object

– IN3NodeWeight : Object

– IN3RPCConfig : Object

– IN3RPCHandlerConfig : Object

– IN3RPCRequestConfig : Object

– IN3ResponseConfig : Object

– LogProof : Object

– Proof : Object

– RPCRequest : Object

– RPCResponse : Object

– ServerList : Object

– Signature : Object

• util

– checkForError(res :T) :T - check a RPC-Response for errors and rejects the promise if found

– getAddress(pk :string) :string - returns a address from a private key

– padEnd(val :string, minLength :number, fill :string = “ “) :string - padEnd for legacy

– padStart(val :string, minLength :number, fill :string = “ “) :string - padStart for legacy

– promisify(self :any, fn :any, args :any[]) :Promise<any> - simple promisy-function

– toBN(val :any) :any - convert to BigNumber

– toBuffer(val :any, len :number = -1) :any - converts any value as Buffer if len === 0 it will return an
empty Buffer if the value is 0 or ‘0x00’, since this is the way rlpencode works wit 0-values.

– toHex(val :any, bytes :number) :string - converts any value as hex-string

– toMinHex(key :string|Buffer|number) :string - removes all leading 0 in the hexstring

– toNumber(val :any) :number - converts to a js-number

– toSimpleHex(val :string) :string - removes all leading 0 in a hex-string

– toUtf8(val :any) :string

• validate(ob :any, def :any) :void

66 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/index.ts#L80
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/types/types.ts#L860
https://github.com/slockit/in3/blob/master/src/index.ts#L28
https://github.com/slockit/in3/blob/master/src/util/util.ts#L58
https://github.com/slockit/in3/blob/master/src/util/util.ts#L162
https://github.com/slockit/in3/blob/master/src/util/util.ts#L195
https://github.com/slockit/in3/blob/master/src/util/util.ts#L188
https://github.com/slockit/in3/blob/master/src/util/util.ts#L36
https://github.com/slockit/in3/blob/master/src/util/util.ts#L67
https://github.com/slockit/in3/blob/master/src/util/util.ts#L119
https://github.com/slockit/in3/blob/master/src/util/util.ts#L77
https://github.com/slockit/in3/blob/master/src/util/util.ts#L168
https://github.com/slockit/in3/blob/master/src/util/util.ts#L98
https://github.com/slockit/in3/blob/master/src/util/util.ts#L151
https://github.com/slockit/in3/blob/master/src/util/util.ts#L47
https://github.com/slockit/in3/blob/master/src/util/validate.ts#L55

Incubed Documentation, Release 1.2

10.1 Type AccountProof

the Proof-for a single Account

Source: types/types.ts

• accountProof :string[] - the serialized merle-noodes beginning with the root-node

• address :string - the address of this account

• balance :string - the balance of this account as hex

• code :string (optional) - the code of this account as hex (if required)

• codeHash :string - the codeHash of this account as hex

• nonce :string - the nonce of this account as hex

• storageHash :string - the storageHash of this account as hex

• storageProof :[] - proof for requested storage-data

10.2 Type AuraValidatoryProof

a Object holding proofs for validator logs. The key is the blockNumber as hex

Source: types/types.ts

• block :string - the serialized blockheader example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• finalityBlocks :any[] (optional) - the serialized blockheader as hex, required in case of finality asked example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• logIndex :number - the transaction log index

• proof :string[] - the merkleProof

• txIndex :number - the transactionIndex within the block

10.3 Type BlockData

Block as returned by eth_getBlockByNumber

Source: modules/eth/serialize.ts

• coinbase :string (optional)

• difficulty :string|number

• extraData :string

• gasLimit :string|number

• gasUsed :string|number

• hash :string

• logsBloom :string

• miner :string

• mixHash :string (optional)

10.1. Type AccountProof 67

https://github.com/slockit/in3/blob/master/src/types/types.ts#L6
https://github.com/slockit/in3/blob/master/src/types/types.ts#L10
https://github.com/slockit/in3/blob/master/src/types/types.ts#L14
https://github.com/slockit/in3/blob/master/src/types/types.ts#L18
https://github.com/slockit/in3/blob/master/src/types/types.ts#L26
https://github.com/slockit/in3/blob/master/src/types/types.ts#L22
https://github.com/slockit/in3/blob/master/src/types/types.ts#L30
https://github.com/slockit/in3/blob/master/src/types/types.ts#L34
https://github.com/slockit/in3/blob/master/src/types/types.ts#L38
https://github.com/slockit/in3/blob/master/src/types/types.ts#L56
https://github.com/slockit/in3/blob/master/src/types/types.ts#L65
https://github.com/slockit/in3/blob/master/src/types/types.ts#L78
https://github.com/slockit/in3/blob/master/src/types/types.ts#L60
https://github.com/slockit/in3/blob/master/src/types/types.ts#L73
https://github.com/slockit/in3/blob/master/src/types/types.ts#L69
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L39
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L44
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L50
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L55
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L52
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L53
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L40
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L49
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L43
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L57

Incubed Documentation, Release 1.2

• nonce :string|number (optional)

• number :string|number

• parentHash :string

• receiptRoot :string (optional)

• receiptsRoot :string

• sealFields :string[] (optional)

• sha3Uncles :string

• stateRoot :string

• timestamp :string|number

• transactions :any[] (optional)

• transactionsRoot :string

• uncles :string[] (optional)

10.4 Type ChainSpec

describes the chainspecific consensus params

Source: types/types.ts

• engine :string (optional) - the engine type (like Ethhash, authorityRound, . . .)

• validatorContract :string (optional) - the aura contract to get the validators

• validatorList :any[] (optional) - the list of validators

10.5 Type Client

Client for N3.

Source: client/Client.ts

• defaultMaxListeners :number

• static listenerCount(emitter :EventEmitter, event :string|symbol) :number

• constructor constructor(config :Partial<IN3Config> = {}, transport :Transport) :Client - cre-
ates a new Client.

• defConfig :IN3Config - the iguration of the IN3-Client. This can be paritally overriden for every request.

• eth :EthAPI

• ipfs :IpfsAPI

• config()

• addListener(event :string|symbol, listener :) :this

• call(method :string, params :any, chain :string, config :Partial<IN3Config>) :Promise<any> -
sends a simply RPC-Request

• clearStats() :void - clears all stats and weights, like blocklisted nodes

68 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L58
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L51
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L41
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L48
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L47
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L56
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L42
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L45
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L54
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L59
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L46
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L60
https://github.com/slockit/in3/blob/master/src/types/types.ts#L83
https://github.com/slockit/in3/blob/master/src/types/types.ts#L87
https://github.com/slockit/in3/blob/master/src/types/types.ts#L91
https://github.com/slockit/in3/blob/master/src/types/types.ts#L95
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L54
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L9
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L8
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L63
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L61
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L57
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L58
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L11
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L217
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L249

Incubed Documentation, Release 1.2

• createWeb3Provider() :any

• emit(event :string|symbol, args :any[]) :boolean

• eventNames() :Array<>

• getChainContext(chainId :string) :ChainContext

• getMaxListeners() :number

• listenerCount(type :string|symbol) :number

• listeners(event :string|symbol) :Function[]

• off(event :string|symbol, listener :) :this

• on(event :string|symbol, listener :) :this

• once(event :string|symbol, listener :) :this

• prependListener(event :string|symbol, listener :) :this

• prependOnceListener(event :string|symbol, listener :) :this

• rawListeners(event :string|symbol) :Function[]

• removeAllListeners(event :string|symbol) :this

• removeListener(event :string|symbol, listener :) :this

• send(request :RPCRequest[]|RPCRequest, callback :, config :Partial<IN3Config>) :Promise<> -
sends one or a multiple requests. if the request is a array the response will be a array as well. If the callback is
given it will be called with the response, if not a Promise will be returned. This function supports callback so it
can be used as a Provider for the web3.

• sendRPC(method :string, params :any[] = [], chain :string, config :Partial<IN3Config>)
:Promise<RPCResponse> - sends a simply RPC-Request

• setMaxListeners(n :number) :this

• updateNodeList(chainId :string, conf :Partial<IN3Config>, retryCount :number = 5)
:Promise<void> - fetches the nodeList from the servers.

10.6 Type IN3Config

the iguration of the IN3-Client. This can be paritally overriden for every request.

Source: types/types.ts

• autoConfig :boolean (optional) - if true the config will be adjusted depending on the request

• autoUpdateList :boolean (optional) - if true the nodelist will be automaticly updated if the lastBlock is newer
example: true

• cacheStorage :any (optional) - a cache handler offering 2 functions (setItem(string,string), getItem(string))

• cacheTimeout :number (optional) - number of seconds requests can be cached.

• chainId :string - servers to filter for the given chain. The chain-id based on EIP-155. example: 0x1

• chainRegistry :string (optional) - main chain-registry contract example:
0xe36179e2286ef405e929C90ad3E70E649B22a945

• finality :number (optional) - the number in percent needed in order reach finality (% of signature of the val-
idators) example: 50

10.6. Type IN3Config 69

https://github.com/slockit/in3/blob/master/src/client/Client.ts#L110
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L23
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L24
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L117
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L20
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L25
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L21
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L17
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L12
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L13
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L14
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L15
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L22
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L18
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L16
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L229
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L206
https://github.com/slockit/in3/blob/master/src//Users/simon/ws/in3/ts/in3/node_modules/@types/node/events.d.ts#L19
https://github.com/slockit/in3/blob/master/src/client/Client.ts#L140
https://github.com/slockit/in3/blob/master/src/types/types.ts#L100
https://github.com/slockit/in3/blob/master/src/types/types.ts#L127
https://github.com/slockit/in3/blob/master/src/types/types.ts#L209
https://github.com/slockit/in3/blob/master/src/types/types.ts#L213
https://github.com/slockit/in3/blob/master/src/types/types.ts#L104
https://github.com/slockit/in3/blob/master/src/types/types.ts#L194
https://github.com/slockit/in3/blob/master/src/types/types.ts#L199
https://github.com/slockit/in3/blob/master/src/types/types.ts#L184

Incubed Documentation, Release 1.2

• format :'json'|'jsonRef'|'cbor' (optional) - the format for sending the data to the client. Default is
json, but using cbor means using only 30-40% of the payload since it is using binary encoding example: json

• includeCode :boolean (optional) - if true, the request should include the codes of all accounts. otherwise
only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards example:
true

• keepIn3 :boolean (optional) - if true, the in3-section of thr response will be kept. Otherwise it will be removed
after validating the data. This is useful for debugging or if the proof should be used afterwards.

• key :any (optional) - the client key to sign requests example: 0x387a8233c96e1fc0ad5e284353276177af2186e7afa85296f106336e376669f7

• loggerUrl :string (optional) - a url of RES-Endpoint, the client will log all errors to. The client will post to
this endpoint JSON like { id?, level, message, meta? }

• mainChain :string (optional) - main chain-id, where the chain registry is running. example: 0x1

• maxAttempts :number (optional) - max number of attempts in case a response is rejected example: 10

• maxBlockCache :number (optional) - number of number of blocks cached in memory example: 100

• maxCodeCache :number (optional) - number of max bytes used to cache the code in memory example:
100000

• minDeposit :number - min stake of the server. Only nodes owning at least this amount will be chosen.

• nodeLimit :number (optional) - the limit of nodes to store in the client. example: 150

• proof :'none'|'standard'|'full' (optional) - if true the nodes should send a proof of the response
example: true

• replaceLatestBlock :number (optional) - if specified, the blocknumber latest will be replaced by
blockNumber- specified value example: 6

• requestCount :number - the number of request send when getting a first answer example: 3

• retryWithoutProof :boolean (optional) - if true the the request may be handled without proof in case of an
error. (use with care!)

• rpc :string (optional) - url of one or more rpc-endpoints to use. (list can be comma seperated)

• servers (optional) - the nodelist per chain

• signatureCount :number (optional) - number of signatures requested example: 2

• timeout :number (optional) - specifies the number of milliseconds before the request times out. increasing
may be helpful if the device uses a slow connection. example: 3000

• verifiedHashes :string[] (optional) - if the client sends a array of blockhashes the server will not deliver any
signatures or blockheaders for these blocks, but only return a string with a number. This is automaticly updated
by the cache, but can be overriden per request.

10.7 Type IN3NodeConfig

a configuration of a in3-server.

Source: types/types.ts

• address :string - the address of the node, which is the public address it iis signing with. example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• capacity :number (optional) - the capacity of the node. example: 100

• chainIds :string[] - the list of supported chains example: 0x1

70 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L118
https://github.com/slockit/in3/blob/master/src/types/types.ts#L141
https://github.com/slockit/in3/blob/master/src/types/types.ts#L113
https://github.com/slockit/in3/blob/master/src/types/types.ts#L123
https://github.com/slockit/in3/blob/master/src/types/types.ts#L217
https://github.com/slockit/in3/blob/master/src/types/types.ts#L204
https://github.com/slockit/in3/blob/master/src/types/types.ts#L136
https://github.com/slockit/in3/blob/master/src/types/types.ts#L151
https://github.com/slockit/in3/blob/master/src/types/types.ts#L146
https://github.com/slockit/in3/blob/master/src/types/types.ts#L169
https://github.com/slockit/in3/blob/master/src/types/types.ts#L109
https://github.com/slockit/in3/blob/master/src/types/types.ts#L160
https://github.com/slockit/in3/blob/master/src/types/types.ts#L174
https://github.com/slockit/in3/blob/master/src/types/types.ts#L179
https://github.com/slockit/in3/blob/master/src/types/types.ts#L131
https://github.com/slockit/in3/blob/master/src/types/types.ts#L221
https://github.com/slockit/in3/blob/master/src/types/types.ts#L225
https://github.com/slockit/in3/blob/master/src/types/types.ts#L165
https://github.com/slockit/in3/blob/master/src/types/types.ts#L189
https://github.com/slockit/in3/blob/master/src/types/types.ts#L155
https://github.com/slockit/in3/blob/master/src/types/types.ts#L284
https://github.com/slockit/in3/blob/master/src/types/types.ts#L294
https://github.com/slockit/in3/blob/master/src/types/types.ts#L319
https://github.com/slockit/in3/blob/master/src/types/types.ts#L309

Incubed Documentation, Release 1.2

• deposit :number - the deposit of the node in wei example: 12350000

• index :number (optional) - the index within the contract example: 13

• props :number (optional) - the properties of the node. example: 3

• timeout :number (optional) - the time (in seconds) until an owner is able to receive his deposit back after he
unregisters himself example: 3600

• url :string - the endpoint to post to example: https://in3.slock.it

10.8 Type IN3NodeWeight

a local weight of a n3-node. (This is used internally to weight the requests)

Source: types/types.ts

• avgResponseTime :number (optional) - average time of a response in ms example: 240

• blacklistedUntil :number (optional) - blacklisted because of failed requests until the timestamp example:
1529074639623

• lastRequest :number (optional) - timestamp of the last request in ms example: 1529074632623

• pricePerRequest :number (optional) - last price

• responseCount :number (optional) - number of uses. example: 147

• weight :number (optional) - factor the weight this noe (default 1.0) example: 0.5

10.9 Type IN3RPCConfig

the configuration for the rpc-handler

Source: types/types.ts

• chains (optional) - a definition of the Handler per chain

• db (optional)

– database :string (optional) - name of the database

– host :string (optional) - db-host (default = localhost)

– password :string (optional) - password for db-access

– port :number (optional) - the database port

– user :string (optional) - username for the db

• defaultChain :string (optional) - the default chainId in case the request does not contain one.

• id :string (optional) - a identifier used in logfiles as also for reading the config from the database

• logging (optional) - logger config

– colors :boolean (optional) - if true colors will be used

– file :string (optional) - the path to the logile

– host :string (optional) - the host for custom logging

– level :string (optional) - Loglevel

10.8. Type IN3NodeWeight 71

https://github.com/slockit/in3/blob/master/src/types/types.ts#L314
https://github.com/slockit/in3/blob/master/src/types/types.ts#L289
https://github.com/slockit/in3/blob/master/src/types/types.ts#L324
https://github.com/slockit/in3/blob/master/src/types/types.ts#L299
https://github.com/slockit/in3/blob/master/src/types/types.ts#L304
https://github.com/slockit/in3/blob/master/src/types/types.ts#L329
https://github.com/slockit/in3/blob/master/src/types/types.ts#L344
https://github.com/slockit/in3/blob/master/src/types/types.ts#L358
https://github.com/slockit/in3/blob/master/src/types/types.ts#L353
https://github.com/slockit/in3/blob/master/src/types/types.ts#L348
https://github.com/slockit/in3/blob/master/src/types/types.ts#L339
https://github.com/slockit/in3/blob/master/src/types/types.ts#L334
https://github.com/slockit/in3/blob/master/src/types/types.ts#L363
https://github.com/slockit/in3/blob/master/src/types/types.ts#L456
https://github.com/slockit/in3/blob/master/src/types/types.ts#L376
https://github.com/slockit/in3/blob/master/src/types/types.ts#L396
https://github.com/slockit/in3/blob/master/src/types/types.ts#L388
https://github.com/slockit/in3/blob/master/src/types/types.ts#L384
https://github.com/slockit/in3/blob/master/src/types/types.ts#L392
https://github.com/slockit/in3/blob/master/src/types/types.ts#L380
https://github.com/slockit/in3/blob/master/src/types/types.ts#L371
https://github.com/slockit/in3/blob/master/src/types/types.ts#L367
https://github.com/slockit/in3/blob/master/src/types/types.ts#L423
https://github.com/slockit/in3/blob/master/src/types/types.ts#L435
https://github.com/slockit/in3/blob/master/src/types/types.ts#L427
https://github.com/slockit/in3/blob/master/src/types/types.ts#L451
https://github.com/slockit/in3/blob/master/src/types/types.ts#L431

Incubed Documentation, Release 1.2

– name :string (optional) - the name of the provider

– port :number (optional) - the port for custom logging

– type :string (optional) - the module of the provider

• port :number (optional) - the listeneing port for the server

• profile (optional)

– comment :string (optional) - comments for the node

– icon :string (optional) - url to a icon or logo of company offering this node

– name :string (optional) - name of the node or company

– noStats :boolean (optional) - if active the stats will not be shown (default:false)

– url :string (optional) - url of the website of the company

10.10 Type IN3RPCHandlerConfig

the configuration for the rpc-handler

Source: types/types.ts

• autoRegistry (optional)

– capabilities (optional)

* multiChain :boolean (optional) - if true, this node is able to deliver multiple chains

* proof :boolean (optional) - if true, this node is able to deliver proofs

– capacity :number (optional) - max number of parallel requests

– deposit :number - the deposit you want ot store

– depositUnit :'ether'|'finney'|'szabo'|'wei' (optional) - unit of the deposit value

– url :string - the public url to reach this node

• clientKeys :string (optional) - a comma sepearted list of client keys to use for simulating clients for the
watchdog

• freeScore :number (optional) - the score for requests without a valid signature

• handler :'eth'|'ipfs'|'btc' (optional) - the impl used to handle the calls

• ipfsUrl :string (optional) - the url of the ipfs-client

• maxThreads :number (optional) - the maximal number of threads ofr running parallel processes

• minBlockHeight :number (optional) - the minimal blockheight in order to sign

• persistentFile :string (optional) - the filename of the file keeping track of the last handled blocknumber

• privateKey :string - the private key used to sign blockhashes. this can be either a 0x-prefixed string with the
raw private key or the path to a key-file.

• privateKeyPassphrase :string (optional) - the password used to decrpyt the private key

• registry :string - the address of the server registry used in order to update the nodeList

• registryRPC :string (optional) - the url of the client in case the registry is not on the same chain.

• rpcUrl :string - the url of the client

72 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/types/types.ts#L439
https://github.com/slockit/in3/blob/master/src/types/types.ts#L447
https://github.com/slockit/in3/blob/master/src/types/types.ts#L443
https://github.com/slockit/in3/blob/master/src/types/types.ts#L375
https://github.com/slockit/in3/blob/master/src/types/types.ts#L398
https://github.com/slockit/in3/blob/master/src/types/types.ts#L414
https://github.com/slockit/in3/blob/master/src/types/types.ts#L402
https://github.com/slockit/in3/blob/master/src/types/types.ts#L410
https://github.com/slockit/in3/blob/master/src/types/types.ts#L418
https://github.com/slockit/in3/blob/master/src/types/types.ts#L406
https://github.com/slockit/in3/blob/master/src/types/types.ts#L463
https://github.com/slockit/in3/blob/master/src/types/types.ts#L528
https://github.com/slockit/in3/blob/master/src/types/types.ts#L545
https://github.com/slockit/in3/blob/master/src/types/types.ts#L553
https://github.com/slockit/in3/blob/master/src/types/types.ts#L549
https://github.com/slockit/in3/blob/master/src/types/types.ts#L540
https://github.com/slockit/in3/blob/master/src/types/types.ts#L536
https://github.com/slockit/in3/blob/master/src/types/types.ts#L544
https://github.com/slockit/in3/blob/master/src/types/types.ts#L532
https://github.com/slockit/in3/blob/master/src/types/types.ts#L483
https://github.com/slockit/in3/blob/master/src/types/types.ts#L491
https://github.com/slockit/in3/blob/master/src/types/types.ts#L467
https://github.com/slockit/in3/blob/master/src/types/types.ts#L471
https://github.com/slockit/in3/blob/master/src/types/types.ts#L499
https://github.com/slockit/in3/blob/master/src/types/types.ts#L495
https://github.com/slockit/in3/blob/master/src/types/types.ts#L503
https://github.com/slockit/in3/blob/master/src/types/types.ts#L515
https://github.com/slockit/in3/blob/master/src/types/types.ts#L519
https://github.com/slockit/in3/blob/master/src/types/types.ts#L523
https://github.com/slockit/in3/blob/master/src/types/types.ts#L527
https://github.com/slockit/in3/blob/master/src/types/types.ts#L479

Incubed Documentation, Release 1.2

• startBlock :number (optional) - blocknumber to start watching the registry

• timeout :number (optional) - number of milliseconds to wait before a request gets a timeout

• watchInterval :number (optional) - the number of seconds of the interval for checking for new events

• watchdogInterval :number (optional) - average time between sending requests to the same node. 0 turns it off
(default)

10.11 Type IN3RPCRequestConfig

additional config for a IN3 RPC-Request

Source: types/types.ts

• chainId :string - the requested chainId example: 0x1

• clientSignature :any (optional) - the signature of the client

• finality :number (optional) - if given the server will deliver the blockheaders of the following blocks until at
least the number in percent of the validators is reached.

• includeCode :boolean (optional) - if true, the request should include the codes of all accounts. otherwise
only the the codeHash is returned. In this case the client may ask by calling eth_getCode() afterwards example:
true

• latestBlock :number (optional) - if specified, the blocknumber latest will be replaced by blockNumber- spec-
ified value example: 6

• signatures :string[] (optional) - a list of addresses requested to sign the blockhash example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• useBinary :boolean (optional) - if true binary-data will be used.

• useFullProof :boolean (optional) - if true all data in the response will be proven, which leads to a higher
payload.

• useRef :boolean (optional) - if true binary-data (starting with a 0x) will be refered if occuring again.

• verification :'never'|'proof'|'proofWithSignature' (optional) - defines the kind of proof the client
is asking for example: proof

• verifiedHashes :string[] (optional) - if the client sends a array of blockhashes the server will not deliver any
signatures or blockheaders for these blocks, but only return a string with a number.

10.12 Type IN3ResponseConfig

additional data returned from a IN3 Server

Source: types/types.ts

• currentBlock :number (optional) - the current blocknumber. example: 320126478

• lastNodeList :number (optional) - the blocknumber for the last block updating the nodelist. If the client has a
smaller blocknumber he should update the nodeList. example: 326478

• lastValidatorChange :number (optional) - the blocknumber of gthe last change of the validatorList

• proof :Proof (optional) - the Proof-data

10.11. Type IN3RPCRequestConfig 73

https://github.com/slockit/in3/blob/master/src/types/types.ts#L507
https://github.com/slockit/in3/blob/master/src/types/types.ts#L475
https://github.com/slockit/in3/blob/master/src/types/types.ts#L511
https://github.com/slockit/in3/blob/master/src/types/types.ts#L487
https://github.com/slockit/in3/blob/master/src/types/types.ts#L560
https://github.com/slockit/in3/blob/master/src/types/types.ts#L565
https://github.com/slockit/in3/blob/master/src/types/types.ts#L604
https://github.com/slockit/in3/blob/master/src/types/types.ts#L595
https://github.com/slockit/in3/blob/master/src/types/types.ts#L570
https://github.com/slockit/in3/blob/master/src/types/types.ts#L579
https://github.com/slockit/in3/blob/master/src/types/types.ts#L609
https://github.com/slockit/in3/blob/master/src/types/types.ts#L587
https://github.com/slockit/in3/blob/master/src/types/types.ts#L591
https://github.com/slockit/in3/blob/master/src/types/types.ts#L583
https://github.com/slockit/in3/blob/master/src/types/types.ts#L600
https://github.com/slockit/in3/blob/master/src/types/types.ts#L574
https://github.com/slockit/in3/blob/master/src/types/types.ts#L614
https://github.com/slockit/in3/blob/master/src/types/types.ts#L632
https://github.com/slockit/in3/blob/master/src/types/types.ts#L623
https://github.com/slockit/in3/blob/master/src/types/types.ts#L627
https://github.com/slockit/in3/blob/master/src/types/types.ts#L618

Incubed Documentation, Release 1.2

10.13 Type LogData

LogData as part of the TransactionReceipt

Source: modules/eth/serialize.ts

• address :string

• blockHash :string

• blockNumber :string

• data :string

• logIndex :string

• removed :boolean

• topics :string[]

• transactionHash :string

• transactionIndex :string

• transactionLogIndex :string

10.14 Type LogProof

a Object holding proofs for event logs. The key is the blockNumber as hex

Source: types/types.ts

10.15 Type Proof

the Proof-data as part of the in3-section

Source: types/types.ts

• accounts (optional) - a map of addresses and their AccountProof

• block :string (optional) - the serialized blockheader as hex, required in most proofs example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• finalityBlocks :any[] (optional) - the serialized blockheader as hex, required in case of finality asked example:
0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda6463a8f1ebb14f3aff6b19cb91acf2b8ec1ffee98c0437b4ac839d8a2ece1b18166da704b

• logProof :LogProof (optional) - the Log Proof in case of a Log-Request

• merkleProof :string[] (optional) - the serialized merle-noodes beginning with the root-node

• merkleProofPrev :string[] (optional) - the serialized merkle-noodes beginning with the root-node of the
previous entry (only for full proof of receipts)

• signatures :Signature[] (optional) - requested signatures

• transactions :any[] (optional) - the list of transactions of the block example:

• txIndex :number (optional) - the transactionIndex within the block example: 4

• txProof :string[] (optional) - the serialized merkle-nodes beginning with the root-node in order to prrof the
transactionIndex

74 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L99
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L107
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L105
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L106
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L108
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L101
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L100
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L109
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L104
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L103
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L102
https://github.com/slockit/in3/blob/master/src/types/types.ts#L637
https://github.com/slockit/in3/blob/master/src/types/types.ts#L680
https://github.com/slockit/in3/blob/master/src/types/types.ts#L725
https://github.com/slockit/in3/blob/master/src/types/types.ts#L690
https://github.com/slockit/in3/blob/master/src/types/types.ts#L695
https://github.com/slockit/in3/blob/master/src/types/types.ts#L721
https://github.com/slockit/in3/blob/master/src/types/types.ts#L709
https://github.com/slockit/in3/blob/master/src/types/types.ts#L713
https://github.com/slockit/in3/blob/master/src/types/types.ts#L736
https://github.com/slockit/in3/blob/master/src/types/types.ts#L700
https://github.com/slockit/in3/blob/master/src/types/types.ts#L732
https://github.com/slockit/in3/blob/master/src/types/types.ts#L717

Incubed Documentation, Release 1.2

• type :'transactionProof'|'receiptProof'|'blockProof'|'accountProof'|'callProof'|'logProof'
- the type of the proof example: accountProof

• uncles :any[] (optional) - the list of uncle-headers of the block example:

10.16 Type RPCRequest

a JSONRPC-Request with N3-Extension

Source: types/types.ts

• id :number|string (optional) - the identifier of the request example: 2

• in3 :IN3RPCRequestConfig (optional) - the IN3-Config

• jsonrpc :'2.0' - the version

• method :string - the method to call example: eth_getBalance

• params :any[] (optional) - the params example: 0xe36179e2286ef405e929C90ad3E70E649B22a945,latest

10.17 Type RPCResponse

a JSONRPC-Responset with N3-Extension

Source: types/types.ts

• error :string (optional) - in case of an error this needs to be set

• id :string|number - the id matching the request example: 2

• in3 :IN3ResponseConfig (optional) - the IN3-Result

• in3Node :IN3NodeConfig (optional) - the node handling this response (internal only)

• jsonrpc :'2.0' - the version

• result :any (optional) - the params example: 0xa35bc

10.18 Type ReceiptData

TransactionReceipt as returned by eth_getTransactionReceipt

Source: modules/eth/serialize.ts

• blockHash :string (optional)

• blockNumber :string|number (optional)

• cumulativeGasUsed :string|number (optional)

• gasUsed :string|number (optional)

• logs :LogData[]

• logsBloom :string (optional)

• root :string (optional)

• status :string|boolean (optional)

10.16. Type RPCRequest 75

https://github.com/slockit/in3/blob/master/src/types/types.ts#L685
https://github.com/slockit/in3/blob/master/src/types/types.ts#L705
https://github.com/slockit/in3/blob/master/src/types/types.ts#L741
https://github.com/slockit/in3/blob/master/src/types/types.ts#L755
https://github.com/slockit/in3/blob/master/src/types/types.ts#L764
https://github.com/slockit/in3/blob/master/src/types/types.ts#L745
https://github.com/slockit/in3/blob/master/src/types/types.ts#L750
https://github.com/slockit/in3/blob/master/src/types/types.ts#L760
https://github.com/slockit/in3/blob/master/src/types/types.ts#L769
https://github.com/slockit/in3/blob/master/src/types/types.ts#L782
https://github.com/slockit/in3/blob/master/src/types/types.ts#L778
https://github.com/slockit/in3/blob/master/src/types/types.ts#L791
https://github.com/slockit/in3/blob/master/src/types/types.ts#L795
https://github.com/slockit/in3/blob/master/src/types/types.ts#L773
https://github.com/slockit/in3/blob/master/src/types/types.ts#L787
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L113
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L117
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L116
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L120
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L121
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L123
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L122
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L119
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L118

Incubed Documentation, Release 1.2

• transactionHash :string (optional)

• transactionIndex :number (optional)

10.19 Type ServerList

a List of nodes

Source: types/types.ts

• contract :string (optional) - IN3 Registry

• lastBlockNumber :number (optional) - last Block number

• nodes :IN3NodeConfig[] - the list of nodes

• proof :Proof (optional) - the Proof-data as part of the in3-section

• totalServers :number (optional) - number of servers

10.20 Type Signature

Verified ECDSA Signature. Signatures are a pair (r, s). Where r is computed as the X coordinate of a point R, modulo
the curve order n.

Source: types/types.ts

• address :string (optional) - the address of the signing node example:
0x6C1a01C2aB554930A937B0a2E8105fB47946c679

• block :number - the blocknumber example: 3123874

• blockHash :string - the hash of the block example: 0x6C1a01C2aB554930A937B0a212346037E8105fB47946c679

• msgHash :string - hash of the message example: 0x9C1a01C2aB554930A937B0a212346037E8105fB47946AB5D

• r :string - Positive non-zero Integer signature.r example: 0x72804cfa0179d648ccbe6a65b01a6463a8f1ebb14f3aff6b19cb91acf2b8ec1f

• s :string - Positive non-zero Integer signature.s example: 0x6d17b34aeaf95fee98c0437b4ac839d8a2ece1b18166da704b86d8f42c92bbda

• v :number - Calculated curve point, or identity element O. example: 28

10.21 Type TransactionData

Transaction as returned by eth_getTransactionByHash

Source: modules/eth/serialize.ts

• blockHash :string (optional)

• blockNumber :number|string (optional)

• chainId :number|string (optional)

• condition :string (optional)

• creates :string (optional)

• data :string (optional)

76 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L114
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L115
https://github.com/slockit/in3/blob/master/src/types/types.ts#L800
https://github.com/slockit/in3/blob/master/src/types/types.ts#L812
https://github.com/slockit/in3/blob/master/src/types/types.ts#L804
https://github.com/slockit/in3/blob/master/src/types/types.ts#L808
https://github.com/slockit/in3/blob/master/src/types/types.ts#L817
https://github.com/slockit/in3/blob/master/src/types/types.ts#L816
https://github.com/slockit/in3/blob/master/src/types/types.ts#L822
https://github.com/slockit/in3/blob/master/src/types/types.ts#L827
https://github.com/slockit/in3/blob/master/src/types/types.ts#L832
https://github.com/slockit/in3/blob/master/src/types/types.ts#L837
https://github.com/slockit/in3/blob/master/src/types/types.ts#L842
https://github.com/slockit/in3/blob/master/src/types/types.ts#L847
https://github.com/slockit/in3/blob/master/src/types/types.ts#L852
https://github.com/slockit/in3/blob/master/src/types/types.ts#L857
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L64
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L66
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L67
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L68
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L69
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L70
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L76

Incubed Documentation, Release 1.2

• from :string (optional)

• gas :number|string (optional)

• gasLimit :number|string (optional)

• gasPrice :number|string (optional)

• hash :string

• input :string

• nonce :number|string

• publicKey :string (optional)

• r :string (optional)

• raw :string (optional)

• s :string (optional)

• standardV :string (optional)

• to :string

• transactionIndex :number

• v :string (optional)

• value :number|string

10.22 Type Transport

A Transport-object responsible to transport the message to the handler.

Source: util/transport.ts

• handle(url :string, data :RPCRequest|RPCRequest[], timeout :number) :Promise<> - handles a re-
quest by passing the data to the handler

• isOnline() :Promise<boolean> - check whether the handler is onlne.

• random(count :number) :number[] - generates random numbers (between 0-1)

10.23 Type AxiosTransport

Default Transport impl sending http-requests.

Source: util/transport.ts

• constructor constructor(format :'json'|'jsonRef'|'cbor' = “json”) :AxiosTransport

• format :'json'|'jsonRef'|'cbor'

• handle(url :string, data :RPCRequest|RPCRequest[], timeout :number) :Promise<>

• isOnline() :Promise<boolean>

• random(count :number) :number[]

10.22. Type Transport 77

https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L71
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L72
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L73
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L74
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L65
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L75
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L77
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L78
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L83
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L79
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L84
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L80
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L81
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L82
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L85
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L86
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L27
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L31
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L36
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L41
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L49
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L51
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L51
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L61
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L57
https://github.com/slockit/in3/blob/master/src/util/transport.ts#L90

Incubed Documentation, Release 1.2

10.24 Type API

Source: modules/eth/api.ts

• constructor constructor(client :Client) :API

• client :Client - Client for N3.

• signer :Signer (optional)

• blockNumber() :Promise<number> - Returns the number of most recent block. (as number)

• call(tx :Transaction, block :BlockType = “latest”) :Promise<string> - Executes a new message call
immediately without creating a transaction on the block chain.

• callFn(to :Address, method :string, args :any[]) :Promise<any> - Executes a function of a contract, by
passing a method-signature and the arguments, which will then be ABI-encoded and send as eth_call.

• chainId() :Promise<string> - Returns the EIP155 chain ID used for transaction signing at the current best
block. Null is returned if not available.

• contractAt(abi :ABI[], address :Address) :

• decodeEventData(log :Log, d :ABI) :any

• estimateGas(tx :Transaction) :Promise<number> - Makes a call or transaction, which won’t be added
to the blockchain and returns the used gas, which can be used for estimating the used gas.

• gasPrice() :Promise<number> - Returns the current price per gas in wei. (as number)

• getBalance(address :Address, block :BlockType = “latest”) :Promise<BN> - Returns the balance of the
account of given address in wei (as hex).

• getBlockByHash(hash :Hash, includeTransactions :boolean = false) :Promise<Block> - Returns infor-
mation about a block by hash.

• getBlockByNumber(block :BlockType = “latest”, includeTransactions :boolean = false)
:Promise<Block> - Returns information about a block by block number.

• getBlockTransactionCountByHash(block :Hash) :Promise<number> - Returns the number of transac-
tions in a block from a block matching the given block hash.

• getBlockTransactionCountByNumber(block :Hash) :Promise<number> - Returns the number of trans-
actions in a block from a block matching the given block number.

• getCode(address :Address, block :BlockType = “latest”) :Promise<string> - Returns code at a given
address.

• getFilterChanges(id :Quantity) :Promise<> - Polling method for a filter, which returns an array of logs
which occurred since last poll.

• getFilterLogs(id :Quantity) :Promise<> - Returns an array of all logs matching filter with given id.

• getLogs(filter :LogFilter) :Promise<> - Returns an array of all logs matching a given filter object.

• getStorageAt(address :Address, pos :Quantity , block :BlockType = “latest”) :Promise<string> -
Returns the value from a storage position at a given address.

• getTransactionByBlockHashAndIndex(hash :Hash, pos :Quantity) :Promise<TransactionDetail>
- Returns information about a transaction by block hash and transaction index position.

• getTransactionByBlockNumberAndIndex(block :BlockType, pos :Quantity)
:Promise<TransactionDetail> - Returns information about a transaction by block number and
transaction index position.

78 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L255
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L257
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L256
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L257
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L272
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L285
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L292
https://github.com/ethereumjs/ethereumjs-abi/blob/master/README.md#simple-encoding-and-decoding
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L300
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L592
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L673
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L307
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L278
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L314
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L337
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L344
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L352
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L360
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L321
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L367
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L374
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L381
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L329
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L394
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L402

Incubed Documentation, Release 1.2

• getTransactionByHash(hash :Hash) :Promise<TransactionDetail> - Returns the information about
a transaction requested by transaction hash.

• getTransactionCount(address :Address, block :BlockType = “latest”) :Promise<number> - Returns
the number of transactions sent from an address. (as number)

• getTransactionReceipt(hash :Hash) :Promise<TransactionReceipt> - Returns the receipt of a trans-
action by transaction hash. Note That the receipt is available even for pending transactions.

• getUncleByBlockHashAndIndex(hash :Hash, pos :Quantity) :Promise<Block> - Returns information
about a uncle of a block by hash and uncle index position. Note: An uncle doesn’t contain individual transac-
tions.

• getUncleByBlockNumberAndIndex(block :BlockType, pos :Quantity) :Promise<Block> - Returns
information about a uncle of a block number and uncle index position. Note: An uncle doesn’t contain individual
transactions.

• getUncleCountByBlockHash(hash :Hash) :Promise<number> - Returns the number of uncles in a block
from a block matching the given block hash.

• getUncleCountByBlockNumber(block :BlockType) :Promise<number> - Returns the number of uncles
in a block from a block matching the given block hash.

• hashMessage(data :Data|Buffer) :Buffer

• newBlockFilter() :Promise<string> - Creates a filter in the node, to notify when a new block arrives. To
check if the state has changed, call eth_getFilterChanges.

• newFilter(filter :LogFilter) :Promise<string> - Creates a filter object, based on filter options, to notify
when the state changes (logs). To check if the state has changed, call eth_getFilterChanges.

• newPendingTransactionFilter() :Promise<string> - Creates a filter in the node, to notify when new pend-
ing transactions arrive.

• protocolVersion() :Promise<string> - Returns the current ethereum protocol version.

• sendRawTransaction(data :Data) :Promise<string> - Creates new message call transaction or a contract
creation for signed transactions.

• sendTransaction(args :TxRequest) :Promise<> - sends a Transaction

• sign(account :Address, data :Data) :Promise<Signature> - signs any kind of message using the
\x19Ethereum Signed Message:\n-prefix

• syncing() :Promise<> - Returns the current ethereum protocol version.

• uninstallFilter(id :Quantity) :Promise<Quantity> - Uninstalls a filter with given id. Should always
be called when watch is no longer needed. Additonally Filters timeout when they aren’t requested with
eth_getFilterChanges for a period of time.

10.25 Type AuthSpec

Authority specification for proof of authority chains

Source: modules/eth/header.ts

• authorities :Buffer[] - List of validator addresses storead as an buffer array

• proposer :Buffer - proposer of the block this authspec belongs

• spec :ChainSpec - chain specification

10.25. Type AuthSpec 79

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L409
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L416
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L424
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L436
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L445
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L452
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L459
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L676
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L467
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L484
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L493
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L508
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L537
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L564
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L546
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L515
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L501
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L13
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L15
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L19
https://github.com/slockit/in3/blob/master/src/modules/eth/header.ts#L17

Incubed Documentation, Release 1.2

10.26 Type Block

Source: modules/eth/api.ts

• Block

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– Hex :string

– Hex :string

– Hex :string

– Hex :string

– Quantity :number|Hex

– Hex :string

– Hex :string

– sealFields :Data[] - PoA-Fields

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– transactions :string|[] - Array of transaction objects, or 32 Bytes transaction hashes depending on the
last given parameter

– Hex :string

– uncles :Hash[] - Array of uncle hashes

10.27 Type ChainContext

Context for a specific chain including cache and chainSpecs.

Source: client/ChainContext.ts

• constructor constructor(client :Client, chainId :string, chainSpec :ChainSpec) :ChainContext

• chainId :string

• chainSpec :ChainSpec - describes the chainspecific consensus params

• client :Client - Client for N3.

• genericCache

• lastValidatorChange :number

80 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L130
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L130
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L172
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L168
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L170
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L27
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L33
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L31
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L29
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L28
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L33
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L32

Incubed Documentation, Release 1.2

• module :Module

• clearCache(prefix :string) :void

• getFromCache(key :string) :string

• handleIntern(request :RPCRequest) :Promise<RPCResponse> - this function is calleds before the server
is asked. If it returns a promise than the request is handled internally otherwise the server will handle the
response. this function should be overriden by modules that want to handle calls internally

• initCache() :void

• putInCache(key :string, value :string) :void

• updateCache() :void

10.28 Type AccountData

Account-Object

Source: modules/eth/serialize.ts

• balance :string

• code :string (optional)

• codeHash :string

• nonce :string

• storageHash :string

10.29 Type Transaction

Source: modules/eth/api.ts

• Transaction

– chainId :any (optional) - optional chain id

– data :string - 4 byte hash of the method signature followed by encoded parameters. For details see
Ethereum Contract ABI.

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

10.30 Type Receipt

Buffer[] of the Receipt

Source: modules/eth/serialize.ts

10.28. Type AccountData 81

https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L30
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L108
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L98
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L61
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L66
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L102
https://github.com/slockit/in3/blob/master/src/client/ChainContext.ts#L92
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L90
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L92
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L95
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L94
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L91
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L93
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L41
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L41
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L57
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L53
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L36

Incubed Documentation, Release 1.2

• Receipt : - Buffer[] of the Receipt

10.31 Type Account

Buffer[] of the Account

Source: modules/eth/serialize.ts

• Account :Buffer[] - Buffer[] of the Account

10.32 Type Signer

Source: modules/eth/api.ts

• prepareTransaction (optional) - optiional method which allows to change the transaction-data before sending
it. This can be used for redirecting it through a multisig.

• sign - signing of any data.

• hasAccount(account :Address) :Promise<boolean> - returns true if the account is supported (or un-
locked)

10.33 Type BlockType

Source: modules/eth/api.ts

• BlockType :number|'latest'|'earliest'|'pending'

10.34 Type Address

Source: modules/eth/api.ts

• Hex :string

10.35 Type ABI

Source: modules/eth/api.ts

• ABI

– anonymous :boolean (optional)

– constant :boolean (optional)

– inputs :ABIField[] (optional)

– name :string (optional)

– outputs :ABIField[] (optional)

– payable :boolean (optional)

– stateMutability :'nonpayable'|'payable'|'view'|'pure' (optional)

82 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L36
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L33
https://github.com/slockit/in3/blob/master/src/modules/eth/serialize.ts#L33
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L243
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L245
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L251
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L248
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L9
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L9
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L13
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L30
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L30
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L31
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L32
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L36
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L38
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L37
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L33
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L34

Incubed Documentation, Release 1.2

– type :'event'|'function'|'constructor'|'fallback'

10.36 Type Log

Source: modules/eth/api.ts

• Log

– Hex :string

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– removed :boolean - true when the log was removed, due to a chain reorganization. false if its a valid
log.

– topics :Data[] - - Array of 0 to 4 32 Bytes DATA of indexed log arguments. (In solidity: The first topic
is the hash of the signature of the event (e.g. Deposit(address,bytes32,uint256)), except you declared the
event with the anonymous specifier.)

– Hex :string

– Quantity :number|Hex

10.37 Type BN

Source: util/util.ts

10.38 Type Hash

Source: modules/eth/api.ts

• Hex :string

10.39 Type Quantity

Source: modules/eth/api.ts

• Quantity :number|Hex

10.40 Type LogFilter

Source: modules/eth/api.ts

• LogFilter

– Hex :string

10.36. Type Log 83

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L39
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L174
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L174
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L176
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L192
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/util/util.ts#L26
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L195
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L195
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10

Incubed Documentation, Release 1.2

– BlockType :number|'latest'|'earliest'|'pending'

– Quantity :number|Hex

– BlockType :number|'latest'|'earliest'|'pending'

– topics :string|string[][] - (optional) Array of 32 Bytes Data topics. Topics are order-dependent.
It’s possible to pass in null to match any topic, or a subarray of multiple topics of which one should be
matching.

10.41 Type TransactionDetail

Source: modules/eth/api.ts

• TransactionDetail

– Hex :string

– BlockType :number|'latest'|'earliest'|'pending'

– Quantity :number|Hex

– condition :any - (optional) conditional submission, Block number in block or timestamp in time or null.
(parity-feature)

– Hex :string

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– Hex :string

– Hex :string

– Quantity :number|Hex

– pk :any (optional) - optional: the private key to use for signing

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– Quantity :number|Hex

– Quantity :number|Hex

10.42 Type TransactionReceipt

Source: modules/eth/api.ts

• TransactionReceipt

– Hex :string

84 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L9
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L9
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L203
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L87
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L87
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L9
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L125
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L127
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L59
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L59
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10

Incubed Documentation, Release 1.2

– BlockType :number|'latest'|'earliest'|'pending'

– Hex :string

– Quantity :number|Hex

– Hex :string

– Quantity :number|Hex

– logs :Log[] - Array of log objects, which this transaction generated.

– Hex :string

– Hex :string

– Quantity :number|Hex

– Hex :string

– Hex :string

– Quantity :number|Hex

10.43 Type Data

Source: modules/eth/api.ts

• Hex :string

10.44 Type TxRequest

Source: modules/eth/api.ts

• TxRequest

– args :any[] (optional) - the argument to pass to the method

– confirmations :number (optional) - number of block to wait before confirming

– Hex :string

– Hex :string

– gas :number (optional) - the gas needed

– gasPrice :number (optional) - the gasPrice used

– method :string (optional) - the ABI of the method to be used

– nonce :number (optional) - the nonce

– Hex :string

– Hex :string

– Quantity :number|Hex

10.43. Type Data 85

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L9
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L75
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L14
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L208
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L208
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L234
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L240
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L219
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L222
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L231
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L225
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L11

Incubed Documentation, Release 1.2

10.45 Type Hex

Source: modules/eth/api.ts

• Hex :string

10.46 Type Module

Source: client/modules.ts

• name :string

• createChainContext(client :Client, chainId :string, spec :ChainSpec) :ChainContext

• verifyProof(request :RPCRequest, response :RPCResponse, allowWithoutProof :boolean, ctx
:ChainContext) :Promise<boolean> - general verification-function which handles it according to its
given type.

10.47 Type ABIField

Source: modules/eth/api.ts

• ABIField

– indexed :boolean (optional)

– name :string

– type :string

86 Chapter 10. API Reference TS

https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L10
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L7
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L8
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L10
https://github.com/slockit/in3/blob/master/src/client/modules.ts#L12
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L25
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L25
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L26
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L27
https://github.com/slockit/in3/blob/master/src/modules/eth/api.ts#L28

CHAPTER 11

API Reference C

11.1 Overview

The C Implementation of the incubed client is prepared and optimized to run on small embedded devices. Because
each device is different, we prepare different modules which should be combined. This allowes us to only generate
the code needed and so reduce the requirements for flash and memory.

This is why the incubed is combind of different modules. While the core-module is always required additional func-
tions will be prepared by differen modules:

11.1.1 Verifier

Incubed is a minimal verifaction client, which means, each response needs to be verifable. Depending on the expected
requests and responses you need to carefully choose which verifier you may need to register. For ethereum we have
developed 3 Modules:

• nano : a Minimal module only able to verify transaction receipts (eth_getTransactionReceipt)

• basic : module able to verify almost all other standard rpc-function. (except eth_call)

• full : module able to verify standard rpc-function. It also implements a full EVM in order to handle eth_call

Depending on the module you need to register the verifier before using it. This is done by calling the
in3_register... function like in3_register_eth_full().

11.1.2 Transport

In order to verify responses, you need to able to send requests. The way to handle them depend heavily on your
hardware capabilities. For example, if your device only supports bluetooth, you may use this connection to deliver
the request to a device with a existing internet connection and get the response in the same way, but if your device is
able to use a direct internet connection, you may use a curl-library to execxute them. That’s why the core client only
defines a function pointer in3_transport_send which must handle the requests.

At the moment we offer these modules, other implementation by supported inside different hardware-modules.

87

Incubed Documentation, Release 1.2

• curl : module with a dependency to curl which executes these requests with curl, also supporting HTTPS. This
modules is supposed to run an standard os with curl installed.

11.1.3 API

While incubed operates on JSON-RPC-Level, as a developer you might want to use a better structed API preparing
these requests for you. These APIs are optional but make life easier:

• eth : This module offers all standard RPC-Functions as descriped in the Ethereum JSON-RPC Specification. In
addition it allows you to sign and encode/decode calls and transactions.

• usn : This module offers basic USN-function like renting or event-handling and message-verifaction.

11.2 Module core

main incubed module defining the interfaces for transport, verifier and storage.

This module does not have any dependencies and cannot be used without additional modules providing verification
and transport.

11.2.1 cache.h

handles caching and storage.

storing nodelists and other caches with the storage handler as specified in the client. If no storage handler is specified
nothing will be cached.

Location: src/core/client/cache.h

in3_cache_init

in3_ret_t in3_cache_init(in3_t *c);

inits the client.

This is done by checking the cache and updating the local storage. This function should be called after creating a new
incubed instance.

example

// register verifiers
in3_register_eth_full();

// create new client
in3_t* client = in3_new();

// configure storage...
in3_storage_handler_t storage_handler;
storage_handler.get_item = storage_get_item;
storage_handler.set_item = storage_set_item;

// configure transport
client->transport = send_curl;

(continues on next page)

88 Chapter 11. API Reference C

https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 1.2

(continued from previous page)

// configure storage
client->cacheStorage = &storage_handler;

// init cache
in3_cache_init(client);

// ready to use ...

arguments:

in3_t * c the incubed client

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_cache_update_nodelist

in3_ret_t in3_cache_update_nodelist(in3_t *c, in3_chain_t *chain);

reads the nodelist from cache.

This function is usually called internally to fill the weights and nodelist from the the cache. If you call
in3_cache_init there is no need to call this explicitly.

arguments:

in3_t * c the incubed client
in3_chain_t * chain chain to configure

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_cache_store_nodelist

in3_ret_t in3_cache_store_nodelist(in3_ctx_t *ctx, in3_chain_t *chain);

stores the nodelist to thes cache.

It will automaticly called if the nodelist has changed and read from the nodes or the wirght of a node changed.

arguments:

in3_ctx_t * ctx the current incubed context
in3_chain_t * chain the chain upating to cache

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.2. Module core 89

Incubed Documentation, Release 1.2

11.2.2 client.h

incubed main client file.

This includes the definition of the client and used enum values.

Location: src/core/client/client.h

IN3_SIGN_ERR_REJECTED

return value used by the signer if the the signature-request was rejected.

#define IN3_SIGN_ERR_REJECTED -1

IN3_SIGN_ERR_ACCOUNT_NOT_FOUND

return value used by the signer if the requested account was not found.

#define IN3_SIGN_ERR_ACCOUNT_NOT_FOUND -2

IN3_SIGN_ERR_INVALID_MESSAGE

return value used by the signer if the message was invalid.

#define IN3_SIGN_ERR_INVALID_MESSAGE -3

IN3_SIGN_ERR_GENERAL_ERROR

return value used by the signer for unspecified errors.

#define IN3_SIGN_ERR_GENERAL_ERROR -4

IN3_DEBUG

flag used in the EVM (or the evm_flags) to turn on debug output.

#define IN3_DEBUG 65536

in3_chain_type_t

the type of the chain.

for incubed a chain can be any distributed network or database with incubed support. Depending on this chain-type
the previously registered verifyer will be choosen and used.

The enum type contains the following values:

90 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

CHAIN_ETH 0 Ethereum chain.
CHAIN_SUBSTRATE 1 substrate chain
CHAIN_IPFS 2 ipfs verifiaction
CHAIN_BTC 3 Bitcoin chain.
CHAIN_IOTA 4 IOTA chain.
CHAIN_GENERIC 5 other chains

in3_proof_t

the type of proof.

Depending on the proof-type different levels of proof will be requested from the node.

The enum type contains the following values:

PROOF_NONE 0 No Verification.
PROOF_STANDARD 1 Standard Verification of the important properties.
PROOF_FULL 2 All field will be validated including uncles.

in3_verification_t

verification as delivered by the server.

This will be part of the in3-request and will be generated based on the prooftype.

The enum type contains the following values:

VERIFICATION_NEVER 0 No Verifacation.
VERIFICATION_PROOF 1 Includes the proof of the data.
VERIFICATION_PROOF_WITH_SIGNATURE 2 Proof + Signatures.

d_signature_type_t

type of the requested signature

The enum type contains the following values:

SIGN_EC_RAW 0 sign the data directly
SIGN_EC_HASH 1 hash and sign the data

in3_filter_type_t

The enum type contains the following values:

FILTER_EVENT 0 Event filter.
FILTER_BLOCK 1 Block filter.
FILTER_PENDING 2 Pending filter (Unsupported)

11.2. Module core 91

Incubed Documentation, Release 1.2

in3_request_config_t

the configuration as part of each incubed request.

This will be generated for each request based on the client-configuration. the verifier may access this during verifica-
tion in order to check against the request.

The stuct contains following fields:

uint64_t chainId the chain to be used.
this is holding the integer-value of the hexstring.

uint8_t includeCode if true the code needed will always be devlivered.
uint8_t useFullProof this flaqg is set, if the proof is set to “PROOF_FULL”
uint8_t useBinary this flaqg is set, the client should use binary-format
bytes_t * verifiedHashes a list of blockhashes already verified.

The Server will not send any proof for them again .
uint16_t verifiedHash-

esCount
number of verified blockhashes

uint16_t latestBlock the last blocknumber the nodelistz changed
uint16_t finality number of signatures(in percent) needed in order to reach finality.
in3_verification_tverification Verification-type.
bytes_t * clientSignature the signature of the client with the client key
bytes_t * signatures the addresses of servers requested to sign the blockhash
uint8_t signaturesCount number or addresses

in3_node_t

incubed node-configuration.

These information are read from the Registry contract and stored in this struct representing a server or node.

The stuct contains following fields:

uint32_t index index within the nodelist, also used in the contract as key
bytes_t * address address of the server
uint64_t deposit the deposit stored in the registry contract, which this would lose if it sends a wrong

blockhash
uint32_t capac-

ity
the maximal capacity able to handle

uint64_t props a bit set used to identify the cabalilities of the server.
char * url the url of the node

in3_node_weight_t

Weight or reputation of a node.

Based on the past performance of the node a weight is calulcated given faster nodes a heigher weight and chance when
selecting the next node from the nodelist. These weights will also be stored in the cache (if available)

The stuct contains following fields:

92 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

float weight current weight
uint32_t response_count counter for responses
uint32_t total_response_time total of all response times
uint64_t blacklistedUntil if >0 this node is blacklisted until k.

k is a unix timestamp

in3_chain_t

Chain definition inside incubed.

for incubed a chain can be any distributed network or database with incubed support.

The stuct contains following fields:

uint64_t chainId chainId, which could be a free or based on the public ethereum networkId
in3_chain_type_t type chaintype
uint64_t lastBlock last blocknumber the nodeList was updated, which is used to detect changed in

the nodelist
bool needsUp-

date
if true the nodelist should be updated and will trigger a in3_nodeList-request
before the next request is send.

int nodeListLengthnumber of nodes in the nodeList
in3_node_t * nodeList array of nodes
in3_node_weight_t
*

weights stats and weights recorded for each node

bytes_t ** initAd-
dresses

array of addresses of nodes that should always part of the nodeList

bytes_t * contract the address of the registry contract
json_ctx_t * spec optional chain specification, defining the transaitions and forks

in3_storage_get_item

storage handler function for reading from cache.

typedef bytes_t*(* in3_storage_get_item) (void *cptr, char *key)

returns: bytes_t *(* : the found result. if the key is found this function should return the values as bytes otherwise
NULL.

in3_storage_set_item

storage handler function for writing to the cache.

typedef void(* in3_storage_set_item) (void *cptr, char *key, bytes_t *value)

in3_storage_handler_t

storage handler to handle cache.

The stuct contains following fields:

11.2. Module core 93

Incubed Documentation, Release 1.2

in3_storage_get_item get_item function pointer returning a stored value for the given key.
in3_storage_set_item set_item function pointer setting a stored value for the given key.
void * cptr custom pointer which will will be passed to functions

in3_sign

signing function.

signs the given data and write the signature to dst. the return value must be the number of bytes written to dst. In case
of an error a negativ value must be returned. It should be one of the IN3_SIGN_ERR. . . values.

typedef in3_ret_t(* in3_sign) (void *wallet, d_signature_type_t type, bytes_t message,
→˓ bytes_t account, uint8_t *dst)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_signer_t

The stuct contains following fields:

in3_sign sign
void * wallet

in3_response_t

response-object.

if the error has a length>0 the response will be rejected

The stuct contains following fields:

sb_t error a stringbuilder to add any errors!
sb_t result a stringbuilder to add the result

in3_transport_send

the transport function to be implemented by the transport provider.

typedef in3_ret_t(* in3_transport_send) (char **urls, int urls_len, char *payload,
→˓in3_response_t *results)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

94 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_filter_t

The stuct contains following fields:

in3_filter_type_t type filter type: (event, block or pending)
char * options associated filter options
uint64_t last_block block no.

when filter was created OR eth_getFilterChanges was called
void(* release method to release owned resources

in3_filter_handler_t

The stuct contains following fields:

in3_filter_t ** array
size_t count array of filters

in3_t

Incubed Configuration.

This struct holds the configuration and also point to internal resources such as filters or chain configs.

The stuct contains following fields:

11.2. Module core 95

Incubed Documentation, Release 1.2

uint32_t cacheTime-
out

number of seconds requests can be cached.

uint16_t nodeLimit the limit of nodes to store in the client.
bytes_t * key the client key to sign requests
uint32_t maxCode-

Cache
number of max bytes used to cache the code in memory

uint32_t maxBlock-
Cache

number of number of blocks cached in memory

in3_proof_t proof the type of proof used
uint8_t request-

Count
the number of request send when getting a first answer

uint8_t signature-
Count

the number of signatures used to proof the blockhash.

uint64_t minDeposit min stake of the server.
Only nodes owning at least this amount will be chosen.

uint16_t replaceLat-
estBlock

if specified, the blocknumber latest will be replaced by blockNumber- specified
value

uint16_t finality the number of signatures in percent required for the request
uint16_t max_attempts the max number of attempts before giving up
uint32_t timeout specifies the number of milliseconds before the request times out.

increasing may be helpful if the device uses a slow connection.
uint64_t chainId servers to filter for the given chain.

The chain-id based on EIP-155.
uint8_t autoUp-

dateList
if true the nodelist will be automaticly updated if the lastBlock is newer

in3_storage_handler_t
*

cacheStor-
age

a cache handler offering 2 functions (setItem(string,string), getItem(string))

in3_signer_t * signer signer-struct managing a wallet
in3_transport_sendtransport the transporthandler sending requests
uint8_t include-

Code
includes the code when sending eth_call-requests

uint8_t use_binary if true the client will use binary format
uint8_t use_http if true the client will try to use http instead of https
in3_chain_t * chains chain spec and nodeList definitions
uint16_t chain-

sCount
number of configured chains

uint32_t evm_flags flags for the evm (EIPs)
in3_filter_handler_t
*

filters filter handler

in3_new

in3_t* in3_new();

creates a new Incubes configuration and returns the pointer.

you need to free this instance with in3_free after use!

Before using the client you still need to set the tramsport and optional the storage handlers:

• example of initialization:

96 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

// register verifiers
in3_register_eth_full();

// create new client
in3_t* client = in3_new();

// configure storage...
in3_storage_handler_t storage_handler;
storage_handler.get_item = storage_get_item;
storage_handler.set_item = storage_set_item;

// configure transport
client->transport = send_curl;

// configure storage
client->cacheStorage = &storage_handler;

// init cache
in3_cache_init(client);

// ready to use ...

returns: in3_t * : the incubed instance.

in3_client_rpc

in3_ret_t in3_client_rpc(in3_t *c, char *method, char *params, char **result, char
→˓**error);

sends a request and stores the result in the provided buffer

arguments:

in3_t * c the pointer to the incubed client config.
char

*

method the name of the rpc-funcgtion to call.

char

*

params docs for input parameter v.

char

**

re-
sult

pointer to string which will be set if the request was successfull. This will hold the result as
json-rpc-string. (make sure you free this after use!)

char

**

er-
ror

pointer to a string containg the error-message. (make sure you free it after use!)

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_free

void in3_free(in3_t *a);

frees the references of the client

arguments:

11.2. Module core 97

Incubed Documentation, Release 1.2

in3_t * a the pointer to the incubed client config to free.

11.2.3 context.h

Request Context.

This is used for each request holding request and response-pointers.

Location: src/core/client/context.h

node_weight_t

the weight of a ceertain node as linked list

The stuct contains following fields:

in3_node_t * node the node definition including the url
in3_node_weight_t * weight the current weight and blacklisting-stats
float s The starting value.
float w weight value
weightstruct , * next next in the linkedlistt or NULL if this is the last element

new_ctx

in3_ctx_t* new_ctx(in3_t *client, char *req_data);

creates a new context.

the request data will be parsed and represented in the context.

arguments:

in3_t * client
char * req_data

returns: in3_ctx_t *

ctx_parse_response

in3_ret_t ctx_parse_response(in3_ctx_t *ctx, char *response_data, int len);

arguments:

in3_ctx_t * ctx
char * response_data
int len

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

98 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

free_ctx

void free_ctx(in3_ctx_t *ctx);

arguments:

in3_ctx_t * ctx

ctx_create_payload

in3_ret_t ctx_create_payload(in3_ctx_t *c, sb_t *sb);

arguments:

in3_ctx_t * c
sb_t * sb

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_set_error

in3_ret_t ctx_set_error(in3_ctx_t *c, char *msg, in3_ret_t errnumber);

arguments:

in3_ctx_t * c
char * msg
in3_ret_t errnumber

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

ctx_get_error

in3_ret_t ctx_get_error(in3_ctx_t *ctx, int id);

arguments:

in3_ctx_t * ctx
int id

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.2. Module core 99

Incubed Documentation, Release 1.2

in3_client_rpc_ctx

in3_ctx_t* in3_client_rpc_ctx(in3_t *c, char *method, char *params);

sends a request and returns a context used to access the result or errors.

This context MUST be freed with free_ctx(ctx) after usage to release the resources.

arguments:

in3_t * c
char * method
char * params

returns: in3_ctx_t *

free_ctx_nodes

void free_ctx_nodes(node_weight_t *c);

arguments:

node_weight_t * c

ctx_nodes_len

int ctx_nodes_len(node_weight_t *root);

arguments:

node_weight_t * root

returns: int

11.2.4 nodelist.h

handles nodelists.

Location: src/core/client/nodelist.h

in3_nodelist_clear

void in3_nodelist_clear(in3_chain_t *chain);

removes all nodes and their weights from the nodelist

arguments:

in3_chain_t * chain

100 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_node_list_get

in3_ret_t in3_node_list_get(in3_ctx_t *ctx, uint64_t chain_id, bool update, in3_node_
→˓t **nodeList, int *nodeListLength, in3_node_weight_t **weights);

check if the nodelist is up to date.

if not it will fetch a new version first (if the needs_update-flag is set).

arguments:

in3_ctx_t * ctx
uint64_t chain_id
bool update
in3_node_t ** nodeList
int * nodeListLength
in3_node_weight_t ** weights

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_node_list_fill_weight

node_weight_t* in3_node_list_fill_weight(in3_t *c, in3_node_t *all_nodes, in3_node_
→˓weight_t *weights, int len, _time_t now, float *total_weight, int *total_found);

filters and fills the weights on a returned linked list.

arguments:

in3_t * c
in3_node_t * all_nodes
in3_node_weight_t * weights
int len
_time_t now
float * total_weight
int * total_found

returns: node_weight_t *

in3_node_list_pick_nodes

in3_ret_t in3_node_list_pick_nodes(in3_ctx_t *ctx, node_weight_t **nodes);

picks (based on the config) a random number of nodes and returns them as weightslist.

arguments:

in3_ctx_t * ctx
node_weight_t ** nodes

returns: in3_ret_t the result-status of the function.

11.2. Module core 101

Incubed Documentation, Release 1.2

Please make sure you check if it was successfull (==IN3_OK)

11.2.5 send.h

handles caching and storage.

handles the request.

Location: src/core/client/send.h

in3_send_ctx

in3_ret_t in3_send_ctx(in3_ctx_t *ctx);

executes a request context by picking nodes and sending it.

arguments:

in3_ctx_t * ctx

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.2.6 verifier.h

Verification Context.

This context is passed to the verifier.

Location: src/core/client/verifier.h

in3_verify

function to verify the result.

typedef in3_ret_t(* in3_verify) (in3_vctx_t *c)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_pre_handle

typedef in3_ret_t(* in3_pre_handle) (in3_ctx_t *ctx, in3_response_t **response)

returns: in3_ret_t(* the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

102 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_verifier_t

The stuct contains following fields:

in3_verify verify
in3_pre_handle pre_handle
in3_chain_type_t type
verifierstruct , * next

in3_get_verifier

in3_verifier_t* in3_get_verifier(in3_chain_type_t type);

returns the verifier for the given chainType

arguments:

in3_chain_type_t type

returns: in3_verifier_t *

in3_register_verifier

void in3_register_verifier(in3_verifier_t *verifier);

arguments:

in3_verifier_t * verifier

vc_err

in3_ret_t vc_err(in3_vctx_t *vc, char *msg);

arguments:

in3_vctx_t * vc
char * msg

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.2.7 bytes.h

util helper on byte arrays.

Location: src/core/util/bytes.h

11.2. Module core 103

Incubed Documentation, Release 1.2

address_t

pointer to a 20byte address

typedef uint8_t address_t[20]

bytes32_t

pointer to a 32byte word

typedef uint8_t bytes32_t[32]

wlen_t

number of bytes within a word (min 1byte but usually a uint)

typedef uint_fast8_t wlen_t

bytes_t

a byte array

The stuct contains following fields:

uint32_t len the length of the array ion bytes
uint8_t * data the byte-data

b_new

bytes_t* b_new(char *data, int len);

allocates a new byte array with 0 filled

arguments:

char * data
int len

returns: bytes_t *

b_print

void b_print(bytes_t *a);

prints a the bytes as hex to stdout

arguments:

bytes_t * a

104 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

ba_print

void ba_print(uint8_t *a, size_t l);

prints a the bytes as hex to stdout

arguments:

uint8_t * a
size_t l

b_cmp

int b_cmp(bytes_t *a, bytes_t *b);

compares 2 byte arrays and returns 1 for equal and 0 for not equal

arguments:

bytes_t * a
bytes_t * b

returns: int

bytes_cmp

int bytes_cmp(bytes_t a, bytes_t b);

compares 2 byte arrays and returns 1 for equal and 0 for not equal

arguments:

bytes_t a
bytes_t b

returns: int

b_free

void b_free(bytes_t *a);

frees the data

arguments:

bytes_t * a

11.2. Module core 105

Incubed Documentation, Release 1.2

b_dup

bytes_t* b_dup(bytes_t *a);

clones a byte array

arguments:

bytes_t * a

returns: bytes_t *

b_read_byte

uint8_t b_read_byte(bytes_t *b, size_t *pos);

reads a byte on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint8_t

b_read_short

uint16_t b_read_short(bytes_t *b, size_t *pos);

reads a short on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint16_t

b_read_int

uint32_t b_read_int(bytes_t *b, size_t *pos);

reads a integer on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint32_t

106 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

b_read_int_be

uint32_t b_read_int_be(bytes_t *b, size_t *pos, size_t len);

reads a unsigned integer as bigendian on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos
size_t len

returns: uint32_t

b_read_long

uint64_t b_read_long(bytes_t *b, size_t *pos);

reads a long on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: uint64_t

b_new_chars

char* b_new_chars(bytes_t *b, size_t *pos);

creates a new string (needs to be freed) on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: char *

b_new_dyn_bytes

bytes_t* b_new_dyn_bytes(bytes_t *b, size_t *pos);

reads bytesn (which have the length stored as prefix) on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos

returns: bytes_t *

11.2. Module core 107

Incubed Documentation, Release 1.2

b_new_fixed_bytes

bytes_t* b_new_fixed_bytes(bytes_t *b, size_t *pos, int len);

reads bytes with a fixed length on the current position and updates the pos afterwards.

arguments:

bytes_t * b
size_t * pos
int len

returns: bytes_t *

bb_new

bytes_builder_t* bb_new();

returns: bytes_builder_t *

bb_free

void bb_free(bytes_builder_t *bb);

frees a bytebuilder and its content.

arguments:

bytes_builder_t * bb

bb_check_size

int bb_check_size(bytes_builder_t *bb, size_t len);

internal helper to increase the buffer if needed

arguments:

bytes_builder_t * bb
size_t len

returns: int

bb_write_chars

void bb_write_chars(bytes_builder_t *bb, char *c, int len);

108 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

writes a string to the builder.

arguments:

bytes_builder_t * bb
char * c
int len

bb_write_dyn_bytes

void bb_write_dyn_bytes(bytes_builder_t *bb, bytes_t *src);

writes bytes to the builder with a prefixed length.

arguments:

bytes_builder_t * bb
bytes_t * src

bb_write_fixed_bytes

void bb_write_fixed_bytes(bytes_builder_t *bb, bytes_t *src);

writes fixed bytes to the builder.

arguments:

bytes_builder_t * bb
bytes_t * src

bb_write_int

void bb_write_int(bytes_builder_t *bb, uint32_t val);

writes a ineteger to the builder.

arguments:

bytes_builder_t * bb
uint32_t val

bb_write_long

void bb_write_long(bytes_builder_t *bb, uint64_t val);

writes s long to the builder.

arguments:

bytes_builder_t * bb
uint64_t val

11.2. Module core 109

Incubed Documentation, Release 1.2

bb_write_long_be

void bb_write_long_be(bytes_builder_t *bb, uint64_t val, int len);

writes any integer value with the given length of bytes

arguments:

bytes_builder_t * bb
uint64_t val
int len

bb_write_byte

void bb_write_byte(bytes_builder_t *bb, uint8_t val);

writes a single byte to the builder.

arguments:

bytes_builder_t * bb
uint8_t val

bb_write_short

void bb_write_short(bytes_builder_t *bb, uint16_t val);

writes a short to the builder.

arguments:

bytes_builder_t * bb
uint16_t val

bb_write_raw_bytes

void bb_write_raw_bytes(bytes_builder_t *bb, void *ptr, size_t len);

writes the bytes to the builder.

arguments:

bytes_builder_t * bb
void * ptr
size_t len

bb_clear

110 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

void bb_clear(bytes_builder_t *bb);

resets the content of the builder.

arguments:

bytes_builder_t * bb

bb_replace

void bb_replace(bytes_builder_t *bb, int offset, int delete_len, uint8_t *data, int
→˓data_len);

replaces or deletes a part of the content.

arguments:

bytes_builder_t * bb
int offset
int delete_len
uint8_t * data
int data_len

bb_move_to_bytes

bytes_t* bb_move_to_bytes(bytes_builder_t *bb);

frees the builder and moves the content in a newly created bytes struct (which needs to be freed later).

arguments:

bytes_builder_t * bb

returns: bytes_t *

bb_push

void bb_push(bytes_builder_t *bb, uint8_t *data, uint8_t len);

arguments:

bytes_builder_t * bb
uint8_t * data
uint8_t len

bytes

static bytes_t bytes(uint8_t *a, uint32_t len);

11.2. Module core 111

Incubed Documentation, Release 1.2

arguments:

uint8_t * a
uint32_t len

returns: bytes_t

cloned_bytes

bytes_t cloned_bytes(bytes_t data);

arguments:

bytes_t data

returns: bytes_t

b_optimize_len

static void b_optimize_len(bytes_t *b);

arguments:

bytes_t * b

11.2.8 data.h

json-parser.

The parser can read from :

• json

• bin

When reading from json all ‘0x’. . . values will be stored as bytes_t. If the value is lower than 0xFFFFFFF, it is
converted as integer.

Location: src/core/util/data.h

DATA_DEPTH_MAX

#define DATA_DEPTH_MAX 11

d_type_t

type of a token.

The enum type contains the following values:

112 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

T_BYTES 0 content is stored as data ptr.
T_STRING 1 content is stored a c-str
T_ARRAY 2 the node is an array with the length stored in length
T_OBJECT 3 the node is an object with properties
T_BOOLEAN 4 boolean with the value stored in len
T_INTEGER 5 a integer with the value stored
T_NULL 6 a NULL-value

d_key_t

typedef uint16_t d_key_t

d_token_t

a token holding any kind of value.

use d_type, d_len or the cast-function to get the value.

The stuct contains following fields:

uint32_t len the length of the content (or number of properties) depending + type.
uint8_t * data the byte or string-data
d_key_t key the key of the property.

str_range_t

internal type used to represent the a range within a string.

The stuct contains following fields:

char * data pointer to the start of the string
size_t len len of the characters

json_ctx_t

parser for json or binary-data.

it needs to freed after usage.

The stuct contains following fields:

d_token_t * result the list of all tokens.
the first token is the main-token as returned by the parser.

size_t allocated
size_t len amount of tokens allocated result
size_t depth number of tokens in result
char * c max depth of tokens in result

11.2. Module core 113

Incubed Documentation, Release 1.2

d_iterator_t

iterator over elements of a array opf object.

usage:

for (d_iterator_t iter = d_iter(parent); iter.left ; d_iter_next(&iter)) {
uint32_t val = d_int(iter.token);

}

The stuct contains following fields:

int left number of result left
d_token_t * token current token

d_to_bytes

bytes_t d_to_bytes(d_token_t *item);

returns the byte-representation of token.

In case of a number it is returned as bigendian. booleans as 0x01 or 0x00 and NULL as 0x. Objects or arrays will
return 0x.

arguments:

d_token_t * item

returns: bytes_t

d_bytes_to

int d_bytes_to(d_token_t *item, uint8_t *dst, const int max);

writes the byte-representation to the dst.

details see d_to_bytes.

arguments:

d_token_t * item
uint8_t * dst
const int max

returns: int

d_bytes

bytes_t* d_bytes(const d_token_t *item);

114 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

returns the value as bytes (Carefully, make sure that the token is a bytes-type!)

arguments:

d_token_tconst , * item

returns: bytes_t *

d_bytesl

bytes_t* d_bytesl(d_token_t *item, size_t l);

returns the value as bytes with length l (may reallocates)

arguments:

d_token_t * item
size_t l

returns: bytes_t *

d_string

char* d_string(const d_token_t *item);

converts the value as string.

Make sure the type is string!

arguments:

d_token_tconst , * item

returns: char *

d_int

uint32_t d_int(const d_token_t *item);

returns the value as integer.

only if type is integer

arguments:

d_token_tconst , * item

returns: uint32_t

11.2. Module core 115

Incubed Documentation, Release 1.2

d_intd

uint32_t d_intd(const d_token_t *item, const uint32_t def_val);

returns the value as integer or if NULL the default.

only if type is integer

arguments:

d_token_tconst , * item
const uint32_t def_val

returns: uint32_t

d_long

uint64_t d_long(const d_token_t *item);

returns the value as long.

only if type is integer or bytes, but short enough

arguments:

d_token_tconst , * item

returns: uint64_t

d_longd

uint64_t d_longd(const d_token_t *item, const uint64_t def_val);

returns the value as long or if NULL the default.

only if type is integer or bytes, but short enough

arguments:

d_token_tconst , * item
const uint64_t def_val

returns: uint64_t

d_create_bytes_vec

bytes_t** d_create_bytes_vec(const d_token_t *arr);

arguments:

d_token_tconst , * arr

returns: bytes_t **

116 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

d_type

static d_type_t d_type(const d_token_t *item);

creates a array of bytes from JOSN-array

type of the token

arguments:

d_token_tconst , * item

returns: d_type_t

d_len

static int d_len(const d_token_t *item);

number of elements in the token (only for object or array, other will return 0)

arguments:

d_token_tconst , * item

returns: int

d_eq

bool d_eq(const d_token_t *a, const d_token_t *b);

compares 2 token and if the value is equal

arguments:

d_token_tconst , * a
d_token_tconst , * b

returns: bool

keyn

d_key_t keyn(const char *c, const int len);

generates the keyhash for the given stringrange as defined by len

arguments:

const char * c
const int len

returns: d_key_t

11.2. Module core 117

Incubed Documentation, Release 1.2

d_get

d_token_t* d_get(d_token_t *item, const uint16_t key);

returns the token with the given propertyname (only if item is a object)

arguments:

d_token_t * item
const uint16_t key

returns: d_token_t *

d_get_or

d_token_t* d_get_or(d_token_t *item, const uint16_t key1, const uint16_t key2);

returns the token with the given propertyname or if not found, tries the other.

(only if item is a object)

arguments:

d_token_t * item
const uint16_t key1
const uint16_t key2

returns: d_token_t *

d_get_at

d_token_t* d_get_at(d_token_t *item, const uint32_t index);

returns the token of an array with the given index

arguments:

d_token_t * item
const uint32_t index

returns: d_token_t *

d_next

d_token_t* d_next(d_token_t *item);

returns the next sibling of an array or object

arguments:

d_token_t * item

118 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

returns: d_token_t *

d_serialize_binary

void d_serialize_binary(bytes_builder_t *bb, d_token_t *t);

write the token as binary data into the builder

arguments:

bytes_builder_t * bb
d_token_t * t

parse_binary

json_ctx_t* parse_binary(bytes_t *data);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

bytes_t * data

returns: json_ctx_t *

parse_binary_str

json_ctx_t* parse_binary_str(char *data, int len);

parses the data and returns the context with the token, which needs to be freed after usage!

arguments:

char * data
int len

returns: json_ctx_t *

parse_json

json_ctx_t* parse_json(char *js);

parses json-data, which needs to be freed after usage!

arguments:

char * js

returns: json_ctx_t *

11.2. Module core 119

Incubed Documentation, Release 1.2

free_json

void free_json(json_ctx_t *parser_ctx);

frees the parse-context after usage

arguments:

json_ctx_t * parser_ctx

d_to_json

str_range_t d_to_json(d_token_t *item);

returns the string for a object or array.

This only works for json as string. For binary it will not work!

arguments:

d_token_t * item

returns: str_range_t

d_create_json

char* d_create_json(d_token_t *item);

creates a json-string.

It does not work for objects if the parsed data were binary!

arguments:

d_token_t * item

returns: char *

json_create

json_ctx_t* json_create();

returns: json_ctx_t *

json_create_null

d_token_t* json_create_null(json_ctx_t *jp);

120 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

arguments:

json_ctx_t * jp

returns: d_token_t *

json_create_bool

d_token_t* json_create_bool(json_ctx_t *jp, bool value);

arguments:

json_ctx_t * jp
bool value

returns: d_token_t *

json_create_int

d_token_t* json_create_int(json_ctx_t *jp, uint64_t value);

arguments:

json_ctx_t * jp
uint64_t value

returns: d_token_t *

json_create_string

d_token_t* json_create_string(json_ctx_t *jp, char *value);

arguments:

json_ctx_t * jp
char * value

returns: d_token_t *

json_create_bytes

d_token_t* json_create_bytes(json_ctx_t *jp, bytes_t value);

arguments:

json_ctx_t * jp
bytes_t value

returns: d_token_t *

11.2. Module core 121

Incubed Documentation, Release 1.2

json_create_object

d_token_t* json_create_object(json_ctx_t *jp);

arguments:

json_ctx_t * jp

returns: d_token_t *

json_create_array

d_token_t* json_create_array(json_ctx_t *jp);

arguments:

json_ctx_t * jp

returns: d_token_t *

json_object_add_prop

d_token_t* json_object_add_prop(d_token_t *object, d_key_t key, d_token_t *value);

arguments:

d_token_t * object
d_key_t key
d_token_t * value

returns: d_token_t *

json_array_add_value

d_token_t* json_array_add_value(d_token_t *object, d_token_t *value);

arguments:

d_token_t * object
d_token_t * value

returns: d_token_t *

json_get_int_value

int json_get_int_value(char *js, char *prop);

122 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

parses the json and return the value as int.

arguments:

char * js
char * prop

returns: int

json_get_str_value

void json_get_str_value(char *js, char *prop, char *dst);

parses the json and return the value as string.

arguments:

char * js
char * prop
char * dst

json_get_json_value

char* json_get_json_value(char *js, char *prop);

parses the json and return the value as json-string.

arguments:

char * js
char * prop

returns: char *

d_get_keystr

char* d_get_keystr(d_key_t k);

returns the string for a key.

This only works track_keynames was activated before!

arguments:

d_key_t k

returns: char *

11.2. Module core 123

Incubed Documentation, Release 1.2

d_track_keynames

void d_track_keynames(uint8_t v);

activates the keyname-cache, which stores the string for the keys when parsing.

arguments:

uint8_t v

d_clear_keynames

void d_clear_keynames();

delete the cached keynames

key

static d_key_t key(const char *c);

arguments:

const char * c

returns: d_key_t

d_get_stringk

static char* d_get_stringk(d_token_t *r, d_key_t k);

reads token of a property as string.

arguments:

d_token_t * r
d_key_t k

returns: char *

d_get_string

static char* d_get_string(d_token_t *r, char *k);

reads token of a property as string.

arguments:

d_token_t * r
char * k

124 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

returns: char *

d_get_string_at

static char* d_get_string_at(d_token_t *r, uint32_t pos);

reads string at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: char *

d_get_intk

static uint32_t d_get_intk(d_token_t *r, d_key_t k);

reads token of a property as int.

arguments:

d_token_t * r
d_key_t k

returns: uint32_t

d_get_intkd

static uint32_t d_get_intkd(d_token_t *r, d_key_t k, uint32_t d);

reads token of a property as int.

arguments:

d_token_t * r
d_key_t k
uint32_t d

returns: uint32_t

d_get_int

static uint32_t d_get_int(d_token_t *r, char *k);

reads token of a property as int.

arguments:

11.2. Module core 125

Incubed Documentation, Release 1.2

d_token_t * r
char * k

returns: uint32_t

d_get_int_at

static uint32_t d_get_int_at(d_token_t *r, uint32_t pos);

reads a int at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: uint32_t

d_get_longk

static uint64_t d_get_longk(d_token_t *r, d_key_t k);

reads token of a property as long.

arguments:

d_token_t * r
d_key_t k

returns: uint64_t

d_get_longkd

static uint64_t d_get_longkd(d_token_t *r, d_key_t k, uint64_t d);

reads token of a property as long.

arguments:

d_token_t * r
d_key_t k
uint64_t d

returns: uint64_t

126 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

d_get_long

static uint64_t d_get_long(d_token_t *r, char *k);

reads token of a property as long.

arguments:

d_token_t * r
char * k

returns: uint64_t

d_get_long_at

static uint64_t d_get_long_at(d_token_t *r, uint32_t pos);

reads long at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: uint64_t

d_get_bytesk

static bytes_t* d_get_bytesk(d_token_t *r, d_key_t k);

reads token of a property as bytes.

arguments:

d_token_t * r
d_key_t k

returns: bytes_t *

d_get_bytes

static bytes_t* d_get_bytes(d_token_t *r, char *k);

reads token of a property as bytes.

arguments:

d_token_t * r
char * k

returns: bytes_t *

11.2. Module core 127

Incubed Documentation, Release 1.2

d_get_bytes_at

static bytes_t* d_get_bytes_at(d_token_t *r, uint32_t pos);

reads bytes at given pos of an array.

arguments:

d_token_t * r
uint32_t pos

returns: bytes_t *

d_is_binary_ctx

static bool d_is_binary_ctx(json_ctx_t *ctx);

check if the parser context was created from binary data.

arguments:

json_ctx_t * ctx

returns: bool

d_get_byteskl

bytes_t* d_get_byteskl(d_token_t *r, d_key_t k, uint32_t minl);

arguments:

d_token_t * r
d_key_t k
uint32_t minl

returns: bytes_t *

d_getl

d_token_t* d_getl(d_token_t *item, uint16_t k, uint32_t minl);

arguments:

d_token_t * item
uint16_t k
uint32_t minl

returns: d_token_t *

128 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

d_iter

static d_iterator_t d_iter(d_token_t *parent);

creates a iterator for a object or array

arguments:

d_token_t * parent

returns: d_iterator_t

d_iter_next

static bool d_iter_next(d_iterator_t *const iter);

fetched the next token an returns a boolean indicating whther there is a next or not.

arguments:

d_iterator_t *const iter

returns: bool

11.2.9 debug.h

logs debug data only if the DEBUG-flag is set.

Location: src/core/util/debug.h

dbg_log (msg,. . .)

dbg_log_raw (msg,. . .)

11.2.10 error.h

defines the return-values of a function call.

Location: src/core/util/error.h

in3_ret_t

ERROR types used as return values.

All values (except IN3_OK) indicate an error.

The enum type contains the following values:

11.2. Module core 129

Incubed Documentation, Release 1.2

IN3_OK 0 Success.
IN3_EUNKNOWN -1 Unknown error - usually accompanied with specific error msg.
IN3_ENOMEM -2 No memory.
IN3_ENOTSUP -3 Not supported.
IN3_EINVAL -4 Invalid value.
IN3_EFIND -5 Not found.
IN3_ECONFIG -6 Invalid config.
IN3_ELIMIT -7 Limit reached.
IN3_EVERS -8 Version mismatch.
IN3_EINVALDT -9 Data invalid, eg.

invalid/incomplete JSON
IN3_EPASS -10 Wrong password.
IN3_ERPC -11 RPC error (i.e.

in3_ctx_t::error set)
IN3_ERPCNRES -12 RPC no response.
IN3_EUSNURL -13 USN URL parse error.
IN3_ETRANS -14 Transport error.

11.2.11 scache.h

util helper on byte arrays.

Location: src/core/util/scache.h

cache_entry_t

The stuct contains following fields:

bytes_t key
bytes_t value
uint8_t must_free
uint8_t buffer
cache_entrystruct , * next

in3_cache_get_entry

bytes_t* in3_cache_get_entry(cache_entry_t *cache, bytes_t *key);

arguments:

cache_entry_t * cache
bytes_t * key

returns: bytes_t *

130 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_cache_add_entry

cache_entry_t* in3_cache_add_entry(cache_entry_t *cache, bytes_t key, bytes_t value);

arguments:

cache_entry_t * cache
bytes_t key
bytes_t value

returns: cache_entry_t *

in3_cache_free

void in3_cache_free(cache_entry_t *cache);

arguments:

cache_entry_t * cache

11.2.12 stringbuilder.h

simple string buffer used to dynamicly add content.

Location: src/core/util/stringbuilder.h

sb_add_hexuint (sb,i)

#define sb_add_hexuint (sb,i) sb_add_hexuint_l(sb, i, sizeof(i))

sb_t

The stuct contains following fields:

char * data
size_t allocted
size_t len

sb_new

sb_t* sb_new(char *chars);

arguments:

char * chars

returns: sb_t *

11.2. Module core 131

Incubed Documentation, Release 1.2

sb_init

sb_t* sb_init(sb_t *sb);

arguments:

sb_t * sb

returns: sb_t *

sb_free

void sb_free(sb_t *sb);

arguments:

sb_t * sb

sb_add_char

sb_t* sb_add_char(sb_t *sb, char c);

arguments:

sb_t * sb
char c

returns: sb_t *

sb_add_chars

sb_t* sb_add_chars(sb_t *sb, char *chars);

arguments:

sb_t * sb
char * chars

returns: sb_t *

sb_add_range

sb_t* sb_add_range(sb_t *sb, char *chars, int start, int len);

arguments:

132 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

sb_t * sb
char * chars
int start
int len

returns: sb_t *

sb_add_key_value

sb_t* sb_add_key_value(sb_t *sb, char *key, char *value, int lv, bool as_string);

arguments:

sb_t * sb
char * key
char * value
int lv
bool as_string

returns: sb_t *

sb_add_bytes

sb_t* sb_add_bytes(sb_t *sb, char *prefix, bytes_t *bytes, int len, bool as_array);

arguments:

sb_t * sb
char * prefix
bytes_t * bytes
int len
bool as_array

returns: sb_t *

sb_add_hexuint_l

sb_t* sb_add_hexuint_l(sb_t *sb, uintmax_t uint, size_t l);

Other types not supported

arguments:

sb_t * sb
uintmax_t uint
size_t l

returns: sb_t *

11.2. Module core 133

Incubed Documentation, Release 1.2

11.2.13 utils.h

utility functions.

Location: src/core/util/utils.h

SWAP (a,b)

#define SWAP (a,b) { \
void* p = a; \
a = b; \
b = p; \

}

min (a,b)

#define min (a,b) ((a) < (b) ? (a) : (b))

max (a,b)

#define max (a,b) ((a) > (b) ? (a) : (b))

optimize_len (a,l)

#define optimize_len (a,l) while (l > 1 && *a == 0) { \
l--; \
a++; \

}

TRY (exp)

#define TRY (exp) { \
int _r = (exp); \
if (_r < 0) return _r; \

}

TRY_SET (var,exp)

#define TRY_SET (var,exp) { \
var = (exp); \
if (var < 0) return var; \

}

TRY_GOTO (exp)

134 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

#define TRY_GOTO (exp) { \
res = (exp); \
if (res < 0) goto clean; \

}

pb_size_t

typedef uint32_t pb_size_t

pb_byte_t

typedef uint_least8_t pb_byte_t

bytes_to_long

uint64_t bytes_to_long(uint8_t *data, int len);

converts the bytes to a unsigned long (at least the last max len bytes)

arguments:

uint8_t * data
int len

returns: uint64_t

bytes_to_int

static uint32_t bytes_to_int(uint8_t *data, int len);

converts the bytes to a unsigned int (at least the last max len bytes)

arguments:

uint8_t * data
int len

returns: uint32_t

c_to_long

uint64_t c_to_long(char *a, int l);

converts a character into a uint64_t

arguments:

11.2. Module core 135

Incubed Documentation, Release 1.2

char * a
int l

returns: uint64_t

size_of_bytes

int size_of_bytes(int str_len);

the number of bytes used for a conerting a hex into bytes.

arguments:

int str_len

returns: int

strtohex

uint8_t strtohex(char c);

converts a hexchar to byte (4bit)

arguments:

char c

returns: uint8_t

hex2byte_arr

int hex2byte_arr(char *buf, int len, uint8_t *out, int outbuf_size);

convert a c string to a byte array storing it into a existing buffer

arguments:

char * buf
int len
uint8_t * out
int outbuf_size

returns: int

hex2byte_new_bytes

bytes_t* hex2byte_new_bytes(char *buf, int len);

136 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

convert a c string to a byte array creating a new buffer

arguments:

char * buf
int len

returns: bytes_t *

bytes_to_hex

int bytes_to_hex(uint8_t *buffer, int len, char *out);

convefrts a bytes into hex

arguments:

uint8_t * buffer
int len
char * out

returns: int

sha3

bytes_t* sha3(bytes_t *data);

hashes the bytes and creates a new bytes_t

arguments:

bytes_t * data

returns: bytes_t *

sha3_to

int sha3_to(bytes_t *data, void *dst);

writes 32 bytes to the pointer.

arguments:

bytes_t * data
void * dst

returns: int

11.2. Module core 137

Incubed Documentation, Release 1.2

long_to_bytes

void long_to_bytes(uint64_t val, uint8_t *dst);

converts a long to 8 bytes

arguments:

uint64_t val
uint8_t * dst

int_to_bytes

void int_to_bytes(uint32_t val, uint8_t *dst);

converts a int to 4 bytes

arguments:

uint32_t val
uint8_t * dst

hash_cmp

int hash_cmp(uint8_t *a, uint8_t *b);

compares 32 bytes and returns 0 if equal

arguments:

uint8_t * a
uint8_t * b

returns: int

_strdupn

char* _strdupn(char *src, int len);

duplicate the string

arguments:

char * src
int len

returns: char *

138 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

min_bytes_len

int min_bytes_len(uint64_t val);

calculate the min number of byte to represents the len

arguments:

uint64_t val

returns: int

11.3 Module eth_api

static lib

11.3.1 eth_api.h

Ethereum API.

This header-file defines easy to use function, which are preparing the JSON-RPC-Request, which is then executed and
verified by the incubed-client.

Location: src/eth_api/eth_api.h

eth_tx_t

a transaction

The stuct contains following fields:

bytes32_t hash the blockhash
bytes32_t block_hash hash of ther containnig block
uint64_t block_number number of the containing block
address_t from sender of the tx
uint64_t gas gas send along
uint64_t gas_price gas price used
bytes_t data data send along with the transaction
uint64_t nonce nonce of the transaction
address_t to receiver of the address 0x0000.

. -Address is used for contract creation.
uint256_t value the value in wei send
int transaction_index the transaction index
uint8_t signature signature of the transaction

eth_block_t

a Ethereum Block

The stuct contains following fields:

11.3. Module eth_api 139

Incubed Documentation, Release 1.2

uint64_t number the blockNumber
bytes32_t hash the blockhash
uint64_t gasUsed gas used by all the transactions
uint64_t gasLimit gasLimit
address_t author the author of the block.
uint256_t difficulty the difficulty of the block.
bytes_t extra_data the extra_data of the block.
uint8_t logsBloom the logsBloom-data
bytes32_t parent_hash the hash of the parent-block
bytes32_t sha3_uncles root hash of the uncle-trie
bytes32_t state_root root hash of the state-trie
bytes32_t receipts_root root of the receipts trie
bytes32_t transaction_root root of the transaction trie
int tx_count number of transactions in the block
eth_tx_t * tx_data array of transaction data or NULL if not requested
bytes32_t * tx_hashes array of transaction hashes or NULL if not requested
uint64_t timestamp the unix timestamp of the block
bytes_t * seal_fields sealed fields
int seal_fields_count number of seal fields

eth_log_t

a linked list of Ethereum Logs

The stuct contains following fields:

bool removed true when the log was removed, due to a chain reorganization.
false if its a valid log

size_t log_index log index position in the block
size_t transac-

tion_index
transactions index position log was created from

bytes32_t transac-
tion_hash

hash of the transactions this log was created from

bytes32_t block_hash hash of the block where this log was in
uint64_t block_number the block number where this log was in
address_t address address from which this log originated
bytes_t data non-indexed arguments of the log
bytes32_t * topics array of 0 to 4 32 Bytes DATA of indexed log arguments
size_t topic_count counter for topics
eth_logstruct ,
*

next pointer to next log in list or NULL

eth_getStorageAt

uint256_t eth_getStorageAt(in3_t *in3, address_t account, bytes32_t key, uint64_t
→˓block);

returns the storage value of a given address.

arguments:

140 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_t * in3
address_t account
bytes32_t key
uint64_t block

returns: uint256_t

eth_getCode

bytes_t eth_getCode(in3_t *in3, address_t account, uint64_t block);

returns the code of the account of given address.

(Make sure you free the data-point of the result after use.)

arguments:

in3_t * in3
address_t account
uint64_t block

returns: bytes_t

eth_getBalance

uint256_t eth_getBalance(in3_t *in3, address_t account, uint64_t block);

returns the balance of the account of given address.

arguments:

in3_t * in3
address_t account
uint64_t block

returns: uint256_t

eth_blockNumber

uint64_t eth_blockNumber(in3_t *in3);

returns the current price per gas in wei.

arguments:

in3_t * in3

returns: uint64_t

11.3. Module eth_api 141

Incubed Documentation, Release 1.2

eth_gasPrice

uint64_t eth_gasPrice(in3_t *in3);

returns the current blockNumber, if bn==0 an error occured and you should check

arguments:

in3_t * in3

returns: uint64_t

eth_getBlockByNumber

eth_block_t* eth_getBlockByNumber(in3_t *in3, uint64_t number, bool include_tx);

returns the block for the given number (if number==0, the latest will be returned).

If result is null, check ,! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
uint64_t number
bool include_tx

returns: eth_block_t *

eth_getBlockByHash

eth_block_t* eth_getBlockByHash(in3_t *in3, bytes32_t hash, bool include_tx);

returns the block for the given hash.

If result is null, check ,! otherwise make sure to free the result after using it!

arguments:

in3_t * in3
bytes32_t hash
bool include_tx

returns: eth_block_t *

eth_getLogs

eth_log_t* eth_getLogs(in3_t *in3, char *fopt);

returns a linked list of logs.

If result is null, check ,! otherwise make sure to free the log, its topics and data after using it!

arguments:

142 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_t * in3
char * fopt

returns: eth_log_t *

eth_call_fn

json_ctx_t* eth_call_fn(in3_t *in3, address_t contract, char *fn_sig,...);

returns the result of a function_call.

If result is null, check ,! otherwise make sure to free the result after using it with ,!

arguments:

in3_t * in3
address_t contract
char * fn_sig
...

returns: json_ctx_t *

eth_wait_for_receipt

char* eth_wait_for_receipt(in3_t *in3, bytes32_t tx_hash);

arguments:

in3_t * in3
bytes32_t tx_hash

returns: char *

eth_newFilter

in3_ret_t eth_newFilter(in3_t *in3, json_ctx_t *options);

arguments:

in3_t * in3
json_ctx_t * options

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newBlockFilter

11.3. Module eth_api 143

Incubed Documentation, Release 1.2

in3_ret_t eth_newBlockFilter(in3_t *in3);

creates a new block filter with specified options and returns its id (>0) on success or 0 on failure

arguments:

in3_t * in3

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_newPendingTransactionFilter

in3_ret_t eth_newPendingTransactionFilter(in3_t *in3);

creates a new pending txn filter with specified options and returns its id on success or 0 on failure

arguments:

in3_t * in3

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_uninstallFilter

bool eth_uninstallFilter(in3_t *in3, size_t id);

uninstalls a filter and returns true on success or false on failure

arguments:

in3_t * in3
size_t id

returns: bool

eth_getFilterChanges

in3_ret_t eth_getFilterChanges(in3_t *in3, size_t id, bytes32_t **block_hashes, eth_
→˓log_t **logs);

sets the logs (for event filter) or blockhashes (for block filter) that match a filter; returns <0 on error, otherwise no.

of block hashes matched (for block filter) or 0 (for log filer)

arguments:

144 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_t * in3
size_t id
bytes32_t ** block_hashes
eth_log_t ** logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_last_error

char* eth_last_error();

the current error or null if all is ok

returns: char *

as_double

long double as_double(uint256_t d);

converts a , in a long double.

Important: since a long double stores max 16 byte, there is no garantee to have the full precision.

converts a , in a long double.

arguments:

uint256_t d

returns: long double

as_long

uint64_t as_long(uint256_t d);

converts a , in a long .

Important: since a long double stores 8 byte, this will only use the last 8 byte of the value.

converts a , in a long .

arguments:

uint256_t d

returns: uint64_t

to_uint256

11.3. Module eth_api 145

Incubed Documentation, Release 1.2

uint256_t to_uint256(uint64_t value);

arguments:

uint64_t value

returns: uint256_t

decrypt_key

in3_ret_t decrypt_key(d_token_t *key_data, char *password, bytes32_t dst);

arguments:

d_token_t * key_data
char * password
bytes32_t dst

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

free_log

void free_log(eth_log_t *log);

arguments:

eth_log_t * log

11.4 Module eth_basic

static lib

11.4.1 eth_basic.h

Ethereum Nanon verification.

Location: src/eth_basic/eth_basic.h

in3_verify_eth_basic

in3_ret_t in3_verify_eth_basic(in3_vctx_t *v);

146 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

entry-function to execute the verification context.

arguments:

in3_vctx_t * v

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_tx_values

in3_ret_t eth_verify_tx_values(in3_vctx_t *vc, d_token_t *tx, bytes_t *raw);

verifies internal tx-values.

arguments:

in3_vctx_t * vc
d_token_t * tx
bytes_t * raw

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_eth_getTransaction

in3_ret_t eth_verify_eth_getTransaction(in3_vctx_t *vc, bytes_t *tx_hash);

verifies a transaction.

arguments:

in3_vctx_t * vc
bytes_t * tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_account_proof

in3_ret_t eth_verify_account_proof(in3_vctx_t *vc);

verify account-proofs

arguments:

in3_vctx_t * vc

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.4. Module eth_basic 147

Incubed Documentation, Release 1.2

eth_verify_eth_getBlock

in3_ret_t eth_verify_eth_getBlock(in3_vctx_t *vc, bytes_t *block_hash, uint64_t
→˓blockNumber);

verifies a block

arguments:

in3_vctx_t * vc
bytes_t * block_hash
uint64_t blockNumber

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_basic

void in3_register_eth_basic();

this function should only be called once and will register the eth-nano verifier.

eth_verify_eth_getLog

in3_ret_t eth_verify_eth_getLog(in3_vctx_t *vc, int l_logs);

verify logs

arguments:

in3_vctx_t * vc
int l_logs

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_handle_intern

in3_ret_t eth_handle_intern(in3_ctx_t *ctx, in3_response_t **response);

this is called before a request is send

arguments:

in3_ctx_t * ctx
in3_response_t ** response

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

148 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

11.4.2 signer.h

Ethereum Nanon verification.

Location: src/eth_basic/signer.h

eth_sign

in3_ret_t eth_sign(void *pk, d_signature_type_t type, bytes_t message, bytes_t
→˓account, uint8_t *dst);

signs the given data

arguments:

void * pk
d_signature_type_t type
bytes_t message
bytes_t account
uint8_t * dst

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_set_pk_signer

in3_ret_t eth_set_pk_signer(in3_t *in3, bytes32_t pk);

sets the signer and a pk to the client

arguments:

in3_t * in3
bytes32_t pk

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

sign_tx

bytes_t sign_tx(d_token_t *tx, in3_ctx_t *ctx);

arguments:

d_token_t * tx
in3_ctx_t * ctx

returns: bytes_t

11.4. Module eth_basic 149

Incubed Documentation, Release 1.2

11.4.3 trie.h

Patricia Merkle Tree Imnpl.

Location: src/eth_basic/trie.h

trie_node_type_t

Node types.

The enum type contains the following values:

NODE_EMPTY 0 empty node
NODE_BRANCH 1 a Branch
NODE_LEAF 2 a leaf containing the value.
NODE_EXT 3 a extension

in3_hasher_t

hash-function

typedef void(* in3_hasher_t) (bytes_t *src, uint8_t *dst)

in3_codec_add_t

codec to organize the encoding of the nodes

typedef void(* in3_codec_add_t) (bytes_builder_t *bb, bytes_t *val)

in3_codec_finish_t

typedef void(* in3_codec_finish_t) (bytes_builder_t *bb, bytes_t *dst)

in3_codec_decode_size_t

typedef int(* in3_codec_decode_size_t) (bytes_t *src)

returns: int(*

in3_codec_decode_index_t

typedef int(* in3_codec_decode_index_t) (bytes_t *src, int index, bytes_t *dst)

returns: int(*

150 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

trie_node_t

single node in the merkle trie.

The stuct contains following fields:

uint8_t hash the hash of the node
bytes_t data the raw data
bytes_t items the data as list
uint8_t own_memory if true this is a embedded node with own memory
trie_node_type_t type type of the node
trie_nodestruct , * next used as linked list

trie_codec_t

the codec used to encode nodes.

The stuct contains following fields:

in3_codec_add_t encode_add
in3_codec_finish_t encode_finish
in3_codec_decode_size_t decode_size
in3_codec_decode_index_t decode_item

trie_t

a merkle trie implementation.

This is a Patricia Merkle Tree.

The stuct contains following fields:

in3_hasher_t hasher hash-function.
trie_codec_t * codec encoding of the nocds.
uint8_t root The root-hash.
trie_node_t * nodes linked list of containes nodes

trie_new

trie_t* trie_new();

creates a new Merkle Trie.

returns: trie_t *

trie_free

void trie_free(trie_t *val);

11.4. Module eth_basic 151

Incubed Documentation, Release 1.2

frees all resources of the trie.

arguments:

trie_t * val

trie_set_value

void trie_set_value(trie_t *t, bytes_t *key, bytes_t *value);

sets a value in the trie.

The root-hash will be updated automaticly.

arguments:

trie_t * t
bytes_t * key
bytes_t * value

11.5 Module eth_full

tommath/bn_error.c

11.5.1 big.h

Ethereum Nanon verification.

Location: src/eth_full/big.h

big_is_zero

uint8_t big_is_zero(uint8_t *data, wlen_t l);

arguments:

uint8_t * data
wlen_t l

returns: uint8_t

big_shift_left

void big_shift_left(uint8_t *a, wlen_t len, int bits);

152 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

arguments:

uint8_t * a
wlen_t len
int bits

big_shift_right

void big_shift_right(uint8_t *a, wlen_t len, int bits);

arguments:

uint8_t * a
wlen_t len
int bits

big_cmp

int big_cmp(const uint8_t *a, const wlen_t len_a, const uint8_t *b, const wlen_t len_
→˓b);

arguments:

const uint8_t * a
wlen_tconst len_a
const uint8_t * b
wlen_tconst len_b

returns: int

big_signed

int big_signed(uint8_t *val, wlen_t len, uint8_t *dst);

returns 0 if the value is positive or 1 if negavtive.

in this case the absolute value is copied to dst.

arguments:

uint8_t * val
wlen_t len
uint8_t * dst

returns: int

11.5. Module eth_full 153

Incubed Documentation, Release 1.2

big_int

int32_t big_int(uint8_t *val, wlen_t len);

arguments:

uint8_t * val
wlen_t len

returns: int32_t

big_add

int big_add(uint8_t *a, wlen_t len_a, uint8_t *b, wlen_t len_b, uint8_t *out, wlen_t
→˓max);

arguments:

uint8_t * a
wlen_t len_a
uint8_t * b
wlen_t len_b
uint8_t * out
wlen_t max

returns: int

big_sub

int big_sub(uint8_t *a, wlen_t len_a, uint8_t *b, wlen_t len_b, uint8_t *out);

arguments:

uint8_t * a
wlen_t len_a
uint8_t * b
wlen_t len_b
uint8_t * out

returns: int

big_mul

int big_mul(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, uint8_t *res, wlen_t max);

arguments:

154 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
uint8_t * res
wlen_t max

returns: int

big_div

int big_div(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, wlen_t sig, uint8_t *res);

arguments:

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
wlen_t sig
uint8_t * res

returns: int

big_mod

int big_mod(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, wlen_t sig, uint8_t *res);

arguments:

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
wlen_t sig
uint8_t * res

returns: int

big_exp

int big_exp(uint8_t *a, wlen_t la, uint8_t *b, wlen_t lb, uint8_t *res);

arguments:

11.5. Module eth_full 155

Incubed Documentation, Release 1.2

uint8_t * a
wlen_t la
uint8_t * b
wlen_t lb
uint8_t * res

returns: int

big_log256

int big_log256(uint8_t *a, wlen_t len);

arguments:

uint8_t * a
wlen_t len

returns: int

11.5.2 code.h

code cache.

Location: src/eth_full/code.h

in3_get_code

cache_entry_t* in3_get_code(in3_vctx_t *vc, uint8_t *address);

arguments:

in3_vctx_t * vc
uint8_t * address

returns: cache_entry_t *

11.5.3 eth_full.h

Ethereum Nanon verification.

Location: src/eth_full/eth_full.h

in3_verify_eth_full

int in3_verify_eth_full(in3_vctx_t *v);

156 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

entry-function to execute the verification context.

arguments:

in3_vctx_t * v

returns: int

in3_register_eth_full

void in3_register_eth_full();

this function should only be called once and will register the eth-full verifier.

11.5.4 evm.h

main evm-file.

Location: src/eth_full/evm.h

EVM_ERROR_EMPTY_STACK

the no more elements on the stack

#define EVM_ERROR_EMPTY_STACK -1

EVM_ERROR_INVALID_OPCODE

the opcode is not supported

#define EVM_ERROR_INVALID_OPCODE -2

EVM_ERROR_BUFFER_TOO_SMALL

reading data from a position, which is not initialized

#define EVM_ERROR_BUFFER_TOO_SMALL -3

EVM_ERROR_ILLEGAL_MEMORY_ACCESS

the memory-offset does not exist

#define EVM_ERROR_ILLEGAL_MEMORY_ACCESS -4

11.5. Module eth_full 157

Incubed Documentation, Release 1.2

EVM_ERROR_INVALID_JUMPDEST

the jump destination is not marked as valid destination

#define EVM_ERROR_INVALID_JUMPDEST -5

EVM_ERROR_INVALID_PUSH

the push data is empy

#define EVM_ERROR_INVALID_PUSH -6

EVM_ERROR_UNSUPPORTED_CALL_OPCODE

error handling the call, usually because static-calls are not allowed to change state

#define EVM_ERROR_UNSUPPORTED_CALL_OPCODE -7

EVM_ERROR_TIMEOUT

the evm ran into a loop

#define EVM_ERROR_TIMEOUT -8

EVM_ERROR_INVALID_ENV

the enviroment could not deliver the data

#define EVM_ERROR_INVALID_ENV -9

EVM_ERROR_OUT_OF_GAS

not enough gas to exewcute the opcode

#define EVM_ERROR_OUT_OF_GAS -10

EVM_ERROR_BALANCE_TOO_LOW

not enough funds to transfer the requested value.

#define EVM_ERROR_BALANCE_TOO_LOW -11

EVM_ERROR_STACK_LIMIT

stack limit reached

#define EVM_ERROR_STACK_LIMIT -12

158 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

EVM_PROP_FRONTIER

#define EVM_PROP_FRONTIER 1

EVM_PROP_EIP150

#define EVM_PROP_EIP150 2

EVM_PROP_EIP158

#define EVM_PROP_EIP158 4

EVM_PROP_CONSTANTINOPL

#define EVM_PROP_CONSTANTINOPL 16

EVM_PROP_NO_FINALIZE

#define EVM_PROP_NO_FINALIZE 32768

EVM_PROP_DEBUG

#define EVM_PROP_DEBUG 65536

EVM_PROP_STATIC

#define EVM_PROP_STATIC 256

EVM_ENV_BALANCE

#define EVM_ENV_BALANCE 1

EVM_ENV_CODE_SIZE

#define EVM_ENV_CODE_SIZE 2

EVM_ENV_CODE_COPY

#define EVM_ENV_CODE_COPY 3

11.5. Module eth_full 159

Incubed Documentation, Release 1.2

EVM_ENV_BLOCKHASH

#define EVM_ENV_BLOCKHASH 4

EVM_ENV_STORAGE

#define EVM_ENV_STORAGE 5

EVM_ENV_BLOCKHEADER

#define EVM_ENV_BLOCKHEADER 6

EVM_ENV_CODE_HASH

#define EVM_ENV_CODE_HASH 7

EVM_ENV_NONCE

#define EVM_ENV_NONCE 8

EVM_CALL_MODE_STATIC

#define EVM_CALL_MODE_STATIC 1

EVM_CALL_MODE_DELEGATE

#define EVM_CALL_MODE_DELEGATE 2

evm_state

the current state of the evm

The enum type contains the following values:

EVM_STATE_INIT 0 just initialised, but not yet started
EVM_STATE_RUNNING 1 started and still running
EVM_STATE_STOPPED 2 successfully stopped
EVM_STATE_REVERTED 3 stopped, but results must be reverted

evm_state_t

the current state of the evm

The stuct contains following fields:

160 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

evm_get_env

This function provides data from the enviroment.

depending on the key the function will set the out_data-pointer to the result. This means the enviroment is responsible
for memory management and also to clean up resources afterwards.

typedef int(* evm_get_env) (void *evm, uint16_t evm_key, uint8_t *in_data, int in_len,
→˓ uint8_t **out_data, int offset, int len)

returns: int(*

storage_t

The stuct contains following fields:

bytes32_t key
bytes32_t value
account_storagestruct , * next

logs_t

The stuct contains following fields:

bytes_t topics
bytes_t data
logsstruct , * next

account_t

The stuct contains following fields:

address_t address
bytes32_t balance
bytes32_t nonce
bytes_t code
storage_t * storage
accountstruct , * next

evm_t

The stuct contains following fields:

11.5. Module eth_full 161

Incubed Documentation, Release 1.2

bytes_builder_t stack
bytes_builder_t memory
int stack_size
bytes_t code
uint32_t pos
evm_state_t state
bytes_t last_returned
bytes_t return_data
uint32_t * invalid_jumpdest
uint32_t properties
evm_get_env env
void * env_ptr
uint8_t * address the address of the current storage
uint8_t * account the address of the code
uint8_t * origin the address of original sender of the root-transaction
uint8_t * caller the address of the parent sender
bytes_t call_value value send
bytes_t call_data data send in the tx
bytes_t gas_price current gasprice

evm_stack_push

int evm_stack_push(evm_t *evm, uint8_t *data, uint8_t len);

arguments:

evm_t * evm
uint8_t * data
uint8_t len

returns: int

evm_stack_push_ref

int evm_stack_push_ref(evm_t *evm, uint8_t **dst, uint8_t len);

arguments:

evm_t * evm
uint8_t ** dst
uint8_t len

returns: int

evm_stack_push_int

int evm_stack_push_int(evm_t *evm, uint32_t val);

162 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

arguments:

evm_t * evm
uint32_t val

returns: int

evm_stack_push_long

int evm_stack_push_long(evm_t *evm, uint64_t val);

arguments:

evm_t * evm
uint64_t val

returns: int

evm_stack_get_ref

int evm_stack_get_ref(evm_t *evm, uint8_t pos, uint8_t **dst);

arguments:

evm_t * evm
uint8_t pos
uint8_t ** dst

returns: int

evm_stack_pop

int evm_stack_pop(evm_t *evm, uint8_t *dst, uint8_t len);

arguments:

evm_t * evm
uint8_t * dst
uint8_t len

returns: int

evm_stack_pop_ref

int evm_stack_pop_ref(evm_t *evm, uint8_t **dst);

11.5. Module eth_full 163

Incubed Documentation, Release 1.2

arguments:

evm_t * evm
uint8_t ** dst

returns: int

evm_stack_pop_byte

int evm_stack_pop_byte(evm_t *evm, uint8_t *dst);

arguments:

evm_t * evm
uint8_t * dst

returns: int

evm_stack_pop_int

int32_t evm_stack_pop_int(evm_t *evm);

arguments:

evm_t * evm

returns: int32_t

evm_stack_peek_len

int evm_stack_peek_len(evm_t *evm);

arguments:

evm_t * evm

returns: int

evm_run

int evm_run(evm_t *evm);

arguments:

evm_t * evm

returns: int

164 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

evm_sub_call

int evm_sub_call(evm_t *parent, uint8_t address[20], uint8_t account[20], uint8_t
→˓*value, wlen_t l_value, uint8_t *data, uint32_t l_data, uint8_t caller[20], uint8_t
→˓origin[20], uint64_t gas, wlen_t mode, uint32_t out_offset, uint32_t out_len);

handle internal calls.

arguments:

evm_t * parent
uint8_t address
uint8_t account
uint8_t * value
wlen_t l_value
uint8_t * data
uint32_t l_data
uint8_t caller
uint8_t origin
uint64_t gas
wlen_t mode
uint32_t out_offset
uint32_t out_len

returns: int

evm_ensure_memory

int evm_ensure_memory(evm_t *evm, uint32_t max_pos);

arguments:

evm_t * evm
uint32_t max_pos

returns: int

in3_get_env

int in3_get_env(void *evm_ptr, uint16_t evm_key, uint8_t *in_data, int in_len, uint8_
→˓t **out_data, int offset, int len);

arguments:

void * evm_ptr
uint16_t evm_key
uint8_t * in_data
int in_len
uint8_t ** out_data
int offset
int len

11.5. Module eth_full 165

Incubed Documentation, Release 1.2

returns: int

evm_call

int evm_call(in3_vctx_t *vc, uint8_t address[20], uint8_t *value, wlen_t l_value,
→˓uint8_t *data, uint32_t l_data, uint8_t caller[20], uint64_t gas, bytes_t **result);

run a evm-call

arguments:

in3_vctx_t * vc
uint8_t address
uint8_t * value
wlen_t l_value
uint8_t * data
uint32_t l_data
uint8_t caller
uint64_t gas
bytes_t ** result

returns: int

evm_print_stack

void evm_print_stack(evm_t *evm, uint64_t last_gas, uint32_t pos);

arguments:

evm_t * evm
uint64_t last_gas
uint32_t pos

evm_free

void evm_free(evm_t *evm);

arguments:

evm_t * evm

evm_run_precompiled

int evm_run_precompiled(evm_t *evm, uint8_t address[20]);

arguments:

evm_t * evm
uint8_t address

166 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

returns: int

evm_is_precompiled

uint8_t evm_is_precompiled(evm_t *evm, uint8_t address[20]);

arguments:

evm_t * evm
uint8_t address

returns: uint8_t

uint256_set

void uint256_set(uint8_t *src, wlen_t src_len, uint8_t dst[32]);

arguments:

uint8_t * src
wlen_t src_len
uint8_t dst

11.5.5 gas.h

evm gas defines.

Location: src/eth_full/gas.h

op_exec (m,gas)

#define op_exec (m,gas) return m;

subgas (g)

GAS_CC_NET_SSTORE_NOOP_GAS

Once per SSTORE operation if the value doesn’t change.

#define GAS_CC_NET_SSTORE_NOOP_GAS 200

GAS_CC_NET_SSTORE_INIT_GAS

Once per SSTORE operation from clean zero.

#define GAS_CC_NET_SSTORE_INIT_GAS 20000

11.5. Module eth_full 167

Incubed Documentation, Release 1.2

GAS_CC_NET_SSTORE_CLEAN_GAS

Once per SSTORE operation from clean non-zero.

#define GAS_CC_NET_SSTORE_CLEAN_GAS 5000

GAS_CC_NET_SSTORE_DIRTY_GAS

Once per SSTORE operation from dirty.

#define GAS_CC_NET_SSTORE_DIRTY_GAS 200

GAS_CC_NET_SSTORE_CLEAR_REFUND

Once per SSTORE operation for clearing an originally existing storage slot.

#define GAS_CC_NET_SSTORE_CLEAR_REFUND 15000

GAS_CC_NET_SSTORE_RESET_REFUND

Once per SSTORE operation for resetting to the original non-zero value.

#define GAS_CC_NET_SSTORE_RESET_REFUND 4800

GAS_CC_NET_SSTORE_RESET_CLEAR_REFUND

Once per SSTORE operation for resetting to the original zero valuev.

#define GAS_CC_NET_SSTORE_RESET_CLEAR_REFUND 19800

G_ZERO

Nothing is paid for operations of the set Wzero.

#define G_ZERO 0

G_JUMPDEST

JUMP DEST.

#define G_JUMPDEST 1

G_BASE

This is the amount of gas to pay for operations of the set Wbase.

#define G_BASE 2

168 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

G_VERY_LOW

This is the amount of gas to pay for operations of the set Wverylow.

#define G_VERY_LOW 3

G_LOW

This is the amount of gas to pay for operations of the set Wlow.

#define G_LOW 5

G_MID

This is the amount of gas to pay for operations of the set Wmid.

#define G_MID 8

G_HIGH

This is the amount of gas to pay for operations of the set Whigh.

#define G_HIGH 10

G_EXTCODE

This is the amount of gas to pay for operations of the set Wextcode.

#define G_EXTCODE 700

G_BALANCE

This is the amount of gas to pay for a BALANCE operation.

#define G_BALANCE 400

G_SLOAD

This is paid for an SLOAD operation.

#define G_SLOAD 200

G_SSET

This is paid for an SSTORE operation when the storage value is set to non-zero from zero.

#define G_SSET 20000

11.5. Module eth_full 169

Incubed Documentation, Release 1.2

G_SRESET

This is the amount for an SSTORE operation when the storage value’s zeroness remains unchanged or is set to zero.

#define G_SRESET 5000

R_SCLEAR

This is the refund given (added into the refund counter) when the storage value is set to zero from non-zero.

#define R_SCLEAR 15000

R_SELFDESTRUCT

This is the refund given (added into the refund counter) for self-destructing an account.

#define R_SELFDESTRUCT 24000

G_SELFDESTRUCT

This is the amount of gas to pay for a SELFDESTRUCT operation.

#define G_SELFDESTRUCT 5000

G_CREATE

This is paid for a CREATE operation.

#define G_CREATE 32000

G_CODEDEPOSIT

This is paid per byte for a CREATE operation to succeed in placing code into the state.

#define G_CODEDEPOSIT 200

G_CALL

This is paid for a CALL operation.

#define G_CALL 700

G_CALLVALUE

This is paid for a non-zero value transfer as part of the CALL operation.

#define G_CALLVALUE 9000

170 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

G_CALLSTIPEND

This is a stipend for the called contract subtracted from Gcallvalue for a non-zero value transfer.

#define G_CALLSTIPEND 2300

G_NEWACCOUNT

This is paid for a CALL or for a SELFDESTRUCT operation which creates an account.

#define G_NEWACCOUNT 25000

G_EXP

This is a partial payment for an EXP operation.

#define G_EXP 10

G_EXPBYTE

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define G_EXPBYTE 50

G_MEMORY

This is paid for every additional word when expanding memory.

#define G_MEMORY 3

G_TXCREATE

This is paid by all contract-creating transactions after the Homestead transition.

#define G_TXCREATE 32000

G_TXDATA_ZERO

This is paid for every zero byte of data or code for a transaction.

#define G_TXDATA_ZERO 4

G_TXDATA_NONZERO

This is paid for every non-zero byte of data or code for a transaction.

#define G_TXDATA_NONZERO 68

11.5. Module eth_full 171

Incubed Documentation, Release 1.2

G_TRANSACTION

This is paid for every transaction.

#define G_TRANSACTION 21000

G_LOG

This is a partial payment for a LOG operation.

#define G_LOG 375

G_LOGDATA

This is paid for each byte in a LOG operation’s data.

#define G_LOGDATA 8

G_LOGTOPIC

This is paid for each topic of a LOG operation.

#define G_LOGTOPIC 375

G_SHA3

This is paid for each SHA3 operation.

#define G_SHA3 30

G_SHA3WORD

This is paid for each word (rounded up) for input data to a SHA3 operation.

#define G_SHA3WORD 6

G_COPY

This is a partial payment for *COPY operations, multiplied by the number of words copied, rounded up.

#define G_COPY 3

G_BLOCKHASH

This is a payment for a BLOCKHASH operation.

#define G_BLOCKHASH 20

172 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

G_PRE_EC_RECOVER

Precompile EC RECOVER.

#define G_PRE_EC_RECOVER 3000

G_PRE_SHA256

Precompile SHA256.

#define G_PRE_SHA256 60

G_PRE_SHA256_WORD

Precompile SHA256 per word.

#define G_PRE_SHA256_WORD 12

G_PRE_RIPEMD160

Precompile RIPEMD160.

#define G_PRE_RIPEMD160 600

G_PRE_RIPEMD160_WORD

Precompile RIPEMD160 per word.

#define G_PRE_RIPEMD160_WORD 120

G_PRE_IDENTITY

Precompile IDENTIY (copyies data)

#define G_PRE_IDENTITY 15

G_PRE_IDENTITY_WORD

Precompile IDENTIY per word.

#define G_PRE_IDENTITY_WORD 3

G_PRE_MODEXP_GQUAD_DIVISOR

Gquaddivisor from modexp precompile for gas calculation.

#define G_PRE_MODEXP_GQUAD_DIVISOR 20

11.5. Module eth_full 173

Incubed Documentation, Release 1.2

G_PRE_ECADD

Gas costs for curve addition precompile.

#define G_PRE_ECADD 500

G_PRE_ECMUL

Gas costs for curve multiplication precompile.

#define G_PRE_ECMUL 40000

G_PRE_ECPAIRING

Base gas costs for curve pairing precompile.

#define G_PRE_ECPAIRING 100000

G_PRE_ECPAIRING_WORD

Gas costs regarding curve pairing precompile input length.

#define G_PRE_ECPAIRING_WORD 80000

EVM_STACK_LIMIT

max elements of the stack

#define EVM_STACK_LIMIT 1024

EVM_MAX_CODE_SIZE

max size of the code

#define EVM_MAX_CODE_SIZE 24576

FRONTIER_G_EXPBYTE

fork values

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER_G_EXPBYTE 10

174 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

FRONTIER_G_SLOAD

This is a partial payment when multiplied by dlog256(exponent)e for the EXP operation.

#define FRONTIER_G_SLOAD 50

11.6 Module eth_nano

static lib

11.6.1 eth_nano.h

Ethereum Nanon verification.

Location: src/eth_nano/eth_nano.h

in3_verify_eth_nano

in3_ret_t in3_verify_eth_nano(in3_vctx_t *v);

entry-function to execute the verification context.

arguments:

in3_vctx_t * v

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_blockheader

in3_ret_t eth_verify_blockheader(in3_vctx_t *vc, bytes_t *header, bytes_t *expected_
→˓blockhash);

verifies a blockheader.

verifies a blockheader.

arguments:

in3_vctx_t * vc
bytes_t * header
bytes_t * expected_blockhash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.6. Module eth_nano 175

Incubed Documentation, Release 1.2

eth_verify_signature

int eth_verify_signature(in3_vctx_t *vc, bytes_t *msg_hash, d_token_t *sig);

verifies a single signature blockheader.

This function will return a positive integer with a bitmask holding the bit set according to the address that signed it.
This is based on the signatiures in the request-config.

arguments:

in3_vctx_t * vc
bytes_t * msg_hash
d_token_t * sig

returns: int

ecrecover_signature

bytes_t* ecrecover_signature(bytes_t *msg_hash, d_token_t *sig);

returns the address of the signature if the msg_hash is correct

arguments:

bytes_t * msg_hash
d_token_t * sig

returns: bytes_t *

eth_verify_eth_getTransactionReceipt

in3_ret_t eth_verify_eth_getTransactionReceipt(in3_vctx_t *vc, bytes_t *tx_hash);

verifies a transaction receipt.

arguments:

in3_vctx_t * vc
bytes_t * tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

eth_verify_in3_nodelist

in3_ret_t eth_verify_in3_nodelist(in3_vctx_t *vc, uint32_t node_limit, bytes_t *seed,
→˓d_token_t *required_addresses);

176 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

verifies the nodelist.

arguments:

in3_vctx_t * vc
uint32_t node_limit
bytes_t * seed
d_token_t * required_addresses

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

in3_register_eth_nano

void in3_register_eth_nano();

this function should only be called once and will register the eth-nano verifier.

create_tx_path

bytes_t* create_tx_path(uint32_t index);

helper function to rlp-encode the transaction_index.

The result must be freed after use!

arguments:

uint32_t index

returns: bytes_t *

11.6.2 merkle.h

Merkle Proof Verification.

Location: src/eth_nano/merkle.h

MERKLE_DEPTH_MAX

#define MERKLE_DEPTH_MAX 64

trie_verify_proof

int trie_verify_proof(bytes_t *rootHash, bytes_t *path, bytes_t **proof, bytes_t
→˓*expectedValue);

11.6. Module eth_nano 177

Incubed Documentation, Release 1.2

verifies a merkle proof.

expectedValue == NULL : value must not exist expectedValue.data ==NULL : please copy the data I want to evaluate
it afterwards. expectedValue.data !=NULL : the value must match the data.

arguments:

bytes_t * rootHash
bytes_t * path
bytes_t ** proof
bytes_t * expectedValue

returns: int

trie_path_to_nibbles

uint8_t* trie_path_to_nibbles(bytes_t path, int use_prefix);

helper function split a path into 4-bit nibbles.

The result must be freed after use!

arguments:

bytes_t path
int use_prefix

returns: uint8_t * : the resulting bytes represent a 4bit-number each and are terminated with a 0xFF.

trie_matching_nibbles

int trie_matching_nibbles(uint8_t *a, uint8_t *b);

helper function to find the number of nibbles matching both paths.

arguments:

uint8_t * a
uint8_t * b

returns: int

trie_free_proof

void trie_free_proof(bytes_t **proof);

used to free the NULL-terminated proof-array.

arguments:

bytes_t ** proof

178 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

11.6.3 rlp.h

RLP-En/Decoding as described in the Ethereum RLP-Spec.

This decoding works without allocating new memory.

Location: src/eth_nano/rlp.h

rlp_decode

int rlp_decode(bytes_t *b, int index, bytes_t *dst);

this function decodes the given bytes and returns the element with the given index by updating the reference of dst.

the bytes will only hold references and do not need to be freed!

bytes_t* tx_raw = serialize_tx(tx);

bytes_t item;

// decodes the tx_raw by letting the item point to range of the first element, which
→˓should be the body of a list.
if (rlp_decode(tx_raw, 0, &item) !=2) return -1 ;

// now decode the 4th element (which is the value) and let item point to that range.
if (rlp_decode(&item, 4, &item) !=1) return -1 ;

arguments:

bytes_t * b
int index
bytes_t * dst

returns: int : - 0 : means item out of range

• 1 : item found

• 2 : list found (you can then decode the same bytes again)

rlp_decode_in_list

int rlp_decode_in_list(bytes_t *b, int index, bytes_t *dst);

this function expects a list item (like the blockheader as first item and will then find the item within this list).

It is a shortcut for

// decode the list
if (rlp_decode(b,0,dst)!=2) return 0;
// and the decode the item
return rlp_decode(dst,index,dst);

arguments:

11.6. Module eth_nano 179

https://github.com/ethereum/wiki/wiki/RLP

Incubed Documentation, Release 1.2

bytes_t * b
int index
bytes_t * dst

returns: int : - 0 : means item out of range

• 1 : item found

• 2 : list found (you can then decode the same bytes again)

rlp_decode_len

int rlp_decode_len(bytes_t *b);

returns the number of elements found in the data.

arguments:

bytes_t * b

returns: int

rlp_decode_item_len

int rlp_decode_item_len(bytes_t *b, int index);

returns the number of bytes of the element specified by index.

arguments:

bytes_t * b
int index

returns: int : the number of bytes or 0 if not found.

rlp_decode_item_type

int rlp_decode_item_type(bytes_t *b, int index);

returns the type of the element specified by index.

arguments:

bytes_t * b
int index

returns: int : - 0 : means item out of range

• 1 : item found

• 2 : list found (you can then decode the same bytes again)

180 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

rlp_encode_item

void rlp_encode_item(bytes_builder_t *bb, bytes_t *val);

encode a item as single string and add it to the bytes_builder.

arguments:

bytes_builder_t * bb
bytes_t * val

rlp_encode_list

void rlp_encode_list(bytes_builder_t *bb, bytes_t *val);

encode a the value as list of already encoded items.

arguments:

bytes_builder_t * bb
bytes_t * val

rlp_encode_to_list

bytes_builder_t* rlp_encode_to_list(bytes_builder_t *bb);

converts the data in the builder to a list.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder
to encode the data.

arguments:

bytes_builder_t * bb

returns: bytes_builder_t * : the same builder.

rlp_encode_to_item

bytes_builder_t* rlp_encode_to_item(bytes_builder_t *bb);

converts the data in the builder to a rlp-encoded item.

This function is optimized to not increase the memory more than needed and is fastet than creating a second builder
to encode the data.

arguments:

bytes_builder_t * bb

returns: bytes_builder_t * : the same builder.

11.6. Module eth_nano 181

Incubed Documentation, Release 1.2

rlp_add_length

void rlp_add_length(bytes_builder_t *bb, uint32_t len, uint8_t offset);

helper to encode the prefix for a value

arguments:

bytes_builder_t * bb
uint32_t len
uint8_t offset

11.6.4 serialize.h

serialization of ETH-Objects.

This incoming tokens will represent their values as properties based on JSON-RPC.

Location: src/eth_nano/serialize.h

BLOCKHEADER_PARENT_HASH

#define BLOCKHEADER_PARENT_HASH 0

BLOCKHEADER_SHA3_UNCLES

#define BLOCKHEADER_SHA3_UNCLES 1

BLOCKHEADER_MINER

#define BLOCKHEADER_MINER 2

BLOCKHEADER_STATE_ROOT

#define BLOCKHEADER_STATE_ROOT 3

BLOCKHEADER_TRANSACTIONS_ROOT

#define BLOCKHEADER_TRANSACTIONS_ROOT 4

BLOCKHEADER_RECEIPT_ROOT

#define BLOCKHEADER_RECEIPT_ROOT 5

182 Chapter 11. API Reference C

https://github.com/ethereum/wiki/wiki/JSON-RPC

Incubed Documentation, Release 1.2

BLOCKHEADER_LOGS_BLOOM

#define BLOCKHEADER_LOGS_BLOOM 6

BLOCKHEADER_DIFFICULTY

#define BLOCKHEADER_DIFFICULTY 7

BLOCKHEADER_NUMBER

#define BLOCKHEADER_NUMBER 8

BLOCKHEADER_GAS_LIMIT

#define BLOCKHEADER_GAS_LIMIT 9

BLOCKHEADER_GAS_USED

#define BLOCKHEADER_GAS_USED 10

BLOCKHEADER_TIMESTAMP

#define BLOCKHEADER_TIMESTAMP 11

BLOCKHEADER_EXTRA_DATA

#define BLOCKHEADER_EXTRA_DATA 12

BLOCKHEADER_SEALED_FIELD1

#define BLOCKHEADER_SEALED_FIELD1 13

BLOCKHEADER_SEALED_FIELD2

#define BLOCKHEADER_SEALED_FIELD2 14

BLOCKHEADER_SEALED_FIELD3

#define BLOCKHEADER_SEALED_FIELD3 15

11.6. Module eth_nano 183

Incubed Documentation, Release 1.2

serialize_tx_receipt

bytes_t* serialize_tx_receipt(d_token_t *receipt);

creates rlp-encoded raw bytes for a receipt.

The bytes must be freed with b_free after use!

arguments:

d_token_t * receipt

returns: bytes_t *

serialize_tx

bytes_t* serialize_tx(d_token_t *tx);

creates rlp-encoded raw bytes for a transaction.

The bytes must be freed with b_free after use!

arguments:

d_token_t * tx

returns: bytes_t *

serialize_tx_raw

bytes_t* serialize_tx_raw(bytes_t nonce, bytes_t gas_price, bytes_t gas_limit, bytes_
→˓t to, bytes_t value, bytes_t data, uint64_t v, bytes_t r, bytes_t s);

creates rlp-encoded raw bytes for a transaction from direct values.

The bytes must be freed with b_free after use!

arguments:

bytes_t nonce
bytes_t gas_price
bytes_t gas_limit
bytes_t to
bytes_t value
bytes_t data
uint64_t v
bytes_t r
bytes_t s

returns: bytes_t *

184 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

serialize_account

bytes_t* serialize_account(d_token_t *a);

creates rlp-encoded raw bytes for a account.

The bytes must be freed with b_free after use!

arguments:

d_token_t * a

returns: bytes_t *

serialize_block_header

bytes_t* serialize_block_header(d_token_t *block);

creates rlp-encoded raw bytes for a blockheader.

The bytes must be freed with b_free after use!

arguments:

d_token_t * block

returns: bytes_t *

rlp_add

int rlp_add(bytes_builder_t *rlp, d_token_t *t, int ml);

adds the value represented by the token rlp-encoded to the byte_builder.

arguments:

bytes_builder_t * rlp
d_token_t * t
int ml

returns: int : 0 if added -1 if the value could not be handled.

11.7 Module libin3

add the executablex

11.7.1 in3.h

the entry-points for the shares library.

Location: src/libin3/in3.h

11.7. Module libin3 185

Incubed Documentation, Release 1.2

in3_create

in3_t* in3_create();

creates a new client

returns: in3_t *

in3_send

int in3_send(in3_t *c, char *method, char *params, char **result, char **error);

sends a request and stores the result in the provided buffer

arguments:

in3_t * c
char * method
char * params
char ** result
char ** error

returns: int

in3_dispose

void in3_dispose(in3_t *a);

frees the references of the client

arguments:

in3_t * a

11.8 Module transport_curl

add a option

11.8.1 in3_curl.h

transport-handler using libcurl.

Location: src/transport_curl/in3_curl.h

send_curl

in3_ret_t send_curl(char **urls, int urls_len, char *payload, in3_response_t *result);

186 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

arguments:

char ** urls
int urls_len
char * payload
in3_response_t * result

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.8.2 in3_storage.h

storage handler storing cache in the home-dir/.in3

Location: src/transport_curl/in3_storage.h

storage_get_item

bytes_t* storage_get_item(void *cptr, char *key);

arguments:

void * cptr
char * key

returns: bytes_t *

storage_set_item

void storage_set_item(void *cptr, char *key, bytes_t *content);

arguments:

void * cptr
char * key
bytes_t * content

11.9 Module usn_api

static lib

11.9.1 usn_api.h

USN API.

This header-file defines easy to use function, which are verifying USN-Messages.

Location: src/usn_api/usn_api.h

11.9. Module usn_api 187

Incubed Documentation, Release 1.2

usn_msg_type_t

The enum type contains the following values:

USN_ACTION 0
USN_REQUEST 1
USN_RESPONSE 2

usn_event_type_t

The enum type contains the following values:

BOOKING_NONE 0
BOOKING_START 1
BOOKING_STOP 2

usn_booking_handler

typedef int(* usn_booking_handler) (usn_event_t *)

returns: int(*

usn_verify_message

usn_msg_result_t usn_verify_message(usn_device_conf_t *conf, char *message);

arguments:

usn_device_conf_t * conf
char * message

returns: usn_msg_result_t

usn_register_device

in3_ret_t usn_register_device(usn_device_conf_t *conf, char *url);

arguments:

usn_device_conf_t * conf
char * url

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

188 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

usn_parse_url

usn_url_t usn_parse_url(char *url);

arguments:

char * url

returns: usn_url_t

usn_update_state

unsigned int usn_update_state(usn_device_conf_t *conf, unsigned int wait_time);

arguments:

usn_device_conf_t * conf
unsigned int wait_time

returns: unsigned int

usn_update_bookings

in3_ret_t usn_update_bookings(usn_device_conf_t *conf);

arguments:

usn_device_conf_t * conf

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_remove_old_bookings

void usn_remove_old_bookings(usn_device_conf_t *conf);

arguments:

usn_device_conf_t * conf

usn_get_next_event

usn_event_t usn_get_next_event(usn_device_conf_t *conf);

11.9. Module usn_api 189

Incubed Documentation, Release 1.2

arguments:

usn_device_conf_t * conf

returns: usn_event_t

usn_rent

in3_ret_t usn_rent(in3_t *c, address_t contract, address_t token, char *url, uint32_t
→˓seconds, bytes32_t tx_hash);

arguments:

in3_t * c
address_t contract
address_t token
char * url
uint32_t seconds
bytes32_t tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_return

in3_ret_t usn_return(in3_t *c, address_t contract, char *url, bytes32_t tx_hash);

arguments:

in3_t * c
address_t contract
char * url
bytes32_t tx_hash

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

usn_price

in3_ret_t usn_price(in3_t *c, address_t contract, address_t token, char *url, uint32_
→˓t seconds, address_t controller, bytes32_t price);

arguments:

190 Chapter 11. API Reference C

Incubed Documentation, Release 1.2

in3_t * c
address_t contract
address_t token
char * url
uint32_t seconds
address_t controller
bytes32_t price

returns: in3_ret_t the result-status of the function.

Please make sure you check if it was successfull (==IN3_OK)

11.9. Module usn_api 191

Incubed Documentation, Release 1.2

192 Chapter 11. API Reference C

Index

Symbols
–autoConfig, 17
–autoUpdateList, 17
–chainId, 17
–chainRegistry, 17
–finality, 17
–format, 17
–includeCode, 17
–keepIn3, 17
–loggerUrl, 17
–mainChain, 17
–maxBlockCache, 17
–maxCodeCache, 17
–minDeposit, 17
–nodeLimit, 17
–proof, 17
–replaceLatestBlock, 17
–requestCount, 17
–retryWithoutProof, 17
–signatureCount, 17
–timeout, 17

193

	Concept
	Situation
	Low-Performance Hardware
	Scalability
	Use Cases
	Architecture
	Scaling

	Getting Started
	TypeScript/JavaScript
	As Docker-Container
	C - Implementation
	Java
	Commandline Tool
	Supported Chains
	Registering a own in3-node

	Technical Background
	Ethereum Verification

	Verifying Blockheaders
	Proof of Work
	Proof of Authority

	Incentivization
	Decentralizing Access
	Incentivization for nodes
	Connecting Clients and Server
	Ensuring Client Access
	Deposit
	LoadBalancing
	Free Access
	Convict
	Handling conflicts

	Decentralizing central services
	Incentivication
	Verification

	Threat Model for Incubed
	Registry Issues
	Network-Attacks
	Privacy
	Risc Calculation

	Roadmap
	V1.2 Stable - Q3 2019
	V1.2 Incentivisation - Q3 2019
	V1.3 eWasm - Q1 2020
	V1.4 Substrate - Q3 2020
	V1.5 Services - Q1 2021

	IN3-Specification
	Incubed Requests
	Incubed Responses
	ChainId
	Registry
	Binary Format
	Communication
	Proofs
	RPC-Methods Ethereum
	PoA Validations

	API Reference TS
	Type AccountProof
	Type AuraValidatoryProof
	Type BlockData
	Type ChainSpec
	Type Client
	Type IN3Config
	Type IN3NodeConfig
	Type IN3NodeWeight
	Type IN3RPCConfig
	Type IN3RPCHandlerConfig
	Type IN3RPCRequestConfig
	Type IN3ResponseConfig
	Type LogData
	Type LogProof
	Type Proof
	Type RPCRequest
	Type RPCResponse
	Type ReceiptData
	Type ServerList
	Type Signature
	Type TransactionData
	Type Transport
	Type AxiosTransport
	Type API
	Type AuthSpec
	Type Block
	Type ChainContext
	Type AccountData
	Type Transaction
	Type Receipt
	Type Account
	Type Signer
	Type BlockType
	Type Address
	Type ABI
	Type Log
	Type BN
	Type Hash
	Type Quantity
	Type LogFilter
	Type TransactionDetail
	Type TransactionReceipt
	Type Data
	Type TxRequest
	Type Hex
	Type Module
	Type ABIField

	API Reference C
	Overview
	Module core
	Module eth_api
	Module eth_basic
	Module eth_full
	Module eth_nano
	Module libin3
	Module transport_curl
	Module usn_api

	Index

